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Abstract: Instrument automation, technological advancements and improved computational power
made separation science an extremely data-rich approach, requiring the use of statistical and data
analysis tools that are able to optimize processes and combine multiple outputs. The use of chemo-
metrics is growing, greatly improving the ability to extract meaningful information. Separation–
multidetection generates multidimensional data, whose elaboration should not be left to the discretion
of the operator. However, some applications or techniques still suffer from the lack of method opti-
mization through DoE and downstream multivariate analysis, limiting their potential. This review
aims at summarizing how chemometrics can assist analytical chemists in terms of data elaboration
and method design, focusing on what can be achieved by applying chemometric approaches to
separation science. Recent applications of chemometrics in separation analyses, in particular in gas,
liquid and size-exclusion chromatography, together with field flow fractionation, will be detailed to
visualize the state of the art of separation chemometrics, encompassing volatile, soluble and solid
(colloidal) analytes. The samples considered will range from food chemistry and environmental
chemistry to bio/pharmaceutical science.

Keywords: chemometrics; multivariate analysis; HPLC; gas chromatography (GC); size exclusion
chromatography (SEC); field flow fractionation (FFF); separation science; data processing; design of
experiment (DoE)

1. Introduction

The great improvement in computer science in the last thirty years made the use of
personal computers indispensable in all aspects of life. One of the effects of increasing
computational power in analytical chemistry is the growing use of chemometrics for data
elaboration. Furthermore, instrument automation allows the production of a huge amount
of data in a relatively short time, sharpening the need for extracting useful information.

Separation techniques are the backbone of analytical chemistry because they allow
the study of all the components of the sample under analysis, or the selection of the most
interesting one(s) for further study. Coupling a separation technique with spectrophoto-
metric or mass spectrometry (MS) detectors allows for the quantification and identification
of each component, following a targeted approach. Technologies such as liquid- and
gas-chromatography (LC and GC) coupled with MS brought the development of “omics”
sciences, the aim of which is to characterize and quantify all the components of the matrix,
in order to fully investigate it and understand the chemical processes to which it was sub-
ject [1,2]. A different approach for the use of separation data is the untargeted one, in which
the chromatogram is used as a fingerprint of the sample, without further characterizing
the components of the matrix, with the aim of comparing it with other samples or sample
pools. This approach is useful for grouping purposes, such as clustering or classification,
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and is usually employed when a non-specific detector is coupled to the chromatographic
instrument, such as a spectroscopic or a flame ionization (FID) detector [3].

Among separation techniques, gas- and liquid-chromatography are the most known,
robust (and published) ones, dealing, respectively, with volatile (GC) and soluble (LC)
compounds. However, another class of separation techniques is also crucial in the analytical
field, taking into account samples with a nano- or micro-disperse content. These techniques
are able to size-separate sample components prior to detection, and include mainly size
exclusion chromatography (SEC) and Field Flow Fractionation (FFF). In particular, FFF is
gaining increasing traction [4] for the analysis of nano-particles in solution thanks to the
requirements imposed by the Food and Drug Administration (FDA) demanding the use
of native and representative characterization [5]. In fact, the main advantage of FFF over
chromatographic techniques is that it does not require a stationary phase, since separation
is obtained in an empty channel by the application of an external field, such as the earth
gravitational field [6,7] or a perpendicular solvent flow [8]. With the addition of SEC and
FFF, all physical forms of analytes are included, whether gaseous, liquid or solid.

Independently of the sample type, all analytical methods, in both targeted and un-
targeted approaches, require chemometrics to some degree, i.e., for data handling. In all
cases, in fact, a multivariate signal is obtained for each sample from the analytical method,
these being a chromatogram, a fractogram (for FFF) or a set of chromatographic peak
areas, intensity, spectra or analytes concentrations. It is, therefore, important to apply
statistical analysis to extract the useful information from the data. The umbrella term
“useful” includes a wide range of possibilities. There are several tasks that a researcher
could pursue when planning analytical research, and these could also change during the
work. Chemometrics can be applied in many steps of the study to reach different aims.

The most renowned chemometric technique is certainly principal components analysis
(PCA) [9,10]. It is the most widely used chemometric tool, due to its simplicity of application
and interpretation. Currently, most commercial software and a few software for instrument
control implement PCA tools for rapid data analysis. The goal is mainly to compare
samples, including with online repositories, during data acquisition, to verify grouping and
detect outliers. Data behavior can in fact be visualized by PCA’s most important output
plots: scores (for samples) and loadings (for variables) plot.

It is important to stress, however, that chemometrics goes far beyond PCA, and the
application of other tools depends on the aim of the research. A chemometric method, the
design of experiment (DoE) [11–13], can be used before sample analyses to optimize the
analytical parameters. To achieve a good separation of complex matrices, there could be
many analytical parameters that should be optimized (extraction, mobile phase, column
type, detector, elution gradient, etc.), clashing with the need for economical and fast method
optimization, which cannot take every single parameter variation into consideration. For
this reason, DoE was developed to analyze data from a few selected experiments to find
the best combination of parameters to bring forward.

Several chemometric analyses have been developed to address classification, i.e., to
classify samples to one class between those analyzed, and regression, i.e., to quantify one
or more species present in the sample(s). The most used are cluster analysis (CA) [14]
for data exploration more quantitative than PCA, linear discriminant analysis (LDA) [15]
for classification and partial least squares (PLS) [16] for regression. PLS discriminant
analysis (PLS-DA) [17], moreover, is a well-known PLS method developed for classification
purposes. Another important field of application of chemometrics is data pretreatment.
This field includes a wide range of methods (and many are still under development) that
goes from chromatograms alignment [18] to noise reduction [19] and more. The goal of
the present work is not to define which chemometric is “the best” one, since there is no
general answer. Indeed, this task is strongly problem-dependent and a method that is
not satisfactory in one case may be the optimal one in another. Therefore, there is no a
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priori unambiguous method for defining which processing is optimal for obtaining the
best results, except in a few particular cases. In several works, several methods are applied
to the same dataset and the model that provides lower errors and better predictions is
considered the best one to describe the problem under investigation.

This review aims to explore the ways that chemometrics, in its various declinations,
can assist analytical chemists in terms of data elaboration and method design, focusing
on what can be achieved by applying chemometric approaches to separation science.
Recent applications of chemometrics in separation analyses, in particular in GC, LC (and,
mostly, high pressure liquid chromatography, HPLC), SEC and FFF will be detailed to
visualize the state of the art of separation chemometrics, encompassing volatile, soluble
and solid (colloidal) analytes. The samples considered will range from food chemistry and
environmental chemistry to bio/pharmaceutical science.

As GC and HPLC are more often coupled to statistical evaluation, the focus will rather
be on “hot topics” or novel methods. Instead, since the application of chemometrics to
colloidal analysis is still at an early stage, the last part will envision new applications
and perspectives.

2. Overview of the Main Chemometric Techniques and Their Advances

In this work, the application of many chemometrics elaborations to different analytical
problems will be presented. In this section, the most common chemometric techniques
(PCA, CA, LDA, PLS and DoE) will be briefly presented and described. When necessary,
these and their advancements will be described in a more detailed way in the following
sections. These methods are the most used chemometric tools and serve as a base from
which the most modern evolutions have evolved.

2.1. Principal Component Analysis (PCA)

PCA [9,20] is the most important and famous multivariate chemometric method [21]. It
is used for the initial exploration of datasets, and it is usually coupled with other techniques
which will be detailed later. Through a linear combination of the original variables, PCA
converts them into new variables, called principal components (PCs) (or latent variables),
orthogonal to each other. During this process, the original information is “distributed”
to the PCs in a decreasing way: the first PC keeps most of the information (explained
variance, EV), the second keeps most of the residual EV, and so on. PCA is therefore used
to reduce the number of variables for describing the problem and the redundancy between
the independent dimensions. It can provide information about the relationship between
the samples and variables, to find groups of them (cluster of samples or variables carrying
similar information), and to detect outliers. These goals are achieved by a deep visual in-
spection of its powerful and highly explanatory graphs: loadings plot, to evaluate variables’
role, and scores plot, to evaluate samples. From PCA, several exploratory methods have
been developed based on the same concepts but more evolved and performant, such as 3D
PCA and multiblock PCA.

2.2. Clusters Analysis (CA)

CA is another exploratory technique, based on the mathematical concept of similarity
between data, which in turn is linked to the concept of distance. The basic idea is that
two generic objects are more similar the smaller their mutual distance. There are various
definitions of mathematical distance that are used in CA: Euclidean, Manhattan, Pearson
and many others [22]. The algorithm used for CA is largely described by Nguyen et al. [23].
It has to be noted that, in some works, CA is used as a classification method, or the clusters
obtained are considered classes. However, CA results are strongly influenced by the chosen
type of distance and the presence of outliers in the dataset, thus the authors discourage the
use of CA for classification and suggest the limiting of its use to exploratory purposes.
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2.3. Design of Experiments (DoE)

DoE [11,24] is an important multivariate regression method, applicable to numerous
research fields. Its aim is to define the relationships existing between a set of experimental
variables (e.g., components of a mixture, temperature, humidity) and the final proper-
ties of the product(s) (output variables) in a specific system. The experimental variables
(factors) are chosen as the most influential for the product (therefore, some knowledge
about the problem is needed a priori) and, for each of them, some experimental values
(levels generally, but not limited to, two or three). The maxima and minima levels of
the factors define the experimental domain. Then, the experiments defined by the com-
binations of factors’ levels are carried out and the products’ properties (responses) are
evaluated. DoE regression uses the response(s) as dependent variable(s) and the factors as
independent ones.

The application of DoE generally has two goals: the first one is the prediction, within
the experimental space studied, of the behavior of the responses; the second is the optimiza-
tion, through the use of different techniques (response surface methodology, desirability
function) of the optimal process conditions to obtain the best possible product properties.

The limit of this method is the impossibility of working in an extrapolative mode, i.e.,
only the results obtained inside the experimental domain are reliable.

2.4. Linear Discriminant Analysis (LDA)

LDA [15] is the most famous and used classification method. Similar to PCA, it
performs a projection of the original data onto a new, lower-dimension space. The most
important characteristic of this space is that it maximizes the variance between classes
and minimizes the variance within the classes. This allows the maximization of class
separability in the model, and a new object projected onto the model can be assigned to
one of the known classes. The algorithm, together with some limits, of LDA is described in
detail in the paper of Gaber et al. [15].

2.5. Partial Least Square (PLS)

PLS [16] is one of the most powerful and widely used multivariate regression methods.
It allows the computation of regression models even with highly correlated variables (as
for chromatograms or spectra) or when the number of samples is lower than the number
of variables, in which case the traditional regression modelling, as ordinary least squares
(OLS), cannot be used. The PLS algorithm maximizes the correlation between dependent
and independent variables by calculating factors (in a similar way in which PCA calculates
the PCs) from their matrix products.

The PLS method can be applied every time it is necessary to perform a regression
model (even if its results are poor because the number of variables is low, i.e., in the
cases in which OLS can be applied). Moreover, it has been used as the starting point
for more advanced and complex chemometric methods. For example, PLS-DA (PLS
discriminant analysis) [17], which exploits the PLS regression for classification purposes
(useful to perform classifications using chromatograms or spectra) or SO-PLS (sequential
and orthogonalized PLS) [25], which is capable of processing composite datasets by merging
data from different analytical methods.

3. Gas Chromatography (GC) and Chemometrics

GC is an analytical technique very prone to being combined with chemometrics,
because a gas-chromatogram is always composed of several peaks that are not always
totally resolved. It is often likely that two or more volatile molecules have the same
retention time, e.g., aldehydes with a similar number of carbons. Therefore, particularly
when GC is not hyphenated with a MS detector, the fingerprint approach is a valuable
approach to use GC data. A bibliographic study on Scopus carried out in October 2022
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with the two keywords “chemometrics” and “GC” limited to the last two years (2021 and
2022) produced more than 500 results, demonstrating how much attention is dedicated to
this kind of research.

Most of the papers concern food analysis. Foods, indeed, have a strong volatile
component composing their aroma that is very characteristic, sometimes more so than taste.
The volatile fraction is so characteristic that it can be used to compare and differentiate
groups of samples of foodstuffs based on their different origins. This can be achieved
with a GC hyphenated with an FID detector, thus in a fully untargeted way, which was
exploited for different matrices. GC-FID was used to discriminate the geographical origins
of extra-virgin olive oil [3] by PCA and PLS-DA, to understand the botanical origin of
twelve classes of honey samples by LDA [26], the geographical origin of Prosecco wines,
again by LDA [27], to compute a PLS model for the quantification of adulterations in
saffron [28] and, recently, to evaluate the differences in tomato sauce due to brands and
producers by PCA [29].

An interesting work using GC-MS and chemometrics to analyze coffee is the one
carried out by Abdelwareth et al. [30]. In that case, the ability of PCA and PLS to dis-
criminate different samples and identify the most discriminative molecules was combined
with MS, which determined the specific molecules selected. In that way, it was possible to
discriminate coffee samples based on seeds origin, roasting degree and brewing method
and to evaluate the molecules that mostly provided such discrimination (e.g., it was found
that pyrazines, furans and aromatic hydrocarbons were more abundant in Coffea robusta
than Coffea arabica). Coffee is a good example of a food matrix with a characteristic aroma,
making it very interesting for GC analysis. Indeed, several other works dealt with this
matrix. Zakidou et al. [31], for example, evaluated the geographical origin and roasting
level of coffee samples by CA and PCA, using MS and solid phase micro-extraction (SPME)
for variables identification. Gancarz et al. [32], instead, used a GC-electronic nose (e-nose)
system to evaluate the content of pyridines due to roasting procedures on coffee beans
by PCA. Finally, Bressanello et al. [33] fused data coming from GC-MS and LC-UV to
perform an untargeted comparison of the analytical data and the sensory evaluation from a
panel test by PCA and PLS, concluding that the volatile profile is the most informative to
delineate the coffee flavor.

Honey is another matrix well studied by GC. It has been demonstrated in several
works [26,34,35] that the volatile fraction of honey is strongly related to its floral origin.
This raises substantial interest, most of all from a commercial point of view, because honey
produced from a single plant (or at least having a higher percentage of pollen of a single
plant) has generally a higher commercial value than “multifloral” honeys that are more
common but present a poorer taste. The work of Zhu et al. [35] compared five types of
Chinese unifloral honeys, analyzing them by GC-MS and sensory analysis and elaborating
the data with PCA and orthogonal PLS-DA (OPLS-DA) (Figure 1).

From the chemometric elaboration of the 92 molecules found, 51 of them contributed to
the discrimination of the five classes. Similar studies, but ones which only took into account
one honey class (Quercus ilex honeydew and pine honeys) and focused on geographical
origin, with samples coming from several regions of Greece and Turkey, respectively,
were carried out by Karabagias et al. [36] and Duru et al. [37] by PCA and stepwise LDA
(SLDA), or by PCA and CA. Karabagias [38], instead, coupled GC-MS and chemometric
analyses (PCA, LDA and univariate analysis of variance, ANOVA) to study the ageing of
honeydew honey during one year of in-house storing. Two works by Karabagias [39] and
Passarella et al. [40] demonstrated by GC-MS, PCA and ANOVA that honey (collected from
Greece, Italy and Serbia) can be contaminated by environmental volatile organic carbon
(VOC) species, leading to concerns for consumers’ health.

Coffee and honey are optimal examples of food matrices well studied in the literature
in the last few years, however the combination of GC and chemometrics finds applications
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for many other foods. For example, the evaluation of geographical and cultivar origins of
extra-virgin olive oil (the most valuable class of olive oil) received great attention [3,41,42],
with the added aim of finding possible adulterations [43,44]. De Flaviis et al. [45] performed
an in-depth study on wheat (based on PCA and PLS-DA) to evaluate the factors influencing
the VOC’s profile (genetic, soil, weathering and altitude of farming). Cervellieri et al. [46]
used a GC-MS-eNose to discriminate Italian wheat pasta from pasta produced with mix-
tures of wheat from different origins. Oliveira et al. [47] used PCA and PLS-DA on GC-MS
data to differentiate mint samples based on the different agricultural methods (conven-
tional, organic and permaculture) and to evaluate the most discriminative molecules. Due
to their intense aroma, spices are very interesting matrices for GC analysis, and their
commercial value makes them prone to adulteration. Therefore, authentication of spices
is a topic of great interest, and several works are devoted to this. In a recent paper of
Ford et al. [48], a database for spices authentication by GC analysis was created, analyzing
standards of VOCs generally present in several spices. Chemometrics was used mainly
to optimize the database’s peak identification, in order to be able to widen its use when
GC parameters were modified. Analyses on specific spices, with the aim of studying their
geographical origin or possible adulterations, were mainly focused on saffron [28,49,50],
cinnamon [51,52] and ginger [53,54].

Besides food chemistry, environmental chemistry also takes great advantage from
the coupling of GC and chemometrics. Perin et al. [55], for example, studied the anthro-
pogenic contamination of Lake Guaíba, Brazil, analyzing samples with GC-MS, LC-MS and
Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Puorasil et al. [56] developed a
chemometric method based on multivariate curve resolution (MCR) to improve the quality
of GC-MS data (overcoming the problems of poor peak alignment and coelution of species)
to study both qualitatively and quantitatively the indoor pollution. Mazur et al. [57] used
GC-MS to identify pollutants in snow samples coming from several areas of Moscow city,
and CA and Spearman correlation analysis [58] to evaluate the spatial distribution of pol-
lutants. Omokpariola et al. [59] used GC-FID to quantify the presence of hydrocarbons
coming from petroleum processing in several samples of rainwater in Nigeria. The contam-
ination found in that region is a serious problem, due to dermal and skin exposure, because
rainwater is also a source of drinking water. The work of Peñalver et al. is also interest-
ing [60], elaborating data from GC-MS by PLS and orthogonal-PLS (OPLS), to quantify
VOCs in plastic samples, with the aim of using their concentrations for the quantification
of recycled polyethylene terephthalate in plastic samples (Figure 2).

Such VOCs may indeed either be produced by the recycling process or be residues of
the previous use of plastic material.

Another interesting field of the application of GC analysis, where chemometric can
offer improvements in terms of data analysis, is the clinical and forensic one, although
results are still at a research stage. Forensic analyses (but also clinical ones) are strictly
regulated and, therefore, carried out with different validated analytical methods. How-
ever, some research based on GC were proposed, at least to be used as simpler screening
methods before performing official chemical analyses. Hermelin et al. [61] used pyrolysis-
GC-MS (and infrared spectroscopy) and PCA for a preliminary study to evaluate possible
markers of vaginal residues on condoms, in order to detect victims of sexual assaults.
Podolskiy et al. [62] analyzed the steroid profile of urine samples by GC-MS and analyzed
data by LDA and a neural-network based discriminant analysis to evaluate the degrada-
tion of samples for anti-doping analyses. VOC analysis of urine samples was also used
to evaluate the efficacy of antitumoral treatment of breast cancer by Grocki et al. [63].
Yang et al. [64], instead, analyzed urinary samples to evaluate candidate metabolites for
the diagnosis of inherit metabolomic diseases. Aliaño-González et al. [65] applied PCA
and LDA to GC data of firefighters’ coats to discriminate those exposed to fire from the
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non-exposed ones, in order to identify toxic substances to which firefighters can be ex-
posed. Two interesting works of Bogdal et al. [66,67] focused on tracing gasoline residues
in fire debris, with the aim of identifying arsons. These works tested the use of several
machine learning methods to discriminate debris with the presence or absence of ignitable
liquid trace.
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Figure 1. (a) Four types of unifloral honeys studied by Zhu et al. {Zhu, 2022 #169}: flowers (upper
portion), pollen grains by optical microscopy (central portion) and pollen spores by scanning electron
microscopy (lower portion). No pollen was detected in lavender honey due to asexual reproduction
of lavender crop. (b) Volatile composition (left portion) and aroma profile (right portion) of the five
types of unifloral honeys. The aroma characteristics were obtained by the odor contribution rate of
volatiles. Adapted with permission from Zhu et al. [35].
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Machine learning is a “new” frontier of chemometrics in which models are computed
in an iterative way, with the computation that “learns” from data: once a model has been
computed, the calculation starts again using the previous results as starting points, instead
of the original data, and this procedure is carried out iteratively until a satisfactory result,
or a convergence, is reached. Bogdal et al. tested random forest, gradient boosting, support
vector machine, naïve bayes, logistic regression [66] and convolutional neural networks
on GC-MS spectra converted to images [67]. Satisfactory results were obtained for most
of these methods, except for logistic regression and naïve bayes, for which, probably,
there were not enough samples. Machine learning techniques are applied to overcome the
limitations of all the basic chemometric tools presented in Chapter 2 of not being able to
work with 3D datasets, as those coming from GC-MS analyses. However, these methods
must also be used with caution, because the results, as shown in Bogdal’s works, can be
not fully satisfactory, in particular if the unknown samples belong to a “shadow zone” and
are not fully explored by the standard samples used to train the model.
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Figure 2. Application of PCA to recycled PET samples. (a) Example of full-scan GC-MS chro-
matogram of a PET sample, with six ion chromatograms of specific compounds, recognized based
on characteristic m/z ions; (b) percentage of PET samples in which the reported compounds were
detected; (c) PCA of the PET samples: scores plot (in the left) where samples are colored based on
the percentage of recycled PET (0%, ≤50%, and 100%) and loadings plot, with centroids of scores
highlighted. Adapted from Peñalver et al. [60].

The previously reported works are only some of the examples of chemometrics ad-
vancements applied to GC analysis, but several other papers applied advanced chemomet-
ric tools to optimize the results obtainable by gas-chromatograms. Parallel factor analysis
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(PARAFAC) [68] and its evolutions (as PARAFAC2) have been receiving great attention in
the last few years, and not only for GC analyses, although the first studies using such tech-
niques date back to the 1970s [69]. Giebelhaus et al. [70] applied PARAFAC2 algorithm to
GC data to find the most important chromatographic peaks that can be distinguished from
noise, while Ochoa et al. [71] introduced a further algorithm, the class comparison enabled
mass spectrum purification (CCE-MSP), to better resolve peaks from a two-dimensional
GC (GC×GC)-MS analysis.

Data fusion [72] is another topic of interest in chemometrics that has also been applied
to GC data. Data fusion, in general, means the fusion of several datasets (also called
blocks), that may come from different kinds of analysis, to calculate a single chemometric
model. Generally, data fusion is made at low-level, appending one block after another
to create a single dataset, or at middle-level, starting from the model obtained from the
first block and “fusing” the second block to extend the model results. A further step
proposes high-level data fusion [73], fusing the results of the models from single datasets,
but it is generally less used. Data fusion was used, for example, in the aforementioned
work of Bressanello et al. [33] about coffee aroma, but also by Strani et al. [74] who used
low-level data fusion to use two gas-chromatogram coming from two GC columns with
different polarities to study the characteristics of Italian basil. Furthermore, in the work by
Perin et al. [55] on the contamination of Lake Guaíba, a low-level data fusion was used to
combine the data from GC-MS, LC-M and ICP-MS. A mid-level data fusion was applied by
Rivera-Pérez et al. [75] to fuse data from GC-MS, HPLC-MS and proton nuclear magnetic
resonance for the geographical discrimination of black pepper samples.

It is worth noting that only a few works [50,76–79] used the design of experiments
(DoE) for the optimization of analysis parameters and sample extraction procedures. Al-
though not innovative from a chemometric point of view [80], the use of DoE for the
optimization of the analytical procedure before sample analysis is greatly encouraged by
the authors. It allows the saving of resources and time in the optimization step, requiring a
lower number of experiments to find the optimal analysis conditions.

In the last few decades, Ion Mobility Mass Spectroscopy (IMS) is gaining great attention
as detector for GC analysis [65,81], as an alternative to traditional MS or as a pre-filter
before it. Indeed, IMS performs a further separation of analyte after GC column by ionizing
the molecules and subjecting them to an electric field, carrying them toward a Faraday plate
(or the MS chamber) while a drift gas flows in the opposite direction. In this way, the speed
of molecules depends on their charge, but also on their dimensions, due to the presence
of the drift gas. Works using IMS as a GC detector have increased over the last few years,
also due to the cost reduction of the instruments [81]. It is also worth noting that often
GC-IMS systems do not require the chemical pre-treatment of samples before the analysis,
when working in head-space mode, making it a great advantage in terms of costs, but
also of sample representability [29,82]. The second level of separation, however, produces
two-dimension chromatograms, that require chemometrics for a proper elaboration [29].
Chen et al. [83] used GC-IMS with PCA and CA to evaluate the change in rice VOCs during
storage. A following work [84] instead applied PLS to GC-IMS data to study the aging of
Baijiu, a Chinese liquor. Yang et al. [85] used GC-IMS, GC-MS and GC-e-nose to follow
the change in the volatile fraction of green tea during the manufacturing process, paying
particular attention to the products of Maillard reaction (Figure 3); analyses were elaborated
by PLS and OPLS.

Mi et al. [86], instead, studied the volatile composition of chili peppers, in particular
the flavonoid-related species, discriminating two genotypes of them by PCA and PLS-DA.
Christmann et al. developed a chemometric method based on PCA and PLS-DA to unfold
high-dimension GC-IMS data and find the most relevant variables (i.e., chromatographic
peaks in the 2D IMS-plot) [87] and tested a Python free package to elaborate GC-IMS data
in an user-friendly way [88].
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Figure 3. Volatile fraction of Chinese leaf tea analyzed during the manufacturing process by GC-
IMS (a,b) and GC × GC-MS (c); (a) GC-IMS 2D chromatograms, the vertical axis corresponds to
gas-chromatographic retention time, the horizontal axis to the IMS drift times and the color scale
(increasing intensities from blue to red) the content of the volatile component; (b) comparison of the
manufacturing stages using fresh leaves as standard (first plot): the blue points represent decreasing
substances, the red one increasing substances; (c) changes in the major components of volatile
fraction in the manufacturing process evaluated by GC × GC-MS. Adapted with permission from
Yang et al. [85].
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4. High-Performance Liquid Chromatography (HPLC) and Chemometrics

HPLC is one of the most used chromatographic techniques. By separating species in a
liquid matrix, it is suitable for all fields, from food analysis to biological-pharmaceutical
chemistry. Just like GC, a huge amount of data is produced by downstream separation,
frequently requiring chemometric elaboration to provide the expected information. With
HPLC data, both univariate and multivariate chemometric processing can be used.

Univariate analysis is mostly used when a single chromatographic peak corresponding
to the analyte of interest is considered, for example, for quantification purposes through
the interpolation with a regression line build with calibrating standards [89]. This review,
however, is focused on the multivariate use of HPLC data. Similar to GC, both targeted
and untargeted approaches can be used. Choi et al. [90], for example, evaluated the total
phenolic content and determined eleven of them by PCA, to study the effect of storage
time and heat treatment on dried citrus peels (used in Chinese traditional medicine).
Li et al. [91], instead, used an untargeted analytical method for the metabolomic study of
urine samples to find possible biomarkers of pediatric asthma using three chemometric
elaborations (PCA, PLS-DA and OPLS-DA). With this method, the authors were able to
find a total of 26 potential biomarkers, 17 of which were found to be associated with
respiratory diseases.

The application of DoE for HPLC is generally very useful when planning a new anal-
ysis on a mostly unknown matrix, since it allows the optimization of several separation
variables (mobile phase, gradient, column type, etc.) with a lower number of experiments.
Applications of DoE to HPLC for pharmaceutical science can be found in the review of
Stojanović et al. [92,93]. Two interesting works applying DoE to optimize HPLC perfor-
mances are those of Herrero et al. [94] and Durante et al. [95]. The first work [94] shows
the optimization of a procedure for the determination of very similar biogenic amines
(histamine, putrescine, cadaverine, tyramine, tryptamine, 2-phenylethylamine, spermine
and spermidine) in swordfish by HPLC-Fluorescence (FLD), after extraction with acid and
the subsequent derivatization with dansyl chloride. A D-optimal experimental design was
applied, varying ten chemical or experimental variables with different levels. A complete
factorial design would have required 3456 experiments, whereas the D-optimal design
required only 23 of them. Durante et al. [95] instead optimized an HPLC method for the
simultaneous determination of multiple bioactive cannabinoids, another group of several
molecules with similar chromatographic properties (Figure 4a). To optimize the chromato-
graphic separation, six main factors were chosen, and the DoE results (Figure 4b) brought
an optimal separation of all the species (Figure 4c).

DoE found several applications in drug stability studies. For example, Prajapati et al. [96]
applied DoE to optimize the chromatographic separation of Bosutinib, a thyroid kinase
inhibitor drug, finalizing a new analytical method for controlling its quality and stability.
Gopireddy et al. [97] applied DoE to optimize HPLC parameters (column temperature, flow
rate and percentage of methanol in the mobile phase) for the separation of thirty diastere-
omeric analogs and six process related impurities. The developed method was validated for
linearity, range, precision, accuracy, specificity, selectivity and intermediate precision. DoE
was also used for food samples, as reported by Sahu et al. [98]. Andruszkiewicz et al. [80],
for example, performed a DoE to optimize the roasting procedure of cocoa, using the
chromatographic results as model response.

Chemometrics in HPLC analysis is also very useful for pre-treating chromatograms,
especially when data is then further elaborated through non-targeted chemometric analyses.
Indeed, from replicates of the same LC analysis, slight peaks shift can be observed. This
effect is mostly attributed to column ageing but can also be caused by temperature differ-
ences or minute pressure changes. Such deviations, when detected, should be corrected
prior to the performance of chemometric analysis. Chromatogram’s alignment consists
of constructing a function able to warp the content of runs to match a reference sample.
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Broadly considered, there are two approaches to chromatogram alignment [18] mainly
employed for datasets aimed at fingerprinting analysis [99]. The first identifies common
features in the chromatograms to be aligned, forces alignment of these features and then
interpolates an alignment function between these fiducial features. The difficulty of this
approach lies in defining and detecting consistent features in real data [100]. The second
approach seeks to align every point of the chromatogram without any added importance
given to chromatographic features, by finding a warping function that minimizes the dis-
crepancy between two chromatograms across the entire range of retention times. A recently
developed aligning approach is the purely geometric framework able to separate the phase
and the amplitude variability based on an extension of the Fisher–Rao metric. It has been
described and applied to the problem of chromatogram alignment by Tucker et al. [101].
Typical proteomic samples, after digestion, contain several thousands of peptides, with
variable concentrations in a scale of several orders of magnitude. To create a possible
direct comparison of the data of different proteomic samples, the data must be aligned
and, if possible, alignment process should be automated. Several so-called time-warping
algorithms are available for this task. In particular, dynamic time warping (DTW) [102–104],
and correlation optimized warping (COW) [105,106] have been deeply described (Figure 5).
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Figure 4. Main results of the paper from Durante et al. [95]. (a) Chemical structure of the fourteen
cannabinoids analyzed in the work; (b) the four principal response surfaces used for the optimization
of the HPLC chromatographic method; (c) optimized chromatogram of the fourteen cannabinoids
molecules. Figure provided with the author’s consent.
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Figure 5. An example of chromatograms alignment with the correlation optimized warping (COW)
algorithm. (a) Superimposed original chromatograms of two Penicillum cyclopium samples (IBT11415
and IBT15670); (b,c) the same chromatograms after COW alignment with two different sets of input
parameters. Peak 1 is the most shifted one, peak 2 is the most stretched and peak 3 the most shrunk
by the chemometric procedure. Adapted with permission from Vest Nielsen et al. [105].

Another interesting method for HPLC data pre-treatment is peak deconvolution, when
two or more species co-elute during analysis. De Luca et al. [107], for example, applied
multivariate curve resolution-alternating least squares (MCR-ALS), to resolve coeluted
peaks and quantify caffeine and chlorogenic acid content in green coffee beans. With this
chemometric elaboration, the authors were able to find and resolve the peaks relative to
five components although co-eluting, that were then used for classification purposes with
PLS-DA, and quantified the concentrations of the analytes of interest.

After optimizing HPLC parameters, performing the analyses and the proper (if nec-
essary) data pre-treatment, liquid chromatograms are ready to be used for downstream
chemometrics analyses. Generally speaking, the application of chemometrics to HPLC
data allows the finding of discriminations between groups of samples, and to find the most
important variables for such discrimination. Therefore, PCA and classification methods
are the most common techniques. The main fields of application of such methods are food,
pharmaceutical and clinical analyses.

An example of an application to food analysis is the work of García-Seval et al. [108],
who used PCA and PLS-DA on an untargeted HPLC-UV analysis of polyphenols in honey
samples to discriminate six different botanical classes. This work is interesting because
the full chromatogram was used as a fingerprint for the chemometric analysis, without
integrating peak areas or quantifying any chemical species. Moreover, no particular chemi-
cal extraction was carried out on honey samples, except for a solubilization in water and
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methanol and a centrifugation and filtration step. It is clear that a full-untargeted approach,
as in this case, has the disadvantage of not recognizing the molecules to which the classifi-
cation is due; however, the chemical analyses are much faster and cheaper. Indeed, they do
not require standards to recognize the analyzed molecules, and the analytical optimization
step is very limited, if not absent, because the important goal is to have chromatograms
with sharp peaks, even if some molecules can co-elute. Similarly, Núñez et al. [109] used an
HPLC fingerprint of coffee samples to discriminate different varieties, production countries
and roasting degrees by PCA and LDA. Carabetta et al. [110] used a pulsed amperometric
detector (PAD) following an HPLC analysis to characterize the sugar content of honeys and
discriminate them by botanical and geographical origin by PCA and LDA. Su et al. [111]
used PCA and Hierarchical CA (HCA) to discriminate the geographical origins of Chinese
green tea based on amino acid, polyphenol and caffeine content that were quantified by
HPLC-UV, demonstrating that amino acids are very important for such discrimination.
Campmajó et al. [112] worked on a hen–egg matrix, applying PLS-DA to HPLC-UV profiles
to classify eggs in four groups, according to their production method: organic, free-range,
barn or caged. Biancolillo et al. [113] fused HPLC data with data from other techniques
(among the others, also GC) by multi-block analysis (sequential and orthogonalized PLS,
SO-PLS) in order to correlate chemical data of chocolate samples to their sensory poles.
Similarly, Ghanavati et al. [114] fused HPLC data to infrared spectra to discriminate the
botanical origin of honey samples. These last cited papers show the importance of ana-
lyzing samples with several different techniques to obtain a larger amount of information
for chemometric analysis. As already stated in the previous chapter, multi-block anal-
ysis [72,115] is a new frontier in the chemometric analysis of data, with an extremely
promising outlook.

Several examples of HPLC analyses coupled with chemometric for clinical applica-
tions are present in the literature. Indeed, metabolomic studies on biological fluids (e.g.,
urine, saliva, blood and serum) can be useful to detect the presence of a disease and to dis-
criminate healthy and sick patients, as in the already cited work of Li et al. [91]. Moreover,
they can be non-invasive for the patients if carried out on urine or saliva, which should
be greatly encouraged, and the use of chemometric tools becomes crucial to evaluate the
contemporary effect of several metabolites. In this sense, Zhao et al. [116] used PCA and
OPLS-DA in a preliminary search for metabolite biomarkers to explore the abnormal uri-
nary metabolic pathways associated with myocardial dysfunction. Similarly, Yao et al. [117]
used PCA and PLS-DA on HPLC-MS data to investigate the effect of an hepatoprotec-
tive treatment in liver-injured rats, finding differences in metabolic pathways of plasma
and urine. An interesting work dealing with metabolomics in biological fluids is that of
Speltini et al. [118], who developed, by the application of DoE, an extraction method based
on a particular sorbent, called HA-C@silica, for the further HPLC analysis of steroid hor-
mones in human plasma. The extraction method proved to be very efficient and simple, and
the low affinity of the material for proteins made it a promising application for hormones
analysis. Finally, Yang et al. [119] applied artificial neural network (ANN), an improved
classification method, to the HPLC data of urinary and serum samples, with the aim of
using nucleosides concentrations for the clinical diagnosis of cancer. With this chemomet-
ric elaboration, the authors achieved 92.9% of correct predictions between healthy and
cancer patients.

Several studies showed the application of ANN to HPLC data or its comparison
with other classification methods, demonstrating the interest in this approach, despite
being more computationally costly compared with LDA and PLS-DA. However, in most
cases ANN allows the improvement of sample classification. Hakimzadeh et al. [120],
for example, applied ANN to chromatographic fingerprints of Salvia reuterana coming
from five Iranian regions, to confirm the classification results obtained with PCA and
CA. Wang et al. [121] applied LDA, ANN and another classification method, least squares-
support vector machine (LS-SVM), to discriminate the different species and geographical
origins of Radix Paeoniae samples by multi-wavelength HPLC-DAD (diode array detector)
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analysis. Welsh et al. [122], instead, used HPLC trace impurities profiles of pharmaceutical
samples to classify the drug L-trytpophan according to manufacturers. Six manufacturers
were considered, and data were elaborated with three different classification methods:
ANN, CA and soft independent modeling of class analogy (SIMCA). ANN allowed the
best classification model to be obtained, with 93% of correctly classified samples.

Other pharmaceutical applications of HPLC-chemometrics are aimed, for example,
at understanding the relationship between drugs and their pharmacological activity. This
is the case of the work by Stasiak et al. [123], in which PCA was applied to determine
relationships between structural parameters and HPLC retention data obtained for eleven
cardiovascular drugs. A perspective of such study is also to evaluate further drug can-
didates against known ones according to similarities in their pharmacological properties
with a simple PCA model. Saber et al. [124] applied PCA and PLS-DA to the HPLC-MS
metabolomic profiles of five Pinus species needle samples to evaluate their in vitro anti-
cholinesterase, antiaging and anti-diabetic potential, due to their high content of flavonoids,
phenolics, lignans, diterpenes and fatty acids. De Luca et al. [125] applied MCR-ALS
to HPLC data to evaluate the photostability of hydrochlorothiazide and amiloride after
irradiating their solutions with visible light at different pH values, and analyzing such
solutions during the degradation process. An interesting application of PCA to HPLC (and
1H NMR) data of pharmaceutical samples is that of Raimondo et al. [126], who performed
a geographical discrimination of sources of ibuprofen (from European and Asian countries)
based on chemical characteristic and impurity patterns. While it is very common to be used
in the geographical discrimination of food samples, as demonstrated many times in this
review, this is the only work, to the authors’ knowledge, that deals with the geographical
discrimination of a pharmaceutical ingredients. Finally, the pharmaceutical field is increas-
ing the use of DoE to develop HPLC methods able to separate several pharmaceutical
ingredients in the same drug samples [127–129].

Quantitative analysis in the HPLC field generally aims at quantifying one or more
specific analytes in a complex matrix after the separation step. However, multivariate
regression has also been applied to HPLC data to achieve different tasks. For example,
Carranco et al. [130] applied a PLS model to entire chromatographic profiles of olive oils
to quantify adulterations in Arbequina extra-virgin olive oil (EVOO) with Picual EVOO,
refined and sunflower olive oils (Arbequina and Picual are two Spanish monovarietal
EVOOs). As stated by the authors [130], this kind of study can be carried out by also
quantifying specific markers. However, such markers could be not present in some matrices,
or they can be difficult to separate by HPLC, or they could require a tedious chemical pre-
treatment. The method proposed by Carranco et al. was very easy (only an extraction
with water and methanol and a centrifugation step were carried out) and proved to be
very precise, with quantification errors in the order of 2%. Similarly, Nuñez et al. [131]
applied PLS to HPLC with a fluorescence detector (FLD) to quantify several home-made
adulterations of coffee samples with coffees from different geographical origins (Figure 6).

The works of Dinç-Zor et al. [132] and Garrido Frenich et al. [133] dealt with the
application of PLS and ANN for the direct quantification of several pharmaceutical ingredi-
ents in a complex matrix, even when the chromatographic peaks are not totally resolved.
PARAFAC analysis was applied by Guizellini et al. [134], although not for a strictly quanti-
tative analysis. They applied PARAFAC to HPLC-DAD data to discriminate three coffee
cultivars by combining HPLC and spectrophotometric (from DAD) information. The
PARAFAC model allowed for the analysis of the three-dimensional data block, composed
of the chromatograms with DAD spectra on the third axis, and to discriminate coffee
cultivars based on the different quantities of some specific markers. Sun et al. [135] applied
n-way PLS to HPLC with a fluorescence detector (FLD) data to use the 3D data block for
evaluating adulterations in paprika samples. Arce et al. [136], finally, applied a PLS model
to optimize the gradient of a ternary mixture of water, methanol and acetonitrile for HPLC
analysis. They used a mixture of four aromatic amines of food interest as test samples.
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Figure 6. PLS applied to HPLC full chromatograms for the quantification of coffee adulterations.
(a) Chromatograms of Vietnamese Robusta coffee adulterated with pure Cambodian coffee at (from
top to bottom) 0% (pure Vietnamese), 20%, 40%, 60%, 80% and 100% (pure Cambodian), highlighted
peaks are those that decrease (asterisk), remain constant (circle) or increase (arrow) with adulter-
ation; (b,c) PLS models for Colombian coffee adulterated with Ethiopian coffee (b) and Vietnamese
Arabica adulterated with Vietnamese Robusta (c), scores plot (left portion) and response plot of
predicted vs. measured percentage of adulteration for both training (•) and test (�) sets. Adapted from
Nuñez et al. [131].

5. Colloidal Analysis and Chemometrics

Colloids are multiphase systems in which one or more discontinuous dispersed phases
are uniformly distributed in a continuous phase; at least one size of the units of the dis-
persed phases varies between 1–1000 nm [137]. The main characteristics of colloidal systems
can be attributed to the existence of an interface between the dispersed phase and the dis-
persing medium, where a significant proportion of molecules is present at the interphase
rather than at the bulk stage. Being deeply involved in an extremely wide range of topics
(materials, food, biomedical science) colloids play an important role in our life, and a good
knowledge of colloid chemistry is essential to further advance society [137]. Size exclusion
chromatography (SEC) and Field Flow Fractionation (FFF) represent the main separation
techniques involved in the analysis of colloidal systems and their instrumental setups are
technologically close to GC and HPLC. Since colloidal matrices are often extremely complex,
the results provided by the platforms can be extremely complex and rich with informa-
tion. To extract all valuable information, efficient data-analysis strategies are evidently
needed [138] and insights into the main chemometric methodologies for data pretreatment
and analysis for flow-based separation platforms have recently been summarized [139].
This section will discuss some of the latest trends in multivariate chemometric applications
involving the use of SEC and FFF technologies. A particular focus concerns the works in
which SEC/FFF are not just used as preparative/separative techniques but as the main
analytical tools on which chemometrics is applied.
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5.1. SEC

Size exclusion chromatography separates molecules/colloidal populations according
to their physical size in solution (hydrodynamic radius) in a range between 1 and 100 nm
exploiting a column characterized by a porous stationary phase [140]. Bigger nanoanalytes
are eluted first because they are excluded from the pores. Smaller molecules, which are able
to access pores within the resin particles, permeate a larger accessible volume within the
column and are eluted later. Moreover, SEC relies on the absence of any affinity interaction
between the analyte and the stationary phase packed in the column thus separation can be
achieved in isocratic conditions.

Food chemistry represents one of the most important topics in the colloidal world.
CANonical DECOMPosition (CANDECOMP) FARAFAC and PCA combined with SEC
analysis have been used to investigate the presence of fluorescent colorants and color
precursors in sugar and beet sugar thick juice [141] and to classify oils based on their frying
stability [142]. These studies, however, mainly use the SEC results as complementary
information requiring additional measurements. Beretta et al. instead reported an inter-
esting study exploiting PCA to discriminate different honey samples based only on the
SEC-fractograms used as fingerprints (Figure 7) [143]. This approach performs extremely
well and provides powerful information while overall reducing the amount of time and
work required.
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(b) Resulting PCA highlighting a grouping of the samples based on different geographic and botanical
origins. Adapted with permission from Beretta et al. [143].

The use of SEC chromatograms (fractograms) as fingerprints for multivariate analysis
has been exploited successfully for the analysis of polysaccharides. Within this framework
Gao et al. exploited a multi-PCA approach using datasets obtained with different techniques
(SEC-dRI, FT-IR, PCD-HPLC) to the analysis of the polysaccharidic content of different



Chemosensors 2023, 11, 45 18 of 33

plants samples [144,145]. The results allowed for the differentiation of samples from the
same plant species according to their geographical origin and variety. Another regional
discrimination study based on polysaccharides analysis exploiting PCA and HCA has
recently been reported by Zhu et al. [146]. Multivariate analysis of SEC results also helped
to monitor the structural changes that take place in dissolved and degraded lignin during
laboratory-scale kraft pulping [147]. The authors used SEC and 31P NMR as analytical
techniques and the chemometric elaboration was performed not only through PCA on the
different data sets but also through 2D cross-correlation (2DCC).

One of SEC’s most common applications consists of the separation/purification of other
proteins and other samples of biological interest such as extracellular vesicles [148,149]. Litera-
ture studies exploiting multivariate chemometric approaches to SEC separation of proteins
mainly focus on monitoring protein aggregation in different conditions, such as those
detailed by Ricker et al. [150], on the effect of process passages (such as membrane fil-
tration) [151] and on the discrimination of coeluting species [152]. Extracellular vehicles
(EVs) are nano-sized, lipid bilayer-enclosed particles involved in intercellular communica-
tion. Although ultracentrifugation (UC) represents the golden standard in EVs isolation,
recent studies support the use of SEC to provide a faster and cheaper separation of EVs
capable to preserve their biophysical properties [148,153]. After isolation vesicles undergo
characterization by different techniques such as Transmission Electron Microscopy (TEM),
Tunable Resistive Pulse Sensing (TRIPS), Nanoparticle Tracking Analysis (NTA), Sodium
Dodecyl Sulphate—Polyacrylamide Gel Electrophoresis (SDS-PAGE), Western Blot and
IMS, often with the aim of finding composition marker of clinical interest. To extract the
maximum amount of information multivariate chemometric analysis in often performed
on the corresponding results. An example of this “three stage platform” (SEC-separation,
characterization and chemometrics) can be widely found in the literature on numerous
matrices such as fungal plants pathogens [154], blood and plasma [155,156]. In these kinds
of studies, as already seen, PCA, Volcano plot and Differential Cluster analysis represent
the most common chemometric tools.

Finally, Palviainen et al. studied differences in vesicles from blood samples of healthy
volunteers collected into ACD-A, citrate, serum and EDTA tubes [157]. Additionally, to
a characterization with the techniques described above, they added a SEC-FLD platform
to quantify the amount of platelet-derived (CD61+) in the various samples. Statistical
analysis on the results was conducted using Tukey’s multiple comparison test. Overall,
the results of the study highlighted differences in protein composition of plasma EVs
differed based on the anticoagulants used, and between plasma and serum. The study
also represents a case in which SEC was the core technique and was not used simply as a
purification/separation tool.

5.2. FFF

Field Flow Fractionation (FFF) is an emerging class of methodologies used to gently
separate a wide array of nano-analytes (from small peptides to whole cells) based on their
differential interaction with an external field [158].

The FFF instrumentation is essentially comprised of pumps for generating the eluent
flow, sample injector and the separation device (channel) connected to the detectors. The
separation channel is capillary, often has a rectangular section and does not contain a
stationary phase making the FFF a single-phase technique [159]. The separation is achieved
by the combined action of the laminar flow (possessing a parabolic profile) of eluent
running coaxially to the channel and of an external field, applied perpendicularly. Sample
components (the analytes) differing in size and/or other physical properties are driven
by the applied field into different velocity regions within the parabolic flow profile of the
mobile phase across the channel (Figure 8). Parabolic flow is characterized by maximum
velocities in the center of the channel decreasing till it reaches zero at the walls [160]. Based
on the size of the analyte’s different elution, patterns namely “Normal”, “Steric” and
“Hyperlayer”, can be identified [161].
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Separated analytes are typically characterized by a series of detectors online-coupled
with the platform, but they can also be collected as fractions at the end of the FFF system
to undergo further offline processing [162]. As well as with SEC, the exploitation of
these offline-coupled FFF platforms or other orthogonal approaches is quite common
while analyzing extremely complex samples such as whole serum [163] or cell culture
mediums [164].

FFF technologies are characterized by an higher operational range than SEC, about
15 orders of magnitude mass-wise corresponding to a few nanometers to about 100 µm,
and possess a series of characteristics unmatched by other separation techniques such
as: (1) Extreme versatility both in terms of mobile phase and sample injectable volume,
allowing it to work in conditions close to the native ones; (2) absence of stationary phase
preventing undesired interactions between the samples components of the separative
system. These features allowed FFF techniques to be exploited in a wide range of applica-
tions from the separation and characterization (mass, size and spectroscopic properties)
of drug carriers [165,166], antimicrobial agents [167,168], biological samples of varying
complexity [169–171] and other products of pharmaceutical interest [5,160].

Different FFF-sub techniques can be distinguished based on the nature of the external
field which also defines the analytes’ properties at the base of their differential distribution
within the channel and consequential differential elution and separation [159]. Flow-Field
Flow Fractionation (FlFFF) exploits as an external field a second flow called crossflow,
applied perpendicularly to the main flow. The crossflow drags the analytes towards the
accumulation wall according to their diffusivity (correlated to their hydrodynamic radius).
Today, FlFFF represents by far the most successful and exploited FFF variant due to the
ability to provide uncorrelated mass/size information [172] and to its wide operational
range. Three main subcategories of FlFFF are available: Symmetric FlFFF (mostly dis-
missed), Asymmetric FlFFF (AF4) [158] and its miniaturized version, Hollow Fiber FlFFF
(HF5) [173].

The three main FFF application areas in which chemometrics plays an important role
concern food chemistry, the speciation of serum components and dissolved organic matter
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(DOM) analysis. However, some studies on other matrices such as gelatins [174], dead
oil [175], cells [176] and bacteria [177] are reported in the literature. The main chemometric
tool exploited through FFF analysis is PCA, though Parallel Factor Analysis (PARAFAC)
has also seen a wide application in DOM’s studies.

By interacting with each other, macromolecules such as proteins, polysaccharides and
condensed tannins constitute the colloidal component of wine which impact its physico-
chemical properties including stability, taste and mouthfeel [178,179]. An AF4 multidetec-
tion platform, combined with other offline analyses on the separated fraction, has proven
suitable for the characterization of red wine colloids [180]. Since wine colloids are extremely
heterogenous and their composition/content can vary greatly from wine to wine, depend-
ing on the grape characteristics and vinification practices, the use of chemometrics represent
a powerful tool to further comprehend their role in wines’ properties. Pascotto et al. ap-
plied a PCA analysis on the results obtained through an AF4-multidetection platform
highlighting the role of polysaccharidic material to counteract red wine astringency [181].
Variables for PCA were chosen from detectors’ fractograms (MALS, UV, dRI) and from UV
spectra of different wine fractions using the CovSel procedure [182]. Recently, the effects of
clarifiers on white wine colloids have been investigated by combining FFF multidetection
and PCA by Osorio-Macìas et al. [183]. In this study AF4 was used to obtain a series of
colloidal parameters (concentrations, molar mass, density, absorptivity) for clarified and
unclarified wines which were combined in the PCA with analytical parameters (turbidity,
instability, metal ion content, color, protein content, specific refractive index increment
and total phenols) obtained from other measurements. PCA results highlighted different
clarification results according to three different groups of clarifiers: minerals, synthetic
polymers and vegetable proteins. Krebs et al. instead studied parameters that influence
the perception of the intensity of palate fullness in commercial fresh lager beers though a
correlation analysis and PLS [184]. Within this context an AF4-dRI-MALS platform was
used to obtain most of the parameters used in the study.

These works, though extremely interesting, require a lot of work to obtain additional
parameters to the ones provided by FFF. Within this framework the development of chemo-
metric strategies exploiting only FFF-derived data can overall improve the efficiency of the
study. Based on this concept Zappi et al. reported an AF4-multidetection-PCA study on the
colloidal content of tomato sauces analyzing only information provided by the AF4 plat-
form such as selected portions of the UV fractograms of the samples or the trough colloidal
ratio [29]. Interestingly, the results obtained with this minimalistic approach yielded better
results than the one provided by an already established GC platform (working on tomato’s
volatile components) in terms of quality, while providing complementary information
(Figure 9).

The results in Figure 9 highlight that most of the samples from brands 1 and 2 and
from manufacturers A, B and D can be characterized by large colloidal aggregates which
are discriminated by PC1. PC2 instead indicated that small proteins are more concentrated
in samples at negative values of PC2 than in the ones of brand 3 and manufacturer F.

Finally, a study based on gravitational FFF offline coupled with a metal oxide semi-
conductor sensor-based electronic olfactory system (GrFFF-MOS) was set up by Roda et al.
showing a simple straightforward approach for pathogen bacteria identification from their
food matrix [185]. In this work PCA and LDA performed on the results highlighted the
ability of the platform to distinguish between viable and non-viable cells of the same strain.

The gentle analysis in native conditions of extremely complex biological samples (such
as whole serum and cellular culture media) is one of the main features provided by FFF.
However, the classical spectroscopical and size/shape characterization of the separated
analytes provided by the online detectors is often not enough to distinguish a series of
analytes subclasses. For this kind of studies FFF is thus mainly used as a separation
platform and the collected fractions are then subjected to further analysis, such as SDS-page
and uHPLC-MS/MS, to obtain the composition of the separated analytes. Chemometrics
techniques such as PCA greatly help in the rationalization of these results.
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Figure 9. (a). PCA loadings of AF4-fractograms data on PC1 (black continuous line, range on the
left) and PC2 (blue dotted line, range on the right) vs. analysis time. The red dotted lines indicate the
separation between three peaks, (I), (II) and (III), corresponding, respectively, to free proteins, small
aggregates of proteins and large colloidal aggregates. (b,c). PCA score plots on AF4 data obtained for
tomato sauce colloidal fraction, respectively, divided by: commercial brands (i.e., the retailer name
on the label) and manufacturers. Adapted from [29].

Lipoproteins are complexes of lipids and proteins responsible for transporting lipids
through the blood stream, and their monitoring can assess cardiovascular health [186].
Lee et al. [163] performed a comprehensive lipidic analysis on plasma lipoproteins in pa-
tients with acute coronary syndrome (ACS) and stable coronary artery disease (CAD).
Lipoproteins were size-sorted into high density lipoproteins (HDL) and low-density lipopro-
teins (LDL) using asymmetrical flow field-flow fractionation, then lipids of each lipoprotein
were analyzed using nanoflow ultrahigh performance liquid chromatography–electrospray
ionization-tandem mass spectrometry (nLC-ESI-MS/MS) (Figure 10). A total of 365 lipids
were structurally identified and quantified by selected reaction monitoring method. A PCA
performed on the concentration levels on characteristic lipids between samples (found
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trough Volcano plots) highlighted a series of differences between both HLD and LDL
vesicles of CAD and ACS samples.
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Figure 10. Example of (a) an FFF-online coupled nLC-ESI-MS/MS platform applied to a compre-
hensive lipidic analysis on plasma lipoproteins in patients with acute coronary syndrome (ACS)
and stable coronary artery disease (CAD). (b) The dotted boxes in the Volcano plots highlight lipids
characterized by large magnitude fold changes as well as high statistical significance which were then
used to perform PCA. PCA results highlight the ability of those lipids to act as markers to distinguish
LDLs and HDLs of CAD and ACS patients. Adapted with permission from [163].

A similar study on serum lipoproteins of patients affected by Alzheimer’s disease
(AD) and Mild Cognitive Impairment (MCI) was performed by Kim et al. [187]. The
results showed that the total level of most lipid classes increased more than two-fold
in the LDL/VLDL fraction of AD patients, while the levels of diacylglycerol (DG) and
phosphatidyl glycerol (PG) decreased in the HDL fraction. Statistical analysis (Volcano
plots, PCA and correlation plots) identified a series of lipids whose increasing abundance
is correlated to an increase in brain damage level.

The interest in serum/plasma components goes beyond lipoproteins [188–190]. AF4
and Real Time Polymerase Chain Reaction (RT-PCR), the latter performed offline on col-
lected fractions, were used to identify mRNA strands able to distinguish (by the means
of a PCA analysis) plasma of breast cancer patients and healthy controls [191]. PCA also
played a key role in evaluating the effectiveness of a novel automated on-line isolation and
fractionation Immunoaffinity capture-AsFlFFF (IAC-AsFlFFF) system (offline coupled to
LC-MS/MS and field emission scanning electron microscopy) constructed for the isola-
tion and fractionation of EVs, exosomes, exomeres and apolipoprotein B-100 (apoB-100)
containing lipoproteins from human plasma.

Overall, the most outstanding result in this field was reported by Zhang et al. [192].
Through an AF4-Quasi-Elastic Light Scattering (QUELS)-UV platform, the authors iden-
tified two exosome subpopulations (large exosome vesicles, Exo-L, 90–120 nm; small
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exosome vesicles, Exo-S, 60–80 nm) and discovered a third abundant population of non-
membranous nanoparticles termed ‘exomers’ (~35 nm). Though the additional use of
offline techniques (NTA, TEM Mobius Zetasizer, AFM, Odyssey Imaging system, Blotting
and MS techniques) on the separated fractions they also demonstrated that Exo-L, Exo-S
and exomers had unique N-glycosylation, protein, lipid, DNA and RNA profiles and
biophysical properties. Both PCA and consensus clustering analysis were performed on
proteomic expression data sets. PCA demonstrated a closer correlation of protein expres-
sion for Exo-S and Exo-L compared to exomers from the same cell type. Moreover, both
PCA and consensus clustering analysis showed that exomeres from different cell types
exhibited a higher degree of similarity to each other than to Exo-S and Exo-L from the
same cell.

In the field of environmental chemistry, the analysis of dissolved organic matter
was performed through FFF-chemometrics. DOM consists in a complex, heterogeneous
and polymorphous mixture present in all natural waters derived from leaching processes
involving leaves [193,194]. DOM plays important roles in many salient ecosystem processes,
including carbon and nutrient cycling [195], the regulation of microbial action, protection
from ultraviolet radiation [196] and control of the transport, speciation and bioavailability
of heavy metals and other pollutants [197]. Moreover, it is involved in the formation of
carcinogenic disinfection byproducts generated during drinking water treatments (such as
chlorination) [198]. Different signals (UV, FLD) [199,200] and separation techniques (AF4,
SEC and resin absorption) have been investigated to improve the characterization [201].
Currently, fluorescence represents the main characterizing signal while AF4 is gaining
increasing interest as the separation technique of choice. This is due to AF4 overcoming
many of the limitation of the other techniques such as the production of artifacts due to pH
perturbations, the need for sample pre-concentration and the interactions of DOM with the
stationary phase. Due to the complexity and heterogeneity of the matrix, the identification
of its fluorescent components by peak picking methods is extremely challenging [202] and
mainly abandoned. Today, fractogram deconvolution, PARAFAC and PCA represent the
statistical tools of preference to analyze results.

Cuss and Guéguen reported some of the first works within this field by exploiting an
AF4–DAD–FLD platform [203–206]. In those studies, the application of PARAFAC to the
AF4 measurements allowed the definition of up to seven components (Figure 11). Their
attribution to certain species/classes was performed based on previous works [207]. By
observing the correlation between the PARAFAC-components and the molar masses associ-
ated to the species obtained through peak deconvolution, the authors gathered information
concerning the relationship size and fluorescence of DOM components. Alternatively,
similar information has been obtained by performing PCA, using as starting variables
the relative abundance of the PARAFAC-components in the sample analyzed. The results
moreover highlighted the stability of the leaf leachates over a 96h window and the huge
effect of the type of leaf on leachates’ composition.

Pifer and Fairey instead exploited PARAFAC combined with the evaluation of other
parameters provided by an AF4-DAD platform to study DOM removal by enhanced
coagulation and disinfection byproducts formation during chlorination [201].

The latest effort within this field concerns the investigation of the relationship between
bacterial Hg uptake (generating the neurotoxin methylmercury) and algal DOM [208].
In this study an AF4-DAD setup was exploited to split the sample into three fractions
that were subjected to total organic carbon quantification. A PCA performed on the AF4
results highlighted differences and similarities in the composition between the fractions of
different algal DOMs. These results combined with those obtained through high-resolution
mass spectrometry and biosensors confirmed that DOM from diverse primary producers
differentially affect microbial Hg uptake. The study also highlighted the impact of humans
on Hg bacterial uptake.
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6. Conclusions

Chemometrics plays a key role in the extraction of meaningful information from
complex datasets, whether for method development or data elaboration purposes. Sepa-
ration science and the increasing number of detectors associated with it require the use
of computational tools able to optimize processes and combine multiple outputs more
and more, such as UV absorption, fluorescence and mass spectrometry data. Though the
use of chemometrics is growing, it is doing so asymmetrically, and some applications or
techniques still suffer from the lack of method optimization through DoE and downstream
multivariate analysis. This is particularly relevant for relatively newer technologies, for
example FFF. Separation–multidetection generates multidimensional data, whose elabora-
tion should not be left to the discretion of the operator. This review presented the latest
applications of chemometrics for the analysis of volatile, soluble and colloidal samples,
produced by GC, HPLC, SEC and FFF analysis, focusing on novel applications, especially
for the latter. It is recommendable that in the future chemometrics will be automatically
associated with separation analysis, as an additional detection tool, and that its use will
be more consistently regulated and endorsed in the fields of food, the environment and
pharmaceutical chemistry.
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