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Abstract: Dissolved oxygen (DO) is deeply involved in preserving the life of cellular tissues and
human beings due to its key role in cellular metabolism: its alterations may reflect important
pathophysiological conditions. DO levels are measured to identify pathological conditions, explain
pathophysiological mechanisms, and monitor the efficacy of therapeutic approaches. This is particu-
larly relevant when the measurements are performed in vivo but also in contexts where a variety of
biological and synthetic media are used, such as ex vivo organ perfusion. A reliable measurement of
medium oxygenation ensures a high-quality process. It is crucial to provide a high-accuracy, real-time
method for DO quantification, which could be robust towards different medium compositions and
temperatures. In fact, biological fluids and synthetic clinical fluids represent a challenging environ-
ment where DO interacts with various compounds and can change continuously and dynamically,
and further precaution is needed to obtain reliable results. This study aims to present and discuss
the main oxygen detection and quantification methods, focusing on the technical needs for their
translation to clinical practice. Firstly, we resumed all the main methodologies and advancements
concerning dissolved oxygen determination. After identifying the main groups of all the available
techniques for DO sensing based on their mechanisms and applicability, we focused on transferring
the most promising approaches to a clinical in vivo/ex vivo setting.

Keywords: dissolved oxygen quantification; biological fluids; clinical applications; oxygen sensing;
absolute and relative techniques; technical innovation in clinics

1. Introduction

Oxygen (O2) is one of the key molecules of life, playing a major role in cellular
metabolism. O2 has a high redox potential making it an ideal electron acceptor and,
therefore, a sink for the capture of energy for intracellular use [1]. To be exploited by
living beings, oxygen is taken up reversibly from the atmosphere and transported to
oxygen-depleted tissues, where it is stored until actual use.

Approximately 90 to 95% of the dissolved oxygen (DO) consumed by the body is
utilized by mitochondria to supply cellular energy through respiration and oxidative
phosphorylation [2,3]. Based on that, it is easy to understand how regulation of tissue
oxygenation and maintenance of adequate O2 levels are fundamental requirements for a
healthy organism. Consequently, DO levels represent a significative indicator to evaluate
pathological conditions (such as abnormally low or high DO levels, hypoxia, and hyperoxia,
respectively) and may explain pathophysiological mechanisms and monitor the effects of
therapeutic treatments [4].

A series of methods for determining DO in the various aqueous and biological matrixes
have been developed. The main ones include iodometric titration, electrochemical methods,
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and optical methods. However, despite its profound biological and clinical importance, a
limited number of effective methods exist for quantifying DO in its physiological settings,
and real-time measurements are not always available. Therefore, it is necessary to improve
the ability to quantify oxygen levels to further study its profound impact on physiology
and diseases.

This work aims to unify, resume and highlight all the main scientific and technological
developments concerning DO determination. According to that, two sections can be
identified in this article. The first section is an overview of all main oxygen detection
methods, each described in terms of basic principles, operation processes, and major
advantages, limits, and application fields. These methods also include those conventionally
employed in non-biological settings (waters, etc.) but show promise in application to
biological matrixes. The second focuses on the applicability of general techniques to DO
detection ex vivo and in vivo for clinical applications unitedly to typical in vivo procedures
in medical research.

As the reader will see, DO determination is extremely faceted due to the complexity of
the matrix studied and the analytical techniques exploited; additionally, this topic interests
a range of people with different backgrounds (such as medics, physicists, chemists, and
engineers). To achieve a base common knowledge necessary for the full comprehension of
the manuscript, the last part of this section will be dedicated to a series of concepts that are
probably extraneous to the non-clinical audience. In particular, a brief description of the
clinical states associated with DO and the parameters used to quantify and classify those
states is reported.

Normal oxygenation levels in human organisms (normoxia, or more accurately,
physoxia [5]) depend on the nature of the tissue and are affected by inspiration and
expiration phases [6]. Pathological hypoxia is a condition caused by DO levels lower than
normal. Since oxygen is tightly coupled to the production of cellular energy, low DO
levels cause a decrease in the cellular energy state [7], triggering a vast transcriptional
cascade regulating multiple genes [8], which may be associated with pathologies such as
ischemia [9] and tumors [10,11].

On the other hand, hyperoxia is associated with higher-than-normal DO levels causing
the formation of highly reactive byproducts called ROS (Reactive Oxygen Species) that can
react with biological macromolecules causing intracellular damage [12–15].

Fluids in the human body can be divided into two main classes: fluids within the cells,
i.e., intracellular fluids (ICF), and fluids surrounding cells, i.e., extracellular fluid (ECF)
(Figure 1). ECF represent 33% of the total human fluids content and includes (1) Plasma,
the liquid part of blood, (2) Interstitial fluid, which mediates the interactions between the
blood vessel and cells content (3) Lymph (4) Transcellular fluids, (5) cerebrospinal fluid,
and to a lesser percentage synovial and pericardial fluid and aqueous humor [16].

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 29 
 

 

 
Figure 1. Body fluids classification and relative amount in volume and weight. 

Another fluid that is a byproduct of the body is urine, and its DO content can also be 
considered informative, especially when urinary tract infections are considered [17]. 

Other biological fluids characterized by a high clinical relevance are those used in 
fluid-based therapies, such as isotonic and hypotonic solutions, enteral fluids, and dialysis 
and perfusion solutions [18–20]. DO levels can be expressed in absolute concentration 
units (mmol/L, mg/L) or relative units, such as saturation (%, the relative amount of oxy-
gen compared to the maximum amount of oxygen that dissolves in a given liquid at a 
given temperature). DO levels are typically expressed either as content/concentration 
(CO2, mg/L), as its corresponding partial pressure pO2 (in mm Hg or kPa or %), or as Oxy-
gen saturation (SO2). The latter expresses the ratio between the actual DO concentration of 
the sampled fluid and that of an oxygen-saturated solution. CO2 in a certain fluid at a cer-
tain temperature in saturation conditions is correlated to the partial pressure of O2 in equi-
librium with the liquid and is described by Henry’s law: C = k , ∙ pX  

where Cx is the concentration of the dissolved gas x, kx,T is Henry’s law constant, and pX 
is the partial pressure (in mm Hg or kPa).  

kx,T varies with temperature and liquid composition. An increase in temperature 
causes a decrease of kx,T thus a decrease in gas solubility. Fluids that naturally (e.g., blood) 
or artificially (e.g., infusion/perfusion solutions) transport oxygen contain carriers with 
high O2 binding affinity to dramatically raise their O2 storage capability. It is important to 
stress that the carriers do not improve O2 solubility in the sample but simply act as O2 

traps. Consequently, a distinction between solubilized and bound DO is usually made 
while describing such fluids [21], and the three DO-related parameters (CO2, pO2, and SO2) 
carry different clinical meanings. For example, for arterial blood: 

(1) Oxygen content (CaO2) measures the total oxygen content in arterial blood 
(2) Partial pressure of oxygen (paO2) measures the pressure of oxygen dissolved in 

the arterial blood and how well oxygen can move from the airspace of the lungs into the 
blood. 

(3) Oxygen saturation (SaO2) refers to the percentage of hemoglobin binding sites in 
red blood cells that are carrying oxygen.  

The same considerations apply to fluids other than arterial blood: relative or absolute 
measurements of DO content must be chosen according to clinical and therapeutical goals 
and their application. The relationship between CO2, and pO2 is shown in Figure 2a, which 
also highlights the differences arising from the presence/absence of oxygen carriers. 

The relationships between these parameters are quite complex, and a series of math-
ematical models have been developed to describe them, such as the Equation proposed 
by Severinghaus to describe the relationship between SaO2 and paO2 [22,23]:  

Figure 1. Body fluids classification and relative amount in volume and weight.



Int. J. Mol. Sci. 2022, 23, 15971 3 of 28

Another fluid that is a byproduct of the body is urine, and its DO content can also be
considered informative, especially when urinary tract infections are considered [17].

Other biological fluids characterized by a high clinical relevance are those used in
fluid-based therapies, such as isotonic and hypotonic solutions, enteral fluids, and dialysis
and perfusion solutions [18–20]. DO levels can be expressed in absolute concentration
units (mmol/L, mg/L) or relative units, such as saturation (%, the relative amount of
oxygen compared to the maximum amount of oxygen that dissolves in a given liquid at a
given temperature). DO levels are typically expressed either as content/concentration (CO2,
mg/L), as its corresponding partial pressure pO2 (in mm Hg or kPa or %), or as Oxygen
saturation (SO2). The latter expresses the ratio between the actual DO concentration of
the sampled fluid and that of an oxygen-saturated solution. CO2 in a certain fluid at a
certain temperature in saturation conditions is correlated to the partial pressure of O2 in
equilibrium with the liquid and is described by Henry’s law:

CX = kx,T·pX

where Cx is the concentration of the dissolved gas x, kx,T is Henry’s law constant, and pX is
the partial pressure (in mm Hg or kPa).

kx,T varies with temperature and liquid composition. An increase in temperature
causes a decrease of kx,T thus a decrease in gas solubility. Fluids that naturally (e.g., blood)
or artificially (e.g., infusion/perfusion solutions) transport oxygen contain carriers with
high O2 binding affinity to dramatically raise their O2 storage capability. It is important
to stress that the carriers do not improve O2 solubility in the sample but simply act as O2
traps. Consequently, a distinction between solubilized and bound DO is usually made
while describing such fluids [21], and the three DO-related parameters (CO2, pO2, and SO2)
carry different clinical meanings. For example, for arterial blood:

(1) Oxygen content (CaO2) measures the total oxygen content in arterial blood.
(2) Partial pressure of oxygen (paO2) measures the pressure of oxygen dissolved in the

arterial blood and how well oxygen can move from the airspace of the lungs into the blood.
(3) Oxygen saturation (SaO2) refers to the percentage of hemoglobin binding sites in

red blood cells that are carrying oxygen.
The same considerations apply to fluids other than arterial blood: relative or absolute

measurements of DO content must be chosen according to clinical and therapeutical goals
and their application. The relationship between CO2, and pO2 is shown in Figure 2a, which
also highlights the differences arising from the presence/absence of oxygen carriers.

The relationships between these parameters are quite complex, and a series of mathe-
matical models have been developed to describe them, such as the Equation proposed by
Severinghaus to describe the relationship between SaO2 and paO2 [22,23]:

SaO2 (%) = ((((paO2
3 + 150 paO2)−1 × 23,400) + 1)−1) × 100

The relationship between paO2 and Hemoglobin saturation (SaO2) is also represented
in Figure 2b.

This already complex background is further complicated while defining the concentra-
tion limits typical of each clinical state since each cell type/tissue has its own physiological
parameters. Average values of pO2 in tissues generally consider physoxia to range between
22.8–53.2 mmHg (3–7% oxygen), pathological hypoxia is often associated with levels be-
low <15.2 mmHg (2% oxygen) ([5], Table 2), while increases in ROS production due to
hyperoxia typically occur for DO levels higher than 100 mmHg (13.5% oxygen). Further
information on DO levels in clinical settings can be found in the review by Singer et al. and
McKeown et al. [5,24].

The composition (thus also DO levels) of biological fluids also depends on a series of
parameters spacing from the area and time of sampling to the health of the patient and the
objectives of the clinical field and applications. DO concentration in blood is also greatly
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affected by the phases of the respiratory cycle [6]. Moreover, pathological conditions such as
hemolysis may affect the carrier’s binding properties and, thus, the fluid’s SO2 values [25].
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total DO in O2 combined with heme and dissolved O2 is also highlighted. From [26].

Since the change in the dissolved oxygen concentration in a living being is a continuous
and dynamic process [5], high-accuracy, rapid, and real-time DO detection methods are
essential for in vivo/ex-vivo measurements.

2. Classical Methods for DO Monitoring in Biological Fluids

The classical determination methods of DO include titration (Winkler method), optical
methods, and electrochemical methods [27–29].

2.1. Titration Method (Winkler Method)

The classical determination methods of DO include titration (Winkler method), optical
methods, and electrochemical methods.

Titration using Winkler analytical procedure is a classical laboratory method for DO
determination. The basis of the method relies on iodine ions being quantitatively oxidized
to iodine by DO; the amount of iodine generated is determined by titration with a standard
thiosulfate solution. The endpoint is determined either by the absorption of ultraviolet
light by the tri-iodide ion in the automated method or by using a starch indicator. The
amount of oxygen can then be calculated from the titer test: one mole of O2 reacts with four
moles of thiosulfate [30].

The practical experimental procedure involves several steps: (1) A MnSO4 and NaOH
solution (Reagent I) must be added to the sample in a gas-tight container; this causes the
DO to oxidize an equivalent amount of manganese ions to hydroxide (which precipitates).
(2) Reagent II (an NaI and H2SO4 solution) is then added. The acid dissolves the precipitate,
and in the presence of iodine ions (I−), iodine (I2) will be released accordingly to the amount
of DO. (3) Finally, the generated iodine is titrated with a thiosulfate solution in the presence
of a starch indicator to determine the number of iodine molecules in the solution. The
process and the color changes are shown in Figure 3.
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The number of measured iodine molecules is proportional to the number of DO
molecules in the original sample, as detailed by the following equations:

Mn(OH)2 +
1
2

O2 →MnO(OH)2 (↓)

MnO(OH)2 + 2I− + 4H+ →Mn2+ + I2 + 3H2O

I2 + 2S2O3
2− → 2I− + S4O6

2−

Advantages, Disadvantages and Applications

The titration method is highly accurate and precise. On the other hand, this procedure
is laborious, time-consuming, and cannot be applied to online measurements [31], and
a large sample volume is required for the measurement. Moreover, this procedure is
sensitive to contaminants and substances like hydrogen peroxide or nitrite. Finally, the
color and turbidity of samples may also cause errors in the measurement [32]. Due to these
characteristics, this analytical approach is often used to calibrate other instruments, such as
electrochemical electrodes.

Recently an improved version of the method using KIO3 as the standard reagent
to quantitatively determine the concentration of DO has been proposed. The improved
method was fast, with fewer reagents and sufficient accuracy and precision for daily
work [29].

2.2. Optical Methods

Optical methods can be divided into colorimetric and fluorescence-based methods.

2.2.1. Colorimetric Methods

The advantages of colorimetric methods (simple chemistry and the possibility of visual
detection) are overcome by several disadvantages, such as low resolution, slow response,
interferences, and not full reversibility. Compared to the Winkler method, colorimetry
methods are less accurate; moreover, they are as complex as the Winkler method and thus
cannot meet the requirements of online continuous measurements [33].

2.2.2. Luminescence Methods

Many studies concerning the development of DO sensors based on luminescence
are described in the literature. Three main mechanisms are exploited: phosphorescence
quenching [34–36], near-infrared, and absorption principle [37,38]. Nowadays, most com-
mercialized optical DO sensors are based on fluorescence quenching. After the fluorescent
dye absorbs visible or ultraviolet light of a specific wavelength, its electrons gain energy,
become excited, and release energy to return to the ground state by emitting fluorescence.
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Since the collisions between oxygen molecules and excited fluorescent substances interfere
with the excitation process of fluorescent substances, the content of oxygen molecules in
the samples can be determined according to the fluorescence intensity or the fluorescence
lifetime generated at the sensitive interface [39,40]. The principle of fluorescence quenching
follows the Stern–Volmer equation [41].

I0/I = τ0/τ = 1 + Ks-v × [O2] = 1 + kq × τ0 × [O2]

I0 and τ0 are unquenched intensity and lifetime at zero O2, respectively, I and τ

are the corresponding parameters at a given oxygen partial pressure pO2, and kq is the
quenching constant related to the diffusion rate of oxygen and the luminophore. [O2] is the
measurement of oxygen concentration. It can be seen from the equation that, for the DO
sensor based on the fluorescence quenching principle, the concentration of DO is linearly
correlated with the fluorescence intensity. On a structural level, oxygen sensors based
on the fluorescence quenching principle are composed of excitation light sources, a DO
permeable layer film attached to fluorescence-sensitive substances (the emitting material),
and an optoelectronic detection element. The stimulating radiation reaching the emitting
material induces a fluorescence response signal whose intensity is measured by a detector
(a photodiode). The quenching reaction, reducing the intensity of the response signal,
occurs at the interface between the emitting material and the DO permeable layer in the
presence of DO when the electrode is put into samples. Most of the time, the parameter
measured by the detector is the intensity of the fluorescence radiation; however, sensors
exploiting a modulation technique have been developed [42,43]. These sensors are based
on the measurement of the phase delay (i.e., a time delay) between the exciting source and
the detected red emission from the luminophore, with the phase delay inversely related to
the amount of DO [44]. The use of the phase-modulation technique eliminates the impact
of intensity fluctuations of the blue LED or the bleaching effects of the luminophore on
the measurement. The inverse relationship between DO concentration and phase delay
of the emitted red light reduces the signal to allow for better detection of very low DO
concentrations. A scheme of typical fluorescence quenching-based DO sensors is detailed
in Figure 4.

Fluorescence intensity presents a series of drawbacks: it is affected by many factors,
such as power drift of the light source, turbidity, background of the sample’s matrix, and
photobleaching of the fluorescent dye [45]. Consequently, it is difficult to construct stable
and reproducible sensors based on fluorescence intensity. To solve this problem, sensors
based on fluorescence lifetime, an intrinsic parameter of the fluorescence system were
developed [42,43].

Aside from the optimal quantification parameter, a key role in improving a sensor’s
performance is played by researching innovative materials/species for its components. For
example, the ideal matrix on which the fluorescence material layer is deposited must have
high oxygen permeability, good mechanical and chemical stability, and excellent optical
transparency [46,47].

Nowadays, materials currently used, which satisfy these requirements to an extent,
are silicone rubber [48], silica gel [49], sol–gels, and polymers [50,51]. The choice of the flu-
orescent substance of the sensor influences its performance. These species should be stable,
have a high response rate, and should not consume DO. Common substances employed
include pyrene, pyrene butyric acid, and fluoranthene, as well as other polycyclic aromatic
compounds [52]. To improve detection sensitivity, ruthenium–chromium complexes and
platinum phosphor porphyrins can be exploited [53,54].

A significant breakthrough in the DO fluorescence-based sensor is represented by the
exploitation of a porous optical fiber as the transmission and detection components of the
system first introduced by Peng [55].
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Indeed, due to its small size and low weight, an optical fiber allows easy sensor minia-
turization [56]. Moreover, it has the advantages of high sensitivity [57], anti-electromagnetic
interference ability, and good electrical insulation; it is also relatively easy to use existing
optical communication technology to form a telemetry network.

The main DO fluorescence-based oxygen sensors developed are summarized in Table 1;
as imaginable due to their superior properties, most of them use optical fiber.

Table 1. Summary of available fluorescent oxygen sensors.

Oxygen Indicator Matrix Sample Type Signals T(◦C) O2 Range Sensor Type Ref

P(Pt- TPPTFEMA)
P(Pt-TPP-EMA) quartz substrate cephalosporin C Luminescence

intensity 20–28 ◦C 0–100%
(0–35 ppm) Optical fiber [54]

Pd (II) TFPP
Pd(II) TCPP
Pt(II) TFPP
Pt(II) OEP
CdSe QDs

sol-gel aqueous oxygen
Ratiometric
Luminescence
intensity

0–40 mg/L Optical fiber [58]

[Ru-(dpp)3]2+

Oregon green
488-dextran

sol-gel Rat C6 Glioma
Living Cells

Ratiometric
Luminescence
intensity

21 ◦C 0–30 mg/L
LOD 7.9 ±2.1 ppm Silica nanosensor [59]

PtOEPK
OEP PVC inter- and

intra-cellular

Ratiometric
Luminescence
intensity

22 ± 0.5 ◦C
0–43 ppm
LOD 19 ppb inter
22 ppb intra

Unpulled PVC
fiber sensor [60]

Ag NPs doped with
Ru(DPP)3Cl2
Coumarin6

PMMA aqueous oxygen
Chlorella vulgaris

Ratiometric
Luminescence
intensity

0–13 mg/L. Optical sensor LOD
= 0.1–0.6 mg/L [61]

PtTFPP PDMS pillar
arrays

aqueous oxygen
enzymatic oxidation
of β-d-glucose

Luminescence
intensity 23 ◦C 0.00–1.28 µmol/L

LOD = 0.1 µmol/L Optical sensor [62]
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Table 1. Cont.

Oxygen Indicator Matrix Sample Type Signals T(◦C) O2 Range Sensor Type Ref

Ruthenium (II)
dichloride (RD3)

silicone layers
plus PC-coating

aqueous media (DO
in water)

Luminescence
intensity 25.0± 0.5◦C LOD = 0.0 4 mg/L Optical sensor [63]

Ruthenium complex Sol-gel waste-water
monitoring

Luminescence
lifetime 5–30 ◦C (LOD) 6 ppb optoelectronic

sensor [64]

[Ru(dpp)3]2+ sol-gel oxides microenvironments Luminescence
intensity 25◦C IN2/IO2 from 3 to 35 Optical chemical

O2 sensors [65]

2.3. Electrochemical Methods

Electrochemical DO sensors are now the most widely used sensors since they can
perform in situ and online measurements [66]. They can be based on conductivity, poten-
tiometry, or current intensity based on their output signal. Intensity-based sensors, which
are the most interesting for DO measurement, can also be divided into polarographic and
galvanic types. Potentiometric DO sensors contain an oxygen-sensitive material fixed on
the surface of the working electrode [67]. When oxygen molecules are close to the sensitive
surface, the working electrode is polarized. The voltage difference between the working
electrode and the reference electrode is directly proportional to the logarithm of the con-
centration of DO, thus allowing its quantification [68]. The conductivity-based methods
instead exploit selective reactions of compounds (such as thallium) with DO generating
ions. The change in conductivity of the solution can be correlated to the DO amount in
the sample. Some variants involve a conductimetric titration of the products of the first
reaction [30], where DO sensors use thallium or other compounds to react with the oxygen
molecules in water to generate thallium ions. Since the chemical reaction on which the
sensor is based is specific to oxygen molecules, the concentration of DO can be calculated
by measuring the changes in the conductivity of water samples.

2.3.1. Polarographic Type Electrodes

Polarography is a method for determining the concentration of substances in solution
by measuring the current–potential (or potential–time) curve of polarized electrodes during
electrolysis. Modern DO polarographic electrodes are composed of a working and an
auxiliary electrode (connected by a wire), an intracellular electrolyte, and an air-permeable
film (which protects the probe from the sample matrix). This structure was first introduced
by Clark in 1956. Clark’s electrode is characterized by a platinum cathode electrode inside
an insulating structure on which the anode, an Ag/AgCl electrode, is wrapped around.
This system is housed in a plastic cylinder containing a KCl solution which communicates to
the external matrix of analysis thanks to a polymeric oxygen-permeable membrane. When
the anode of the electrode is polarized by an external power supply, oxygen molecules
are reduced on the working electrode, allowing more oxygen atoms to pass through the
selective air-permeable film, thus forming a diffusion current. When the correct polarization
voltage is selected for a particular electrode, the current output is linear with respect to DO
concentration. The electrode setup and the reactions which take place at the surface of the
electrode are summarized in Figure 5.

In this context, research is mainly focused on innovative materials able to improve the
electron transfer efficiency between oxygen and the electrode surface [69–71].

In the process of exploring high-sensitivity materials, the electrochemical principle of
the sensor was discovered [72], leading to the development of ECL DO sensors. ECL sensors
are characterized by high sensitivity, good selectivity, and good repeatability; moreover,
they are easy to control [73].
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2.3.2. Galvanic Type Electrodes

The structures of galvanic cells and polarographic sensors are similar. The measure-
ment principle involves an electrolyte-soluble metal anode and an insoluble metal cathode
that are immersed in the electrolyte. As the metal of the anode dissolves and oxidizes,
it releases electrons that reach the cathode. In the cathode, the oxygen penetrating the
thin membrane film acquires these electrons. The current obtained is proportional to the
oxygen concentration penetrating the membrane film. Compared to polarographic sensors,
galvanic ones are characterized by lower precision, lower output current intensity, and
shorter lifetime (related to the wear of the materials during the redox reactions). However,
they are characterized by shorter response time and, since the reaction occurs sponta-
neously, this sensor type requires no power source (thus is easier to use outside a lab). Both
sensor classes experience disturbances by chlorine, sulfur dioxide, iodine, bromine, and
electromagnetic interference [30].

Furthermore, all electrochemical sensors use an electrolyte solution as a conductive
medium which inherently reduces the stability and durability of the sensors and obstacles
to their miniaturization. In recent years new solid-state electrochemical sensors adopting
a solid material as an electrolyte have been developed. They are characterized by higher
stability and durability, and are easier to miniaturize [74–76].

Finally, it is worth noticing that aside from miniaturization and research on optimal
constructive materials, another important area of study for improving sensors performance
(both electrochemical and optical) is represented by the application of technologies for intel-
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ligent signal transfer processing, digital signal processing, and real-time dynamic adaptive
compensation and correction of DO sensors signals [30]. A comparison of performances of
classical DO sensing methods is provided in Table 2.

Table 2. Summary comparison between the three main classical DO detection methods.

Winkler Method Polarographic Methods Fluorescence Methods

Remote monitoring

Cannot achieve remote
measurement, and samples
must be analyzed in the
laboratory.

Can achieve remote detection,
but the signal transmission will
be distorted; thus, the detection
results are not accurate.

Can use an optical fiber to
transmit signals and achieve
remote detection.

Analysis/response time Longest time required

30–180 s; however, the
polarization of the electrode
requires about 15 additional
minutes, so the response time is
longer [30].

41 ms-694 s. The fluorescence
quenching method has the
fastest response time (up to
the ms level) [30].

Oxygen consumption Yes (titration process) Yes (redox reaction at the
electrode)

No (quenching process is
reversible)

Maintenance No Yes No

Application Laboratory and water
samples.

Biological medicine, forestry,
fishing.

Life sciences, harsh
environments.

Interference Turbidity, nitrite, free chlorine,
iron ions, colored solution.

Chlorine, sulfur dioxide, Iodine,
Bromine, Electrical interference.

Fluorescence quenching and
the stability of organic
molecules can be influenced
by factors that include pH and
temperature.

Accuracy ±0.1% [30] ±0.01–0.1 mg/L [30] /

3. DO Detection in Biological Fluids and Physiological Environment

Biological fluids of clinical interest comprise human fluids and a series of solutions
exploited in fluid-based therapies. Compared to other fluids where oxygen is routinely
measured (e.g., natural basins waters), they are characterized by an overall higher chemical
complexity and tendency to deteriorate. Consequently, only a few classical approaches can
be applied. Titration (Winkler method) suffers from the effects of the interferences and the
high delay between the sampling and the measurements. The absorption and emission
spectra of oxygen are poorly specific and difficult to assess in a biological context, further
invalidating some of the optical procedures. Even the vastly explored electrochemical
methods encounter problems in their effective application, such as the difficulty of probing
large surface areas and the inherently disruptive nature of the measurement process. In
particular, only Galvanic type and fluorescence quenching electrodes showed a reasonable
grade of applicability for ex vivo measurements in their miniaturized/optical fiber-based
versions as schematized in Figure 6.

A very important feature in the clinical field is the quantification of the analytes in
their physiological settings (in vivo measurements).

To be applied in vivo, the ideal DO evaluation method should possess these additional
characteristics: (1) Evaluation of oxygen should be fast, not invasive, and able to monitor
multiple points in real-time (at least three sampling points). (2) The sensing equipment
should be able to work at different temperatures (4 ◦C to 37 ◦C) and fluids. (3) The
procedure should not require sampling. Furthermore, large oxygen concentration gradients
are believed to exist within even a single organ or granular structure, requiring the ability
to quantify DO at different levels (from tissue to subcellular) [6]. For these reasons, titration
does not fulfill the requirements and can only be viewed as a suitable tool to calibrate more
specific devices prior to application.
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The subsections of this paragraph are going to be focused on how the classical ana-
lytical methodologies have been translated to the clinical field and on innovative imaging
methodologies developed solely to solve the in vivo analytical problem.

3.1. Translation of Classical Methods to Clinical Settings: Optical Methods

Optical methods for detecting DO in a biological environment can be divided into
two classes based on their founding principle. One exploits the spectroscopic differences
between free and heme-bound DO, mostly used to evaluate oxygen saturation (SO2). The
main techniques belonging to this class are pulse oximetry, diffuse optical spectroscopy and
tomography [77], photoacoustic tomography [78], and optical coherence tomography [79].
The second one, described in Section 2.2.2, is based on luminescence quenching caused
by oxygen.

3.1.1. Class 1

The pulse oximeter is a particular kind of optical DO sensor widely used in a variety
of clinical settings, including emergency and critical care, and is now often part of standard
patient observations. It plays a role in monitoring and treating respiratory dysfunction
by detecting hypoxemia and is effective in guiding oxygen therapy in adult and pediatric
populations [80]. The principle of operation of the pulse oximeter is based on the different
light absorption characteristics of hemoglobin at different wavelengths. The absorption
spectra of oxygenated and deoxygenated hemoglobin are sufficiently different, so that the
distinction can be made with photometric techniques. The system works by transmitting
and detecting the differential absorption of two wavelengths of light, typically 660 and
940 nm, through thin tissues, such as a fingertip or earlobe; 660 nm light experiences
greater absorption by deoxyhemoglobin, whereas 940 nm light is more strongly absorbed
by oxyhemoglobin. By measuring the periodic modulation of this differential absorption,
due to pulsed blood flow, pulse oximetry isolates the oxygen saturation of arterial blood
alone without contributions from other absorbing species, such as venous blood [6]. The
wide increasing use of this sensor is due to a series of positive properties, such as non-
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invasiveness, portability, effectiveness, and the fact that no exogenous contrast agent is
required. The main disadvantage is represented by its limited sensing depth, which makes
the resulting saturation oxygen value (SpO2) less accurate than the one obtained through
blood gas analysis of arterial blood (SaO2). Although less accurate than SaO2, the typical
difference of <2% is usually of no clinical significance [26]. However, pulse oximetry is
solely a measure of oxygen saturation (relative, not absolute, amount of oxygen in blood)
and gives no indication about blood, pH, carbon dioxide, or bicarbonate concentrations
which are useful for patients affected by pathologies such as chronic obstructive pulmonary
disease (COPD) or suspected diabetic ketoacidosis [81]. While it is not a substitute for
arterial blood gas analysis (Section 3.3) and oxygen absolute concentration determination,
overall pulse oximetry can suffice as a monitoring technique when patients are not affected
by the risk of respiratory failure or metabolic acidosis pulmonary diseases.

Diffuse optical spectroscopy and tomography (DOS/T) are based on the detection of
scattered photons derived from the impact of a series of wavelengths into the tissue. Based
on the working mode of the detectors (reflectance or transillumination), their distances
from the tissue, and the wavelength used, it is possible to obtain 3D maps, both static and
dynamic [82], of tissue parameters, including DO.

Photoacoustic tomography (PAT) can visualize the three-dimensional position of
molecules in tissues by exploiting the ultrasonic wave generated by the expansion of
molecules caused by a short burst of photons derived from the tissue. Optical coherence
tomography (OCT) instead uses low-coherence interferometry to create high-resolution
(<1 mm) tomograms of tissue. Based on the wavelengths and detector used, it is possible
to distinguish two different approaches, spectral domain OCT [83] and photothermal
OCT [84].

3.1.2. Class 2

Techniques based on SO2 determination, though useful for measuring the oxygen
contained in blood, rely on the existence of perfusion and do not reveal information
regarding the concentration of DO within tissues and cells themselves. Optical-imaging
approaches based on luminescence quenching instead enable the direct measurement
and quantification of oxygen concentrations within tissues, even in the absence of blood.
The principles, advantages, and disadvantages of these techniques have already been
discussed in Section 2.2.2. The chemical sensors illustrated up to now represent the most
common devices used for DO determination in a variety of sectors (such as food, industrial,
and agricultural production). Their application to biological samples is possible and
widely explored [56,59]. Real-time in vitro measurement of oxygen uptake rates for HEPG2
liver cells encapsulated in alginate matrices. Their application for in vivo measurements
on humans is limited by the invasiveness of the methods, the relatively high oxygen
consumption, and the difficulties of mapping large areas. To solve these problems, a series
of films, foil sensors and fluorescence quenching imaging probes have been developed [6].

3.2. Translation of Classical Methods to Clinical Settings: Luminescence Quenching Imaging
Probes

These methods are based on probes that, through incubation or injection enter the
sample (cellular culture, animal tissues, or organs). Both intensity and lifetime measure-
ments have been realized with these probes exploiting spectrometers, cameras, and micro-
scopes, providing measurement capabilities on different spatial and temporal scales [85].
Luminescence-intensity-based approaches are advantageous in their simplicity and can be
easily adapted to existing imaging equipment. Although these approaches can be limited
by inhomogeneous illumination and a non-uniform distribution of the probe molecules,
these challenges can be overcome by introducing an oxygen-independent reference dye
that co-localizes with the phosphorescent sensor. Lifetime-based approaches, instead, are
independent of excitation intensity, detector sensitivity, and probe concentration and have
been realized by either time or frequency-domain methods. Time-domain measurements
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involve exciting the probe molecules with a temporally short light pulse and recording the
decay profile [86]. On the other hand, frequency-domain measurements involve exciting
probe molecules with modulated light, with lifetimes determined by measuring the phase
shift between the excitation and emission signals [87].

The initial probes exploited were simple Ruthenium [88,89] and Iridium complexes [90,91].
Compared to ruthenium complexes, iridium sensors offer a broader color-tuning potential,
enabling the synthesis of probes emitting in the near-infrared (NIR) region for deep tissue
oxygen sensing.

Ru and Ir possess a limitation on the number and type of ligands that the central
metal can accommodate. To obtain a higher grade of flexibility concerning the complexes’
properties, a series of metalloporphyrin classes were developed over the past few decades
containing a variety of peripheral groups that can be readily functionalized [92]. To the best
of our knowledge due to regulatory hurdles nowadays, only PpIX-based systems are ap-
proved by FDA. In addition to Pt(II)- and Pd(II)-porphyrins, luminescent Ru(II)polypyridyl
complexes have also been used for intracellular oxygen measurements [93]. Platinum and
palladium complexes, in particular, have shown superior photophysical properties for oxy-
gen sensing applications, such as significantly higher room-temperature phosphorescence
quantum yields and longer lifetimes than Ru and Ir sensors [94].

The application of these porphyrin-based sensors is limited by their low solubility in
aqueous media and their high degree of interactions with the macromolecules present in
biological environments. To overcome these challenges, porphyrin molecules have been
synthesized with multiple surface functional groups to enable the construction of den-
drimers and macromolecular sensors. These constructs can have improved solubilities and
biocompatibilities over “naked” porphyrins and can be combined with targeting moieties
for improved biodistribution [95,96]. Porphyrin dendrimers structures are well suited for
intravascular DO imaging but struggle to pass cells membrane. The first probe of this kind
spontaneously able to penetrate multiple cell layers was presented by Nichols et al. [97].
Developments in this field were represented by the introduction of probes that combined
the phosphorescence quenching with two-photon microscopies allowing higher dept of
visible light excitation [98,99] (a common limitation of these probes). However, the complex
multichromophoric structure of porphyrin dendrimers probes is associated with a series
of problems nowadays only partially resolved [100], such as (1) generation of alternative
quenching patterns caused by the chromophores vigilance, which reduces the probe’s
emissivity; (2) emission bands of the original probes usually limiting imaging to no deeper
than 300 mm below the tissue surface. [101].

A relevant area of research in this field revolves around the development of new
materials to exploit as probes, such as semiconductor nanocrystals [102,103]. In particular,
Li et al. 2018 developed a sensor based only on these kinds of materials [104]. MOFs repre-
sent another promising class of species that can be used as probes. MOFs with reasonable
crystallinity and structural tunability are highly porous, thus able to accommodate high
loadings of imaging agents and allow fast diffusion within them. Second, NMOFs are
biodegradable due to their relatively labile metal−ligand bond [105]. Lin et al. designed
the first fully NMOF-based O2 sensor [106]; other systems exploit MOFs just as structural
support to the actual sensitive elements due to their outstanding properties [107]. An
important breakthrough in recent years, able to solve the problems of previous probes, was
represented by Oxyphor 2P developed by Tatiana V. Esipova et al., which was exploited to
study DO levels in mouse brains affected by micro strokes [92]. This probe, characterized
by a single chromophore structure, unprecedentedly high phosphorescence quantum yield,
and high tissue dept accessibility represents the brightest probe developed. In particular, it
allows oxygen monitoring twice as deep (up to 600 mm below the tissue surface) and with
nearly 60 times higher speed than previously possible.

An important aspect concerning the use of all the probes mentioned is represented by
how the probe enters the biological sample of interest. The use of bare probes is not optimal
due to solubility and permeability issues and the nontrivial interactions of the probes
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with the biomolecules of the biological environment. Moreover, the route of endogenous
generation of the probes [108,109] most of the time is not applicable. Consequently, the
two main strategies used to administer the probes revolver around their conjugation to
HSA, PEG [110–112], a series of cell-penetrating peptides [113–115], or their encapsulation
within nanoparticles. Good encapsulating nanoparticles should provide a good layer of
protection for the nanoparticles while allowing an easy diffusion of the environmental
DO near the probe. Therefore, the porosity of these nanoparticles is a very important
parameter. Other two important properties of the encapsulating agents are their loading
capability and the ability to functionalize their surface. A high loading capability improves
the punctual response of the probes. Cell-uptake studies [116] showed that the lack of
a surface cell-targeting layer could result in inefficient cell internalization or increased
toxicity; thus, an easy surface functionalization can help to solve these problems. Some
of the most common materials used for these nanoparticles are silica [117] and polyacry-
lamide [118] nanoparticles. Roussakis et al. summarized most of the research on these
kinds of systems [6]. The most recent efforts in this field have seen the use of a PMMA-MA
and poly(lactic-co-glycolic acid) (PLGA) matrix [119], MOFs [107,120], and semiconducting
polymers [121].

Film and foil sensors. Film and foil sensors were introduced by Wolfbeis and co-
workers [122] to monitor oxygen gradient in engineered tissues. They are typically
characterized by a phosphorescent thin-film polymeric-coating applied on an oxygen-
impermeable substrate (e.g., polyester films) which is applied onto the target, e.g. brain
tissue (Figure 7) [123]; after their application on the target skin, imaging is performed with
a CCD camera [124,125].

Starting from this concept, other classes of “surface applicable” sensors have been
developed, such as 3D porous scaffolds for cell culture DO monitoring [126,127] and other
suspensions of sensor microparticle beads applied on tissue surfaces [128]. All these sensors
can only report on O2 levels at the tissue surface in contact with the sensor; compared with
the probes discussed before, they are characterized by no-invasiveness, making them very
promising for in-vivo studies on living beings. They are also reusable. Their application on
in vivo pO2 imaging allowed them to observe tourniquet-induced forearm ischemia [129],
monitor wound surface pO2 during healing at split-thickness skin graft donor sites that
served as wound models [130] and other 2D oxygen mapping studies [131,132]. A series
of dual parameters, such as pH/pO2 [125] and T/ pO2 [133] sensing films, have been
developed, further advancing the research in this field.

3.3. Translation of Classical Methods to Clinical Settings: Electrochemical Methods

Blood Gas Analyzer. Blood Gas Analyzers (BGA) are typical commercial devices
based on polarographic electrodes with extensive use in the biomedical field [134,135].
They are mainly used to quantify oxygen and carbon dioxide in the blood. However, some
models can also determine the acidity of the blood and the presence of electrolytes (Na+, K+,
Ca2+; Cl-) and metabolites (glucose, lactate, and total bilirubin). These measurements are
typically used to evaluate lung function and acid-base imbalance, which may cause kidney
failure, heart failure, and severe infections. In most cases, blood is taken from an artery
(Radial, femoral, brachial). The analyzer aspirates the blood into a measuring chamber
with Ion Selective Electrodes. In the pO2 electrode, oxygen permeates a polypropylene
membrane and reacts chemically with a phosphate buffer. The O2 combines with water
in the buffer, producing a current in proportion to the number of oxygen molecules. The
current is measured and expressed as the partial pressure of oxygen. The pCO2 electrode is
a pH electrode with a Teflon or silicone rubber CO2 semi-permeable membrane covering
the tip. CO2 combines with H2O in the space between the membrane and the electrode
tip to produce free hydrogen ions in proportion to the partial pressure of CO2. The
voltmeter, although measuring [H+], is calibrated in pCO2. The pH electrode compares a
potential developed at the electrode tip with a reference potential; the resulting voltage is
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proportional to the concentration of hydrogen ions [H+]. A schematic of a BGA system is
given in Figure 8.
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The pO2 value of arterial blood is a measure of how well the body can absorb oxygen in
the lungs and is used to assess how well the body eliminates carbon dioxide, a by-product
of metabolism. Finally, the pH value of blood, serum, or plasma is an indicator of the
balance between the blood, renal (kidney), and lung (respiratory) systems and is one of the
most tightly controlled parameters in the body. Arterial blood-derived parameters such as
CaO2 and bicarbonate concentration are calculated upon the values of Hb (and the relative
SaO2) and pO2 parameters. SaO2 is calculated based on the assumption that all measured
hemoglobin is normal (oxy- or deoxy-) hemoglobin [136]. Although these devices require
invasive sampling, the amount of blood required is very low (50–95 µL), reducing the
overall invasiveness of the technique. From a theoretical stand, since these systems are
based on simple polarographic electrodes, they could be used to analyze other fluids (with
or without carries) aside from blood to pO2, pCO2, and pH. Since the relationship between
pO2, pCO2, and pH could be affected by the target medium, specific electrode calibration
for the new study matrix must be done. Moreover, new tailormade (liquid-specific) models
for the calculation of SO2 may be required. To the best of our knowledge, nowadays FDA
admits only pleural fluid testing on a blood gas analyzer (and only for pH) [137].

DO measurements in tissues. The use of classical polarographic electrodes in tissues
is limited by a series of factors such as (1) the invasiveness of the needle-based probes [138];
(2) results highly dependent on measurement location within the tissue; (3) the electrodes
require a specific calibration based on the tissue of interest [139]; (4) the needle itself is
slightly invasive and potentially damages the tissue [4]. Furthermore, as the probe itself
consumes oxygen during point measurements, taking repeated readings at a single tissue
location can pose a challenge.

To improve the applicability of electrodes to this analytical problem, a series of tech-
nological modifications have been made. For example, to reduce tissue damage and
microcirculatory disturbance, recessed tip microelectrodes have been developed [140–142]
and applied to in-vivo measurement of O2, in organs and tissues, such as rat brain (Figure 9).
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There is also a class of planar electrodes that allows the non-invasive transcutaneous
measurement of oxygen pressure; however, they require elevated skin temperature of
44–45 ◦C. These technologies cannot map oxygen gradients across the sample; to solve this
key problem, new planar polarographic electrodes are in development[143]. Frontiers in
this field are represented by the application of new generations of electrochemical sensors-
based scaffolds for 3D cell culture models [144] based on what has already been widely
explored in the field of luminescence sensors. For example, Weltin and coworkers used
electrochemical microsensors to measure metabolic activity from hepatocyte spheroids
allowing continuous long-term monitoring of metabolites in a precise manner [145].

3.4. Translation of Classical Methods to Clinical Settings: DO Sensing Techniques in Biomedicine

Apart from the translation of conventional methods to clinical settings (optical and
electrochemical methods), there are a few techniques that are employed in DO sensing to
monitor tissue health and perfusion changes. The first class of methods exploits measuring
the presence of radioisotopes and resonance, requiring a contrast medium and expensive
instrumentation. Though presenting some interesting features, they are currently not
routinely employed for human patients.

Including these, a summary scheme of the available techniques for DO sensing, and
their translatability to DO measurement in a clinical setting, is reported in Figure 10.
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3.4.1. Radioisotopes Techniques

These techniques are not invasive and can generate 3D imaging and allow the ob-
servation of perfusion changes, oxygen metabolism rates, and the pO2 levels of healthy
and diseased tissues [146]. Whole-body oxygen imaging can be performed with positron
emission tomography (PET) through 15O2 gas inhalation [147]. Parameters, such as the
cerebral blood volume (CBV), cerebral blood flow (CBF), oxygen extraction fraction (OEF),
and cerebral metabolic rate of oxygen (CMRO2), can be calculated based on the clearance
rate of 15O2 allowing studies on arterial occlusion, stroke [148], brain tumors [149], and
traumatic brain injuries [150].

An alternative to PET is represented by Single Photon Emission Computed Tomog-
raphy (SPECT). SPECT images are much simpler, less costly to acquire, and can use a
wide range of marker isotopes; however, the images are characterized by lower spatial
resolution compared to PET. Using this technique, a series of studies, for example, measur-
ing regional cerebral blood flow [151], the effect of hyperbaric oxygen therapy [152,153],
and physiological disorders and therapies related to perfusion and oxygen-metabolism
abnormalities [154] have been performed.

Though highly promising, the clinical translation of radioisotope techniques as a
routine procedure for tissue oxygen imaging is blocked by the complexity of the measure-
ments, the exposure of patients to radiation, a low spatial resolution, and the need for the
on-site production of certain radioactive tracers. Moreover, measurements can only be
performed within perfused tissue regions and do not directly provide pO2 values (no direct
measurement). However, PET continues to be the main technique for clinical imaging of
brain circulation

3.4.2. Resonance Techniques

Resonance techniques such as electron paramagnetic resonance (EPR) and dynamic
nuclear polarization (DNP) have been exploited for DO imaging. Compared to radioisotope
techniques, the contrast agents used do not have to possess a short half-life and thus can
be stored up for a long period of time; moreover, the magnetic field used is completely
non-invasive. In the past few decades, these methodologies have enabled the non-invasive
3D full-body imaging of a variety of physiologically relevant parameters and have sig-
nificantly improved our understanding of oxygen distribution on the level of tissues and
organs [155,156]. However, they rely on advanced instruments that are large and expensive,
which renders their use difficult in a number of clinical and field scenarios; moreover, the
imaging resolution is lower compared to radioisotope imaging limiting their capability
to resolve microscopic tissue information. Chemometric methods have been applied to
mitigate these imaging resolution problems in dynamic imaging [157]. Nuclear resonance
techniques have been developed based on 19F and 1H MR. The imaging is generated by
the excitation of the atomic nuclei of interest with a radiofrequency pulse and the sub-
sequent monitoring of the decay rate of the radiofrequency signal emitted during the
relaxation process.

19F oximetry utilizes the non-toxic perfluorocarbons (PFCs) as exogenous contrast
agents [158,159], where lattice relaxation rates of 19F are linearly dependent on oxygen
partial pressure. PFCs are administered intravenously in emulsions or nanoparticles
several hours to a few days before the measurement [160]. The hydrophobicity of the
compounds makes them minimally affected by ions proteins in the bloodstream [161]. The
main limitations of the technique are the requirements of calibration of the system under
experimental conditions and the need for expensive instrumentation able to perform 19F
imaging. Both short and long-term oxygen monitoring has been reported on numerous
animal models [162]. The localized injection of the contrast agent to obtain an immediate
image of a certain area was also shown as a viable pathway [163,164]. The technique was
also used to evaluate the effect of intervention correlated to changing oxygen perfusion
and metabolism [165].
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1H MR imaging techniques can exploit both endogenous and exogenous contrast
agents. The endogenous method uses hemoglobin (dHb) as an endogenous contrast agent
and exploits the BOLD [156] and TOLD [166] effects. The method principle is based
on the difference in the magnetic susceptibilities between oxyhemoglobin (oxyHb) and
deoxyhemoglobin. Despite being non-invasive, this technique is characterized by problems,
such as the lack of direct correlation between the amount of excited state and pO2 [167]
and the results dependence on blood volume [168]. Although 1H endogenous imaging is
not particularly good for obtaining an accurate evaluation of pO2 in the bloodstream due
to its high sensibility, it is exceptionally good at detecting variation in the DO levels [6].
Nowadays, this approach is widely applied in the monitoring of Human cerebral blood
oxygenation [156], monitoring of tumor microenvironments [169], and evaluation of tumor
oxygenation [170].

The exogenous contrast agent technique (also called PISTOL, proton imaging of
siloxanes to map tissue oxygenation levels) revolves around the use of siloxanes as contrast
agents, such as hexamethyldisilane (HMDSO) and others [171,172]. Limitations of the
technique mainly arise from the intrinsic disadvantages of exogenous contrast agents, such
as possible undesired biodistributions, results influenced by variances in the clearance
rates of these contrast agents, and the invasiveness associated with their injection, which
may be multiple for long-term monitoring. In 2019 Shankar and Kodibagkar developed a
faster version of PISTOL (PISTOL-LL) exploiting a siloxane-selective Look-Locker imaging
sequence equipped with an echo planar imaging (EPI) readout to improve acquisition
time [173].

EPR, electron paramagnetic resonance, is a technique capable of detecting paramag-
netic chemical species such as oxygen. However, the biological environment requires the
additional use of contrast agents that can be divided into soluble materials (e.g., nitroxides,
triaryl methyl radicals) and insoluble particulate materials (e.g., lithium phthalocyanine,
coals, chars, inks, and carbon blacks) [168]. The particulate ones are characterized by higher
spin densities which provide greater sensitivities[174]; moreover, they are stable in a wider
pH range and redox conditions. EPR oximetry has been used to measure oxygenation in
a wide range of murine organs [175,176], showing high sensitivity and ability to perform
repeated measurements [177,178] for long-term monitoring. In recent years quantitative
EPR has been applied to correct and improve 19F magnetic resonance results [179]. EPR
oximetry in humans has thus far been conducted using probes composed of ink particulates;
these probes are limited in that they can only measure oxygen if placed within a few mm of
the skin surface [180,181]. The most recent advance in human experimentation revolves
around the implantation of a small lithium octa-n-butoxynaphthalocyanine crystals-based
chip which improves detection depth up to 1.5 cm [182].

An alternative to EPR, dynamic nuclear polarization (DNP) detects free radicals in bio-
logical samples by collecting NMR images while irradiating specific EPR resonances [183].

In terms of applicability to biological samples and in vivo- ex vivo measurements,
these two approaches complete the scenario of suitable techniques, each with some limita-
tions, able to detect, monitor, and quantify DO. Their reported use and their main features
are finally summarized in Figure 11.



Int. J. Mol. Sci. 2022, 23, 15971 20 of 28

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 20 of 29 
 

 

EPR, electron paramagnetic resonance, is a technique capable of detecting paramag-
netic chemical species such as oxygen. However, the biological environment requires the 
additional use of contrast agents that can be divided into soluble materials (e.g., nitrox-
ides, triaryl methyl radicals) and insoluble particulate materials (e.g., lithium phthalocy-
anine, coals, chars, inks, and carbon blacks) [168]. The particulate ones are characterized 
by higher spin densities which provide greater sensitivities[174]; moreover, they are stable 
in a wider pH range and redox conditions. EPR oximetry has been used to measure oxy-
genation in a wide range of murine organs [175,176], showing high sensitivity and ability 
to perform repeated measurements [177,178] for long-term monitoring. In recent years 
quantitative EPR has been applied to correct and improve 19F magnetic resonance results 
[179]. EPR oximetry in humans has thus far been conducted using probes composed of 
ink particulates; these probes are limited in that they can only measure oxygen if placed 
within a few mm of the skin surface [180,181]. The most recent advance in human experi-
mentation revolves around the implantation of a small lithium octa-n-butoxynaphthalo-
cyanine crystals-based chip which improves detection depth up to 1.5 cm [182]. 

An alternative to EPR, dynamic nuclear polarization (DNP) detects free radicals in 
biological samples by collecting NMR images while irradiating specific EPR resonances 
[183]  

In terms of applicability to biological samples and in vivo- ex vivo measurements, 
these two approaches complete the scenario of suitable techniques, each with some limi-
tations, able to detect, monitor, and quantify DO. Their reported use and their main fea-
tures are finally summarized in Figure 11. 

 
Figure 11. DO detection methods for biological matrices and clinical settings. 

4. Conclusions 
Due to the key role dissolved oxygen has in all aspects of life and health, it is easy to 

understand its importance. Concerning the biomedical field, deviations in DO levels (Hy-
peroxia and Hypoxia) from homeostasis (Normoxia/Physoxia) influence processes, such 
as ROS production and metabolism. For instance, hypoxia has been established to play a 
role in ischemic etiology, it is known to occur in tumors, and it is an important clinical 
factor in cancer-treatment planning and efficacy, while hyperoxia can occur during ther-
apeutic administration of high concentration or pure oxygen against respiratory failure 
(such as COVID19 treatment strategy [184]), affecting tissues health and possibly causing 
ROS-induced damage.  

Oxygen monitoring in a biological setting is very faceted, mainly because of (1) Liq-
uid-specific features, since oxygen content is dependent on the liquid type in which it has 

Figure 11. DO detection methods for biological matrices and clinical settings.

4. Conclusions

Due to the key role dissolved oxygen has in all aspects of life and health, it is easy
to understand its importance. Concerning the biomedical field, deviations in DO levels
(Hyperoxia and Hypoxia) from homeostasis (Normoxia/Physoxia) influence processes,
such as ROS production and metabolism. For instance, hypoxia has been established to
play a role in ischemic etiology, it is known to occur in tumors, and it is an important
clinical factor in cancer-treatment planning and efficacy, while hyperoxia can occur during
therapeutic administration of high concentration or pure oxygen against respiratory failure
(such as COVID19 treatment strategy [184]), affecting tissues health and possibly causing
ROS-induced damage.

Oxygen monitoring in a biological setting is very faceted, mainly because of (1) Liquid-
specific features, since oxygen content is dependent on the liquid type in which it has to
be quantified (salinity, temperature, the composition of the solution can affect DO levels);
(2) Patient-related features in vivo, since body Temperature, arterial/venous pressures and
health conditions affect the oxygen levels; (3) Oxygen level types of expressions, since
oxygen content can be expressed either in absolute or relative measurement units. The type
of target expression should be properly chosen, considering the underlying clinical needs
and aims of the monitoring; (4) Different sample handling needs based on the location of
the source.

Commonly used methods of DO detection include electrochemical detection, optical
detection, and iodometric titration. Polarography is currently the most widely used electro-
chemical method due to its wide applicability; however, it suffers from long polarization
time, oxygen consumption, and difficulty in maintenance which reduces its potential for
long time measurements. The optical (luminescence) methods overcome the problem of
oxygen consumption and have a high sensitivity, fast reaction time, and low maintenance
requirements. The development of these sensors revolves around the discovery and im-
plementation of new constructive materials, which allows their miniaturization and better
performances (longer life, high sensitivity) without requiring frequent maintenance and
calibration. Within this framework, fluorescence sensors seem to be the most promising
class, even from a commercial point of view.

DO determination and monitoring for clinical in vivo analysis represent a more com-
plex problem due to additional requirements. The ideal measurement tool should not
require sampling, should not be invasive, and should be able to work on various fluids and
temperatures. Moreover, different clinical contexts require different ranges, such as hypoxia
(in the pathological state) and hyperoxia (induced by treatment), and monitoring DO in
these situations could require additional attention. Last, high DO values in a compartment
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or fluid (such as perfusion or inhalation therapy leading to high DO levels in the blood) do
not necessarily reflect on out-of-scale values in downstream analyses, such as tissues.

Classical electrochemical and luminescence electrodes have successfully been trans-
lated to clinics: the most widespread methods are BGA and pulse oxymetry. However,
BGA is an offline measurement, requiring sampling and new calibrations for target liquids,
if different from blood, to determine O2 absolute concentration. Moreover, it would risk
going outside scale for high DO values such as those expected for hyperoxia. Commercial
equipment based on these technologies is nowadays used routinary in clinical procedures.
The use of optical fibers as probes played a key role in this process allowing remote trans-
mission and high anti-interference abilities and reducing the invasiveness of the sensors.
Noninvasive film and foil sensors represent the newest frontier in noninvasive sensor
development for oxygen mapping. Dual parameters models (pH/pO2; T/pO2) exhibited
outstanding results; however, they are able to map only a small portion of the body near the
skin region where the sensor is attached. Polarographic sensors are interesting since they
have a wide application range and can be applied even in vivo, and are able to extend their
measuring range outside physiological ones, but consume oxygen during the measurement,
which would hinder the evaluation of high DO effects in tissues that could otherwise
undergo ROS formation [24].

New strategies have also been developed, such as luminescence, radiometric, and
magnetic/electron resonance-based probes. These tools allow the generation of oxygenation
maps in humans at the micro and macro levels and provide detailed insight into disease
mechanisms and treatment responses. However, they are still subjected to problems that
differentiates from class to class, such as the low spatial resolution of the images, the
exposure to radiation, the requirement of expensive instrumentation, and low sensibility in
detecting areas away from the skin surface. Another relevant challenge is their efficient
and targeted delivery, which is particularly difficult for ischemic and cancer regions, which
can lie many cell layers away from the blood supply. Although many promising studies
have been reported using these probes, their use on human beings is still far from being
fully explored due to regulatory hurdles.

At present, there is no method able to completely fulfill all requirements imposed by
clinics and sample restrictions; some are more precise, some are faster, and some are more
indicated for application in a clinical context. Consequently, the choice of the optimal tech-
nique for the clinical field of interest should require the evaluation of the major advantages
and disadvantages of each one and the consideration of the specific clinical application
of interest and its objectives, the time requirements (continuous, real-time, segmented.),
the measurement type (absolute or relative measure) and invasiveness (contactless, immer-
sion), and should also envision the combination of two or more strategies to ensure correct
quantification.
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