
10 November 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Soderstrom, T., Soverini, U. (2022). When Are Errors-in-Variables Aspects Important to Consider in System
Identification?. 345 E 47TH ST, NEW YORK, NY 10017 USA : IEEE [10.23919/ECC55457.2022.9838030].

Published Version:

When Are Errors-in-Variables Aspects Important to Consider in System Identification?

Published:
DOI: http://doi.org/10.23919/ECC55457.2022.9838030

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/908685 since: 2022-12-14

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.23919/ECC55457.2022.9838030
https://hdl.handle.net/11585/908685


When Are Errors-in-Variables Aspects Important to Consider in System
Identification?

Torsten Söderström1 and Umberto Soverini2

Abstract— When recorded signals are corrupted by noise on
both input and output sides, standard identification methods
give biased parameter estimates, due to the presence of input
noise. This paper discusses in what situations such a bias is
large and, consequently, when errors-in-variables identification
methods should preferably be used.

Index Terms— system identification, errors-in-variables, bias,
parameter estimation, output error model

I. INTRODUCTION

All standard identification methods, see for example [10],
[19] yield biased (rather, non-consistent) estimates when
the measured input signal contains additional noise. In case
also the input data are affected by noise, the estimation of
the parameters for linear dynamic systems is recognized as
a more difficult problem. Representations where errors or
measurement noises are present on both inputs and outputs
are usually called ‘errors-in-variables’ (EIV) models. Such
models play an important role when the purpose is determi-
nation of the physical laws that describe the process, rather
than the prediction of its future behavior.

A thorough description of various methods that give con-
sistent identification of dynamic systems in an EIV setting
is given in the book [17]. See also the survey paper [15].
Aspects from a user perspective on how to cope with EIV
problems are discussed in [18]. For some further overviews,
see [5] and [16].

There are many papers and publications where EIV meth-
ods are used for various types of applications. As examples,
one can mention identifying transmissibility functions in a
mechanical mass-spring system, [21], data-driven controller
design algorithms, [20], [1], electromagnetic mineral explo-
ration, [6], roll dynamics of a ship, [7], structural health
monitoring used to check the status of (large) mechanical
constructions and buildings, [4], [14]. Additional applications
are listed in e.g. [17].

The focus in this paper is somewhat different. Assume that
there is in fact some measurement noise on the recorded
input signal, but that this is neglected when applying a
standard system identification technique. The problem under
discussion is to find out in what situations the obtained bias
will be significant, or even large. For example, one may
want to know how the size of the bias is influenced by the
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system dynamics, and by the character of the true input.
The paper contains a preliminary study of this issue, with
particular attention to the case of an output error model
structure. More general model structures will be investigated
in forthcoming papers. It will be shown that a critical
situation where the standard identification methods yield
highly biased estimates arises when the system is almost
not identifiable due to the presence of a small pole-zero
separation. These considerations will be supported by simple
numerical examples.

The paper is organized as follows. The next section
describes the modelling and general problem formulation.
The main ideas behind this paper are presented in Section III.
More specific and explicit analysis is then given in Section
IV when the models structure is an output error model.
Section V contains some concluding discussion.

II. MODELLING AND PROBLEM FORMULATIONS

This section starts off by giving assumptions on the
recorded data. This is formulated as a description of the
unknown system to be identified. Next a general model
description is postulated for identification purposes, and the
problem formulation is given.

Assume that the system (the mathematical description of
the unknown dynamics to be identified) is linear and single
input-single output. Measurements of both input and output
are assumed to be noise-corrupted. In mathematical form,
these assumptions are expressed as

y(t) = G0(q)u0(t) +H0(q)e(t) , (1)
u(t) = u0(t) + ũ(t) , (2)
u0(t) = F (q)v(t) . (3)

Here u0(t) denotes the noise-free input signal, while u(t)
is the noise-corrupted input and y(t) is the noise-corrupted
output. Further, the transfer functions G0(q), H0(q) and F (q)
are all assumed to be rational functions of the shift operator
q. To simplify expressions in the following the argument q
will often be dropped. The specific input model (3) is not
used in the general analysis, but in the numerical example.

The input noise ũ(t) is assumed to be white with unknown
variance λ2

u. Further, e(t) is assumed to be white noise with
variance λ2

e, and v(t) is assumed to be white noise with
variance λ2

v . The output noise is therefore an ARMA process
and it is white only in the special case H0(q) = 1. Note
that the output noise H0(q)e(t) consists of both process
noise affecting the system as well as measurement noise.
The equation (3) means that the noise-free input u0(t) is an
ARMA process.



It is also assumed that the signals e(t), v(t) and ũ(t)
are independent. This means in particular that open loop
operation is assumed.

Next the model description will be specified. Assume that
a model of the form

y(t) = G(q)u(t) +H(q)ε(t) (4)

is to be fitted to the recorded input-output data. Here G(q) =
G(q, θ) and H(q) = H(q, θ) are parameterized with a vector
θ. The dependence on θ is mostly not spelled out in what
follows.

In the study assume that the parameterization is such that
there is a unique value θ∗ that makes

G(q, θ∗) ≡ G0(q), H(q, θ∗) ≡ H0(q) . (5)

This is a form of identifiability assumption.
Let the estimate (in the asymptotic case when the number

of data points N → ∞) be denoted by θ̂. The bias of the
estimate is then

θ̃ = θ̂ − θ∗ . (6)

For consistency it is required that the bias is zero. The focus
here is on the asymptotic case, and one may think of the bias
in this sense as a systematic error that does not disappear
when the number of data points tends to infinity.

The problem to be discussed is the following:
Problem. What factors influence the size of the bias θ̃?

This problem involves several aspects. For example, how is
the size of θ̃ is influenced by the filters G0, H0, F ?

III. MAIN IDEAS

From now on assume that identification is made using
the prediction error method (PEM) applied to the data. In
the case of no input noise present it is well-known that
PEM gives consistent and statistically efficient parameter
estimates, [9], [19]. The PEM method has been chosen
since it gives highly accurate estimates in general. However,
other identification method could be used, for example the
instrumental variable method.

The PEM means that the parameter estimate can be written
as (assuming for simplicity that the number of data is infinite)

θ̂ = argmin
θ
V (θ) , (7)

V (θ) =
1

2
E
{
ε2(t, θ)

}
. (8)

where E denotes expectation. In (8) the prediction error
ε(t, θ) can be found directly from (4), leading to

ε(t) = H(q)−1 [y(t)−G(q)u(t)] . (9)

To the best of our knowledge, there is no general analytical
and explicit way to express the bias θ̃. An approximate way is
as follows. The validity of this approximation will be tested
in the next section. Let θ̂ denote the minimum point of V (θ),
and assume that the bias θ̃ is small. Then try a linearization

0 = V ′θ (θ̂) ≈ V ′θ (θ∗) + V ′′θθ(θ∗)(θ̂ − θ∗) , (10)

leading to
θ̃ ≈ − [V ′′θθ(θ∗)]

−1
V ′θ (θ∗) . (11)

Next develop explicit expressions for the terms in the right
hand side of (11). To this aim, use the notations

εθ =
∂ε(t, θ)

∂θ
, (12)

Gθ =
∂G(q, θ)

∂θ
, (13)

Hθ =
∂H(q, θ)

∂θ
. (14)

and let, similarly, εθθ denote the derivative of εθ. Direct
differentiation gives

V ′θ = E {ε(t, θ)εθ(t, θ)} , (15)
V ′′θθ = E {ε(t, θ)εθθ(t, θ)}+ E

{
εθ(t, θ)ε

T
θ (t, θ)

}
,(16)

and also

εθ(t, θ) = −
Hθ

H2
[y(t)−G(q)u(t)]− Gθ

H
u(t) . (17)

The expressions so far hold for a general value of the
parameter vector θ. Next specialize to the value θ = θ∗ and
use the data description in (1)-(3). This leads to

ε(t, θ∗) = H−1
0 [G0u0(t) +H0e(t)−G0 (u0(t) + ũ(t))]

= e(t)−H−1
0 G0ũ(t) , (18)

εθ(t, θ∗) = −Hθ

H2
0

[G0u0(t) +H0e(t)−G0u0(t)−G0ũ(t)]

−Gθ
H0

[u0(t) + ũ(t)]

= −Gθ
H0

u0(t) +

(
G0Hθ

H2
0

− Gθ
H0

)
ũ(t)− Hθ

H0
e(t).

(19)

In (19), Gθ and Hθ are to be evaluated for θ = θ∗.
Assume that the system operates in open loop, and thus

that v(t), e(t) and ũ(t) are independent. Then the gradient
V ′θ (θ∗) can be evaluated as follows:

V ′θ (θ∗) = −E
{(
H−1

0 G0ũ(t)
)(G0Hθ

H2
0

− Gθ
H0

)
ũ(t)

}
.

(20)
Note that E{e(t)HθH0

e(t)} = 0, as the innovation e(t) is white
noise, and Hθ contains a delay.

Evaluating the expectation in (20) gives that V ′θ (θ
∗) is

proportional to the noise variance λ2
u. Thus, from (11) it

follows that θ̃ → 0 as λ2
u → 0 (the bias will be small, if the

input noise level is small). On the other hand, the bias θ̃ will
be large if V ′′θθ(θ

∗) is almost singular. This in turn happens
when the system is (almost) not identifiable. Such a situation
can happen in two different ways:
• (Almost) overparameterization. This will show up in

that some polynomials of the model (one may think
of an ARMAX model or an output error model) have
(almost) a common factor. See Section IV for explicit
details.

• The noisefree input u0 is (almost) not persistently
exciting of enough order. One can think of extreme



cases such as u0(t) ≡ 1, or even u0(t) ≡ 0. This reason
for (almost) loss of identifiability is not examined in
further details here. Some relevant papers for studying
the problem of identification under poor excitation in-
clude [8], [13], [2], [3], [12], [11]. Typically, one can
expect all parameter estimates to be (very) uncertain. A
low order of excitation means that the input signal is
(almost) the sum of a few sinusoids. One can expect that
the system transfer function is reasonably well estimated
for precisely the frequencies of these sinusoids, and will
have large uncertainties otherwise.

To sum up so far, what can be expected is very natural:
When the system is almost not identifiable several things
happen:
• The Hessian V ′′θθ(θ∗) will be almost singular.
• The bias θ̃ will be large.
• The covariance matrix of the parameter estimates θ̂ will

be large.

IV. DETAILED ANALYSIS

A. Preliminaries

This section gives more explicit forms of the analysis of
Section III. Specialization to the output error model structure
is given in Section IV-B. First some preliminaries for the so
called Sylvester matrices are given in this subsection.

Consider two polynomials

A = a0z
na + a1z

na−1 + . . .+ ana , (21)
B = b0z

nb + b1z
nb−1 + . . .+ bnb . (22)

Then the associated Sylvester matrix is the square matrix of
dimension (na + nb)× (na + nb) given by

S(A,B) =



b0 b1 . . . bnb 0

0
. . . . . .

b0 b1 . . . bnb
a0 a1 . . . ana 0

0
. . . . . .

a0 a1 . . . ana


. (23)

The properties of Sylvester matrices have been investigated
in many sources. Some basic properties are, for example,
considered in [19]. Among the properties are the following:
• If A and B are coprime (that is, have no common zero),

then the Sylvester matrix S(A,B) is nonsingular.
• If A and B have precisely k > 0 common zeros, then

the Sylvester matrix S(A,B) singular. Further, its null
space has dimension k. The null space of ST (A,B) can
be characterized, see [19].

• Assume that A has zeros in αj , j = 1, . . . , na and that
B has zeros in βk, k = 1, . . . , nb. Then one can show
that it holds

det (S(A,B)) = (−1)na×nbanb0 bna0

na∏
j=1

nb∏
k=1

(αj − βk) .

(24)
Observe that (−1)na×nb = 1 unless both na and nb are
odd numbers. A proof of (24) is given in the appendix.

B. The output error model structure

The case of output error (OE) model structure is charater-
ized by the following equations

y(t) = y0(t) + ỹ(t), E{ỹ2(t)} = λ2
y , (25)

u(t) = u0(t) + ũ(t), E{ũ2(t)} = λ2
u , (26)

Ay0(t) = Bu0(t) , (27)
A = 1 + a1q

−1 + . . .+ anaq
−na , (28)

B = b1q
−1 + . . .+ bnbq

−nb . (29)

The equation (27) refers to the model to be fitted. The true
data (’the system’) is assumed to also fulfil (27), but the
polynomials are then denoted A0, B0. Compared to (1) it
here holds that H0 = 1, i.e. the output noise is assumed to
be white.

The asymptotic error criterion for OE is

V =
1

2
E{ε2(t)} , (30)

where the output error ε(t) is

ε(t) = y(t)− B

A
u(t) =

(
B0

A0
− B

A

)
u0(t)+ ỹ(t)− B

A
ũ(t) .

(31)
Its gradient is easily found to be

εθ(t) =
(

B
A2 q
−1u(t) . . . B

A2 q
−nau(t)

− 1
Aq
−1u(t) . . . − 1

Aq
−nbu(t)

)T
= S(−A,B)

1

A2

 u(t− 1)
...

u(t− na − nb)


∆
= S(−A,B)ϕu(t) . (32)

One can now write the Hessian V
′′

θθ and the gradient V
′

θ

as

V
′′

θθ(θ∗) = S(−A0, B0)PϕuST (−A0, B0)

= S(−A0, B0)Pϕu0S
T (−A0, B0)

+S(−A0, B0)PϕũST (−A0, B0) , (33)
V ′θ (θ∗) = E{ε(t)ε′(t, θ∗)}

= −S(−A0, B0)E{
B0

A0
ũ(t)ϕũ(t)}

∆
= −S(−A0, B0)r0 , (34)

where Pϕu denotes the covariance matrix of ϕu(t).
An approximation of the expected bias then becomes,

according to (11),

β1 = −
(
V

′′

θθ(θ∗)
)−1

V ′θ (θ∗) = S−T (−A0, B0)P
−1
ϕu r0 .

(35)
A somewhat cruder approximation is obtained by neglecting
the influence of the input noise in the matrix P−1

ϕu , which
would lead to

β2 = S−T (−A0, B0)P
−1
ϕu0

r0 . (36)

One can now see that



• β2 increases linearly with λ2
u.

• β1 ≈ β2 for small values of λ2
u.

The true value of the (asymptotic) bias can be found by
numerically minimizing the loss function (30).

Both the more exact expression β1 and the cruder ap-
proximation β2 include the matrix inverse S−T (−A0, B0).
When the system has almost a pole-zero cancellation, this
matrix inverse will have large elements. To be specific, let
the system have poles pi, i = 1, . . . , na and zeros zj , j =
1, . . . , nb. Then set

δ = min
i,j
|pi − zj | (37)

which is a measure of the pole-zero separation. It now
follows from (24) that for small values δ the determinant of
the Sylvester matrix is proportional to δ. The inverse of the
Sylvester matrix will therefore generally have elements of
the order O(1/δ). Also the bias expressions (35) and (36)
will be of the order O(1/δ).

Numerical example

To explore the above results in more detail consider a
simple numerical example with na = 1, nb = 2 and where
u0(t) is an AR(1) process,

u0(t) = Fv(t), F =
(
1− 0.9q−1

)−1
, E{v2(t)} = 1 .

(38)
The other parameters in the numerical example are

a1 = −0.8, λ2
y = 10, b1 = 2 . (39)

In the numerical study the input noise variance λ2
u was

varied. So was also the coefficient b2 = 2(−0.8 − δ). Note
that the value δ = 0 corresponds to A0 and B0 having a
common zero, and identifiability is then lost.

One can object that results obtained with a first order
simulated model have no general validity. However, higher
order numerical examples would lead to a more complicated
analysis, without introducing any novelty with respect to
the considerations reported after (37), which are true for a
general model order.

In the numerical study the approximate bias expressions
β1, see (35), and β2, see (36) were computed. They are
compared to the ’true’ bias βt, computed by minimizing
the loss function (30). The results were also compared
numerically to some Monte Carlo simulations, where the
output error identification method was applied to a number
of realizations.

In the numerical examples, 100 realizations, each of length
1000 input-output pairs were used.

In Figure 1 the parameter biases versus the parameter δ
are displayed. In Figure 2 the parameter biases versus the
input noise variance λ2

u are displayed.
The approximate bias expressions β1 and β2 are reason-

ably good, except for the bias of b1 for small values of δ,
see Figure 1.

As a further examination of how the bias errors are
influenced by the pole-zero separation δ, and by the input

Fig. 1. Parameter biases versus δ. The true biases (βt) are shown with
solid lines. The approximate biases (β1) are shown with dashed lines. The
cruder approximate biases (β2) are shown with dashdotted lines. The circles
show the empirical biases obtained by the Monte Carlo simulations from
100 realizations of length 1000. The value of the input noise variance was
λ2u = 0.1.

Fig. 2. Parameter biases versus λ2u. The true biases (βt) are shown with
solid lines. The approximate biases (β1) are shown with dashed lines. The
cruder approximate biases (β2) are shown with dashdotted lines. The circles
show the empirical biases obtained by the Monte Carlo simulations from
100 realizations of length 1000. The value of the parameter δ is δ = 0.1.

noise variance λ2
u let both these two quantities vary, and

examine the contour levels of the biases.
In addition explore a scalar measure of the total parameter

bias. To that aim consider the relative error in the transfer
function G, taken as

δG =

∫
|B(eiω)
A(eiω) −

B0(eiω)
A0(eiω) |

2dω∫
|B0(eiω)
A0(eiω) |2dω

. (40)

The study of how the biases of a1, b1 and b2 as well as
δG depend on δ and λ2

u is displayed in Figures 3 and 4, for
positive and negative values of δ, respectively.



Fig. 3. Contour levels for parameter biases and the total bias measure δG
as functions of δ and λ2u, δ > 0.

Fig. 4. Contour levels for parameter biases and the total bias measure δG
as functions of δ and λ2u, δ < 0.

The contour plots looked quite distorted for small positive
values of δ. This is the reason why the δ axis starts at δ =
0.05 in Figure 3. It seems reasonable to expect that this is
connected to false local minima.

A further examination of false local minima was under-
taken in the following way. The asymptotic loss function
(with the constant λ2

y subtracted) can be written as

V (a, b1, b2) = E{[y(t)− B

A
u(t)]2} − λ2

y

= E{[
(
B0

A0
− B

A

)
u0(t)−

B

A
ũ(t)]2} .

(41)

As the loss function V is quadratic in b1, b2, this mini-
mization can be done analytically and one can consider

W (a) = min
b1,b2

V (a, b1, b2) . (42)

Fig. 5. The graph of W (a) for various values of the parameters δ and
λ2u.

Apparently, a local minimum of V (a, b1, b2) has a corre-
sponding local minimum of W (a). The behaviour of the
concentrated loss function W (a) for some various values
of δ and λ2

u are given in Figure 5.
It is clear from Figure 5 that there are ’false’ local minima

of W (a), and hence also of V (a, b1, b2) for small positive
values of δ. Note that the true value of the parameter a is
-0.8.

1) Some observations:

• For the given example the experimental and numerical
results coincide well with what could be expected from
theory.

• The approximate values for the biases coincide well
with the ’theoretical values’, especially for small values
of λ2

u.
• Also for moderate values of λ2

u, the approximate bias
values (β1 and β2) give fairly good values of the biases.

• It is shown in Figure 1 that the biases grows without
bound when δ → 0. This is fairly natural. The limiting
case δ = 0, corresponds to a non-identifiable system,
as then there is a pole-zero cancellation in the transfer
function B/A.

• In the Monte Carlo simulations, when λ2
u was chosen

higher (in Figure 2), the output error estimates often
failed, and in quite a number of the realizations the
parameter estimates were indeed (very) far from the true
values. This may be due to convergence to a ’false’ local
minimum.

• The cases displayed in Figure 1 show that indeed when
the system becomes unidentifiable (in this case due to
pole-zero cancellations), then the parameter biases will
become large.

• Some MC simulations were also tried for the case when
δ = 0.02, but it was then hard to get similarities to the
theoretical parameter biases.



V. CONCLUDING DISCUSSION

When standard identification methods are applied to input-
output data that are noise-corrupted, biased parameter esti-
mates occur due to the presence of input noise. This paper
has addressed what factors that influence the size of this bias.
It has been assumed that a regular prediction error method
is applied. When the input noise variance λ2

u is small, the
bias will be small and of order O(λ2

u). When the system is
close to not identifiable due to almost pole-zero cancellation,
the bias will be large. It was shown that the bias is of order
O(1/δ) where δ is the pole-zero separation.

In the presence of almost pole-zero cancellation in the
system structure, two problematic issues occur. First, it
is a well-known fact that the parameter estimates become
uncertain (have large standard deviations), independently of
the used identification method. Second, in this paper it was
shown that, for this type of almost non-identifiable systems,
the presence of input noise also leads to a large bias. Note
that in this paper, we did not start with considering almost
non-identifiable systems, and then investigating what can
happen in an EIV situation. Rather, the starting point was to
examine in what situations neglecting the presence of input
noise can lead to a large/significant bias.
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2017.

[8] L. Ljung. Asymptotic variance expressions for identified black-box
transfer function models. IEEE Transactions on Automatic Control,
AC-30(9):834–844, 1985.

[9] L. Ljung. System Identification - Theory for the User. Prentice Hall,
Englewood Cliffs, NJ, USA, 1987.

[10] L. Ljung. System Identification - Theory for the User, 2nd edition.
Prentice Hall, Upper Saddle River, NJ, USA, 1999.
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APPENDIX

Proof of (24)

First note that for any given zero αj . the coefficients
ak, k = 0, . . . , na are affine functions of αj . This means
just that they have one constant term and one linear term.
For example, it holds

a1 = −a0

∑
k

αk, ana = (−1)naa0αj

na∏
k 6=j

αk .

Then consider the determinant as a function of αj . Due to
the above observation it follows that it must be a polynomial
in αj , and the order is na. This is true for all j = 1, . . . , na.

Further, as the determinant is zero as soon as A and B
have any joint zero, it now follows that the determinant can
be written as

det(S(A,B)) = C

na∏
j=1

nb∏
k=1

(αj − βk) ,

where C is a constant, that remains to be determined.
To find C, consider the product of highest powers of the

zeros αj , j = 1, . . . na among all terms summing up to the
determinant. The highest powers will be obtained precisely
when considering the main diagonal. This leads to

C

na∏
j=1

nb∏
k=1

αj = bna0 anbna

⇒

C

 na∏
j=1

αj

nb

= bna0

(
a0(−1)na

na∏
k=1

αk

)nb

= bna0 anb0 (−1)na×nb
(
na∏
k=1

αk

)nb
⇒
C = (−1)na×nb ,

which finally proves (24).


