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A7. Heir-equations for partial differential

equations: a 25-year review

M.C. Nucci

Dipartimento di Matematica e Informatica
Università degli Studi di Perugia, 06123 Perugia, Italy

Abstract

Heir-equations were found by iterating the nonclassical symmetry method.
Apart from inheriting the same Lie symmetry algebra of the original partial dif-
ferential equation, and thus yielding more (and different) symmetry solutions
than expected, the heir-equations are connected to conditional Lie-Bäcklund
symmetries, and generalized conditional symmetries; moreover they solve the
inverse problem, namely a special solution corresponds to the nonclassical sym-
metry. A 25-year review of work is presented, and open problems are brought
forward.

1 Introduction

The most famous and established method for finding exact solutions of differential
equations is the classical symmetry method, also called group analysis, which orig-
inated in 1881 from the pioneering work of Sophus Lie [54]. Many textbooks have
been dedicated to this subject and its generalizations, e.g., [4], [13], [75], [71], [14],
[78], [83], [47], [35], [52], [49], [21], [11], [5].

The nonclassical symmetry method was introduced fifty years ago in a seminal
paper by Bluman and Cole [12] to obtain new exact solutions of the linear heat
equation, i.e. solutions not deducible from the classical symmetry method. The
nonclassical symmetry method consists of adding the invariant surface condition
to the given equation, and then applying the classical symmetry method on the
system consisting of the given differential equation and the invariant surface con-
dition. The main difficulty of this approach is that the determining equations are
no longer linear. On the other hand, the nonclassical symmetry method may give
more solutions than the classical symmetry method.

After twenty years and few occasional papers, e.g. [74], [15], in the early 1990s
there was a sudden spur of interest and several papers began to appear, e.g. [53],
[30], [63], [70], [77], [56], [39], [27], [29], [6], [69], [7], [37], [32]. Since then the
nonclassical symmetry method has been applied to various equations and systems
in hundreds of published papers, e.g., [41], [57], [25], [42], [26], [82], [22], [18], [20],
[24] [76], [8], [23], [48], [85], [16], the latest being [86], [9], [17].

One should be aware that some authors call nonclassical symmetriesQ-conditional
symmetries1 of the second type, e.g. [34] and [22], while others call them reduction
operators, e.g. [76].

1In [38] this name was introduced for the first time.
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The nonclassical symmetry method can be viewed as a particular instance of the
more general differential constraint method that, as stated by Kruglikov [51], dates
back at least to the time of Lagrange... and was introduced into practice by Yanenko
[91]. The method was set forth in detail in Yanenko’s monograph [81] that was not
published until after his death [31]. A more recent account and generalization of
Yanenko’s work can be found in [59].

Less than thirty years ago in [40] and [50], solutions were found, which appar-
ently did not seem to follow either the classical or nonclassical symmetries method.
Twenty-five years ago, we showed [65] how these solutions could be obtained by
iterating the nonclassical symmetries method. A special case of the nonclassical
symmetries method generates a new nonlinear equation (the so-called G-equation
[64]), which inherits the prolonged symmetry algebra of the original equation. An-
other special case of the nonclassical symmetries method is then applied to this
heir-equation to generate another heir-equation, and so on. Invariant solutions of
these heir-equations are just the solutions derived in [40] and [50].

The heir-equations can also yield nonclassical symmetries (as well as classical
symmetries) as shown in [68]. The difficulty in applying the method of nonclassical
symmetries consists in solving nonlinear determining equations in contrast to the
linear determining equations in the case of classical symmetries. The concept of the
Gröbner basis has been used [29] for this purpose.

In [68] it was shown that one can find the nonclassical symmetries of any evo-
lution equation of any order by using a suitable heir-equation and searching for
a given particular solution among all its solutions, thus avoiding any complicated
calculations.

Fokas and Liu [36] and Zhdanov [92] independently introduced the method of gen-
eralised conditional symmetries, i.e., conditional Lie-Bäcklund symmetries. In [66]
it was shown that the heir-equations can retrieve all the conditional Lie-Bäcklund
symmetries found by Zhdanov.

In [43] Goard has shown that Nucci’s method of constructing heir-equations by
iterating the nonclassical symmetry method is equivalent to the generalized condi-
tional symmetries method.

In [10] B̂ılă and Niesen presented another method that reduces the partial dif-
ferential equation to an ordinary differential equation by using the invariant surface
condition and then applying the Lie classical symmetry method in order to find non-
classical symmetries of the original partial differential equation. Recently, Goard
in [44] has shown that B̂ılă and Niesen’s method, and its extension by Bruzón and
Gandarias in [20], are equivalent to Nucci’s method [68].

The use of a symbolic manipulator became imperative, because the heir-equations
can be quite long: one more independent variable is added at each iteration. We
employed our own interactive REDUCE programs [67] to calculate both the classi-
cal and the nonclassical symmetries, while we use MAPLE in order to generate the
heir-equations.

In the next sections, after recalling what heir-equations are and how to construct
them, we show some illustrative examples and applications that have been drawn
from our publications of the last 25 years, and include some open problems.
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190 M.C. Nucci

2 Constructing the heir-equations

Let us consider an evolution equation in two independent variables and one depen-
dent variable:

ut = H(t, x, u, ux, uxx, uxxx, . . .). (2.1)

The invariant surface condition is given by:

V1(t, x, u)ut + V2(t, x, u)ux = G(t, x, u). (2.2)

Let us take the case with V1 = 0 and V2 = 1, so that (2.2) becomes:

ux = G(t, x, u). (2.3)

Applying the nonclassical symmetry method leads to an equation for G. We call
this the G-equation [64], which has the following invariant surface condition:

ξ1(t, x, u,G)Gt + ξ2(t, x, u,G)Gx + ξ3(t, x, u,G)Gu = η(t, x, u,G). (2.4)

Let us consider the case ξ1 = 0, ξ2 = 1, and ξ3 = G, so that (2.4) becomes:

Gx +GGu = η(t, x, u,G). (2.5)

Applying the nonclassical symmetry method leads to an equation for η called the
η-equation. Clearly:

Gx +GGu ≡ uxx ≡ η. (2.6)

We could keep iterating to obtain the Ω-equation, which corresponds to:

ηx +Gηu + ηηG ≡ uxxx ≡ Ω(t, x, u,G, η), (2.7)

the ρ-equation, which corresponds to:

Ωx +GΩu + ηΩG + ΩΩη ≡ uxxxx ≡ ρ(t, x, u,G, η,Ω), (2.8)

and so on. Each of these equations inherits the symmetry algebra of the original
equation, with the correct prolongation: first prolongation for the G-equation, sec-
ond prolongation for the η-equation, and so on. Therefore, these equations were
named heir-equations in [65]. This implies that even in the case of few Lie point
symmetries, many more Lie symmetry reductions can be performed by using the
invariant symmetry solution of any of the possible heir-equations, as was shown in
[65], [3] and [58].

Also, it should be noticed that the uxx · · ·︸ ︷︷ ︸
r

–equation of (2.1) is just one of many

possible r-extended equations as defined by Guthrie in [45].
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We point out that the above described iteration method is strongly connected
to the definition of partial symmetries given by Vorobev in [87]. To exemplify, we
consider the heat equation:

ut = uxx. (2.9)

Its G-equation is:

2GGxu +G2Guu −Gt +Gxx = 0. (2.10)

Its η-equation is:

2ηηxG + 2GηηuG + η2ηGG + 2Gηxu + ηxx − ηt +G2ηuu = 0. (2.11)

The G-equation corresponds to the zeroth-order differential constraint as given by
Vorobev [88] on p. 76, formula (3.5), while the η-equation gives the partial sym-
metry of the heat equation as in [87] on p. 324, formula (14), and in [88] on p. 83,
formula (4.10).

Now, let us consider a hyperbolic equation in two independent variables and one
dependent variable:

utt = uxx + h(t, x, u, ux, ut), (2.12)

and take V1 = 1, and V2 = 1, so that (2.2) becomes2:

ut + ux = G(t, x, u). (2.13)

Applying the nonclassical symmetry method leads to an equation for G. We call
this equation the G-equation. If we take ξ1 = 1, ξ2 = 1, and ξ3 = G, then (2.4)
becomes3:

Gt +Gx +GGu = η(t, x, u,G). (2.14)

Applying the nonclassical symmetry method leads to an equation for η. We call
this equation the η-equation. Clearly:

Gt +Gx +GGu ≡ utt + 2utx + uxx ≡ η. (2.15)

We could keep iterating to obtain the Ω-equation, which corresponds to:

ηt + ηx +Gηu + ηηG ≡ uttt + 3uttx + 3utxx + uxxx ≡ Ω(t, x, u,G, η), (2.16)

and so on.

2There exists another case with V1 = 1, and V2 = −1, which leads to ut − ux = G(t, x, u).
3There exists another case with ξ1 = 1, ξ2 = −1, and ξ3 = G, which leads to Gt −Gx +GGu =

η(t, x, u,G).
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Let us consider an elliptic equation in two independent variables and one depen-
dent variable:

utt + uxx = h(t, x, u, ux, ut), (2.17)

and take V1 = 1, and V2 = i, so that (2.2) becomes4:

ut + iux = G(t, x, u). (2.18)

Then the η-equation will be given through:

Gt + iGx +GGu ≡ utt + 2iutx − uxx ≡ η(t, x, u,G), (2.19)

the Ω-equation will be given through:

ηt + iηx +Gηu + ηηG ≡ uttt + 3iuttx − 3utxx − iuxxx ≡ Ω(t, x, u,G, η), (2.20)

and so on.

3 Symmetry solutions of heir-equations

In [65] we have shown that solutions obtained in [40] are just invariant solutions of
the uxx ≡ η–equation.

We seek t-independent invariant solutions, which have x as the similarity variable
of the heir-equations. In this way, we obtain ordinary differential equations of order
two. Their general solution depends on arbitrary functions of t. Substituting into
the original equation yields ordinary differential equations to be satisfied by these
t-dependent functions.

We recall Galaktionov’s equation:

ut = uxx + u2x + u2. (3.1)

Its G-equation is:

2GGxu +G2Guu +G2Gu − u2Gu −Gt +Gxx + 2GGx + 2uG = 0. (3.2)

Its η-equation is:

2ηηxG + 2GηηuG + η2ηGG − 2uGηG + 2Gηxu + ηxx

+2Gηx − ηt +G2ηuu +G2ηu − u2ηu + 2η2 + 2uη + 2G2 = 0. (3.3)

The symmetry algebra of (3.1) is spanned by the two vector fields X1 = ∂t, and
X2 = ∂x. Therefore, t-independent invariant solutions of (3.3) are given in the form
η = η(x, u,G). A particular case is ηu = 0, which implies η = L(x,G). Substituting
this expression for η into (3.3) leads to L = f(x)G with5:

f(x) =
−c1 sinx+ c2 cosx

c2 sinx+ c1 cosx
. (3.4)

4There exists another case with V1 = 1, and V2 = −i, which leads to ut − iux = G(t, x, u).
5cn (n = 1, 2, 3) are arbitrary constants.
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If we let c1 = 0, then:

η = cot(x)G, (3.5)

which is just the differential constraint for (3.1) given by Olver in [72], i.e.:

uxx = cot(x)ux. (3.6)

Integrating (3.6) with respect to x gives rise to6:

u = w1(t) cos(x) + w2(t). (3.7)

Finally, the substitution of (3.7) into (3.1) leads to:

ẇ1 = w2
1 + w2

2, ẇ2 = 2w1w2 − w2 (3.8)

This is the solution derived by Galaktionov for (3.1).

4 Zhdanov’s conditional Lie-Bäcklund symmetries and
heir-equations

We recall Zhdanov’s conditional Lie-Bäcklund symmetries [92] and their relation-
ship with heir-equations as determined in [66].

In [92], Zhdanov introduced the concept of conditional Lie-Bäcklund symmetry,
i.e., given an evolution-type equation

ut = H(t, x, u, ux, uxx, uxxx, . . .) (4.1)

and some smooth Lie-Bäcklund vector field (LBVF)

Q = S∂u + (DtS)∂ut + (DxS)∂ux + . . . (4.2)

with S = S(t, x, u, ut, ux, . . .), equation (4.1) is said to be conditionally invariant
under LBVF (4.2) if the condition

Q(ut −H)|M∩Lx = 0 (4.3)

holds. Here M is a set of all differential consequences of the equation (4.1), and Lx
is the set of all x-differential consequences of the equation S = 0. Zhdanov claimed
that this definition can be applied to construct new exact solutions of (4.1), which
cannot be obtained by either Lie point or Lie-Bäcklund symmetries.

However, S = 0 is just a particular invariant solution of a suitable heir-equation.
Of course, we assume that S = 0 can be written in explicit form with respect to the
highest derivative of u.

6wn (n = 1, 2) are arbitrary functions of t.
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We present here one example from [92], which we have also discussed in [66].
Zhdanov introduced the following nonlinear heat conductivity equation with a
logarithmic-type nonlinearity

ut = uxx + (α+ β log(u)− γ2 log(u)2)u, (4.4)

and obtained new solutions by showing that (4.4) is conditionally invariant with
respect to LBVF (4.2) with

S = uxx − γux − u2x/u. (4.5)

It can easily be shown that equation

S ≡ uxx − γux − u2x/u = 0 (4.6)

admits an eight-dimensional Lie point symmetry algebra and therefore is lineariz-
able.7 In fact, the change of dependent variable u = exp(v) transforms (4.6) into
vxx − γvx = 0. Therefore, the following general solution of (4.6) can be obtained
[92]

u(t, x) = exp (φ1(t) + φ2(t) exp(γx)) ,

which, substituted into (4.4), gives rise to the following system of two ordinary
differential equations

φ̇1 = α+ βφ1 − γ2φ21, φ̇2 = (β + γ2 − 2γ2φ1)φ2,

and its general solution can easily be derived [92].
Now, let us apply the heir-equation method to equation (4.4). Its G-equation is

2GxuG+GuuG
2 +Gu log(u)2γ2u−Gu log(u)βu−Guαu−Gt

+Gxx − log(u)2Gγ2 + log(u)βG− 2 log(u)Gγ2 + αG+ βG = 0. (4.7)

Its η-equation is

2ηuGηGu+ ηGGη
2u+ ηG log(u)2γ2Gu− ηG log(u)βGu− ηGαGu

+2ηG log(u)γ2Gu− ηGβGu+ ηuuG
2u+ ηu log(u)2γ2u2

−ηu log(u)βu2 − ηuαu2 − log(u)2γ2ηu+ log(u)βηu

−2 log(u)γ2ηu− 2 log(u)γ2G2 + αηu+ βηu+ βG2 − 2γ2G2 = 0. (4.8)

The Lie point symmetry algebra of (4.4) is spanned by the two vector fields X1 = ∂t,
and X2 = ∂x. Therefore, (x, t)-independent invariant solutions of (4.8) are given
in the form η = η(u,G). A particular case is η = r1(u)G2 + r2(u)G + r3(u), i.e.,
a polynomial of second degree in G. Substituting into (4.8) and assuming r3 = 0
gives rise to

η =
G2

u
± γG. (4.9)

Finally, substituting η = uxx, and G = ux into (4.9) yields (4.6).
All Zhdanov’s examples in [92] were similarly framed within the heir-equation

method in [66].

7Zhdanov integrated equation (4.6) without any mention of this property.
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5 Nonclassical symmetries as special solutions of heir-
equations

We recall the method that allows one to find nonclassical symmetries of an evolution
equation by using a suitable heir-equation [68].

For the sake of simplicity, let us assume that the highest order x-derivative in
the equation is two, i.e.:

ut = H(t, x, u, ux, uxx). (5.1)

First, we use (5.1) to replace ut in (2.2), with the condition V1 = 1, i.e.:

H(t, x, u, ux, uxx) + V2(t, x, u)ux = F (t, x, u). (5.2)

Then we generate the η-equation with η = η(x, t, u,G), and replace ux = G, uxx = η
in (5.2), i.e.:

H(t, x, u,G, η) = F (t, x, u)− V2(t, x, u)G. (5.3)

By the implicit function theorem, we can isolate η in (5.3), e.g.:

η = [h1(t, x, u,G) + F (t, x, u)− V2(t, x, u)G]h2(t, x, u,G), (5.4)

where hi(t, x, u,G)(i = 1, 2) are known functions. Thus, we have obtained a par-
ticular solution of η which must yield an identity if substituted in the η-equation.
The only unknown functions are V2 = V2(t, x, u) and F = F (t, x, u). We remind
the reader that there are two kinds of nonclassical symmetries, namely those with
V1 6= 0 in (2.2) or those with V1 = 0 in (2.2) [29]. In the first case, we can assume
without loss of generality that V1 = 1, while in the second case we can assume
V2 = 1, which generates the G-equation. If there does exist a nonclassical symme-
try8, our method will recover it. Otherwise, only the classical symmetries will be
found. If we are only interested in finding nonclassical symmetries, impose F and
V2 to be functions only of the dependent variable u. Moreover, any such solution
should be singular, i.e. should not form a group.

If we are dealing with a third order equation, then we need to construct the
heir-equation of order three, i.e. the Ω-equation. Then, a similar procedure will
yield a particular solution of the Ω-equation given by a formula of the form:

Ω = [h1(t, x, u,G, η) + F (t, x, u)− V2(t, x, u)G]h2(t, x, u,G, η) (5.5)

where hi(t, x, u,G, η)(i = 1, 2) are known functions.
In the case of a fourth order equation, we need to construct the heir-equation

of order four, i.e. the ρ-equation. Then, a similar procedure will yield a particular
solution of the ρ-equation given by a formula of the form:

ρ = [h1(t, x, u,G, η,Ω) + F (t, x, u)− V2(t, x, u)G]h2(t, x, u,G, η,Ω) (5.6)

8Of course, we mean one such that V1 6= 0, i.e. V1 = 1.
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where hi(t, x, u,G, η,Ω)(i = 1, 2) are known functions.
And so on.
We would like to underline how easy this method is in comparison with the non-

classical symmetry method itself since one has just to check if a particular solution is
admitted by the same-order heir-equation instead of solving nonlinear determining
equations. The only difficulty consists of deriving the heir-equations, which become
longer and longer. However, they can be automatically determined by using any
computer algebra system.

We now present some examples to show how the method works.

In [68], the following family of second order evolution equations:

ut = uxx +R(u, ux), (5.7)

with R(u, ux) a known function of u and ux, was considered. Several well-known
equations that possess nonclassical symmetries belong to (5.7). In particular, Burg-
ers’ equation [4], Fisher’s equation [28], real Newell-Whitehead’s equation [62],
Fitzhugh-Nagumo’s equation [70], and Huxley’s equation [28], [7].
The G-equation of (5.7) is:

RG(GGu +Gx) +GRu + 2GxuG+GuuG
2 −GuR−Gt +Gxx = 0. (5.8)

The η-equation of (5.7) is:

2RuGηG+RGGη
2 +RGηx +GRGηu +RuuG

2 −GRuηG +Ruη

+2ηxGη + 2ηuGηG+ ηGGη
2 − ηt + 2ηxuG+ ηxx + ηuuG

2 −Rηu = 0. (5.9)

The particular solution (5.4) that we are looking for is:

η = −R(u,G) + F (t, x, u)− V2(t, x, u)G (5.10)

which, substituted in (5.9), yields an overdetermined system in the unknowns func-
tions F and V2, whereby R(u,G) is given explicitly. Otherwise, after solving a
first-order linear partial differential equation in R(u,G), we obtain that equation
(5.7) may possess a nonclassical symmetry (2.2) with V1 = 1, V2 = v(u), F = f(u)
if R(u, ux) has the following form

R(u, ux) =
ux
f2

((
−df

du
fux +

dv

du

)
fu2x + Ψ(ξ)u2x + 2f2v − 3fuxv

2 + u2xv
3

)
(5.11)

with f, v arbitrary functions of u, and Ψ arbitrary function of

ξ =
f(u)

ux
− v(u). (5.12)

This means that infinitely many cases can be found. For example, equation (5.7)
with R(u, ux) given by

R(u, ux) = (2ux + u4)
ux
u

(5.13)
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i.e.

ut = uxx + (2ux + u4)
ux
u
, (5.14)

admits a nonclassical symmetry9 with v = u3/2 and f = −u7/12. It is interesting to
note that the corresponding reduction leads to the solution of the following ordinary
differential equation in u(x):

uxx = −2
u2x
u
− 3

2
u3ux −

u7

12
, (5.15)

which is linearizable. In fact, it admits a Lie symmetry algebra of dimension eight
[55], and consequently the two-dimensional abelian intransitive subalgebra gener-
ated by the following operators:

1

6
u3
(
6∂x − u4∂u

)
,

1

12
(2− xu3)

(
6∂x − u4∂u

)
which yields the transformation:

x̃ =
2u3

2− xu3
, ũ =

x(4− xu3)
2(2− xu3)

that takes equation (5.15) into
dũ

dx̃
= 0.

Thus, the general solution of (5.15) is

x2u3

2(2− xu3)
+ x− 2s1u

3

2− xu3
= s2,

with s1, s2 arbitrary functions of t. Maple 16 solves this third degree polynomial in
u,

u =

(
4(x− s2)

4s1 − 2s2x+ x2

)1/3

,

which, substituted into (5.14), yields the following solution:

u =

(
4(x− a2)

4a1 + 2t− 2a2x+ x2

)1/3

.

9We remark that equation (5.14) admits a five-dimensional Lie symmetry algebra, generated by
the following operators:

Γ1 = t2∂t + tx∂x −
x+ tu3

3u2
∂u, Γ2 = t∂t + 2x∂x + ∂u, Γ3 = ∂t, Γ4 = t∂x −

1

3u2
∂u, Γ5 = ∂x.



i
i

“A7” — 2019/10/24 — 21:00 — page 198 — #11 i
i

i
i

i
i

198 M.C. Nucci

6 Final remarks

As stated in [68], we have determined an algorithm which is easier to implement
than the usual method to find nonclassical symmetries admitted by an evolution
equation in two independent variables. Moreover, one can retrieve both classical
and nonclassical symmetries with the same method.

While one can apply the heir-equations and their properties to a system of evo-
lution equations [3], [46], [19], it is still an open problem to determine suitable
heir-equations for more than two independent variables.

Moreover, the heir-equation method raises many other intriguing questions [68]:

• Could an a priori knowledge of the existence of nonclassical symmetries apart
from classical symmetries be achieved by looking at the properties of the right-
order heir-equation? We have shown that our method leads to both classical
and nonclassical symmetries. Nonclassical symmetries could exist if we impose
F and V2 to be functions only of the dependent variable u in either (5.4), or
(5.5), or (5.6), etc. Of course, any such solution of F and V2 does not yield a
nonclassical symmetry, unless it is isolated, i.e. does not form a group.

• What is integrability? The existence of infinitely many higher order symme-
tries is one of the criteria [60], [73]. In [66], we have shown that invariant
solutions of the heir-equations yield Zhdanov’s conditional Lie-Bäcklund sym-
metries [92]. Higher order symmetries may be interpreted as special solutions
of heir-equations (up to which order? see [80], [73]). Another criterion for
integrability consists of looking for Bäcklund transformations [2], [79]. In [64],
we have found that a nonclassical symmetry of the G-equation for the modified
Korteweg-deVries equation gives the known Bäcklund transformation between
the modified Korteweg-deVries and Korteweg-deVries equations [61]. Another
integrability test is the Painlevé property [89] which when satisfied leads to
Lax pairs (hence, inverse scattering transform) [2], Bäcklund transformations,
and Hirota bilinear formalism [84]. In [33], the singularity manifold of the
modified Korteweg-deVries equation was found to be connected to an equa-
tion which is exactly the G-equation for the modified Korteweg-deVries, and
the same was done for five other equations. Could heir-equations be the com-
mon link among all the integrability methods?

• In order to reduce a partial differential equation to ordinary differential equa-
tions, one of the first steps is to find the admitted Lie point symmetry algebra.
In most instances, it is very small, and therefore not many reductions can be
obtained. However, if heir-equations are considered, then many more ordinary
differential equations can be derived using the same Lie algebra [65], [3], [58].
Of course, the classification of all subalgebras [90] becomes imperative [58].
In the case of known integrable equations, it would be interesting to investi-
gate which ordinary differential equations result from using the admitted Lie
point symmetry algebra and the corresponding heir-equations. Do all these
ordinary differential equations possess the Painlevé property (see the Painlevé
conjecture as stated in [1])?
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• Researchers often find solutions of partial differential equations which appar-
ently do not follow from any symmetry reduction. Are the heir-equations the
ultimate method which keeps Lie symmetries at center stage?
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