## Rubber-enhanced polyamide nanofibers for a significant improvement of CFRP interlaminar fracture toughness

Emanuele Maccaferri<sup>a,\*</sup>, Matteo Dalle Donne<sup>a</sup>, Laura Mazzocchetti<sup>a,b,\*</sup>, Tiziana Benelli<sup>a,b</sup>, Tommaso Maria Brugo<sup>b,c</sup>, Andrea Zucchelli<sup>b,c</sup>, Loris Giorgini<sup>a,b</sup>

 <sup>a</sup> Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.
<sup>b</sup> Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical

Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

<sup>c</sup> Department of Industrial Engineering, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

\* Corresponding authors: <u>emanuele.maccaferri3@unibo.it</u> <u>laura.mazzocchetti@unibo.it</u>

## Production of CFRP laminates for DCB, ENF, 3PB and DMA tests

CFRP panels for DCB tests were produced via hand lay-up in an air-conditioned room (23-25 °C, RH 22-25%). The nanofibrous membranes were directly applied with their paper substrate onto the prepreg during the hand lay-up. Before the addition of the next prepreg ply, the supporting paper was removed. To favour the impregnation of the nanofibrous mat, uncured panels underwent a preliminary treatment of 2 h at 45 °C under vacuum before curing cycle in autoclave. Then, they were cured in an autoclave (2 h at 135 °C, under vacuum, 6 bar external pressure, heating/cooling ramp 2 °C/min).

CFRP panels for DCB tests (Figure S1),  $140 \times 190$  mm, are constituted by 14 CFRP plies in total. Only the central interface was modified with the nanofibrous mat. A Teflon film was used as a crack trigger. The specimens were obtained by cutting out the panel; edge parts (minimum 15 mm) were discarded to avoid any inhomogeneity.

DCB specimens have the following final dimensions: 130 mm total length, 20 mm width (*b*), 45 mm initial crack length ( $a_0$ ). Aluminum blocks were fixed to the DCB specimen with epoxy resin glue to anchor the specimen on the testing machine. ENF specimens had the following dimensions: 160 mm total length, 20 mm width (*b*), 45 mm initial crack length ( $a_0$ ).



Fig. S1 - CFRP panels for characterization of delamination resistance: laminate section view (A) and dimensions (in mm) of

panels and specimens for DCB test (B).

| Nanofibrous<br>mat | Nylon mat<br>grammage<br>(g/m <sup>2</sup> ) | Loaded rub                       | Ratio                            |             |
|--------------------|----------------------------------------------|----------------------------------|----------------------------------|-------------|
|                    |                                              | (A) with 0.2% wt<br>NBR solution | (B) with 1.0% wt<br>NBR solution | B/A         |
|                    |                                              |                                  |                                  |             |
| NyAcF_40           | $10.8\pm0.7$                                 | 2-5                              | 14-24                            | $\approx 5$ |
| NyAcF_90           | $25.7\pm0.8$                                 | 4-7                              | 20-25                            | $\approx 4$ |
| NyTFA_40           | $11.4\pm0.8$                                 | 2-4                              | 15-22                            | $\approx 6$ |
| NyTFA_90           | $26.6\pm0.9$                                 | 4-7                              | 18-27                            | $\approx 4$ |

Table S1 – Mat characteristics before and after their impregnation with NBR solutions at 0.2% wt and 1.0% wt.

Table S2 – DCB test results of CFRPs nanomodified with NyTFA membranes.

| CFRP sample  | Max. Load<br>(N) | <b>Gi</b> , <i>c</i> (J/m <sup>2</sup> ) | <b>G</b> 1, <i>R</i><br>(J/m <sup>2</sup> ) |
|--------------|------------------|------------------------------------------|---------------------------------------------|
| C-Ref        | 41.1 ± 1.2       | 508 ± 19                                 | $506 \pm 62$                                |
| NyTFA _10    | $49.7\pm1.0$     | $485 \pm 52$                             | $784 \pm 59$                                |
| NyTFA_10/3.0 | $53.4 \pm 3.3$   | $654 \pm 169$                            | $1057\pm130$                                |
| NyTFA_10/7.0 | $57.8\pm2.5$     | $705 \pm 158$                            | $1262\pm241$                                |
| NyTFA _20    | $47.8 \pm 1.3$   | $708\pm59$                               | $773\pm81$                                  |
| NyTFA_20/3.0 | $60.0\pm0.9$     | $935 \pm 126$                            | $1270\pm158$                                |
| NyTFA_20/7.0 | $49.2\pm7.5$     | $638\pm80$                               | $1007 \pm 184$                              |
| NyTFA _40    | $39.8\pm0.9$     | $448 \pm 38$                             | $591 \pm 111$                               |
| NyTFA_40/3.0 | $57.3 \pm 1.7$   | $806\pm26$                               | $1300\pm217$                                |
| NyTFA_40/7.0 | $55.2\pm7.7$     | $927\pm277$                              | $1247\pm348$                                |

| CFRP sample  | Max. Load<br>(N) | <b>G</b> <sub>I,C</sub> (J/m <sup>2</sup> ) | <b>G</b> <sub>I,R</sub><br>(J/m <sup>2</sup> ) |
|--------------|------------------|---------------------------------------------|------------------------------------------------|
|              |                  |                                             |                                                |
| C-Ref        | $41.1 \pm 1.2$   | $508 \pm 19$                                | $506 \pm 62$                                   |
| NyAcF_10     | $45.0\pm4.4$     | $560\pm118$                                 | $670 \pm 68$                                   |
| NyAcF_10/3.0 | $52.4\pm2.5$     | $769 \pm 107$                               | $1061 \pm 117$                                 |
| NyAcF_10/7.0 | $55.3\pm2.8$     | $734 \pm 131$                               | $1273 \pm 172$                                 |
| NyAcF_20     | $41.6\pm1.3$     | $530 \pm 43$                                | $685\pm72$                                     |
| NyAcF_20/3.0 | $59.2\pm2.3$     | $968\pm230$                                 | $1427\pm151$                                   |
| NyAcF_20/7.0 | $34.6\pm2.2$     | $412\pm55$                                  | $646\pm239$                                    |
| NyAcF_40     | $51.8\pm3.9$     | $710\pm89$                                  | $829\pm86$                                     |
| NyAcF_40/3.0 | $52.0\pm1.0$     | $850 \pm 43$                                | $1090\pm201$                                   |
| NyAcF_40/7.0 | $34.7\pm4.1$     | $377\pm94$                                  | $382\pm78$                                     |

Table S3 – DCB test results of CFRPs nanomodified with NyAcF membranes.

Table S4 – Tensile properties of plain Nylon 66 mats.

| Membrane<br>type | E [MPa]     |        | $\sigma_{max}$ [MPa] |        | <i>Εσmax</i> [%] |        | $U [\mathrm{J}\mathrm{cm}^{-3}]$ |        |
|------------------|-------------|--------|----------------------|--------|------------------|--------|----------------------------------|--------|
|                  | Mean ± SD   | CV [%] | Mean ± SD            | CV [%] | Mean ± SD        | CV [%] | Mean ± SD                        | CV [%] |
| NyAcF            | $723\pm98$  | 13     | $42\pm 6$            | 6      | $22 \pm 2$       | 9      | $7.9\pm1.2$                      | 15     |
| NyTFA            | $512\pm 61$ | 12     | $32 \pm 2$           | 6      | $34 \pm 2$       | 5      | $8.3\pm0.6$                      | 7      |