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Abstract: Dynamic Glass patterns (GPs) are visual stimuli commonly employed to study form–motion
interactions. There is brain imaging evidence that non-directional motion induced by dynamic GPs
and directional motion induced by random dot kinematograms (RDKs) depend on the activity of
the human motion complex (hMT+). However, whether dynamic GPs and RDKs rely on the same
processing mechanisms is still up for dispute. The current study uses a visual perceptual learning
(VPL) paradigm to try to answer this question. Identical pre- and post-tests were given to two groups
of participants, who had to discriminate random/noisy patterns from coherent form (dynamic GPs)
and motion (RDKs). Subsequently, one group was trained on dynamic translational GPs, whereas the
other group on RDKs. On the one hand, the generalization of learning to the non-trained stimulus
would indicate that the same mechanisms are involved in the processing of both dynamic GPs and
RDKs. On the other hand, learning specificity would indicate that the two stimuli are likely to be
processed by separate mechanisms possibly in the same cortical network. The results showed that
VPL is specific to the stimulus trained, suggesting that directional and non-directional motion may
depend on different neural mechanisms.

Keywords: dynamic Glass patterns; random dot kinematograms; directional motion; non-directional
motion; visual perceptual learning; form–motion integration

1. Introduction

The human and non-human primate visual cortex is divided into two main streams
called ventral and dorsal streams [1]. The ventral pathway processes form features, whereas
the dorsal stream processes motion features. Ungerleider and Mishkin [1] were the first
authors who showed that the visual system is characterized by these two streams that
originate at the level of the primary visual cortex (V1) and propagate differently to the
parietal area and the inferotemporal area. According to Ungerleider and Mishkin [1], these
two visual streams were physically segregated yet functionally independent. However,
several later research studies disputed this perspective, advocating an integrated view of
the visual brain [2–9].
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Dynamic Glass patterns (GPs) [10] and random dot kinematograms (RDKs) are two
types of visual stimuli commonly employed to assess the functional properties of the
dorsal and ventral streams. A sequence of static GPs is shown in succession to create
dynamic GPs. Static GPs are made up of dipoles, which are pairs of dots randomly
displayed in a single frame [11]. Each frame in dynamic GPs is characterized by a different
arrangement of dipoles. Observers report seeing directional motion when a set of static GPs
is displayed fast, even though there is no dipole-to-dipole correspondence between video
frames. In addition, the orientation of dipoles can produce many global configurations such
as circular, radial, or translational GPs, among others. Dynamic GPs induce a percept of non-
directional motion in which the pattern’s global orientation is consistent with the observed
apparent directionality. Although dynamic GPs include local and global form aspects
determined by dipole orientation, they are primarily connected to motion perception
circuits in the brain [12]. Dynamic GPs have been employed in several investigations to offer
insight into how form–motion interactions occur in the human visual cortex [2,4,8,9,12–17].
RDKs, in contrast to dynamic GPs, are made up of single dots that follow a definite path
across the sequence of frames. Fast-moving dots can produce motion streaks (also called
motion or speed lines) that influence motion perception [3,18–20]. Motion streaks are the
smeared representation in the visual system of a fast-moving stimulus due to the temporal
integration [19]. The human visual system interprets this blurred trail as a form/oriented
feature [3]. When the direction of a moving stimulus is uncertain, the visual system
can employ motion streaks as a cue to determine a specific motion trajectory [3]. This
suggests that the brain cells responsible for processing form cues aid motion perception.
The neural substrates of the two forms of motion elicited by dynamic GPs and RDKs have
been investigated in neuroimaging and physiological studies, which revealed overlapping
cortical brain regions [21,22]. For example, Krekelberg et al. [21] investigated the neural
basis of circular and radial dynamic GPs and RDKs using functional magnetic resonance
imaging (fMRI). The activation of the human motion complex hMT+ was equivalent for
both types of visual stimuli. This suggests that hMT+ does not differentiate between motion
induced by form cues in dynamic GPs and motion evoked by motion cues in RDKs. Cue
invariance is the name given to this occurrence [21]. Donato et al. [13] assessed the causal
role of two distinct cortical visual brain regions, V1/V2 and hMT+, in the processing of
circular RDKs and circular dynamic GPs. Two groups of participants had to determine
whether the coherent dynamic GP or RDK was in the first or second temporal interval
(two-interval forced-choice task—2IFC). The sole difference between the two groups was
the brain region stimulated: one got online repetitive transcranial magnetic stimulation
(rTMS) over V1/V2, while the other group received online rTMS over hMT+. The aim of
using rTMS was to temporarily disrupt the functional integrity of the cortical brain region
that was activated during the presentation of the visual stimuli. The authors argued that, if
V1/V2 and hMT+ played the same functional role in the processing of circular directional
and non-directional motion, participants’ performance would have to deteriorate as soon
as rTMS was delivered over the brain areas of interest, for both GP and RDK tasks. The
authors found, however, that just interfering with the activity of hMT+ had a substantial
causal inhibitory effect on discriminating RDKs. Therefore, hMT+ is likely to have a distinct
role in the processing of circular dynamic GPs and circular RDKs, but V1/V2 does not have
a significant causal function in both classes of visual stimuli.

Psychophysical paradigms that looked at the individuals’ coherence thresholds were
also used to study GPs and RDKs [23]. Nankoo et al. [23], for example, investigated how the
human visual system processes various combinations of directional motion, non-directional
motion, and static stimuli elicited by RDKs, dynamic GPs, and static GPs, respectively.
Vertical, horizontal, circular, radial, and spiral configurations were used. The participants
were presented a visual pattern that could be an RDK, a dynamic, or a static GP, depending
on the experimental session. The task was to determine whether the pattern was coherent or
random/noisy (i.e., two-alternative forced-choice task—2AFC). The findings showed that
observers perceive dynamic and static GPs more similarly than RDKs, since both GP types
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had similar detection thresholds when compared to RDKs. Even though neuroimaging
research [21] found that dynamic GPs and RDKs have common neural bases, somehow,
they appear to be processed differently.

Most of the research into the neural underpinnings of dynamic GPs and RDKs has
so far focused on complex configurations like circular and radial patterns. There have
been no direct comparisons of the cortical visual regions involved in the processing of
simple directional and non-directional motion elicited by dynamic translational GPs and
RDKs. To bridge this gap and indirectly shed light on the neural mechanisms underlying
dynamic translational GPs and RDKs, we employed visual perceptual learning (VPL). After
persistent practice on the same activity, VPL refers to a considerably increased performance
in a visual task [24–31]. After a series of training sessions, VPL generates long-lasting
perceptual gains [28,29,31–35].

VPL has been used to improve visual functions, such as visual acuity, contrast sensi-
tivity, and it can transfer to other untrained visual stimuli [36–38]. Several variables, such
as the time interval between training sessions, the task difficulty, the task precision, the
number of training sessions, the duration of the training sessions, the participants’ fatigue,
and so on, have a significant impact on the type and strength of learning [39–44]. Several
visual features can be trained including spatial contrast, orientation, motion direction,
object recognition, etc. [45–52]. In the current study, VPL was employed to investigate
learning transfer between form and motion perception. In particular, the aim was to assess
whether VPL on dynamic translational GPs transfers to translational RDKs and vice versa.
We trained two groups of participants on the discrimination of dynamic translational GPs
and RDKs. We specifically investigated whether an eight-session training develops VPL
not only for the learned visual stimuli but also for the non-trained visual stimulus. We
predicted that, if the human visual system processes directional and non-directional motion
in dynamic translational GPs and RDKs in a similar way and through the same neural
circuits, we should be able to generalize VPL to non-trained visual stimuli after a period of
training. On the contrary, if there is just a limited overlap in the neural processing of these
two classes of visual stimuli, VPL should be either specific to the trained visual stimulus or
exhibit partial transfer to the non-trained stimulus.

2. Method
2.1. Participants

Thirty-one participants took part in the experiment. Specifically, fifteen participants
(mean age: 22.3 yrs; SD: 2.74; 11 females and 4 males) took part in the training with
RDKs and sixteen (mean age: 24.5 yrs; SD: 3.01; 7 females and 9 males) took part in
the training with translational dynamic GPs. All participants were naïve except two of
the authors (RD and LB) who participated in the experiment, one in the GPs training
group (LB) and the other in the RDKs training group (RD). All participants had normal
or corrected to normal vision. In the experiment, viewing was binocular. Participants
have been randomly assigned to one of the two groups. Each observer was assigned by
chance and in alternation to one of the two different learning groups (i.e., either GPs or
RDKs). Participants performed the online experiment using their personal computers.
The experiment was run in agreement with the World Medical Association Declaration
of Helsinki [53]. The study was approved by the Ethics Committee of the Department of
Psychology of the University of Padova (Protocol number: 4112). Written informed consent
was obtained before the beginning of the first session.

2.2. Stimuli

We used translational dynamic GPs and RDKs. The spatial and temporal character-
istics of dynamic GPs were the same as in Pavan et al. [14]. GPs were made of 688 white
dots with a width of 0.04 deg on each frame, whereas RDKs were made of 1376 white
dots. GPs and RDKs were presented in a circular annulus display (inner radius 0.5◦, outer
radius 4.5◦) on a grey background. Density was 10.95 dipoles/deg2 and the length of the
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dipoles in GPs was 0.18◦. Dynamic GPs were made of a set of independent frames where
each frame contained a new dipoles’ spatial order, although dipoles’ orientation remained
constant [15]. Dynamic GPs induce a perception of directionally ambiguous motion (with
alternating opposite directions) that is given by dipoles orientation; however, in dynamic
GPs, there is not dipole-to-dipole correspondence between successive frames [15].

RDKs evoked directionally ambiguous motion. The lifetime of the dots was the same
as the interval displayed to make a match with dynamic GPs. The temporal frequency of
the stimuli was 20 Hz, with a single frame duration of ~0.05 s. In noise GPs, dipoles were
randomly oriented. Instead, in noise RDKs, dots were placed in new random locations
within the circular annulus on each successive frame [54]. Both visual stimuli had a variable
coherence. To adapt the stimuli to each monitor size and resolution, we adopted the method
of Li et al. [55] called the ‘card task’. It consisted of placing a credit card or a badge of the
same size on the screen and adjusting a rectangle until it matched the dimensions of the
card placed on the screen. The ratio between the rectangle’s dimensions (in pixels) and the
real card is then calculated to obtain the logical pixel density (LPD). Based on the LPD, it is
possible to present stimuli with set dimensions in pixels regardless of screen size.

2.3. Apparatus

The experiment has been programmed using the JavaScript library JsPsych [56] and
carried out through the JATOS platform (JATOS version 3.5.8; Germany) [57]. All the
observers took part remotely using their computers. The experimenters instructed the
participants on the task via the Zoom platform (https://zoom.us (10 January 2022); USA).

2.4. Experimental Procedure

There were ten sessions in total: one pre-test, eight training sessions [41,47], and a
post-test session. Each day, participants had to complete one session. The interval between
each session was not longer than three days. Participants were instructed to conduct the
sessions in a dark room. Participants sat at 57 cm from the screen. Participants were
instructed to perform the experimental sessions at around the same time each day.

2.4.1. Familiarization Procedure

To familiarize themselves with the task, each participant completed a series of trials
with both stimuli (i.e., dynamic GPs and RDKs). The coherent pattern was displayed in
one interval, while the noise/random visual stimulus was delivered in the other. The
participants had to report which temporal interval contained the coherent pattern by
pressing the key ‘1′ on the keypad if the coherent pattern was contained in the first interval,
and key ‘2′ if the coherent pattern was contained in the second interval. Each trial began
with a 1-s black fixation point, followed by two 0.3-s intervals containing the visual stimuli
and separated by a 0.2-s blank screen containing only the fixation point. The inter-trial
interval was 2-s (see Figure 1).

2.4.2. Pre- and Post-Test Assessments

The pre- and post-tests were divided into four blocks, each with 300 trials. The first
two blocks were performed with dynamic GPs, while the last two blocks were performed
with RDKs. Except for the post-test, which was preserved in the same blocks order as the
pre-test, the blocks order has been counterbalanced. As part of the familiarization with
the task, participants completed a two-interval forced-choice task (2IFC) (see Figure 1). A
modified 1-up/3-down staircase [58] was used to estimate the 79% coherence threshold (see
the Appendix A ). The coherence threshold was estimated by averaging the last 150 trials
of the staircase. This phase lasted around ~1 h 15′.

https://zoom.us
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Figure 1. Schematic representation of the visual stimuli and the procedure used in the experiment.
Two temporal intervals of 0.3-s each with the visual stimuli were presented after a 1-s fixation.
(A) experimental procedure with Glass patterns (GPs), (B) experimental procedure with random
dot kinematograms (RDKs). The first interval contains the coherent translational/vertical pattern
and the second interval the random/noise pattern. However, in the experiment, this order has been
randomized. In (B), the arrows are shown only for demonstrative purposes and were not presented
during the experiment.

2.4.3. Training Procedure

The training sessions differed from the pre- and post-tests for the number of blocks
and the visual stimulus presented. The group that was trained with RDKs performed eight
training sessions with RDKs, whereas the group that was trained with GPs performed eight
training sessions with dynamic GPs. In addition, each training session consisted of three
blocks of 300 trials each. A single training session lasted ~45′.

2.4.4. Data Analysis

The normality of residuals was assessed using the Shapiro–Wilk test. Data were ana-
lyzed using a Generalized Linear Mixed Model (GLMM) [59–62] with a ‘lme4’ package [62].
The analysis was performed in R (v4.1.3; Boston, MA, USA) [63,64]. A Gamma distribu-
tion and an identity link function were used in the GLMM model. We chose the Gamma
distribution for the regression analysis because almost all the percentage discrimination
thresholds fell into the Gamma quantiles, allowing for dealing with outliers without re-
moving them [65] and because data were well approximated by a Gamma distribution.
Data distribution was assessed with the function fitdist [66]. The link function in GLM(M)s
determines the nature of the expected relationship between the predictors and the observed
response. According to Lo and Andrews [67], a link function maps a nonlinear relationship
to a linear relationship, allowing to fit a linear model to the data. A link function connects
the transformed and original scales, allowing back-transformation to the original metric
by providing a one-to-one mapping between the range of fitted values produced by the
linear predictor on the transformed metric and the range of observed values on the original
metric. If no transformation is required, and the observed response is assumed to tap the
psychological construct to be measured, the function binding the expected values produced
by the predictors to the dependent variable is the identity link function. In our case, an
identity link function is more appropriate as we do not have strong reasons to apply a log or
inverse transform to the dependent variable as the manipulation we introduced (i.e., train-
ing on either GPs or RDKs) is supposed to directly affect the coherence thresholds rather
than some function of them. Additionally, since all the coherence thresholds estimated
are above zero and thus away from the negative boundary, it is unlikely for the model to
produce negative values. The normality of residuals was assessed using a Shapiro–Wilk
test. Outliers were identified using the median absolute deviation with a cut-off of 3 [68].
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3. Results
3.1. Analysis of Pre- and Post-Tests

Figure 2 shows the coherence thresholds estimated in pre- and post-training tests for
each training group and stimulus type. The Shapiro–Wilk test showed that residuals for
coherence thresholds were not normally distributed (W = 0.853, p < 0.001), with a high
positive skewness of 1.45 (SE: 0.22). We also identified ten outliers that were included in
the analysis. The GLMM included the learning group (learning GPs vs. learning RDKs),
time (pre-training vs. post-training), and stimulus type (GP vs. RDK) and the interactions
between all these terms as fixed effects. The subjects were the grouping variable. Fourteen
models with different random effects (but the same fixed effects) were produced and
compared. The best fitting model was selected using three different estimators of prediction
error (AIC, AICc and BIC). The best fitting model from the three estimators of prediction
error resulted in being a model with only random slope for time and stimulus type (no
variation in intercept and correlation between random slopes for time and stimulus). The
form of the best fitting model is as follows:

Coherence Threshold ~ Group * Time * Stimulus + (0 + Time + Stimulus|Subjects)
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Figure 2. Boxplots of coherence thresholds (%) for the two types of training. (Left panel) Coherence
thresholds for pre- and post-tests relative to the learning Glass pattern (GP) group, for GPs and
random dot kinematograms (RDKs). (Right panel) Coherence thresholds for pre- and post-tests
relative to the learning RDK group. For each boxplot, the horizontal black line indicates the median,
whereas the black cross indicates the mean coherence threshold for that condition. Grey points
indicate outliers. Data were plotted using R (v4.1.3; Boston, MA, USA).

The regression analysis did report a significant effect of the group (χ2 = 11.627, df = 1,
p < 0.001), time (χ2 = 20.680, df = 1, p < 0.001), stimulus (χ2 = 5.924, df = 1, p = 0.014),
a significant interaction between group and stimulus (χ2 = 6.668, df = 1, p = 0.009), a
significant interaction between time and stimulus (χ2 = 4.317, df = 1, p = 0.038), and a
significant three-way interaction between group, time and stimulus type (χ2 = 8.313, df = 1,
p = 0.004). The coefficients of the regression analysis are reported in Table 1, whereas the
variance of random effects is reported in Table 2. It should be noted that the model explains
most the variance, being the residual variance equal to 0.0487 (SD: 0.221). The conditional
and marginal R2 were 0.999 and 0.519, respectively.
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Table 1. Estimated coefficients of the best fitting generalized linear mixed model (GLMM). Standard
Error (SE), t- and p-values for predictors (including intercept) are listed.

Predictors Estimate SE t-Value Pr (>|t|)

(Intercept) 28.01 2.953 9.485 <0.0001

Learning Group 19.746 6.341 3.114 0.0018

Time (pre/post) −10.697 2.677 −3.996 <0.0001

Stimulus (GP/RDK) −5.430 3.645 −1.490 0.1362

Group * Time 2.475 4.478 0.552 0.580

Group * Stimulus −5.399 5.742 −0.940 0.347

Time * Stimulus 7.819 2.350 3.328 0.0008

Group * Time * Stimulus −12.220 4.238 −2.883 0.0039

Table 2. Variance of the random effects.

Name Variance SD

Time (Pre-test) 244.1305 15.6247

Time (Post-test) 155.3663 12.4646

Stimulus (RDK) 152.6115 12.3536

Residual 0.0487 0.2208

The learning GP group exhibited a lower coherence threshold than the learning RDK
group (M: 23.09, SE: 2.41; M: 38.33, SE: 2.65 for learning GP and learning RDK, respectively),
coherence thresholds in the pre-test assessment were higher than in the post-test (M: 35.02,
SE: 2.29; M: 26.41, SE: 1.71 for pre- and post-tests, respectively) and translational dynamic
GPs had overall higher coherence thresholds than RDKs (M: 34.35, SE: 2.64; M: 27.07, SE:
1.64 for GPs and RDKs, respectively).

For the group x stimulus interaction, Holm-corrected post hoc comparisons reported a
significant difference between GPs for the learning GP and learning RDK groups (padj = 0.004),
and between RDKs always for the two groups (padj = 0.0119), suggesting a difference in
coherence thresholds between GPs and RDKs for the two groups, and a significant difference
between GPs and RDKs in the learning RDK group (padj = 0.003).

For the time x stimulus interaction, Holm-corrected post hoc comparisons reported
a significant difference between pre- and post-tests for GPs (padj < 0.001) and RDKs
(padj < 0.001), between GPs and RDKs for the pre-training assessment (padj = 0.0139), and
between GPs and RDKs for the post-training assessment (padj = 0.0314).

For the three-way interaction, the most relevant Holm-corrected post hoc comparisons
are reported in Table 3. In general, the three-way interaction reported a significant difference
between pre- and post-tests for the GPs in the learning GP group, but not a significant
difference between pre- and post-tests for RDKs (padj > 0.05). The same applies to the
learning RDK group in which we found only a significant difference between pre- and
post-test for the RDKs, but not for GPs (padj > 0.05).

Figure 3 shows the coherence thresholds of individual participants in pre- and post-
tests. The diagonal line represents the same performance in the pre- and post-test. All
points falling under this line represent a better performance in the post-test compared to the
pre-test. From the scatter plot, in the learning GP group, points relative to GPs fall under
the equity line, suggesting an effect of VPL only for this class of stimuli when training
participants with GPs. On the other hand, for the learning RDK group, most of the points
relative to RDKs fall under the equity line suggesting an effect of VPL only for RDKs, while
the points relative to GPs are more scattered. It is also clear how coherence thresholds
in the learning RDK group are more widespread than in the learning GP group, further
highlighting the difference in terms of sensitivity across the two groups and already shown
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in Figure 2. Taken together, these results suggest a high degree of specificity of VPL for
translational dynamic GPs and RDKs.

Table 3. Selected post hoc comparisons for the three-way interaction between group, time, and
stimulus type. p-values are adjusted with the Holm method for 28 comparisons.

Group Time Stimulus p-Value

Learning GP
Learning RDK Pre-test GP 0.0277

Learning GP Pre-test
Post-test GP 0.0013

Learning GP
Learning RDK Post-test GP 0.0003

Learning RDK Post-test GP
RDK 0.0031

Learning RDK Pre-test
Post-test RDK 0.0015
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Figure 3. Scatter plot of the coherence thresholds (%) of individual participants in the pre-test and
post-test assessments. Coherence thresholds are plotted separately for Glass patterns (GPs) and
random dot kinematograms (RDKs) and learning group (i.e., learning GP and learning RDK). The
diagonal line represents the same performance in the pre-test and post-test. All points falling under
this line represent a better performance in the post-test than in the pre-test.

3.2. Magnitude of Learning

Given differences in the initial and final assessment sessions between the two groups,
and to compare performance across conditions, the magnitude of learning was calculated
for trained and untrained stimuli as follows [69]:

Magnitude o f Learning =
Posttest threshold− Pretest threshold

Pretest threshold
(1)

This procedure allows for the assessment of any changes in performance based on
the original performance level. Figure 4 shows the mean magnitude of learning for each
learning group and stimulus type. The normality of residuals for each training group and



Vision 2022, 6, 29 9 of 17

each stimulus type was assessed with Q-Q plots and the Shapiro–Wilk test. Residuals
were not normally distributed (W = 0.755, p < 0.0001) and two outliers were identified.
Data were analyzed using the Align Rank Transform (ART), a procedure for the factorial
non-parametric analysis of variance [70–72]. With this procedure, a linear mixed model
can be implemented once the data are aligned and ranked for each main and interaction
effect. Pairwise comparisons were conducted using the ART-C procedure [73]. A linear
mixed model with random intercept across subjects and including the group (learning GP
vs. learning RDK) as between-subjects factor and the stimulus type (GPs vs. RDKs) as
within-subjects factor, revealed only a significant interaction between group and stimulus
(F1, 29 = 16.63, p < 0.001) (group: F1, 29 = 0.023, p = 0.879; stimulus: F1, 29 = 1.061, p = 0.311).
For the interaction between group and stimulus, Holm-corrected post hoc comparisons
reported a significant difference only between GPs and RDKs in the learning GP group
(padj = 0.0089). For the learning RDK group, the high variability in coherence thresholds
between the pre- and post-tests and the presence of an outlier (magnitude of learning = 2.03)
might have biased the learning index by preventing a significant difference between GPs
and RDKs for this group. In fact, uncorrected post hoc comparisons did report a significant
difference between GPs and RDKs for the learning RDK group (p = 0.0431).
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Figure 4. Mean magnitude index scores for each learning group and stimulus type. Larger negative
values indicate greater learning. Error bars ± SEM.

A series of one-sided one-sample permutation tests (sampling permutation distribu-
tion 5k) were performed on the magnitude index of each learning group and stimulus type
to assess whether the magnitude of learning was lower than zero. A magnitude of learning
equal to zero would indicate no learning for the trained stimulus and no transfer of learning
to the untrained stimulus. The resultant p-values were corrected with the Holm method for
two comparisons. The results showed that, for the learning GP group, the magnitude of
learning index was significantly lower than zero only for GPs (i.e., the trained stimulus)
(padj < 0.0001), but not for the RDKs (padj = 0.24). On the other hand, for the learning RDK
group, the magnitude of learning index was significantly lower than zero only for RDKs
(i.e., the trained stimulus) (padj < 0.0001), but not for the GPs (padj = 0.45). These results
further suggest high specificity for the trained stimulus.
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3.3. Learning Curves

Figure 5 shows the mean coherence thresholds as a function of learning session. The
first and last points of each curve represent the pre- and post-tests on the same stimu-
lus used during the training. The learning curves were fitted with an extended power
function [74–76] of the form:

y = ax−b + c (2)

where a is the scale parameter, indicates the value of the power function in x = 1 (i.e., the
pre-test assessment) and expresses the difference between the initial and the asymptotic
performance (c), b is the learning rate (smaller values of b indicate slow improvements
across learning sessions), c is the asymptotic coherence threshold after an arbitrarily large
number of learning sessions, and x represents the amount of practice (i.e., learning sessions).
The aim of this analysis was to assess for differences between the groups in terms of learning
rate, whether the two groups differed from the outset (i.e., from the pre-tests assessments),
and asymptotic performance.
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Figure 5. Mean coherence thresholds as a function of learning sessions separately for each learning
group. The first point of each curve represents the pre-tests on the same stimulus used during the
training, whereas the last point represents the post-test always on the same stimulus used during the
training sessions. The dots in blue color represent the data for translational dynamic Glass patterns
(GPs) and those in red for the random dot kinematograms (RDKs). The continuous lines represent
the best fitting model (i.e., restricted model 4). Error bars ± SEM.

We created a lattice of models from a fully saturated model to a maximally restricted
model [74–76]. The fully saturated model consisted of six parameters (one a, b, and c
parameter per learning group). The maximally restricted model, i.e., the model that
postulated no change between learning groups, had only three parameters (a, b, and c), and
assumed that the three parameters were the same across the two learning groups (i.e., no
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differences across learning groups). Between the fully saturated model and the maximally
restricted model, a lattice of models having a different number of parameters was fitted
(Table 4). The best-fitting model selection was based on the F-test (using the function ‘anova’
in R) to compare the models and assess which one provides the best parsimonious fit of
the data. In the F-test, if the resulting p-value is higher than the significance level (0.05),
then the simpler model is likely to be the preferred one. On the other hand, if the p-value
is lower than the significance level, then the more complex model (i.e., the model with
more parameters) is likely to be the preferred one. It should also be noted that the F-test
can be used only with nested models (i.e., model A is nested in model B if parameters
in model A are a subset of the parameters in model B). Comparisons between models
with the same number of parameters (i.e., the same degrees of freedom) were performed
using three estimators of prediction error (AIC, AICc, and BIC). In this case, the model with
lower AIC, AICc, and BIC is likely to be the preferred model. Table 4 reports the lattice of
models fitted to the coherence thresholds. All the possible pairs of models were compared
without repetitions.

Table 4. Lattice of power law functions. The fully saturated model has six parameters, whereas
the maximally restricted model has three parameters. f 1(x) indicates the function fitted to the
learning Glass pattern (GP) group, and f 2(x) indicates the function fitted to the learning random dot
kinematogram (RDK) group.

Function Name Equation Number of Parameters

Fully Saturated f 1(x) = a1x−b1 + c1
f 2(x) = a2x−b2 + c2

6

Restricted 1 f 1(x) = ax−b1 + c1
f 2(x) = ax−b2 + c2

5

Restricted 2 f 1(x) = a1x−b + c1
f 2(x) = a2x−b + c2

5

Restricted 3 f 1(x) = a1x−b1 + c
f 2(x) = a2x−b2 + c

5

Restricted 4 f 1(x) = ax−b + c1
f 2(x) = ax−b + c2

4

Restricted 5 f 1(x) = ax−b1 + c
f 2(x) = ax−b2 + c

4

Restricted 6 f 1(x) = a1x−b + c
f 2(x) = a2x−b + c

4

Maximally Restricted f (x) = a−bx + c 3

We found that the restricted model 4, i.e., the model consisting of the same parameters
a and b across the two learning groups, but different asymptotic performance (parameter c)
was the best fitting model. For the restricted model 4, parameters were: a = 18.34 (SE: 3.36),
b = 0.482 (SE: 0.159), c1 = 13.298 (SE: 3.56), c2 = 20.45 (SE: 3.56) (quasi-R2 = 0.972). Restricted
model 4 is the preferred model as it fits better than the fully saturated model (p = 0.339),
than the maximally restricted model (p < 0.0001), and it has lower AIC, AICc, and BIC than
the restricted models 5 and 6, having the same number of parameters. It also fits better
than models with more parameters (i.e., restricted models 1, 2, and 3).

These results suggest that learning curves can be described by an extended power
function that has the same starting coherence threshold and learning rate for the two groups,
but a different asymptotic performance. The best-fitting model is reported in Figure 5.

4. Discussion

Using a VPL paradigm, we investigated the mechanisms underlying directional mo-
tion and form–motion integration in translational RDKs and dynamic translational GPs. The
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aim was to assess whether VPL could be transferred to the non-trained visual stimulus. Be-
fore and after the training sessions, the coherence thresholds for dynamic translational GPs
and translational RDKs were measured in both groups (learning GPs and learning RDKs).
After the initial assessment, participants were given eight training sessions [36,42,77]. VPL
was found to be highly specific for the trained stimulus; that is, lower coherence thresholds
in the post-test than in the pre-test were found for GPs and RDKs only when training
with GPs and RDKs, respectively. Because training based on moving visual stimuli is
direction selective [45], we found a lack of VPL transfer between GPs and RDKs probably
because dynamic GPs do not elicit the percept of directional motion. To achieve learning
effects, the motion direction of the visual stimuli employed must be suprathreshold and
constant across trials [45]. While these characteristics may be guaranteed for RDKs, they
are not met for dynamic GPs. As a result, we may state that, in dynamic translational GPs,
VPL is dependent on global form characteristics than on apparent motion directionality.
Moreover, training participants on a certain visual characteristic increases their sensitivity
to the trained visual feature [45]. Thus, an increased performance correlates with a greater
capacity to detect subtle visual variations. Consequently, after VPL participants could have
become more sensitive to different motion directions, in the case of RDKs, and to different
orientations in the case of dynamic GPs.

These results suggest that separate neural circuits control the processing of motion
signals in translational RDKs and the processing of form–motion interaction in dynamic
translational GPs. One possibility is that dynamic translational GPs are primarily led by the
perception of global form, which necessitates the integration of local characteristics across
space and time [78]. Swettenham et al. [78] using magnetoencephalography, investigated
the perception of three different configurations of GPs: horizontal, circular, and radial.
The authors found that the cortical visual area V3a plays a crucial role in the perception
of global form in these three configurations. Precisely, the extrastriate area V3a is located
between the primary visual areas (V1/V2) and higher-order areas; therefore, it represents
an intermediate stage of visual processing. In a brain stimulation study, Pavan et al. [14]
used rTMS to assess the causal role of early visual areas V1/V2 and hMT+ in the processing
of static and dynamic translational GPs. Participants’ tasks were to discriminate which of
two temporal intervals contained the coherent pattern, whereas the other interval contained
a noise pattern (2IFC). The authors found that V1/V2 has a causal role in both static and
dynamic translational GPs, whilst hMT+ has a causal role only in dynamic translational
GPs. Based on these previous studies, the extraction of global form in translational GPs
mainly relies on the activity of early/intermediate visual areas.

In terms of directional motion, evidence suggests that RDKs primarily engage higher-
order extrastriate visual areas specialized in motion processing, such as the hMT+ [79–86].
Monkeys’ studies revealed that more than 90% of brain cells are responsive to motion in
MT [81]. The posterior parietal regions are critical in the perception of moving stimuli,
according to other physiological findings in macaque monkeys [87]. Neurons in the lateral
intraparietal region (LIP) play an important role in motion direction discrimination [88].
In humans, LIP is analogous to a brain region near the intraparietal sulcus (IPS) [89].
Accordingly, in healthy participants, the transient inhibition of hMT+ by mean of rTMS
can impair for a few milliseconds the perception of motion direction in circular RDKs [90].
Interestingly, Sterzer et al. [91] investigating the perception of RDKs showed that also the
activity of the early level of the visual system (i.e., V1) is mediated by feedback from hMT+.
In conclusion, whereas the processing of translational RDKs and dynamic GPs might rely
on overlapping cortical visual regions, the role and importance of these areas may differ.

Despite the present study suggests that the perception of dynamic translational GPs
and RDKs relies on different processing mechanisms, when training with RDKs, there is a
small amount of transfer, although not significant, for untrained GPs (Figure 2). In this case,
we can speculate that the influence between form and motion is slightly asymmetric: from
motion to form but not from form to motion. Studies on biological motion demonstrated
how motion is important to animate form features contained in an image [92]. However,
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other authors found an opposite asymmetry; from form to motion [8,93]. In particular, Or
et al. [93] showed that global form impacted the perception of global motion direction more
effectively than how global motion affects the perception of global form. Differently, the
global orientation of the stimulus was not influenced by motion direction. The interplay
between form and motion cues in dynamic GPs and RDKs needs to be further investigated
and more evidence is needed to shed light on the lack of learning transfer.

In this context, various research has found that task difficulty influences transfer [39,42,94,95].
For example, Liu and Weinshall [95] performed a study on the perception of motion direction
based on VPL to investigate learning transfer effects. Participants had to discriminate eight
different motion directions. The authors found almost no perceptual transfer when directions
had a large difference, but a learning transfer occurred for similar motion directions. Finally, they
found VPL transfers in easy but not difficult tasks. In our case, conditions and task difficulty
have remained homogeneous amongst the groups. Therefore, the lack of perceptual transfer,
especially in the learning GP group, is unlikely to depend solely on task difficulty. Additionally,
in each training block and session, the staircase always started from the maximum coherence
level, thus making the task easier [39,96].

Moreover, we observed lower coherence thresholds for RDKs than dynamic GPs in
both learning groups. Participants perceived translational RDKs easier than dynamic
translational GPs [23]. This probably occurred because the human visual system is engaged
in a twofold task in dynamic GPs: global form processing and motion processing. Addi-
tionally, we found a high inter-observer variability between the two learning groups. The
learning GP group showed lower coherence thresholds in all training sessions compared
to the learning RDK group. A similar inter-group variability has been found in other VPL
studies [41,69,97]. Differences in the initial level of performance and VPL rate are common
in experimental paradigms with VPL, even in homogeneous groups of participants where
age, education, and motivation were controlled [97]. To control for groups’ inter-individual
differences, we evaluated the magnitude of learning (Figure 4). We tested the changes in
participants’ coherence thresholds considering the initial performance of each individual
observer [69]. We found a significant difference in the magnitude of learning between
the trained and the untrained visual stimulus only for the learning GP group. Moreover,
we found that the magnitude of learning was not significantly different from zero for the
untrained stimulus in both learning groups, suggesting that VPL is highly specific for the
stimulus trained.

In conclusion, though there is brain imaging evidence that both dynamic GPs and
RDKs activate some overlapping cortical areas (e.g., hMT+, V3) [21,22], the neural circuits
underlying the processing of the two stimuli appear to be somehow different. Dynamic
translational GPs could be mainly processed and perceived for their form signals [23], and
VPL is likely to occur at early and intermediate levels of the visual system. On the other
hand, translational RDKs are processed and perceived for the motion signals, and VPL
is likely to take place at higher levels along with the visual system. Future studies may
explore whether complex configurations such as dynamic circular GPs and circular RDKs
show the same learning specificity or exhibit a certain degree of transfer.
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Appendix A. Modified 1-Up/3-Down Staircase

We define coherence as the number of dots (in the case of RDKs) or dipoles (GPs) that
drifted in the same direction or had the same orientation. The coherence ratio is the ratio
between the coherence and the total number of dots or dipoles of the trial. The initial trial
coherence was equal to the total number of dots/dipoles, therefore with a coherence ratio
of 100%. We define accuracy as the ratio between the number of correct answers over the
number of total answers to a set of trials. We decided to let the coherence decrease if the
participant answered three times in a row correctly, while only one wrong answer was
enough to let the coherence increase. We call reversal the set of answers given between two
changes in the coherence slope. For example, if a participant:

a. gave 6 good answers in a row (2 sets of 3 correct answers);
b. then gave 2 wrong answers;
c. then gave 2 good answers;
d. then gave 1 wrong answer;
e. then gave 3 good answers.

The coherence was supposed to decrement twice, then increment three times, then
decrement once. The answers from b) to d) included are part of the same reversal. Moreover,
the first 10 staircase steps increased (or decreased) the coherence by 100, 65, 42, 27, 18, 11, 7,
5, 3, 2 dots (or dipoles) at a time—then by 2.

We let the coherence increment when the accuracy of the last 16 reversals’ answers was
below a threshold value of 0.79 and decrease only when above this threshold. This value
was taken as the asymptotic convergence of a Levitt 1-up/3-down staircase (from which
this method took inspiration). We were able to let the experiment have a faster convergence,
to let the tester be around its coherence threshold for more time and thus collect a more
reliable value. The staircase was terminated after 300 trials and the coherence threshold
was calculated by averaging the coherence estimated in the last 150 trials.
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