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ABSTRACT
All maximally superintegrable Hamiltonian systems in three-dimensional flat space derived in the work of Evans [Phys. Rev. A 41,
5666–5676 (1990)] are shown to possess hidden symmetries leading to their linearization, likewise the maximally superintegrable Hamil-
tonian systems in two-dimensional flat space as shown in the work of Gubbiotti and Nucci [J. Math. Phys. 58, 012902 (2017)].
We conjecture that even minimally superintegrable systems in three-dimensional flat space have hidden symmetries that make them
linearizable.
Published under license by AIP Publishing. https://doi.org/10.1063/5.0007377

I. INTRODUCTION
The superintegrability of (classical) Hamiltonian systems has generally been analyzed from the perspective of separating coordinates of

the associated Hamilton–Jacobi equation, an approach that motivated the systematic classification of (orthogonal) coordinate systems in R3

for which a separation of variables can be obtained. For the Hamilton–Jacobi equation in the potential-free case, 11 coordinate systems with
the separability property were found, and for each of these classes, Eisenhart determined the most general form of the potential that can be
added such that the separability is preserved.1 Although some of these systems, such as the Kepler problem, were recognized to have relevant
symmetry properties related to Lie’s approach to differential equations,2,3 the Lie group analysis has not been exploited systematically in the
context of superintegrability, in particular, its relation to the linearization problem.

Several important classes of superintegrable Hamiltonian systems in flat two-dimensional spaces have been shown in Ref. 4 to be lin-
earizable by means of some hidden symmetries of the system using a powerful method originally developed in Ref. 2 in the context of
the Kepler problem. This reduction technique, valid for any first-order autonomous system, is based on the observation that one of the
unknown functions can always be taken to be the new independent variable. Rewriting the system in these new coordinates and apply-
ing the Lie group analysis allow us to determine symmetries that cannot be detected in the original coordinates and therefore correspond
to hidden symmetries of the system (see, e.g., Refs. 2 and 4 for details). This procedure further allowed us to show that the hidden lin-
earity is completely independent of the degree of the first integrals of the system, as well as the separability properties of the associated
Hamilton–Jacobi equation. In Ref. 5, the linearizability of a Hamiltonian system devoid of first integrals quadratic in the momenta but
possessing constants of the motion of third- and fourth-order was shown, providing a first example exhibiting hidden linearity but with
no second-order integrals. The symmetry analysis in the case of the non-Euclidean plane, considered in Ref. 6, points out that the sym-
metry approach remains valid, regardless of the space curvature. The success of the Lie method in linearizing these systems suggests us
to inspect higher-order systems along the same lines in an attempt to vindicate the usefulness of the Lie group analysis in the context of
superintegrability.

The main purpose of this work is to show that the maximally superintegrable Hamiltonian systems in R3 classified in Ref. 7
and possessing linear or quadratic first integrals in the momenta can also be linearized by means of their hidden symmetries. The

J. Math. Phys. 62, 012702 (2021); doi: 10.1063/5.0007377 62, 012702-1

Published under license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1063/5.0007377
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0007377
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0007377&domain=pdf&date_stamp=2021-January-25
https://doi.org/10.1063/5.0007377
http://orcid.org/0000-0003-1453-0988
http://orcid.org/0000-0003-2907-8533
mailto:nucci@unipg.it
mailto:rutwig@ucm.es
https://doi.org/10.1063/5.0007377


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

main tool used in this context is the Lie criterion that establishes the equivalence between the existence of a point transformation
that reduces an nth-order differential equation (or system) to the free equation w(n) = 0 and a Lie algebra of point symmetries of the
maximal possible dimension (see Refs. 8 and 9 and references therein). As can be expected, the linearizing transformations are gen-
erally nonlinear in their arguments, thus corresponding to a more general class than the canonical transformations that preserve the
Hamiltonian.

As will be seen, some of the superintegrable Hamiltonian systems in Ref. 7 can be directly linearized, without requiring a change of the
independent variable. This approach is sometimes the simplest and computationally shortest among the various possible ways to determine
the hidden symmetries. For comparison purposes with the linearization using the reduction, those systems that are solved without changing
the independent variable are reconsidered in the Appendix, illustrating that the amount of calculations increases considerably when new
independent variables are introduced. On the other hand, for certain systems, it is more convenient to express the Hamiltonian systems in
coordinates different from the Cartesian ones, with the purpose of simplifying the symmetry analysis. Indeed, the procedure to linearize
a system is far from being unique, and for each of the superintegrable systems, the most efficient way in terms of calculations has been
chosen.

II. MAXIMALLY SUPERINTEGRABLE SYSTEMS IN R3

In Ref. 7, it was shown that there are five equivalence classes of maximally superintegrable systems in R3 admitting integrals that are
at most quadratic in the canonical momenta. If H = 1

2(p2
1 + p2

2 + p2
3) +V(w1,w2,w3) denotes the Hamiltonian of the system in Cartesian

coordinates, then these potentials were given by

1. VI(w1,w2,w3) = k�w2
1 +w2

2 +w2
3� + k1

w2
1

+ k2

w2
2

+ k3

w2
3

,

2. VII(w1,w2,w3) = − k�
w2

1+w2
2+w2

3

+ k1

w2
1

+ k2

w2
2

,

3. VIII(w1,w2,w3) = k1w1

w2
2

�
w2

1+w2
2

+ k2

w2
2

+ k3

w2
3

,

4. VIV(w1,w2,w3) = k1w1

w2
2

�
w2

1+w2
2

+ k2

w2
2

+ k3w3,

5. VV(w1,w2,w3) = k�w2
1 +w2

2� + 4kw2
3 + k1

w2
1

+ k2

w2
2

,

where k, k1, k2, and k3 are arbitrary constants.
These Hamiltonian systems with the above potentials are all autonomous so that the general reduction method of Ref. 2 to detect hidden

symmetries is potentially applicable to them. We analyze each of these potentials separately and prove that the corresponding Hamiltonian
system is linearizable.

A. The potential V I (w 1, w 2, w 3)
The Hamiltonian

H1 = 1
2
�p2

1 + p2
2 + p2

3� + k�w2
1 +w2

2 +w2
3� + k1

w2
1
+ k2

w2
2
+ k3

w2
3

(1)

yields the Hamiltonian equations

���������������������������������������������

ẇ1 = p1,
ẇ2 = p2,
ẇ3 = p3,

ṗ1 = 2
k1 − kw4

1

w3
1

,

ṗ2 = 2
k2 − kw4

2

w3
2

,

ṗ3 = 2
k3 − kw4

3

w3
3

.

(2)

We apply the reduction method developed in Ref. 2 to this system. If we choose w1 as a new independent variable y, then system (2) reduces
to the following five equations:
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�������������������������������������������

dw2

dy
= p2

p1
,

dw3

dy
= p3

p1
,

dp1

dy
= 2

k1 − ky4

y3p1
,

dp2

dy
= 2

k2 − kw4
2

w3
2p1

,

dp3

dy
= 2

k3 − kw4
3

w3
3p1

.

(3)

The third equation of system (3) can be integrated to yield

2ky4 + 2k1 + p2
1y2

4y2 = A = const. �⇒ p1 = ±
√

2
y
�

2Ay2 − ky4 − k1. (4)

This coincides with the first integral I1 determined in Ref. 7. Deriving p2 from the first equation of system (3) and replacing it into the fourth
equation yield the following second-order equation in w2:

d2w2

dy2 = (ky4 − k1)w3
2

dw2
dy + (k2 − kw4

2)y3

yw3
2(2Ay2 − ky4 − k1) . (5)

Analogously, deriving p3 from the second equation of system (3) and replacing it into the fifth equation give the following second-order
equation in w3:

d2w3

dy2 = (ky4 − k1)w3
3

dw3
dy + (k3 − kw4

3)y3

yw3
3(2Ay2 − ky4 − k1) , (6)

which is equal to Eq. (5) if k3 is substituted with k2. Equation (5) admits a three-dimensional Lie symmetry algebra isomorphic to sl(2,R).
This suggests us to apply the general method described in Ref. 10, valid for any second-order ordinary differential equation exhibiting sl(2,R)
symmetry. If we solve Eq. (5) with respect to the constant k2 and derive it once with respect to y, then we obtain the following third-order
equation,

d3w2

dy3 = − 3
w2

dw2

dy
d2w2

dy2 + 3(ky4 − k1)
y2w2(2Ay2 − ky4 − k1)

�
�yw2

d2w2

dy2 + y�dw2

dy
�2−w2

dw2

dy
�
�, (7)

which admits a seven-dimensional Lie symmetry algebra and is therefore linearizable (see, e.g., Ref. 9, p. 244). A two-dimensional Abelian
intransitive subalgebra is that generated by the operators

1
w2

@w2 ,
A − ky2

w2
@w2 . (8)

Following Lie’s classification (Ref. 8, p. 405), if we transform them into their canonical form, i.e., @u, v@u, then we obtain that the new
dependent and independent variables are given by u = w2

2�2, v = A − ky2, and Eq. (7) becomes linear, i.e.,

d3u
dv3 = 3v

A2 − kk1 − v2
d2u
dv2 . (9)

Integration of the latter yields the general solution

u = b1
�

A2 − kk1 − v2 + b2v + b3 (10)

with bj(j = 1, 2, 3) arbitrary constants. Thus, the general solution of Eq. (7) is
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w2 = ±�2(�2Aky2 − k2y4 − kk1b1 + Ab2 − b2ky2 − b3), (11)

which substituted into (5) obviously yields that one of the three arbitrary constants bj is not at all arbitrary and, in particular, depends
on k2, i.e.,

b3 = 1
2
√

k

�
4A2b2

1k + 4 A2b2
2k − 4b2

1k2k1 − 4b2
2k2k1 + k2. (12)

Consequently, the general solution of Eq. (5) is

w2 = ±
����2��2Aky2 − k2y4 − kk1b1 + Ab2 − b2ky2 − 1

2
√

k

�
4A2b2

1k + 4 A2b2
2k − 4b2

1k2k1 − 4b2
2k2k1 + k2�, (13)

and replacing k2 with k3, and bj with aj, yields the general solution of Eq. (6), i.e.,

w3 = ±
����2��2Aky2 − k2y4 − kk1a1 + Aa2 − a2ky2 − 1

2
√

k

�
4A2a2

1k + 4 A2a2
2k − 4a2

1k2k1 − 4a2
2k2k1 + k3�, (14)

with a1, a2 being arbitrary constants. Thus, we have derived w2 and w3 as functions of y = w1, namely, the general solution of system (3),
since p2 and p3 can be obtained by substituting w2 and w3 into the first and second equations in (3), respectively. Of course, integrating the
first Hamiltonian equation in (2), i.e.,

ẇ1 =
√

2
w1

�
2Aw2

1 − kw4
1 − k1, (15)

will yield the general solution of the Hamiltonian equations (2).
Therefore, we have shown that the maximally superintegrable Hamiltonian system (2) hides twice a third-order linear equation (9)

and, consequently, that its general solution can be derived by substitutions and a final integration by quadratures. All of these have been
accomplished without making use of any of the other four first integrals derived in Ref. 7 of which two are given in cartesian and two in
spherical polar coordinates.

However, we are more interested in showing that all the maximally superintegrable Hamiltonian systems hide linear equations, than in
determining their general solutions.

We observe that as the Hamiltonian H1 contains three copies of the one-dimensional caged oscillator, all variables wi lead to the
same reduction. The procedure does not depend whether the frequencies are commensurable or not, indicating that the same reduction
is valid for the case where the oscillator is not isotropic. This shows, in particular, that the superintegrable caged anisotropic oscillator with
Hamiltonian,

H(`,m,n)
1 = 1

2
�p2

1 + p2
2 + p2

3� + k�`2w2
1 +m2w2

2 + n2w2
3� + k1

w2
1
+ k2

w2
2
+ k3

w2
3

, (16)

introduced in Ref. 11 also hides a third-order linear equation of the type (9), leading to the linearization of the system. In addition, as the
Hamiltonian (16) always admits two independent integrals of orders 2(` +m − 1) and 2(` + n − 1) in the momenta, respectively, it follows
that the reduction method is not dependent on the degree of the first integrals, or whether these arise from the separation of variables of the
Hamilton–Jacobi equation, as it was shown in other such instances in Refs. 5 and 4.

B. The potential V II (w 1, w 2, w 3)
In Cartesian coordinates, the Hamiltonian is given by

H(cc)
2 = 1

2
�p2

1 + p2
2 + p2

3� − k�
w2

1 +w2
2 +w2

3

+ k1

w2
1
+ k2

w2
2

. (17)

As the variables wi in the potential are nontrivially coupled, it is convenient to reformulate the Hamiltonian in spherical coordinates in order
to largely simplify the computations in the reduction. In spherical polar coordinates, we obtain

H2 = 1
2
�
�p2

r + p2
ϕ

r2sin2(θ) + p2
θ

r2

�
� −

k
r
+ k1

r2sin2(θ)cos2(ϕ) + k2

r2sin2(θ)sin2(ϕ) , (18)
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yielding the following Hamiltonian equations:

�������������������������������������������������

ṙ = pr ,

ϕ̇ = pϕ

r2sin2(θ) ,

θ̇ = pθ

r2 ,

ṗr = p2
ϕ

r3sin2(θ) + p2
θ

r3 − k
r2 + 2k1

r3sin2(θ)cos2(ϕ) + 2k2

r3sin2(θ)sin2(ϕ) ,

ṗϕ= 2k2cos(ϕ)
r2sin2(θ)sin3(ϕ) − 2k1sin(ϕ)

r2sin2(θ)cos3(ϕ) ,

ṗθ = cos(θ)��
p2

ϕ

r2sin3(θ) + k1

r2sin3(θ)cos2(ϕ) + k2

r2sin3(θ)sin2(ϕ)
�
�.

(19)

We apply again the reduction method.2 If we choose ϕ as a new independent variable y, then system (19) reduces to the following five
equations: ���������������������������������������������

dr
dy
= r2sin2(θ)pr

pϕ
,

dθ
dy
= sin2(θ)pθ

pϕ
,

dpr

dy
= pϕ

r
+ sin2(θ)p2

θ
rpϕ

− ksin2(θ)
pϕ

+ 2k1

rcos2(y)pϕ
+ 2k2

rsin2(y)pϕ
,

dpϕ

dy
= 2k2cos(y)

sin3(y)pϕ
− 2k1sin(y)

cos3(y)pϕ
,

dpθ

dy
= cot(θ)

pϕ
�p2

ϕ + k1

cos2(y) + k2

sin2(y)�.

(20)

The fourth equation of system (20) can be integrated to yield

p2
ϕ

2
+ k1

cos2(y) + k2

sin2(y) = A = const. �⇒ pϕ = ±√2
�

A − k1

cos2(y) − k2

sin2(y) . (21)

We observe that this is identical to the first integral I2 given in Ref. 7. Deriving pθ from the second equation of system (20), i.e.,

pθ =
√

2
sin2(θ) dθ

dy

�
A − k1

cos2(y) − k2

sin2(y) , (22)

and replacing it into the fifth equation lead to the following second-order equation in θ:

d2θ
dy2 = 2cot(θ)�dθ

dy
�2 + Acos2(y)sin2(y)

Acos2(y)sin2(y) − k1sin2(y) − k2cos2(y) sin(θ)cos(θ)
+ k1sin4(y) − k2cos4(y)

cos(y)sin(y)�Acos2(y)sin2(y) − k1sin2(y) − k2cos2(y)�
dθ
dy

. (23)

This equation admits an eight-dimensional Lie symmetry algebra and is therefore linearizable. One simple symmetry is −cos(θ)sin(θ)@θ,
which can be transformed into the normal form u@u by the change of the dependent variable u = −cot(θ). Then, Eq. (23) becomes the
following linear equation:

u′′ = (k1sin(y)4 − k2cos(y)4)u′ − Asin(y)3cos(y)3u
sin(y)cos(y)(Asin(y)2cos(y)2 − k1sin(y)2 − k2cos(y)2) . (24)

Now, deriving pr from the first equation of system (20) and replacing it into the third equation yield a second-order equation in r, the
coefficients of which involve the general solution of Eq. (23). It is explicitly given by
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d2r
dy2 − 2

r
� dr

dy
�2 +F(y)dr

dt
+ G(y)r +H(y)r2 = 0, (25)

where

F(y) = 2(k1 − k2)cos4(y) − k1cos(2y)
sin(2y)�Asin2(y)cos2(y) − k1sin2(y) − k2cos(2)y� − 2cot(θ)dθ

dy
,

G(y) = sin2(θ)sin2(y)cos2(y)
Acos4(y) + (k2 − k1 − A)cos2(y) + k1

− �dθ
dy
�2

,

H(y) = ksin2(θ)sin2(y)
2Acos4(y) + 2(k2 − k1 − A)cos2(y) + 2k1

.

Equation (25) admits an eight-dimensional Lie symmetry algebra sl(3,R), and therefore, it is linearizable. Indeed, it can be transformed into
the following linear equation by means of the change of the dependent variable z = −r−1:

d2z
dy2 +F(y)dz

dy
− G(y)z +H(y) = 0. (26)

The reduction to the canonical form w′′(s) = 0 can be obtained using a generalized Kummer–Liouville transformation

z = P(y)w(s) +Q(y), s = s(y), (27)

where

ds
dy
= 2(Acos4(y) + k1 + (k2 − k1 − A)cos2(y))

sin2(θ)sin(2y)P2(y) (28)

and P(y) and Q(y) are a solution of the homogeneous part of Eq. (26) and a particular solution, respectively.12 We conclude that the maximally
superintegrable Hamiltonian system (19) is linearizable since it hides two second-order linear equations (24) and (26).

C. The potential V III (w 1, w 2, w 3)
The Hamiltonian

H3 = 1
2
�p2

1 + p2
2 + p2

3� + k1w1

w2
2

�
w2

1 +w2
2

+ k2

w2
2
+ k3

w2
3

(29)

yields the Hamiltonian equations

�������������������������������������������

ẇ1= p1,
ẇ2= p2,
ẇ3= p3,

ṗ1 = − k1(w2
1 +w2

2)3�2 ,

ṗ2 = k1w1(2w2
1 + 3w2

2)
w3

2(w2
1 +w2

2)3�2 + 2k2

w3
2

,

ṗ3 = 2k3

w3
3

.

(30)

If we derive p3 from the third equation of system (30) and replace it into the sixth equation, we obtain the following second-order
equation in w3:

ẅ3 = 2k3

w3
3

. (31)

It admits a three-dimensional Lie symmetry algebra sl(2,R) generated by the following operators:
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t2@t + tw3@w3 , 2t@t +w3@w3 , @t . (32)

Solving Eq. (31) with respect to k3 and deriving it once with respect to t lead to the third-order equation,

...
w3 = −3ẇ3ẅ3

w3
, (33)

which is easily seen to admit a seven-dimensional Lie symmetry algebra generated by the following operators:

X1 = t2@t + tw3@w3 , X2 = t@t , X3 = @t , X4 = w3@w3 ,

X5 = t2

w3
@w3 , X6 = t

w3
@w3 , X7 = 1

w3
@w3

and is therefore linearizable. We find that a two-dimensional non-Abelian intransitive subalgebra is that generated by X4 and X7, and following
Lie’s classification,8 if we transform these operators into their canonical form, i.e., @u, u@u, then we obtain that the new dependent variable
u = w2

3�2 transforms equation (33) into the linear equation
...u = 0, (34)

which, solved and replaced into Eq. (31), yields

w3 = ±
����A1t2 + A2t + A2

2 + 8k3

4A1
(35)

with An(n = 1, 2) arbitrary constants.
About the other four equations of system (30), we make a simplifying substitution, i.e.,

w2 =�r2
2 −w2

1. (36)

If we derive p1 from the first equation of system (30) and replace it into the fourth equation, we obtain the following second-order
equation in w1:

ẅ1 = −k1

r3
2

. (37)

Similarly, deriving p2 from the second equation of system (30) and replacing it into the fifth equation yield the second-order equation in r2,

r̈2 = w2
1 ṙ2

2

r2(r2
2 −w2

1) −
2w1ẇ1 ṙ2

r2
2 −w2

1
+ ẇ2

1r3
2 + 2k1w1 + 2k2r2

r2
2(r2

2 −w2
1) . (38)

The system of Eqs. (37) and (38) admits a three-dimensional Lie symmetry algebra sl(2,R) generated by the following operators:

t2@t + tw1@w1 + tr2@r2 , 2t@t +w1@w1 + r2@r2 , @t . (39)

If we solve system (37) and (38) with respect to k1 and k2 and derive once with respect to t, the following system of two separated third-order
equations is obtained:

...
w1 = −3ẇ1ẅ1

w1
, (40)

...r2 = −3ṙ2 r̈2

r2
, (41)

namely, both w1 and r2 satisfy the same Eq. (33) as w3. As a consequence, the transformations u1 = w2
1�2 and u2 = r2

2�2 take Eqs. (40) and
(41) into the linear equations,

...u1 = 0, (42)

...u2 = 0. (43)
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We conclude that the maximally superintegrable Hamiltonian system (30) hides (three times) the third-order linear equation (34).
We remark that, as shown in Ref. 7, the Hamilton–Jacobi equation corresponding to the Hamiltonian (29) is not separable in Cartesian

coordinates.
In contrast to the previous Hamiltonians, in this case, the shortest and simplest ansatz to linearize the system is a direct approach, i.e.,

without replacing the independent variable t by a new one and reducing the number of equations, although the reduction method can also be
applied (see the Appendix).

D. The potential V IV (w 1, w 2, w 3)
The Hamiltonian

H4 = 1
2
�p2

1 + p2
2 + p2

3� + k1w1

w2
2

�
w2

1 +w2
2

+ k2

w2
2
+ k3w3 (44)

can also be treated directly as the case H3, which turns out to be the shortest way to linearize the system. Its linearization using the reduction
method is given in the Appendix.

The equations associated with the Hamiltonian are given by

���������������������������������������

ẇ1= p1,
ẇ2= p2,
ẇ3= p3,

ṗ1 = − k1(w2
1 +w2

2)3�2 ,

ṗ2 = k1w1(2w2
1 + 3w2

2)
w3

2(w2
1 +w2

2)3�2 + 2k2

w3
2

,

ṗ3 = −k3.

(45)

The last linear equation can be immediately integrated to give p3 = −k3t + A1, which replaced into the third equation of the Hamiltonian
system (45) yields a linear equation in w3 whose solution is w3 = − k3

2 t2 + A1t + A2.
The remaining four equations of system (45) are treated in exactly the same way as in the preceding case, starting with the simplifying

substitution (36). Deriving p1 from the first equation of system (45) and replacing it into the fourth equation yield the second-order equa-
tion (37), as well as deriving p2 from the second equation of system (45) and replacing it into the fifth equation lead to the second-order
equation (38).

It follows that the maximally superintegrable Hamiltonian system (45) hides (twice) the third-order linear
equation (34).

E. The potential VV (w 1, w 2, w 3)
Although the Hamiltonian

H5 = 1
2
�p2

1 + p2
2 + p2

3� + k�w2
1 +w2

2� + 4kw2
3 + k1

w2
1
+ k2

w2
2

(46)

can be seen, as H1, as a three-dimensional extension of a plane system containing two copies of the one-dimensional caged oscillator, the
simplest way to linearize the system is, again, the direct approach. For H5, we obtain the Hamiltonian equations,

�����������������������������������������

ẇ1= p1,
ẇ2= p2,
ẇ3= p3,

ṗ1 = 2
k1 − kw4

1

w3
1

,

ṗ2 = 2
k2 − kw4

2

w3
2

,

ṗ3 = −8kw3.

(47)
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Deriving p3 from the third equation of system (47) and replacing it into the sixth equation yield the following linear second-order
equation in w3:

ẅ3 = −8kw3, (48)

whose general solution is given by

w3 = A1cos(2√2kt) + A2sin(2√2kt), (49)

if we assume k > 0.
Deriving p1 from the first equation of system (47) and replacing it into the fourth equation yield the following second-order

equation in w1:

ẅ1 = 2
k1 − kw4

1

w3
1

. (50)

Deriving p2 from the second equation of system (47) and replacing it into the fifth equation yield the following second-order
equation in w2:

ẅ2 = 2
k2 − kw4

2

w3
2

, (51)

which is equal to Eq. (50) if k2 is substituted with k1. Equation (50) admits a three-dimensional Lie symmetry algebra sl(2,R) generated by
the following operators:

@t , cos(2√2kt)@t −√2ksin(2√2kt)w1@w1 , sin(2√2kt)@t +√2kcos(2√2kt)w1@w1 . (52)

If we solve Eq. (50) with respect to k1 and derive once with respect to t, then we obtain the following third-order equation:

...
w1 = −ẇ1

3ẅ1 + 8kw1

w1
, (53)

which admits a seven-dimensional Lie symmetry algebra generated by the following operators:

Y1 = @t , Y2 = cos(2√2kt)@t −√2ksin(2√2kt)w1@w1 ,
Y3 = sin(2√2kt)@t +√2kcos(2√2kt)w1@w1 , Y4 = w1@w1 ,

Y5 = cos(2√2kt)
w1

@w1 , Y6 = sin(2√2kt)
w1

@w1 , Y7 = 1
w1

@w1

and is therefore linearizable. A two-dimensional non-Abelian intransitive subalgebra is generated by Y4 and Y7. Bringing them into the
canonical form u@u, @u we have that the new dependent variable u = w2

1�2 transforms equation (53) into the linear equation,

...u = −8ku̇. (54)

The case k < 0 is completely analogous and leads to the same result. We conclude that the maximally superintegrable Hamiltonian system
(47) hides (twice) the third-order linear equation (54).

We observe that system (47) is quite similar to system (2), as H5 contains two copies of a one-dimensional caged oscillator with the
addition of an ordinary oscillator. Therefore, as both systems contain a common two-dimensional subsystem and merely differ in the exten-
sion to three dimensions, it would have been conceivable to linearize system (47) by using the same reduction as for system (2), although the
computations are more involved. Indeed, the second-order equation that can be obtained by considering w1 = y a new independent variable
is identical to Eq. (5), while the resulting second-order equation in w3 would be

d2w3

dy2 = − (k1 − ky4)
k1 + ky5 − 2Ay3

dw3

dy
− 4ky2

k1 + ky4 − 2Ay2 . (55)

This linear equation admits the maximal symmetry sl(3,R) and thus can be reduced to the free form u′′ = 0 by a point transformation.8,9

Hence, we conclude that system (47) hides two linear equations of second- and third-order, respectively.
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III. CONCLUDING REMARKS
Using a combination of various techniques of Lie point symmetries, notably the classical Lie criterion addressing the linearization of

a system that admits a Lie point symmetry algebra of maximal dimension,8,9 the reduction method for autonomous systems introduced in
Ref. 2, as well as a method to linearize second-order ordinary differential equations with sl(2,R) symmetry,10 we have shown that all max-
imally superintegrable systems on flat space classified in Refs. 7 and 11 admit hidden symmetries leading to linearization. For some of the
potentials, two possible ways for linearization have been presented, a direct approach that does not involve a change of the independent vari-
able, as well as the application of the reduction method of Ref. 2, which may result in more complicated equations and computations. It has
been illustrated that the linearization process applied to each of the potential is independent on the separating coordinates of the system and
does not rely on the degree of the first integrals. We recall that although in Ref. 7, the admitting integrals are at most quadratic in the canon-
ical momenta, on the other end in Ref. 11, there are two independent integrals of higher orders. Consequently, it follows that the reduction
method is not dependent on the degree of the first integrals or whether these arise from the separation of variables of the Hamilton–Jacobi
equation, as it was shown in other such instances in Refs. 5 and 4. This may be a hint that other maximally superintegrable systems for which
the first integrals are of higher-order may also hide some linear equations.

Regardless of their particular degree, we have not used explicitly the fact that the number of independent first integrals is maximal, which
leads us to ask if the procedure is also valid for Hamiltonian systems in three-dimensional space having less than five independent constants
of the motion. The following example illustrates that a minimally superintegrable system can also be linearizable. To this extent, consider the
Hamiltonian7

H = 1
2
�p2

1 + p2
2 + p2

3� + 4kw2
1 + kw2

2 + k2

w2
2
+ F(w3), (56)

where k, k2 are constants and F(w3) is an arbitrary function. The Hamiltonian system

�������������������������������������

ẇ1= p1,
ẇ2= p2,
ẇ3= p3,
ṗ1 = −8kw1,

ṗ2 = −2kw2 + 2k2

w3
2

,

ṗ3 = −dF(w3)
dw3

(57)

is minimally superintegrable with four globally defined first integrals, separable in both Cartesian and parabolic cylindrical coordinates.7
Applying the reduction method of Ref. 2 with w3 as new independent variable y, the system is reduced to the following five equations:

�����������������������������������������

dw1

dy
= p1

p3
,

dw2

dy
= p2

p3
,

dp1

dy
= −8kw1

p3
,

dp2

dy
= −2kw2

p3
+ 2k2

w3
2p3

,

dp3

dy
= −F′(y)

p3
.

(58)

The last equation is easily integrable and provides

p3 = ±�A − 2F(y). (59)

We take into consideration the positive root, without loss of generality. If we now derive p1 and p2 from the first and second equations of
system (58) and insert them into the third and fourth equations, respectively, then we are led to the following two second-order equations:

w′′1 (y) = F′(y)w′1(y) − 8kw1(y)
A − 2F(y) (60)

and
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w′′2 (y) = F′(y)w′2(y)w3
2(y) − 2kw4

2(y) + 2k2

w3
2(y)(A − 2F(y)) . (61)

Equation (60) is linear and thus, as shown in Ref. 8, admits an eight-dimensional Lie symmetry algebra, i.e., sl(3,R). Equation (61) can be
shown to admit a three-dimensional Lie symmetry algebra [unless k2 = 0, for Eq. (61) becomes linear], i.e., sl(2,R), generated by the following
operators:

2S(y)@y + �S′(y) + F′(y)S(y)
A − 2F(y)�w2@w2 , (62)

where S(y) is the solution of the following third-order linear equation:

(A − 2F)S′′′ + �2(A − 2 f )2F′′ + 3(A − 2F)F′2 + 8k(A − 2F)2�S′
+ �(A − 2F)2F′′′ + 5(A − 2F)F′F′′ + 6F′3 + 8k(A − 2F)�S = 0. (63)

If we solve Eq. (61) with respect to the constant k2, i.e.,

k2 = w3
2

2
�(A − 2F)w′′2 − F′w′2 + 2kw2�, (64)

and derive it with respect to y, the resulting third-order equation, i.e.,

w′′′2 = 1(A − 2F)w2
�3�F′w2 − (A − 2F)w′2�w′′2 + �3F′w′2 + (F′′ − 8k)w2�w′2�, (65)

admits a seven-dimensional Lie symmetry algebra, showing that it is linearizable. Indeed, if we make the transformation u = w2
2, then Eq. (65)

becomes the following linear equation:

u′′′ = 1(A − 2F)�3F′u′′ + (F′′ − 8k)u′�. (66)

We conclude that the Hamiltonian system (57) hides a second-order linear equation and a third-order linear equation, regardless of the
arbitrary function F(w3).

In this context, it constitutes a natural question whether the remaining equivalence classes of minimally superintegrable Hamiltonian
systems classified in Ref. 7 are also linearizable. Work in this direction is currently in progress. An answer in the positive would indicate that
the Lie symmetry method, a technique that has somehow been neglected in the context of superintegrable systems, is an approach potentially
relevant to their analysis as the separability problem of the Hamilton–Jacobi equation.
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APPENDIX: LINEARIZATION OF THE HAMILTONIANS H3 AND H4 BY THE REDUCTION METHOD

We show that the superintegrable systems with Hamiltonians H3 and H4 that have been treated directly, without explicitly reducing the
system with respect to a new variable, can also be linearized using the reduction method. However, this procedure leads to more complicated
computations than the direct approach.

First of all, we observe that the Hamiltonians H3 and H4 can be seen as an extension of the two-dimensional Hamiltonian

He = 1
2
�p2

1 + p2
2� + k1w1

w2
2

�
w2

1 +w2
2

+ k2

w2
2

. (A1)

More precisely, we have
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H3 = He + 1
2

p2
3 + k3

w2
3

, H4 = He + 1
2

p2
3 + k3w3. (A2)

Then, we should begin by looking at the common two-dimensional Hamiltonian He and then analyzing the three-dimensional cases. In this
case, the use of polar coordinates is best suited, and indeed, if we introduce them, i.e.,

w1 = r cos(ϕ), w2 = r sin(ϕ),
then the Hamiltonian He is transformed as

Hep = 1
2
�p2

r + pϕ

r2 � + k1cot(ϕ)
sin(ϕ)r2 + k2

r2sin(ϕ)2 . (A3)

This Hamiltonian is a particular case of a more general two-dimensional Hamiltonians

Hep = 1
2
�p2

r + pϕ

r2 � + α
r
+ 1

r2 F(ϕ) (A4)

which was shown in Ref. 4 to hide a second-order linear equation for any function F(ϕ). The reduction is carried out considering ϕ as a new
independent variable y from which it follows that [see Eq. (67) in Ref. 4 and the following discussion fora detailed discussion of this potential]

dy
dt
= pϕ

r2 , pϕ = ±�A − 2F(ϕ). (A5)

This same reduction can be applied to the extended three-dimensional case if we express the Hamiltonians H3 and H4 in cylindrical
coordinates,

w1 = rcos(ϕ), w2 = rsin(ϕ), w3 = z,

so that the Hamiltonians are given by

H3 = Hep + 1
2

p2
z + k3

z2 , H4 = Hep + 1
2

p2
z + k3z, (A6)

respectively. Then, the equations for ż and ṗz with respect to the new independent variable ϕ = y become the following equations for the
Hamiltonian H3:

dz
dy
= r2pz

pϕ
,

dpz

dy
= 2k3r2

pϕz3 , (A7)

while those for H4 become

dz
dy
= r2pz

pϕ
,

dpz

dy
= −k3r2

pϕ
. (A8)

Deriving now pz from the first equation in (A7), inserting it into the second equation taking into account the expression for pϕ, and simplifying
the resulting expression yield the following second-order equation for z in the case of the Hamiltonian H3:

d2z
dy2 = d

dy
ln
�
�

r2sin(y) 3
2�

Asin(y)3 − k1cos(y) − k2sin(y)
�
�

dz
dy
+ 2k3r4sin(y)3

(Asin(y)3 − k1cos(y) − k2sin(y))z3 , (A9)

while for the Hamiltonian H4, it is

d2z
dy2 = d

dy
ln
�
�

r2sin(y) 3
2�

Asin(y)3 − k1cos(y) − k2sin(y)
�
�

dz
dy
− k3r4sin(y)3

(Asin(y)3 − k1cos(y) − k2sin(y)) . (A10)

Equation (A9) can be simplified by means of the additional change of the dependent variable,
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z = u rsin(y) 3
4

(Asin(y)3 − k1cos(y) − k2sin(y)) 1
4

, (A11)

leading to the differential equation in u,

d2u
dy2 = T(y)u + 2k3

u3 , (A12)

with T(y) expressed in terms of the known functions r and pϕ as

T(y) = 2
r2 � dr

dy
�2 − 1

r
d2r
dy2 + 1

2pϕ

d2pϕ

dy2 − 1
4p2

ϕ
�dpϕ

dy
�2 − 1

rpϕ

dr
dy

dpϕ

dy
. (A13)

Equation (A12) admits a symmetry algebra isomorphic to sl(2,R), since it is a Pinney equation (see, e.g., Ref. 10). Solving this equation with
respect to k3 and deriving with respect to y lead to the third-order differential equation,

d3u
dy3 = −dT

dy
u − 4T(y)du

dy
− 3

u
du
dy

d2u
dy2 , (A14)

which can be further reduced to a linear equation, regardless of the function T(y), by means of a change of dependent variable U = 1
2 u2,

d3U
dy3 = −2

dT
dy

U − 4T(y)dU
dy

. (A15)

Consequently, the maximally superintegrable Hamiltonian system (30) hides a second-order linear equation [see Eq. (80) in Ref. 4] and a
linear third-order equation (A15), while the Hamiltonian system (45) hides two linear second-order equations, i.e., Eq. (80) in Ref. 4 and
Eq. (A10).

Thus, we have shown that systems (30) and (45) hide linear equations by two different approaches.
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