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Abstract 

Spatial cues presented prior to the presentation of a static stimulus usually improve its 

perception. However, previous research has also shown that transient exogenous cues to direct 

spatial attention to the location of a forthcoming stimulus can lead to reduced performance. In 

the present study, we investigated the effects of transient exogenous cues on the perception of 

briefly presented drifting Gabor patches. The spatial and temporal frequencies of the drifting 

Gabors were chosen to mainly engage the magnocellular pathway. We found better performance 

in the motion direction discrimination task when neutral cues were presented before the drifting 

target compared to a valid spatial cue. The behavioral results support the hypothesis that 

transient attention prolongs the internal response to the attended stimulus, thus reducing the 

temporal segregation of visual events. These results were complemented by applying a recently 

developed model for perceptual decisions to rule out a speed-accuracy trade-off and to further 

assess cueing effects on visual performance. In a model-based assessment, we found that valid 

cues initially enhanced processing but overall resulted in less efficient processing compared to 

neutral cues, possibly caused by reduced temporal segregation of visual events. 

 

Keywords: Visuospatial attention, exogenous cue, temporal segregation, computational 

modelling 
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Introduction 

Observers are typically faster and more accurate at detecting a target that appears in an 

attended location rather than in an unattended location (Posner, 1980). Furthermore, spatial 

attention attracted by a transient exogenous cue can enhance performance in tasks involving 

spatial resolution (Carrasco & Yeshurun, 2009) such as texture segmentation (Yeshurun & 

Carrasco, 2000), Vernier stimuli, and Landolt-squares (Yeshurun & Carrasco, 1999). However, 

in some cases and under specific stimulus conditions, a transient exogenous cue can negatively 

affect the performance. For example, Yeshurun and Levy (2003) reported that an exogenous cue 

impairs performance in a temporal gap detection task in which observers had to report whether 

they perceived two disks which appeared for 47 ms with a delay interval (ISI) between 11 and 34 

ms, or whether they perceived only a single disk. Hein, Rolke and Ulrich (2006) presented a dot 

either in the left or right visual hemi-field. After a variable stimulus onset asynchrony (SOA; 

ranging from 17 to 83 ms) a second dot spatially adjacent to the first one was presented. The 

temporal order was randomly varied from trial to trial. Participants had to indicate which of the 

two dots in the temporal sequence was presented first. When the exogenous cue indicated the 

visual hemi-field where the two dots were going to appear (i.e., valid cue condition), 

participants’ performance significantly dropped compared to an un-cued condition in which there 

was no spatial cue indicating the target’s visual hemi-field. Nicol and colleagues (2009) 

replicated the findings of Hein et al. (2006) and showed that the temporal resolution was better in 

un-cued locations. Additionally, Yeshurun and Marom (2008) found that transient attention can 

prolong the apparent duration of an attended disk that appeared for a duration of 70 ms. 

Similarly, Yeshurun and Hein (2011) showed that when the location of a two-frame apparent 

motion sequence was cued by a transient exogenous cue, participants’ performance on direction 

discrimination significantly dropped. 

These results are consistent with the hypothesis that transient attention prolongs the 

internal response to the attended stimulus (Yeshurun & Marom, 2008). Such attentional 

prolongation of the response reduces temporal sensitivity and thus temporal segregation. 

Therefore, events occurring at different time points might be integrated into a single event 

(Yeshurun & Hein, 2011). Yeshurun and Hein (2011) suggested that transient attention directed 

to a spatial location facilitates the activity of the parvocellular system (i.e., visual cells with small 

receptive fields, with superior spatial acuity but poor temporal acuity and prolonged response 
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persistence; Denison, Vu, Yacoub, Feinberg, & Silver, 2014; Derrington & Lennie, 1984; 

Livingstone & Hubel, 1988), and suppresses the magnocellular system (Yeshurun, 2004). 

Yeshurun (2004) used isoluminant stimuli to ensure that the performance in a temporal 

gap detection task was mainly supported by the parvocellular system. They found that, under 

these stimulus conditions, the deleterious effect of the exogenous cue was attenuated or 

eliminated. Megna, Rocchi, and Baldassi (2012) evaluated the influence of transient spatial cues 

on the spatial and temporal dimensions of perceptual filters. They presented a spatiotemporal 

noise matrix in each visual hemi-field. The matrix was composed of bars changing in luminance 

over time. One of the matrices contained the target, which was a luminance increment of the 

middle bar spatiotemporally centered in the noise matrix. In the cueing conditions, a small 

horizontal bar, which preceded the target by 120 or 250 ms, indicated the visual hemi-field 

where the target would appear. The observers had to report which matrix (left or right) included 

the target. When the matrices were presented at a small eccentricity (3 deg), transient attention 

caused the perceptual templates to be sharper in space, as reflected by high spatial frequency 

components and a large temporal integration window. These results further support the 

parvocellular explanation of transient exogenous attention by showing that in the presence of 

timed spatial exogenous cues observers rely on noisy evidence lasting longer and with finer 

spatial arrangement. Yeshurun and Sabo (2012) provided further evidence that transient attention 

facilitates parvocellular activity using two pedestal paradigms: a pulse-pedestal paradigm 

favoring parvocellular activity and a steady-pedestal paradigm favoring the magnocellular 

system. They found that an exogenous cue that attracts transient attention to the location of the 

upcoming target improved performance with a pulse-pedestal but had no effect with the steady-

pedestal. Though they did not find a decrease in the performance with the steady-pedestal 

paradigm, most of the previous studies mentioned above showed inefficient temporal processing 

in the cued region, and in line with Yeshurun’s (2004) hypothesis of magnocellular suppression.  

Based on the previous findings, it is likely that transient exogenous attention impairs 

accuracy in a task mainly mediated by the magnocellular system and in which the temporal 

information is a crucial factor such as in motion perception. According to Adelson and Bergen 

(1985), motion processing is a combined response between spatial and temporal filters, therefore 

one would expect that if temporal resolution is reduced by presenting a transient cue, then even 

motion perception will be affected. Attentional modulation of motion perception was supported 
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by a reversed apparent motion paradigm (Yeshurun & Hein, 2011). In this paradigm (Experiment 

4 in Yeshurun & Hein, 2011), observers were briefly presented with two consecutive sine-wave 

gratings with a 90-deg phase shift, which produces the perception of motion in the direction of 

the phase shift with short ISIs between frames and in the opposite direction with longer ISIs 

(Takeuchi & DeValois, 1997). When the location of the target (i.e., one of six possible locations 

around the fixation) was exogenously cued (i.e., valid cue condition), the observers were less 

likely to report reversed apparent motion compared to when spatial attention was not allocated to 

any specific location (i.e., neutral cue condition). Transient attention reduced the perception of 

reversed motion in a similar way to increasing the spatial frequency of the gratings (thus biasing 

parvo-dominated processing), implying that the temporal response was more sustained in this 

condition, allowing reversed motion to be perceived only with longer ISIs. On the other hand, 

Liu, Fuller and Carrasco (2006) showed that transient attention could increase performance in a 

motion task. They presented two random dot kinematograms (RDKs), and the observers had to 

judge which pattern was more coherent and report the motion direction. They found that an 

exogenous cue that preceded one of the two RDK increased subjective appearance of motion 

coherence and improved motion direction discrimination. However, the processing of global 

motion occurs at a late stage of visual processing and requires the integration of different local 

motion cues into a global motion percept (Newsome, Britten, & Movshon, 1989; Newsome & 

Pare, 1988). Therefore, one could argue that transient attention may alter temporal processing 

only at the local motion level. 

In the present study, we investigated whether transient attention negatively affects motion 

perception from drifting Gabor patches. Building on the above-mentioned studies, we tested the 

hypothesis that exogenous attention prolongs the internal response to the stimuli presented in the 

cued location by reducing temporal sensitivity and thus impairing motion direction 

discrimination (Yeshurun & Hein, 2011). This is because the prolongation of the response to the 

cued stimulus could reduce the temporal segregation of visual events. Such modulation in the 

temporal domain is expected to mainly affect the processing of moving stimuli which have 

spatiotemporal characteristics that are appropriate and mainly engage the magnocellular system.  

There has been extensive research on the anatomical projections and functional 

specialization of M and P cells (Denison et al., 2014; Tootell, Hamilton, & Switkes, 1988; 

Zhang, Zhou, Wen, & He, 2015) and debates on whether they form pathways that carry out 
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distinct processing of different stimulus characteristics (Kaplan, 2012). Despite the views 

challenging parallel processing and arguing for shared magnocellular and parvocellular 

contribution in the processing of stimulus characteristics (Sincich & Horton, 2005), studies on 

temporal and spatial tuning properties, contrast gain of P and M cells (Alitto, Moore, Rathbun, & 

Usrey, 2011; Kaplan & Benardete, 2001; Movshon, Kiorpes, Hawken, & Cavanaugh, 2005) and 

lesion studies (Merigan, Katz, & Maunsell, 1991; Schiller, Logothetis, & Charles, 1990) suggest 

that specific combinations of stimulus parameters can be used to index the activity of M/P 

system, or at least bias the response of either. In other words, the processing of certain stimuli 

can be not exclusively, but predominantly carried out by one system. 

Therefore, we used drifting Gabor patches with a temporal frequency (i.e., 20 Hz; see 

Liu, Bryan, Miki, Woo, Liu, & Elliott, 2006) and a range of low spatial frequencies optimally 

engaging magnocellular processing (Derrington & Lennie, 1984). The rationale was that if 

transient attention prolongs the temporal response to stimuli presented in the cued location, thus 

favoring the parvocellular system over the magnocellular system, then we would expect 

decreased accuracy on a motion direction discrimination task when valid exogenous spatial cues 

are used. 

 

Methods 

Participants 

Twenty-two observers with normal or corrected-to-normal vision, who were naïve to the 

purpose of the study, took part in the experiment. Two participants were excluded from data 

analysis, since their average accuracy scores were below the pre-determined 75% accuracy 

threshold (Aydin, Ogmen, & Kafaligonul, 2021; Hung & Carrasco, 2021). Accordingly, the data 

of the remaining 20 participants (12 females and 8 males, with a mean age of 25.8 ± 3.9 years) 

were included in the further analysis. Prior to their participation, all observers were informed 

about experimental procedures and gave written informed consent. All experimental procedures 

were in accordance with the World Declaration of Helsinki (2013) and  approved by the local 

Ethics Committee at Bilkent University. 
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Apparatus 

Stimuli were generated using MATLAB with the Psychophysics Toolbox (Brainard, 

1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) and displayed on a NEC MultiSync LCD 

2190UXP 21-inch monitor with a refresh rate of 60 Hz and a spatial resolution of 1600 x 1200 

pixels. The screen luminance was measured and calibrated using a SpectroCAL (Cambridge 

Research Systems, Rochester, Kent, UK) photometer. The stimuli were presented on a gray 

background (30.7 cd/m2). Gaze coordinates were recorded using a monocular eye-tracker (Eye 

Trac 6, Applied Science Laboratories, Bedford, MA, USA) at a sampling rate of 50 Hz. 

Participants sat in a dark room at a viewing distance of 57 cm from the monitor. Viewing was 

binocular. Head movements were constrained by a chin and forehead rest. 

 

Stimuli 

Stimuli were drifting Gabor patches and consisted of a sinusoidal carrier enveloped by a 

stationary Gaussian window with σ = 0.68 deg (approximately 3.0 deg in diameter). Narrow 

Gabor patches were used to limit spatial summation. In fact, Tadin, Lappin, Gilroy, and Blake 

(2003), using a motion direction discrimination task, found that at high contrast (i.e., 92%), the 

direction discrimination of a drifting Gabor patch was impaired (i.e., higher duration thresholds) 

with increasing the stimulus size (up to 5 deg), suggesting an effect of centre-surround 

antagonism at the level of individual neurons (i.e., surround suppression; Glasser & Tadin, 2011; 

Tadin & Lappin, 2005). However, when using low contrast Gabors (2%), the authors found 

lower duration thresholds with increasing stimulus size, suggesting a shift from surround 

suppression to spatial summation for low contrast and wide Gabor patches (Tadin et al., 2003). 

We used five spatial frequencies (0.15, 0.25, 0.35, 0.45, and 0.55 c/deg). The target 

Gabor patch had a Michelson contrast of 0.22 (with a min luminance of 26.1 cd/m 2 and a max 

luminance of 40.8 cd/m2) and drifted at 20 Hz. The temporal frequency and contrast were 

selected to mainly tap the magnocellular system (Liu et al., 2006; Merigan, Byrne, & Maunsell, 

1991; Merigan & Maunsell, 1990). The target Gabor patch could appear in one of eight possible 

locations equidistant around the fixation point. The distance between the central fixation point 

and the center of the Gabor patch was 7.0 deg. A cue was presented before the presentation of 

the target Gabor patch which consisted of a circular frame (approximately 5.0 deg in diameter) 

and could be either informative of the location of the target Gabor patch (i.e., valid cue 
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condition) or uninformative (i.e., neutral cue condition) (Yeshurun & Hein, 2011). The circular 

cues appeared simultaneously at all the locations around the fixation point. The contrast polarity 

of the cues (i.e., white cue and black cue) was counterbalanced in two separate versions of the 

experiment to limit the contribution of polarity-specific paracontrast masking effect, which was 

shown to be minimal at the stimulus onset asynchrony (SOA) used in the current experiment 

(Kafaligonul, Breitmeyer, & Ogmen, 2009). In the white cue version of the experiment, neutral 

cues were all black whereas the valid cue was white. In the other version of the experiment 

neutral cues were white whereas the valid cue was black (see Figure 1). The two versions of the 

experiment were counterbalanced across participants. In the fixation training (see Figure S.1A in 

the Supplementary Material for details), a flickering random-dot pattern with half black and half 

white pixels was used (Guzman-Martinez, Leung, Franconeri, Grabowecky, & Suzuki, 2009) 

together with a fixation marker combining bull’s eye and cross hair that was shown to minimize 

eye movements (Thaler, Schütz, Goodale, & Gegenfurtner, 2013). 

  

 

Figure 1. Schematic representation of the stimuli and procedure used in the experiment. The 

valid cue is represented by the single white/black circular frame with an opposite contrast 
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polarity. In the neutral cue condition, all the circular frames were either black or white and were 

non-informative of the forthcoming target’s location. Observers had to discriminate the direction 

of the target Gabor patch. The red arrow indicates leftward motion direction and was not 

displayed during the experiment. The contrast of the Gabor patch was increased for illustrative 

purposes. 

 

Procedure 

At the beginning of each session, participants completed a brief training to maintain 

central fixation. The procedure of the fixation training is summarized in the Supplementary 

Material (Figure S.1B). The participants also performed an initial experimental training on 

motion direction discrimination and performed as many blocks as needed to get an accuracy ≥ 

0.75 (Aydin, Ogmen, & Kafaligonul, 2021; Hung & Carrasco, 2021). On average, they 

completed 1.15 ± 0.37 training blocks, with the same length and procedure as the main 

experimental blocks. There were eight blocks of equal length in the main experiment. The eye-

tracker was recalibrated using a nine-point standard procedure before each block. 

In the main experiment, each trial started with a fixation point with a duration of 1.0 s 

and a pure tone with a duration of 0.05 s (frequency: 500 Hz). The fixation point was followed 

by a display including the circular cues for 0.05 s. After a 0.05 s blank screen (i.e., SOA of 0.1 

s), the drifting Gabor patch appeared at one of the eight locations for 0.05 s. These short 

durations triggered a transient response and prevented eye movements towards the Gabor patch 

(Carpenter, 1988; Hein et al., 2006; Wright & Ward, 2008). On half of the trials the cue was 

valid and indicated the location of the forthcoming drifting Gabor patch. On the other half of the 

trials, the cue was neutral and uninformative of the Gabor patch location (see Figure 1). The 

motion direction of the Gabor patch (i.e., rightward, or leftward) was randomized across trials. 

Observers had to discriminate the motion direction of the Gabor patch (Method of Single 

Stimuli; Morgan, Dillenburger, Raphael, & Solomon, 2012), by pressing the ‘A’ key if it was 

perceived to drift leftwards or the ‘L’ key if it was perceived to drift rightwards. Observers were 

instructed to respond as accurately and quickly as possible. They had 2 s to respond. Feedback 

was provided on a trial basis after each response during the inter-trial interval, by displaying at 

the center of the screen the response time (in milliseconds) in green for correct responses and in 

red for incorrect responses. The trials, in which the observer did not respond within the specified 
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time window, were recorded as unanswered. In addition, instead of the response time, a warning 

(i.e., "Please, respond faster") was displayed at the center of the screen during the feedback 

period. Accuracy and reaction times were measured. Gaze coordinates were recorded 

simultaneously with the behavioral responses.  

There were 2 (valid vs. neutral cue) x 5 (spatial frequencies) conditions. Observers 

performed 192 trials per spatial frequency for a total of 960 trials (i.e., 120 trials per block), 

which were presented in a random order. For each spatial frequency, there were 96 presentations 

of the valid cue and 96 presentations of the neutral cue. Gabor patches with each spatial 

frequency were displayed 24 times at each of the eight spatial locations. 

 

Analysis of Eye Movements, Accuracy Scores, and Reaction Times 

To ensure that the stimuli were processed at the periphery and covert attention was 

effectively manipulated, eye movements during the experiment were analyzed in ASL Results 

software (Applied Science Laboratories, Bedford, MA, USA). First, the stimulus presentation 

period (i.e., the first 1.15 s) in each trial was extracted by discarding the response period. Second, 

the fixations during this period were detected in each trial. If the gaze was stable for a minimum 

of 0.1 s within a maximum of 1.0 deg, then it was regarded as the start of a fixation. If three 

consecutive samples of gaze coordinates deviated from this initial position or pupil data was lost 

for longer than 0.2 s (typical length of a blink), then it was regarded as the end of the fixation. 

Following the detection of fixations, the fixation coordinates in each trial were compared to a 2 x 

2 deg central square window around the fixation point. Finally, trials in which fixations were not 

detected and trials with fixation coordinates outside this window (a total of 15.1 ± 9.0%) were 

excluded from further analyses. After the exclusion of trials with no fixations and trials with 

excessive eye movements (i.e., trials in which participants failed to fixate at the central window), 

it was checked whether a similar number of trials were analyzed in each condition. A repeated 

measures ANOVA with the mean number of removed trials as dependent variable showed that 

the number of removed trials did not significantly differ between conditions (M removed = 14.5 ± 

0.5 trials per condition, Cue type: F1, 19 = 0.154, p = .70, η2
p = .01; Spatial frequency: F4, 76 = 

0.600, p = .66, η2
p = .03; Cue type x Spatial frequency interaction: F4, 76 = 0.147, p = .96, η2

p = 

.01). In addition, the two subgroups of participants, who performed different versions of the 

experiment (i.e., white cue and black cue), were compared using a Mann-Whitney U test due to a 
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violation of the normality of residuals for accuracy scores. Their accuracy scores were 

comparable (U = 41.0, p = .52).  

Following trial exclusion based on eye movements, accuracy was calculated as the 

proportion of correct responses in each condition. Median and mean reaction times were 

calculated in each condition for correct responses only. Reaction times data for correct responses 

only were checked for outliers using the method of the median absolute deviation (MAD) for 

asymmetric distributions using a cutoff of three (Leys, Ley, Klein, Bernard, & Licata, 2013; 

Rousseeuw & Croux, 1993). On average we found 6.32% (SD = 1.55%) of outlier RTs. Outlier 

RTs were included in the raw RT analysis and analysis of RT distribution. Additionally, there 

were six participants who missed only a few trials. Missed trials were 0.04% of the total trials 

(SD = 0.06%) and were excluded from subsequent analyses. 

According to Shapiro-Wilk tests, residuals of accuracy scores and reaction times (RTs) 

were not normally distributed (W = 0.903, p < .001 and W = 0.944, p < .001, for accuracy scores 

and reaction times, respectively). Since the common nonparametric tests such as Friedman are 

inadequate to evaluate interactions, we used the Aligned Rank Transform (ART), a procedure for 

the nonparametric analysis of variance in multifactor designs (Higgins, Blair, & Tashtoush, 

1990; Higgins & Tashtoush, 1994; Salter & Fawcett, 1993; Wobbrock, Findlater, Gergle, & 

Higgins, 2011). We applied the alignment and rank transformation to the mean proportion of 

correct responses and the mean reaction times. With this technique, parametric tests (typically 

ANOVA) can be implemented once the data is aligned and ranked for each main and interaction 

effect. The pairwise comparisons for the significant main and interaction effects were conducted 

using the ART-C procedure, which was developed for reliable contrast tests (Elkin, Kay, 

Higgins, & Wobbrock, 2021). 

 

Analysis of response time distributions 

In addition to the analysis of mean RT and response accuracy mentioned above, we 

further investigated the observed data based on the level of RT distributions. With this approach, 

we sought to gain a more detailed insight into how both response accuracy and response speed 

were affected by the different cues. First, we present a description of the data, followed by a 

model-based assessment. The aim of the descriptive approach is to illustrate the patterns 

observed in the data which the model needs to explain. Statistical testing was then performed in 
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the model-based assessment. For the model-based approach, we fitted a computational RT model 

to the data, which can simultaneously account for response speed and response accuracy. For the 

distributional analyses, we pooled responses across the different spatial frequencies to get less 

noisy estimates, whereas the model was fitted to all conditions separately, as is common in RT 

modeling.  

A common approach to compare RT distributions is the quantile-quantile (Q-Q) plot. In 

this representation, quantiles of one distribution are plotted against those of another distribution. 

If the two distributions are similar, the Q-Q plot shows a straight line along the main diagonal. If 

one distribution dominates the other, the line will lie below or above the main diagonal. For the 

Q-Q plot, we estimated 20 quantiles (2.5%, 7.5%, …, 97.5%) of the valid and neutral cue RT 

distribution. The quantiles were obtained from the nonparametric Kaplan-Meier estimate 

(Kaplan & Meier, 1958), treating incorrect responses as censored observations in this analysis. 

That is, in trial with incorrect responses, the correct response was not observed but assumed to 

have occurred any time after the incorrect response. Further, we investigated response accuracy 

over different response latencies with a conditional accuracy function (CAF). The CAF plots 

response accuracy as a function of response latency, indicating the presence (or absence) of fast 

and/or slow errors. To estimate the CAF, we created five RT bins (0–20%, …, 80–100%) from 

the RT distribution of valid and neutral cues, and estimated response accuracy separately for 

each bin. Confidence intervals for accuracy were estimated by a bootstrap procedure using a 

mixed-effects design (cue type as fixed effect, participants as random effect). 

 

Response time model analysis 

To further investigate cueing effects on RT distributions and to analyze response times 

and response accuracy in a single analysis, we fitted the Poisson random walk model (Blurton, 

Kyllingsbæk, Nielsen, & Bundesen, 2020) to the observed data. The Poisson random walk model 

is an RT model for speeded responses in an n-alternative forced-choice task. It is an extension of 

the Theory of Visual Attention (TVA, Bundesen, 1990) to model perceptual decisions in tasks 

with mutually confusable stimuli. It is assumed that, upon stimulus presentation, tentative 

categorizations of the form “stimulus x belongs to category i” are made continuously over time 

(Figure 2A), until one perceptual category has accumulated a critical number of tentative 

categorizations more than all other categories (sequential sampling). With sequential sampling 
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models for RT, the entire observed dataset can be analyzed in a single analysis because the 

model predicts the whole RT distribution of correct and incorrect responses (including response 

accuracy). 

In the special case of two perceptual categories as in the present study, the Poisson 

random walk model is very similar to the diffusion decision model (DDM, Ratcliff & McKoon, 

2008). Like the DDM, the Poisson random walk model is based on a noisy stochastic process 

between absorbing barriers, representing response criteria for each of the two alternatives 

(Figure 2B). In the current application of the model, the two perceptual categories may be 

represented with L (Gabor patch appears moving leftward) and R (Gabor patch appears moving 

rightward). Each perceptual category is associated with a response criterion (kL and kR). These 

criteria can be set farther apart, resulting in slower but more accurate decisions or closer, 

resulting in faster but less accurate decisions (speed-accuracy trade-off). 

The benefit of applying computational RT models is that they allow estimation of 

cognitively meaningful parameters. As already mentioned, the Poisson random walk contains a 

response criterion (k) that determines how many categorizations are needed to conclusively 

select a perceptual category. Further, categorizations for each category i are made with a rate v i, 

representing the processing speed for that category. The higher the processing rate, the faster 

tentative categorizations are collected. In a task with two categories and mutually confusable 

stimuli, there are two possible categorizations with different rates, one categorization is correct, 

the other incorrect. Clearly, the rate for the correct categorization (vc) will usually be greater than 

that for the incorrect categorization (ve). It is useful to define p = vc/(vc + ve) as the probability 

that a given categorization is for the correct perceptual category. This probability mainly depends 

on stimulus confusability: with higher confusability, p will be closer to 0.5, whereas with highly 

discriminable stimuli p will be close to unity. This parameter therefore represents the quality of 

information sampled from a stimulus. Due to the normalization, we call this parameter 

normalized processing rate. It is further useful to define C = vc + ve, that is, the sum of processing 

rates, which can also be conceived as visual processing capacity (Bundesen, 1990; Townsend & 

Ashby, 1983). C defines the processing limit (parallel processing with fixed capacity; Shibuya & 

Bundesen, 1988) and therefore reflects the efficiency with which a stimulus is processed. Finally, 

there is a non-decision time (T0), representing the latency of all processes that are otherwise not 

described by the model, such as motor execution or response selection. 
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Figure 2. Overview of the Poisson random walk model for two perceptual categories L and R. 

(A, B) Random realization of a single trial with a leftward moving grating. Evidence for either 

category is accumulated over time. A category is conclusively selected and reported as soon as 

it has accumulated k more categorizations than the other (here: k = 3). The categorization that 

leads to reaching the criterion L is marked with a circle in (A). (C) Theoretical probability 

distribution for reaching either criterion after exactly n steps in the random walk. Reaching the 

criterion for L is more likely overall, however, there is a probability that the criterion for R is 

reached first, leading to an incorrect response. (D) Theoretical cumulative distribution 

functions for reaching criterion L or R at or before time t. This is the model prediction for RT, 

it is based on the probability distribution shown in (C) and the distribution of waiting time 

until n categorizations have been made (not shown). 

 

In an extension to the model outlined so far, there are three additional sources of RT 

variability. The first source of additional variability comes from the assumption of trial-by-trial 
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variation in the processing rates. Instead of assuming the same processing rates throughout the 

experiment, the processing rates are assumed to vary across trials. The amount of variation is 

denoted by parameter ξ. The trial-by-trial parameter ξ is best interpreted as a scaling factor 1/ξ, 

indicating how large the processing rate variance is compared to the mean processing rate (small 

values represent large variance compared to the mean). The second source of additional 

variability is a variable starting point Z0. With a variable starting point, the decision process does 

not start at the neutral position at stimulus onset but may be biased towards either criterion across 

trials. The amount of variation is denoted by the variance of Z0, that is, σz²= Var(Z0). As in the 

DDM, this variability reflects effects of premature sampling (Ratcliff & Rouder, 1996), that is, 

sampling (noise) before stimulus onset (Laming, 1968). With this assumption it is possible to 

explain fast errors, that is, errors that are faster than predicted by the base model described 

above. Conversely, the assumption of trial-by-trial variation in processing rates allows the model 

to predict slow errors, that is, errors that are slower than predicted by the base model.  

The third source of additional variation in the model is the assumption of temporally 

inhomogeneous processing. Under this assumption, processing rates vi are no longer constant 

over time (Figure 3A). Instead, the processing rates vi(t) vary over time; they are zero at stimulus 

onset and upon stimulus presentation, gradually increase up to a maximum. This response 

function is modeled as a scaled gamma distribution function with variable rate µ and fixed shape 

n. The effect of µ is that high values lead to a faster increase to the asymptotic level, whereas 

lower values lead to a slower increase. Apart from being physiologically more plausible than a 

constant processing rate (Christensen, Markussen, Bundesen, & Kyllingsbæk, 2018), this 

functional form has been suggested by Smith and Van Zandt (2000) to reflect the time course of 

early visual processing. Early visual processing can be conceived as filters, some of which 

exhibit a sustained response to a stimulus; their output shall be approximated by this response 

function (Smith & Van Zandt, 2000). This functional form provides additional flexibility in the 

leading edge of the predicted RT distribution but has otherwise negligible effects. This is 

because the speed of perceptual decisions depends on the integrated processing rates rather than 

the processing rates vi(t). Since the time-varying rate will asymptote to the constant rate vi sooner 

or later, only the fastest responses will be affected by the assumption of temporal inhomogeneity 

(Figure 3B).  
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Figure 3. Inhomogeneous processing in the Poisson random walk. (A) Time dependent 

processing rates, represented by overall processing capacity C. In the temporally homogeneous 

case, tentative categorizations are made with constant speed (here: C = 60 Hz). In the 

inhomogeneous case, rates increase continuously until reaching an asymptote (here: 

C(∞) = 60 Hz). (B) Integrated processing capacity of the two cases shown in (A). In a Poisson 

process, the number of expected events depends on the integrated event rate, rather than the 

event rate itself. This assumption on inhomogeneous processing affects the leading edge of 

predicted RT distributions only, as its effect becomes negligible with increasing time. 

 

In the DDM, variability in the leading edge of RT distributions is achieved by 

introducing trial-by-trial variation in non-decision time (Ratcliff & Tuerlinckx, 2002) while 

leaving the drift rates constant within a trial. A notable exception is the time-dependent diffusion 

model proposed by Smith and Ratcliff (2009, see also Smith, Ratcliff, & Wolfgang, 2004). This 

extended version of the original DDM is relevant in this context, as it has been suggested as a RT 

model for spatial cueing effects. The extended DDM captures those cueing effects with different 

time courses of drift rates. Decisions based on stimuli presented at an attended location are based 
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on a drift rate that more quickly reaches its asymptote than those based on stimuli presented at an 

unattended location (Smith & Ratcliff, 2009). To model the data in this study, we largely 

followed Smith and Ratcliff’s (2009) work in specifying the model and selecting model 

parameters for testing. Nonetheless, there are differences in our approach, as the extended 

diffusion model is a multi-stage processing model that includes encoding in visual short-term 

memory as an explicit processing stage. However, the Poisson random walk model enabled us to 

take up the most relevant aspects of the diffusion model using a computationally simpler model. 

We exploited this advantage to perform nested model tests of model fits based on individual 

datasets instead of group averaged data. Also, the Poisson random walk model includes visual 

processing capacity C, a parameter that has no direct counterpart in the DDM but has been 

central in modelling visual attention effects within the TVA (Bundesen, 1990; Bundesen, 

Vangkilde, & Petersen, 2014; Shibuya & Bundesen, 1988). 

Altogether, the null model, that is, the model without parameters for cueing effects had 

eleven free parameters (p.15, p.25, p.35, p.45, p.55, C, k, T0, ξ, σz², µ) that were estimated from data. 

Five of these are normalized processing rates px for the five different spatial frequencies, which, 

together with processing capacity C, yield the (mean) processing rates for correct and incorrect 

categorizations. The remaining parameters were the response criterion k, the latency of all non-

decision processes T0, and three parameters (ξ, σz², and µ) for the three additional sources of RT 

variation. For more details on the model and model specification, we refer the interested reader 

to the Appendix. 

Regarding cueing effects on the different model parameters, we were particularly 

interested in two different models. The first model under consideration is similar to the time-

dependent diffusion model (Smith & Ratcliff, 2009): we allowed for different time courses of 

processing (µvalid, µneutral) expecting that valid cues will lead to a faster response in early visual 

processing. Additionally, visual processing capacity is different between cueing conditions 

(Cvalid, Cneutral) in this model. The latter prediction can be derived from the TVA by noting that 

spatial cues will alter attention weights assigned to the different locations. The attention weights 

determine processing rates and thus processing capacity in a multiplicative fashion (Bundesen, 

1990), so that higher weights would lead to higher processing speed. On the other hand, if 

transient attention increases the temporal integration time window (Hein et al., 2006; Yeshurun, 

2004; Yeshurun & Hein, 2011; Yeshurun & Marom, 2008; Yeshurun & Sabo, 2012), this should 
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degrade the information that is sampled from the moving stimuli. In this case, we would expect a 

lower processing capacity if attention was directed at the location of the motion stimulus. 

The second model that we fitted to the data was a model with different response criteria 

(kvalid, kneutral) to test if cueing effects could be explained by a mere speed-accuracy trade-off 

rather than attentional effects due to the cue (e.g., Hein et al., 2006). In addition, we tested 

whether the starting point distributions (σ²z,valid, σ²z,neutral) differed between the cueing conditions. 

As stated above, this parameter reflects premature sampling (Laming, 1968; Rouder, 1996), that 

is, sampling noise before the onset of the imperative stimulus. Judging from the form of the 

estimated conditional accuracy functions (Figure 5B), we suspected starting point variation to be 

different for valid and neutral cueing conditions.  

The remaining parameters were held fixed across cueing conditions in all models we 

investigated. The decision to fix non-decision time (T0) and trial-by-trial variation of processing 

rates (ξ) was based on the results reported by Smith, Ratcliff, and Wolfgang (2004). Similarly, 

we restricted the normalized processing rates px to be the same across cueing conditions. This 

assumption is also based on the TVA—while attention weights alter the overall processing 

capacity, they should not differentially affect the relative strength of processing rates. The 

relative strengths of processing rates are rather determined by categorical bias (in addition to 

stimulus confusability). According to the TVA, categorical bias works independent from 

attentional weights and thus should not be affected by spatial cueing. After identifying the best 

fitting model, we tested post hoc the veracity of our assumptions. 

Estimation of model parameters was performed by maximizing the likelihood function of 

the model. For the maximum likelihood estimation of model parameters, we removed all 

responses faster than 200 ms to avoid distortion of model parameters. This cut off criterion was 

applied to all datasets and led to the removal of four responses in one participant. To determine 

which model is most suitable given the data, we followed a two-fold approach. First, we fitted a 

model that included all parameters of interest to individual datasets and used t-tests to determine 

which parameters (if any) were significantly different between cueing conditions. In a second 

approach, we further tested the parameter of interest in a model comparison approach. Starting 

with the most restricted model with all parameters being equal between cueing conditions, we 

added parameters to the model and assessed the increased goodness-of-fit by means of the Bayes 

Information Criterion (BIC). The BIC introduces a sample-size dependent penalty for additional 
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parameters, so that models with lower BIC are preferred. Rather than performing a forward 

procedure, we repeatedly checked whether parameters that were excluded in previous steps 

would lead to a lower BIC in later steps. This complementary model evaluation can provide 

further insight because averaging parameter estimates across participants can mask effects that 

are indeed present (Donkin, Brown, & Heathcote, 2011). 

 

Results 

Analysis of Accuracy Scores 

Figure 4A shows the median and mean proportion of correct responses as a function of 

the target’s spatial frequency. An aligned rank transform ANOVA including Cue type (neutral 

vs. valid) and Spatial frequency (0.15, 0.25, 0.35, 0.45, and 0.55 c/deg) as within-subjects factors 

revealed a significant effect of the Cue type (F1, 171 = 30.72, p < .001, η2
p = .15), a significant 

effect of the Spatial frequency (F4, 171 = 4.91, p < .001, η2
p = .10), and a significant interaction 

between Cue type and Spatial frequency (F4, 171 = 2.73, p = .031, η2
p = .06). 

For the main effect of spatial frequency, post-hoc comparisons corrected with Holm’s 

method (α = 0.05) (Holm, 1979) yielded a significant difference between the spatial frequency at 

0.15 c/deg and 0.55 c/deg (padj = .04), but not between 0.15 c/deg and 0.25 c/deg (padj = .66), 

0.35 c/deg (padj = 1.0), and 0.45 c/deg (padj = .95). For the spatial frequency at 0.25 c/deg, Holm 

corrected post-hoc comparisons revealed a significant difference with respect to 0.55 c/deg (padj 

< .001), but not with respect to 0.35 c/deg (padj = .36) and 0.45 c/deg (padj = .13). For the spatial 

frequency at 0.35 c/deg, Holm corrected post-hoc comparisons did not reveal a significant 

difference with respect to 0.45 c/deg (padj = 1.0) and 0.55 c/deg (padj = .13). Additionally, 0.45 

c/deg did not significantly differ from 0.55 c/deg (padj = .36). 

For the interaction between Cue type and Spatial frequency, Holm corrected post-hoc 

comparisons revealed a significant difference between valid and neutral cue conditions only for 

the spatial frequency of 0.35 c/deg, in which the valid cue reduced the accuracy in motion 

direction discrimination (padj < .001). The difference between valid and neutral cues was not 

significant for the spatial frequencies of either 0.15 c/deg (padj = .99), 0.25 c/deg (padj = .99), 0.45 

c/deg (padj = .99) and 0.55 c/deg (padj = .25). 
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Analysis of Reaction Times 

Figure 4B shows the median and mean reaction times (RTs, in seconds) for correct 

responses only, calculated for each cue condition as a function of the spatial frequency. An 

aligned rank transform ANOVA was performed on the mean RTs including as within-subjects 

factors the Cue type and Spatial frequency revealed a significant effect of the Cue type (F1, 171 = 

148.07, p < .0001, η2
p = .46), but no significant effect of the Spatial frequency (F4, 171 = 2.39, p = 

.053, η2
p = .05) and interaction between Cue type and Spatial frequency (F4, 171 = 1.45, p = .22, 

η2
p = .03). In general, median and mean RTs in the valid cue conditions were significantly lower 

than in the neutral cue condition. For spatial frequency, Holm corrected pairwise comparisons 

did not reveal any significant difference between spatial frequencies (all padj > .05). 

 

Figure 4. Boxplots of the proportion of correct responses (A), and reaction times (in seconds) 

based on correct trials (B) for the valid and neutral cue conditions as a function of the target’s 

spatial frequency (c/deg). For each boxplot, the horizontal black line indicates the median, the 

boxes in the boxplots extend from the lower quartile to the upper quartile (i.e., the 25th and 75th 

percentiles). The difference between the upper quartile and the lower quartile is called 

interquartile range. The vertical lines extend to one and a half times the interquartile range, and 

they are limited to reaching actual data points. The dot within each boxplot represents the mean 
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accuracy (A) and mean reaction time (B) values. The asterisk in panel (A) indicates the 

significant difference (p < .05) between neutral and valid cue conditions for the spatial 

frequencies at 0.35 c/deg. 

 

Descriptive analysis of RT distribution and conditional accuracy 

In line with the results in the previous section, we found faster response times to validly 

cued targets across a wide range of the entire distribution (Figure 5). This difference was not 

constant, though, it was larger for the lowest quantiles and decreased with increasing the RT. 

That is, responses in the valid cue condition were initially faster than those in the neutral cue 

condition, but response speed to targets in the neutral cue condition caught up with increasing 

time so that late responses were about equally fast. 

The analysis of response accuracy across the RT distribution showed that these fast 

responses in the valid cue condition were less accurate than the fastest responses to neutrally 

cued targets. With increasing response times, the observed accuracy was approximately the same 

between the two cueing conditions. That is, while the valid cues lead to faster responses, these 

fast responses were less accurate than those in the neutral cue condition. This analysis 

supplements the analysis of mean RT and accuracy, in that it describes more precisely, where the 

observed cueing effects are located. The response time model needs to account for these effects; 

and in testing for cueing effects its various parameters, we can describe those in terms of 

cognitive parameters. 
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Figure 5. Analysis of RT distributions. (A) Quantile-Quantile (Q-Q) plot of empirical RT 

distributions in the two cueing conditions. Early responses are faster in the valid cue condition, 

but this difference diminishes as RTs increase, so slow responses are comparable in valid and 

neutral cue trials. (B) Conditional accuracy functions (CAFs) for valid and neutral cue 

conditions. Error bars denote 95% confidence intervals.  

 

Fit of the Poisson random walk model 

As described above, we fitted the Poisson random walk model to the observed RT 

distributions. The goal of this analysis was twofold: (i) to investigate the possibility that a speed-

accuracy trade-off caused the patterns of RT and accuracy (Figure 4), (ii) to analyze the full RT 

distributions rather than mean RT only, as the full distribution can contain relevant information 

that is not captured by mean RT (cf. Figure 5). 

We first fitted the Poisson random walk model to the individual data obtained in the valid 

cue condition and in the neutral cue condition. This model was specified so that separate 
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parameters were included for all parameters that we expected might contain cueing effects (i.e., 

µ, C, k, σz²). The choice of which parameters to test was based on a priori considerations. In 

particular, we wanted to include all relevant parameters while excluding the least interesting to 

reduce the computational burden in the second analysis. The estimated parameters of this model 

are summarized in Table 1. The processing rates (px) for the correct categorization were similar 

across the spatial frequencies used in the experiment. The response criteria (k) were also rather 

similar for the two cueing conditions, but the criterion for validly cued targets was significantly 

higher than that for neutrally cued targets (t = −2.343, df = 19, p = .030). That is, in both cueing 

conditions our participants performed on average about three categorizations more for the correct 

than the incorrect perceptual category. Processing capacity (C) was significantly higher in 

neutrally cued targets than validly cued targets (t = 2.328, df = 19, p = .031), whereas the speed 

of early perceptual processing (µ) was significantly higher in validly cued targets than neutrally 

cued targets (t = −4.526, df = 19, p < .001). Valid cues lead to significantly higher starting point 

variation than neutral cues (t = −4.491, df = 19, p < .001). Trial-by-trial variation (ξ) in 

processing rates was low in both cueing conditions. This is also reflected in the data, in which we 

observed only few slow errors (error RT quantiles greater than correct RT quantiles). This is 

evident in Figure 7, where a wide range of quantiles of incorrect RT distributions are lower than 

corresponding quantiles of correct RT distributions, especially in validly cued trials. Individual 

parameter estimates of the model are available as supplemental material (Table S.1). 

 

Table 1. Group average (± SD) parameter estimates of the Poisson random walk model. 

 Cue type 

Parameter Valid cues Neutral cues 

p0.15 0.792 (± 0.059) 

p0.25 0.816 (± 0.061) 

p0.35 0.816 (± 0.069) 

p0.45 0.806 (± 0.062) 
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p0.55 0.784 (± 0.056) 

ξ [E(vx)/Var(vx)] 20.6 (± 40.7) 

k [categorizations] 3.16 (± 0.64) 2.98 (± 0.61) 

C [in Hz] 85.9 (± 22.6) 101.3 (± 30.0) 

µ 37.6 (± 15.2) 28.6 (± 11.2) 

σz² 2.20 (± 1.27) 0.83 (± 1.16) 

T0 [in s] 0.251 (± 0.032) 

Note—Parameters: px denote (mean) normalized processing rates for the correct 

categorizations across the different spatial frequencies (x = 0.15, 0.25, 0.35, 0.45, and 0.55 

c/deg), ξ represents trial-by-trial variation in processing rates, k is criterion separation, C is the 

visual processing capacity, µ determines the time course of processing after stimulus 

presentation (time inhomogeneous processing, higher means faster onset), σ z² is the variance of 

the starting point, and T0 is the latency of all non-decision processes. Standard deviation (SD) 

is calculated across participants. 

 

As suggested by the conditional accuracy function (Figure 5B), starting point variation 

was higher after valid cues than neutral cues. Allowing for this difference, however, was not 

sufficient for the model to predict the difference in fast responses between valid and neutral cue 

conditions (Figure 5A). In addition to starting point variation, early visual processing was also 

faster in the valid cue condition. Although there was a significant criterion shift, the shift was in 

a direction opposite to that suggested by the analysis of mean RT and accuracy (Figure 4). Thus, 

the result speaks against a speed-accuracy trade-off as a simple explanation for the observed 

patterns; the parameter analysis based on model comparisons (see below) suggested that this 

difference is likely a statistical artefact caused by including a cueing effect in a parameter that is 

not affected by cueing validity. 
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Taken together, the results of the first model-based analysis suggest that the presentation 

of a valid cue led to significantly faster increase in processing rates but to a significantly lower 

efficiency in overall processing, that is, more efficient processing of the moving Gabor stimulus 

after neutral cues. Thus, processing after stimulus onset was initially faster, however, over time, 

neutrally cued targets were processed more efficiently, leading to late responses being about 

equally fast in neutrally cued targets and validly cued targets (Figures 5A and 6).  

 

Figure 6. Estimated time-course of visual processing capacity (C) in the Poisson random walk 

model. Valid cues led to faster processing initially, which provides an early advantage. Later, 

neutral cues take over as they are processed more efficiently. The functional form is given by 

Eq. A3 in the Appendix, the relevant parameter estimates are taken from Table 1.  

 

In the second approach, we fitted different models to the individual datasets and 

compared their goodness-of-fit by means of their Bayes information criterion (BIC), summed 

across all participants. Unlike the first analysis, we directly tested cueing effects on single 

parameters with this stepwise approach. Starting with the most restricted model in which all 

parameters were equal across cueing conditions, we added parameters to the model and 

compared their BIC to test if the added parameters substantially improve the model predictions 



26 

and should be kept in the model. Rather than a simple forward selection, we checked whether 

previously rejected parameters improved the fit in later iterations. 

Both the model with different processing capacity (ΔBIC = −148.9) and the model with 

different response criteria (ΔBIC = −592.7) produced better fits than the null model. Allowing 

for a different time course of processing validly and neutrally cued targets in addition to 

processing capacity further improved the model fit of the processing capacity model (ΔBIC = 

−465.1). Similarly, different starting point variation improved both the criterion shift model 

(ΔBIC = −70.6) as well as the processing capacity and time course model (ΔBIC = −157.2). 

Eventually, the model with cueing effects in processing capacity (C), time course of processing 

(µ), and starting point variation (σz²) was the best fitting model, despite having one parameter 

more than the criterion shift model with different starting point variation (ΔBIC = 108.0). The 

BIC values of all these model comparisons are summarized in Table 2. The fit of the winning 

model, averaged across all participants, is shown in Figure 7. 

 

Table 2. Results of model comparisons.  

Restricted parameters Cueing parameters 
Number of 

parameters 
Σ BIC 

C, k, T0, µ, ξ, σz², p0.15, …, p0.55 None 11 –34.832 

C, T0, µ, ξ, σz², p0.15, …, p0.55 k 12 –35.425 

k, T0, µ, ξ, σz², p0.15, …, p0.55 C 12 –34.980 

C, k, T0, ξ, σz², p0.15, …, p0.55 µ 12 –35.350 

k, T0, ξ, σz², p0.15, …, p0.55 C, µ 13 –35.446 

C, T0, µ, ξ, p0.15, …, p0.55 k, σz² 13 –35.495 

k, T0, ξ, p0.15, …, p0.55 C, µ, σz² 14 –35.603 

Note—BIC: Bayes Information Criterion. Lower values indicate better models. 

 

Post-hoc we tested the correctness of our a-priori assumptions. In comparison with the 

winning model described above, the addition of a cueing effect on non-decision time (T0) did not 

improve the fit (BIC = −35,571; ΔBIC = 32.7), nor did the addition of a cueing effect on the 

normalized processing rates (BIC = −35,534; ΔBIC = 68.6) or on the trial-by-trial variation of 

processing rates (ξ; BIC = −35,507; ΔBIC = 95.9). 
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Both the fits to individual data and the model comparison approach support the 

interpretation that cueing effects were not due to criterion shifts but rather reflect changes in the 

starting point, the time course of processing and the efficiency associated with processing the 

motion stimuli. This is also in line with earlier results that were not based on RT models but on 

median split of RT data (see Hein et al., 2006). The best fitting model had a total of 14 free 

parameters to explain 20 RT distributions (ten correct and ten incorrect RT distributions). Hence, 

the model is reasonably restricted, although the number of free parameters certainly contributed 

to the high consistency between the predictions of the model and the observed data (Figure 7).  

 

Figure 7. Empirical RT distributions and accuracy compared with the fit of the Poisson 

random walk model. Upper panels: Quantile plots of RT data (10%: downward pointing 

triangle, 30%: circles, 50% (median): crosses, 70%: diamonds, 90%: upward pointing 

triangles) and model predictions (unmarked points connected with lines). In each panel, the 

five leftmost distributions are incorrect RT distributions, the five rightmost distributions are 

correct RT distributions. Lower panel: observed frequency and predicted probability of correct 
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responses. Model predictions are obtained from the winning model of the model comparison. 

Both data and model predictions are averaged across participants. 

 

Discussion 

In the current study, we investigated the effects of transient spatial attention on motion 

processing. A target Gabor patch could appear in one of eight possible locations around the 

fixation point. A cue was presented shortly before the target Gabor patch and could be 

informative about the target’s location (i.e., valid cue) or uninformative (i.e., neutral cue). 

Participants were asked to perform a motion direction discrimination task on the Gabor patch. 

Although the accuracy scores were close to ceiling across the spatial frequencies used, the results 

showed a robust main effect of the cue type, with neutral cues producing higher accuracy than 

the valid cues. The cue type and spatial frequency interaction was also significant, and we found 

a small (4.28%) but significant decrease in accuracy when the target Gabor patch had a spatial 

frequency of 0.35 c/deg only in the valid cue condition. This accuracy drop is in line with the 

previous findings indicating that exogenous cueing impairs temporal segregation processing and 

supports Yeshurun’s (2004) hypothesis that transient attention facilitates parvocellular but 

inhibits the magnocellular activity. In a series of experiments, Yeshurun and Levy (2003) 

investigated the effects of transient attention on temporal and spatial resolution, and the 

underlying mechanisms. Their results showed that exogenous spatial cues impair temporal 

resolution while enhancing spatial resolution. This contrasting influence of transient attention on 

temporal and spatial processing was not dependent on the decrease in spatial summation, which 

is a consequence of the reduction of the receptive field size at the attended location. Instead, an 

additional outcome of the prioritized parvocellular processing over magnocellular processing, 

namely the longer response durations of spatiotemporal units, might be responsible for the 

decrease in temporal resolution by boosting temporal integration and hindering temporal 

segregation. 

The neural correlates of spatial-attention-related enhancement in temporal integration 

were investigated in an ERP study by Akyurek and van Asselt (2015). The authors found that 

exogenous cues enhance color fusion (i.e., perception of two colors as a single color when they 

were displayed briefly and rapidly), and attentional modulation of temporal processing occurs at 

early stages of visual processing. Along with the absence of cueing effects in later stages, these 
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results suggest that the increased temporal integration may have an adaptive role in decreasing 

competition between successive stimuli. However, this would impair motion perception which 

depends on temporal segregation. Baruch and Yeshurun (2014) used the attentional attraction 

field model, which shifts receptive fields of neurons to the attended location in a hierarchical 

manner. To assess the temporal modulations induced by spatial attention, they simulated the 

neuronal activation in response to two events separated by a brief interval. When attention was 

directed to the location of these events, the likelihood for the events to merge increased, which in 

turn decreased the ability to segregate the events in the temporal domain. The present results are 

compatible with this account; transient cues may have increased the likelihood that luminance 

changes in successive frames are integrated in a single event, thus decreasing the accuracy on the 

motion direction discrimination task. 

However, of these differences, only that in accuracy between valid and neutral cues in the 

0.35 c/deg condition reached statistical significance. One could argue that the low accuracy in 

the valid cue condition at 0.35 c/deg depends on the transient cue-induced speed-accuracy trade-

off. This hypothesis seems unlikely as for reaction times the interaction between spatial 

frequency and cue type did not reach significance and the results of the RT model also provide 

converging evidence against this possibility. It is conceivable that valid cues reduced response 

accuracy across a wider range of low spatial frequencies, but these failed to reach statistical 

significance after correction for multiple comparisons. This potential issue of statistical power is 

avoided in the modelling approach, in which the parameters relevant to our investigation are the 

same across all stimulus conditions and only vary between cueing conditions, thereby avoiding 

the problem of multiple comparisons. 

To analyze response latency and accuracy simultaneously and check for a possible speed-

accuracy trade-off, we fitted the Poisson random walk model (Blurton et al., 2020) which 

provides predictions of the RT distribution of both correct and incorrect responses. All our 

analyses support the conclusion that cueing affects processing rates and their time course, rather 

than a change in criterion due to cueing. In addition to these quantitative analyses, it is also 

worth noting that the temporal profile of stimulation (i.e., brief cue duration and cue-target 

interval) restrict the potential contribution of criterion shifts to the observed effects. It was 

extremely difficult to discern valid cues from neutral cues and, even if the cue type became 

apparent from trial to trial, this was way after the target had been presented. This does not 
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preclude implicit forms of learning, but a genuine speed-accuracy trade-off in which participants 

set the response criteria to trade speed for accuracy is unlikely to explain our results. 

Rather, an intricate relationship between an initial speed-up due to valid cues combined 

with less efficient processing is a better description of the observed data. These two effects 

reflect different aspects of processing: the first has been reported previously in an experiment 

with cueing and limited exposure time (Smith & Ratcliff, 2009). In that study, the diffusion 

decision model (DDM) was extended to a time-inhomogeneous version in which drift rates 

increased gradually after stimulus onset. In applying this model, Smith and Ratcliff (2009) 

showed that drift rates increased more quickly after validly cued targets compared to those 

presented after invalid cues, like we found in the present study. The cueing effect on processing 

capacity, i.e., more efficient processing of neutrally cued targets compared to validly cued 

targets, has not been previously reported since this parameter is not included in the original 

DDM. A reduced processing capacity might reflect an attenuation in temporal segregation of a 

stimulus (e.g., Hein et al., 2006), possibly caused by inhibition of the magnocellular pathway 

(Yeshurun, 2004). If directing spatial attention indeed has a detrimental effect on perceiving 

temporally extended information, we would expect similar effects as reducing stimulus contrast 

in a static visual stimulus. Stimulus contrast, on the other hand, has been shown to have a clear 

and systematic relationship with processing speed in perceptual decisions with above threshold 

stimuli (Christensen et al., 2018). 

Most importantly, the processing rates did not show a cueing effect, suggesting that the 

quality of information sampled from the stimuli was similar between the valid cue condition and 

the neutral cue condition. In other words, while the processing capacity was higher for neutral 

cues than valid cues, the probability to make a correct or incorrect categorization (i.e., the signal-

to-noise ratio) was independent of the cue type. This strong assumption was derived from the 

Theory of Visual Attention (TVA; Bundesen, 1990). In TVA, processing rates are determined by 

perceptual evidence and two distinct attention mechanisms: filtering and pigeonholing. In short, 

filtering describes an attentional weight that is given to an object, whereas pigeonholing refers to 

a categorical bias mechanism. The Poisson random walk model is an extension of TVA, 

applicable to response times in perceptual decisions. Being founded in TVA, the RT model 

retains the general TVA assumptions, including filtering and pigeonholing. Put simply, filtering 

refers to processing capacity, whereas pigeonholing refers to the normalized processing rates in 
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the RT model. In line with the model specification, we assumed no perceptual bias and describe 

cueing effects as a change in attention weights. Contrary to TVA, however, is that although the 

validly cued targets received higher attention weights than the neutrally cued ones, processing 

speed was higher for the latter. As described above, we interpret this finding as a result of 

increased temporal integration due to transient attention, leading to a poorer stimulus 

representation from which the observers could not sample information as efficiently as from the 

stimulus representations of neutrally cued targets.  

Alternatively, it is possible that inhibition during the processing of a validly cued target 

decreased the processing speed after the initial advantage. We did not include inhibition in the 

RT model since the effect explained by inhibition would mimic the results from the model with 

different processing capacities, making it impossible to distinguish between these two 

possibilities. However, this certainly does not rule out the possibility that inhibition occurred, so 

this point remains open for further investigation. Concerning the initial facilitation/late inhibition 

hypothesis, a recent study of Zhang, Shelchkova, Ezzo, and Poletti (2021) investigating the time 

course of attentional effects in the fovea showed that exogenous attention was associated with an 

early enhancement in orientation discrimination. When target stimuli were preceded by a valid 

transient spatial cue within a short interval (i.e., 100 ms), sensitivity in orientation discrimination 

improved compared to neutral and invalid conditions. With longer intervals (i.e., hundreds of 

milliseconds) sensitivity was greater for the invalid compared to valid cues, which resembles an 

inhibition of return effect. A closer inspection of the results revealed that while sensitivity only 

slightly and non-significantly dropped for valid cues at longer intervals when compared to 

shorter intervals, there was a significant increase in sensitivity for neutral and invalid cues. These 

results indicated that fine detail is resolved better at the cued locations with short delays and 

acuity increases at the uncued locations with longer delays. The findings of Zhang et al. (2021) 

suggest that exogenous valid cues led to initial facilitation, which was subsequently replaced by 

facilitation for invalid and neutral cues in a spatial task (i.e., orientation discrimination). 

However, the time course of attentional modulation in terms of facilitation and possible 

inhibition in a spatiotemporal task with stimuli presented in the near periphery remains an open 

question and more evidence is necessary. 

In the present study we extended the results of Yeshurun and Hein (2011) showing that 

an exogenous cue drawing attention towards a specific location diminishes the ability to 
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discriminate the target’s direction of motion, notably when motion processing is likely to be 

mediated by the magnocellular system (Yeshurun & Levi, 2003; Hein et al., 2006; Nicol et al., 

2009; Yeshurun & Hein, 2011). These results emerge presumably as a consequence of attention-

induced facilitation of the parvocellular processing, leading to a relatively larger temporal 

integration window, which in turn impairs magnocellular-dominated motion processing on 

briefly presented targets. This explanation is consistent with the retino-cortical dynamics model 

of visual processing (Ogmen, 1993; Ogmen, Breitmeyer, & Melvin, 2003), postulating a mutual 

inhibition at the post-retinal level between neural populations that receive input from the 

sustained and transient channels, which are primarily driven by parvocellular and magnocellular 

cells, respectively. The current study provides the most compelling evidence that an exogenous 

cue reduces the accuracy in a behavioral task when temporal segregation is necessary. 
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Appendix  
Details on the RT model 

In the Poisson random walk model for two perceptual categories L (apparent leftward 

motion) and R (apparent rightward motion), let vL = v(x, L) and vR = v(x, R) be the processing 

rates for the perceptual categorizations “stimulus x belongs to category L” and “stimulus x 

belongs to category R”, respectively. Evidence for each category is stored in a Poisson counter 

with their respective rate. Further, evidence in favor of category L is taken as evidence against R, 

and vice versa, leading to a random walk. That is, each time a categorization is made for L, the 

counter for that category is increased by one and the counter for R is decreased by one, and vice 

versa. A perceptual category i is conclusively selected as soon as it has accumulated k i more 

categorizations than the other. Using the superposition principle of the Poisson processes 

(Townsend & Ashby, 1983), pL = vL/(vL + vR) is the conditional probability to make a 

categorization “stimulus x belongs to category L” and pR = 1 – pL = vR/(vL + vR) is the conditional 
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probability to make a categorization “stimulus x belongs to category R”—both given that there is 

a categorization at some time t. The increments in the random walk process are independent and 

distributed as a (modified) binomial distribution: the increment is +1 with probability pL and –1 

with probability pR. This definition corresponds to a random walk in which the upper criterion is 

associated with Category L and the lower with Category R. 

Evidence is accumulated until one category, say Category L, has kL more tentative 

categorizations than Category R. The total number of categorizations made until this happens is a 

random variable. Its distribution is obtained from solving the first passage problem for a simple 

random walk between two absorbing barriers (e.g., Feller, 1968, p. 354). This yields two 

distributions, PL(n | pL, kL, kR) and PR(n | pR, kL, kR) = PL(n | 1–pL, kR, kL) for the two possible 

outcomes. To obtain a prediction for the time needed to obtain n tentative categories, we use the 

Markov property of the Poisson process and obtain the density f(t | n, C) of time T given n 

categorizations from the Erlang distribution (e.g., Forbes, Evans, Hastings, & Peacock, 2011, Ch. 

15) with rate C = vR + vR, that is, the sum of all processing rates. In this context, C is the visual 

processing capacity, indicating the speed or effectivity with which a perceptual decision is made. 

Since the total number of categorizations is a latent variable, the model prediction for the 

probability density of RT is obtained by marginalizing:  

 𝑓𝐿( 𝑡 ∣∣ 𝑝𝐿 , 𝑘𝐿 , 𝑘𝑅 , 𝐶 ) = ∑ 𝑃𝐿( 𝑛 ∣∣ 𝑝𝐿 , 𝑘𝐿 , 𝑘𝑅 ) 𝑓( 𝑡 ∣ 𝑛, 𝐶 )∞𝑛=𝑘 L  Eq. A1a 

 𝑓𝑅( 𝑡 ∣∣ 𝑝𝐿 , 𝑘𝐿 , 𝑘𝑅 , 𝐶 ) = ∑ 𝑃𝑅( 𝑛 ∣∣ 𝑝𝐿 , 𝑘𝑅 , 𝑘𝐿 ) 𝑓( 𝑡 ∣ 𝑛, 𝐶 )∞𝑛=𝑘 R  Eq. A1b 

 

For the cumulative distribution functions as displayed in Figure 2, one needs to substitute the 

density f(t | n, C) of the Erlang distribution for the distribution function F(t | n, C).  
In addition to the variability in the simple random walk and Erlang distribution described 

above, the full model includes several sources of additional variability. The first is trial-by-trial 

variation in processing rates: The processing rates Vi are assumed to be gamma distributed across 

trials with mean vi and variance vi/ξ. Since a random variable defined as the sum of gamma 

distributed random variables is also gamma distributed, the visual processing capacity is gamma 

distributed with mean C = vA + vB and variance (vA + vB)/ξ. In other words, all trial-by-trial 

variability is described by a single parameter (ξ), which is most easily interpreted as a scaling 

factor 1/ξ, describing how large the variance of processing rates is in relation to their mean.  
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The second source of additional variability is a variable starting point Z0. A suitable 

distribution for Z0 is the beta-binomial distribution with parameters n, zA, and zB. This 

distribution is suitable because the increments in the full model with trial-by-trial variation in 

processing rates also follow this distribution. The beta-binomial distribution is a generalization 

of a binomial distribution with beta-distributed probability 𝜋. The parameter n is fixed 

(n = kA + kB –2), whereas zA, and zB are free parameters. In the symmetric model for unbiased 

decisions, zA = zB = z, reducing the number of free parameters by one. As stated in the main text, 

we fitted the moments of the starting distribution instead of its parameter z for easier 

interpretability. Under the symmetry assumption, the expected value E(Z0) of the starting point 

does not depend on z, so we specified the entire distribution by its variance σ z² = Var(Z0) and 

derived the distribution parameter as 

 𝑧 = 𝑛2−4 𝜎𝑍22 [4 𝜎𝑍2−𝑛]      Eq. A2 

 

From Eq. A2 it is easily seen that for a fixed n this parameter grows to infinity when 

σz² = Var(Z0) approaches n / 4. This is the limiting case in which a symmetric beta-binomial 

distribution becomes a binomial distribution with p = .5 and same n. To include the case 

Var(Z0) < n/4, we used a binomial distribution with p = 0.5 and n = σz²/4 as starting point 

distribution. This way, the starting point distribution is increasingly centered around the neutral 

starting point (Z0 = k) with decreasing Var(Z0), so that for Var(Z0) = 0 the process starts at the 

neutral starting point with probability 1 (i.e., no starting point variation). 

The third source of additional variability in the model is temporally inhomogeneous 

processing. Rather than assuming a constant processing rate (or processing capacity), the time 

course of processing speed is modeled as a scaled gamma distribution function with variable rate 

µ and fixed shape n:  

 𝑣(𝑥, 𝑖, 𝑡) = 𝑣(𝑥, 𝑖) [1 − exp (−𝜇𝑡)∑ (𝜇𝑡 )𝑗𝑗!𝑛−1𝑗=0 ]    Eq. A3 

 

This functional form has been suggested to approximate the time-dependent output from early 

perceptual filters (Smith & Van Zandt, 2000). This assumption can also be viewed to yield a 
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physiologically more plausible model than one with constant processing rates (Christensen et al., 

2018). Technically, it introduces additional variation at the leading edge of the RT distribution, 

as the assumption only affects the speed of early, but not late responses. Analogous to Smith and 

Van Zandt (2000) and Smith and Ratcliff (2009), we fixed the shape parameter (n = 5) and left 

the rate parameter µ as a free parameter to be estimated from data. The effect of parameter µ is 

that a high value leads to a quick increase to the asymptotical level, approximating the constant 

processing model with increasing values of µ, whereas low values lead to a slowly increasing 

leading edge of the predicted RT distribution of all categorizations. It is assumed that both rates 

follow the same time course. A graphical illustration of this function (with µ = 60) is displayed 

in Figure 3. This form of inhomogeneous processing rates influences early finishing processes 

only; with increasing time the effect becomes negligible, since there will always be a constant 

offset (included in the non-decision time T0) so that constant processing will approximate 

inhomogeneous processing in the long run (cf. Figure 3B). 

The full model entails an amount of flexibility that is usually not needed in empirical 

applications. For the present study, we introduced two restrictions to obtain a strong and testable 

version of the model. First, we did not distinguish between leftward moving Gabor patches and 

rightward moving Gabor patches but analyzed and fitted the responses as correct responses and 

errors. Thus, we introduced processing rates for correct perceptual decisions that were 

independent of motion direction (i.e., a leftward moving Gabor patch had the same processing 

rate for the perceptual category “moving leftward” as a rightward moving Gabor patch had for 

“moving rightward”). In line with this, we set kL = kR = k, that is, we specified a symmetric 

model for unbiased decisions. Second, we assume that the processing capacity C is constant 

across all stimuli used in the experiment; so, we introduced processing capacity C as a model 

parameter and rescaled the processing rates p(x, i) = v(x, i)/C, so that only a single processing 

rate was needed for each spatial frequency condition (since p(x, L) + p(x, R) = 1). Together with 

the first restriction, px = p(x, correct) was defined as the probability of making a correct 

categorization, so that these rescaled (normalized) processing rates can be interpreted as the 

quality of information sampled from stimulus x.  
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