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In a recent paper, the adiabatic theory of Hamiltonian systems was successfully applied to study the
crossing of the linear coupling resonance, Qx −Qy ¼ 0. A detailed explanation of the well-known
phenomena that occur during the resonance-crossing process, such as emittance exchange and its dependence
on the adiabaticity of the process, was obtained. In this paper, we consider the crossing of the resonance of
nonlinear coupling 2Qx − 2Qy ¼ 0 using the same theoretical framework. We perform the analysis using a
Hamiltonian model in which the nonlinear coupling resonance is excited and the corresponding dynamics is
studied in detail, in particular looking at the phase-space topology and its evolution, in view of characterizing
the emittance exchange phenomena. The theoretical results are then tested using a symplecticmap. Thanks to
this approach, scaling laws of general interest for applications are derived.
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I. INTRODUCTION

In a recent paper [1], the Hamiltonian theory of crossing
the resonance Qx −Qy ¼ 0, also called the linear coupling
resonance, was presented and was successfully applied to
explain the details of the phenomena that occur during
resonance crossing. We recall here that the transverse
emittances can be exchanged when the resonance is
traversed (see Refs. [2,3] and references therein) and, what
is even more important for potential applications, an adia-
batic parameter can be defined to qualify the resonance-
crossing process. The Hamiltonian theory allows such a
parameter to be defined in a natural way [1], in contrast to
other approaches that have recently been proposed [4]. It is
worth mentioning that the mathematical framework for
these studies is the theory of adiabatic invariance for
Hamiltonian systems (see, e.g., Refs. [5,6]). We recall that
the key results presented in Ref. [1] rely mainly on the
observation that the Hamiltonian describing the crossing of
the resonance remains analytic at the crossing value
Qx −Qy ¼ 0, which grants special features to the emit-
tance exchange process, such as the exponential depend-
ence of the exchange rate on the adiabatic parameter.

The approach used to study the linear coupling reso-
nance has recently been applied to the problem of crossing
a generic 2D nonlinear resonance [7]. This process leads to
the possibility of using such a resonance-crossing process
to share transverse emittances in a way that depends on
the coefficients m and n of the resonance used, that is,
mQx − nQy ¼ 0. We recall that the crossing of a 1D
nonlinear resonance has previously been studied in view
of providing a means to perform multiturn Extraction at the
CERN Proton Synchrotron [8–13], which has become the
operational means to transfer high-intensity proton beams
for the fixed-target physics program at the CERN Super
Proton Synchrotron [14–20].
In this context, it is interesting to study the crossing of

the nonlinear coupling resonance, namely 2Qx − 2Qy ¼ 0,
which is a natural extension to the nonlinear case of the
study of the linear coupling resonance. This resonance is
also known as the Montague resonance [21] when con-
nected to space-charge effects (see a selection of the
literature on this topic in Refs. [22–31] and references
therein). Our Hamiltonian approach allows the process
under study to be generalized, without considering the
actual source of the resonance excitation, i.e., nonlinear
magnetic fields, or space-charge effects, thus retaining only
the essential elements characterizing the dynamics of the
Hamiltonian system and of the resonance crossing. Our
goal is twofold: to characterize in detail the emittance-
exchange process in the nonlinear case; to study the impact
of a partial resonance crossing, in particular in terms of halo
generation, which is an important aspect for any applica-
tion. We stress here that the treatment presented in this
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paper closely follows that in [1], both in terms of
Hamiltonian models, notations, and approach, which high-
lights the power of the Hamiltonian approach to describe
and understand the resonance-crossing process.
In Sec. II, the Hamiltonian model is introduced and

discussed in detail. In particular, the analysis of the phase-
space topology is carried out, as well as of the variation of
the area of the phase-space regions, which is an essential
aspect for the analysis of resonance-crossing phenomena. A
map model is introduced in Sec. III in view of performing
the detailed numerical simulations discussed in Sec. IVand
used to confirm the processes studied with the Hamiltonian
model. Some conclusions are drawn in Sec. V. The details
of the derivation of the Hamiltonian model are presented in
Appendix A, whereas Appendix B computes the normal-
form Hamiltonian.

II. THE HAMILTONIAN MODEL
AND ITS DYNAMICS

The starting point of our analysis is the Hamiltonian of a
focusing channel in which a pseudo-octupolar term is
added to excite the resonance ð2;−2Þ, whose general form
can be written as

Hðpx; py; x; y; λÞ

¼ p2
x þ p2

y

2
þ αxx

�
x2 þ p2

x

2

�
2

þ αxy

�
x2 þ p2

x

2

��
y2 þ p2

y

2

�
þ αyy

�
y2 þ p2

y

2

�
2

þ 1

2
ðω2

xðλÞx2 þ ω2
yðλÞy2 þ 2Gx2y2Þ; ð1Þ

where the terms multiplied by the factors αxx; αxy; αyy
generate an amplitude-detuning effect while that multiplied
by the factor G generates the resonance.
The Hamiltonian depends explicitly on time via λ ¼ ϵt,

with ϵ being the small parameter that describes the
adiabatic resonance-crossing process. The resonance
frequencies ωxðλÞ;ωyðλÞ are also time dependent.
Introducing action-angle coordinates ðθx; θy; Ix; IyÞ, one

finds that this two degree-of-freedom Hamiltonian can be
reduced to a one degree-of-freedom model using appro-
priate combinations of the actions and angles variables, i.e.,

Ja ¼ Ix; ϕa ¼ θx − θy;

Jb ¼ Ix þ Iy; ϕb ¼ θy: ð2Þ

Defining the parameter δðλÞ ¼ ωxðλÞ − ωyðλÞ, to re-
present the (varying) distance [32] from the resonance,
the prototype Hamiltonian can be written as

Hðϕa; Ja; JbÞ ¼ δðλÞJa þ
1

2
αaaJ2a þ αabJaJb

þ GJaðJb − JaÞ cos 2ϕa: ð3Þ

The steps leading to this Hamiltonian are reported in
Appendix A, and we remark that the terms αaa, αab are
related not only to the amplitude-detuning terms αxx, αxy,
αyy but also to the resonance strength G. Detailed analysis
of the properties of this Hamiltonian (3) is fundamental to
understand the phenomenon of emittance exchange. With
this in mind, it is useful to introduce the rescaled coor-
dinates J ¼ Ja=Jb, ϕ ¼ ϕa, which leads to a new
Hamiltonian H ¼ GJ2bH

0, with

H0ðϕ; JÞ ¼ ηJ þ αJ2 þ Jð1 − JÞ cos 2ϕ; ð4Þ

which depends only on two parameters, defined as

η ¼ δþ αabJb
GJb

; α ¼ αaa
2G

; ð5Þ

where η depends on λ through the term δ.
It is worth pointing out that whenever space-charge

effects are considered, the strength of the resonance might
become a time-dependent quantity, i.e., G → GðtÞ. In this
case, the Hamiltonian (3) describes the crossing of
resonance whose strength varies with time according to
the physical process under consideration, whereas the
resonance-crossing process is controlled independently.
On the other hand, by applying the rescaling that brings
the Hamiltonian (3) into the form (4), the Hamiltonian
represents a system in which the resonance strength is
constant in time, but the term J2 varies with time, which
corresponds to a case with time-dependent amplitude
detuning. Note, however, that in this case, the reso-
nance-crossing process depends on the way the resonance
strength varies over time. In this respect, the Hamiltonian
(3) seems more useful as it separates the resonance-cross-
ing process and the variation of the resonance strength. The
techniques described in the rest of the paper can also be
used in the case of a time-dependent G factor. Indeed,
thanks to the assumption of an adiabatic crossing of the
resonance, it is possible to consider a sequence of frozen
systems, each of which features a constant value of the λ
parameter in the Hamiltonian (3). Globally, the sequence of
frozen systems describes faithfully the resonance-crossing
process.
Conditions on the linear actions Ix, Iy in physical

coordinates, namely Ix ≥ 0 and Iy ≥ 0, are reflected in
the inequality 0 ≤ Ja ≤ Jb, which confines the motion to an
allowed circle [7,33], and in which rescaled coordinates
constrain J to the range [0, 1]. We remark that in the limit
Jb → 0, η → ∞, implying that those conditions cross the
resonance in a nonadiabatic way. Moreover, it is immedi-
ately visible that the following transformation rules
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η → −η; α → −α; ϕ → ϕþ π

2
ð6Þ

map H0 → −H0. This symmetry will be used for the
classification of possible phase-space topologies.

A. Fixed points

The analysis of the fixed points of the Hamiltonian (4)
starts from the equations

� _ϕ ¼ 2ðα − cos 2ϕÞJ þ ηþ cos 2ϕ ¼ 0;

_J ¼ 2Jð1 − JÞ sin 2ϕ ¼ 0;
ð7Þ

where the second equation has solutions for ϕ ¼ kπ=2,
k ∈ Z, or J ¼ 0 and J ¼ 1.
The possible fixed points, divided into four categories,

are given by the following:

Group1∶ ϕ¼0;π; J¼ 1þη

2ð1−αÞ; if α≠1;

Group2∶ ϕ¼π

2
;
3π

2
; J¼ 1−η

2ð1þαÞ; if α≠−1;

Group3∶J¼1;
ϕ1;�¼�1

2
acosð2αþηÞ

ϕ2;�¼π�1
2
acosð2αþηÞ ; if j2αþηj≤1;

Group4∶J¼0:

The condition for the existence of fixed points in group 1
and 2 is that J ∈ ½0; 1�, which corresponds to

η ≥ −1 and α < 1

ϕ ¼ 0; π; or and 2αþ η ≤ 1;

η ≤ −1 and α > 1

η ≤ 1 and α > −1

ϕ ¼ π

2
;
3π

2
; or and 2αþ η ≥ −1:

η ≥ 1 and α < −1

Introducing so-called Cartesian coordinates, defined as
X ¼ ffiffiffiffiffi

2J
p

cos ϕ, Y ¼ ffiffiffiffiffi
2J

p
sin ϕ, we see that the first

group of fixed points lies on the X axis, the second group

on the Y axis, the third group on the border of the allowed
circle, and the fourth group at the origin. Furthermore, the
first two groups of fixed points coincide with those of the
third group whenever 2αþ η� 1 ¼ 0.
The stability type of these fixed points is obtained by

considering the determinant of the Hessian matrix of the
Hamiltonian, namely

H ¼
�

2ðα − cos 2ϕÞ 2ð2J − 1Þ sin 2ϕ

2ð2J − 1Þ sin 2ϕ 4JðJ − 1Þ cos 2ϕ

�
; ð8Þ

whose analysis is summarized in Table I.
To determine the stability of the fixed point of Group 4

(when J ¼ 0), it is convenient to transform the Hamiltonian
into Cartesian coordinates, allowing the Hamiltonian (4) to
be written in the alternative form:

H0ðX; YÞ ¼ η

2
ðX2 þ Y2Þ þ α

4
ðX2 þ Y2Þ2

þ 1

4
ð2 − X2 − Y2ÞðX2 − Y2Þ; ð9Þ

from which it is clear that the transformations X → −X or
Y → −Y leave the Hamiltonian invariant and that the
dynamics are constrained within the circle X2 þ Y2 ≤ 2.
For X ¼ Y ¼ 0, the determinant of the Hessian matrix is
det H ¼ η2 − 1. The fixed point is therefore stable if
jηj > 1 and unstable if jηj < 1.
A summary of the possible phase-space topologies is

shown in Fig. 1 in the space η and α. Note that in case
G ¼ GðtÞ, both η and α vary with time as 1=GðtÞ,
describing the straight line 2α ¼ αaaJb=ðδþ αabJbÞη.

B. Separatrices

The phase space of Eq. (4) is divided into different
regions by separatrices, whose expressions are computed
by solving the equation Hðϕ; JÞ ¼ Hðϕu; JuÞ for each
unstable fixed point (UFP) with coordinates ðϕu; JuÞ.
We start from the fixed point J ¼ 0, which is unstable for

jηj < 1. The equation for the orbit passing through the
origin is solved by

JðϕÞ ¼ cos 2ϕþ η

cos 2ϕ − α
; ð10Þ

TABLE I. Analysis of the stability type of the fixed points of the Hamiltonian (4).

Stability type

Solution Stable Unstable

ϕ ¼ 0; π α ≤ 1 and − 1 < η < 1–2α α ≥ 1 and 1 − 2α < η < −1
ϕ ¼ π

2
; 3π
2

α ≥ −1 and − 1 − 2α < η < 1 α ≤ −1 and 1 < η < −1 − 2α
J ¼ 1 Never Always
J ¼ 0 jηj > 1 jηj < 1
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which describes a figure of eight in ð ffiffiffiffiffi
2J

p
cosϕ;

ffiffiffiffiffi
2J

p
sinϕÞ

coordinates (see Fig. 2, top) passing through J ¼ 0
and with tangential lines at the origin at angles π=2�
1=2 acos η.
The total area A8ðηÞ of this figure of eight is given by the

integral

A8 ¼
Z
Γ
dϕ

cos 2ϕþ η

cos 2ϕ − α

¼ η

Z
Γ
dϕ

1

cos 2ϕ − α
þ
Z
Γ
dϕ

cos 2ϕ
cos 2ϕ − α

¼ ηI0 þ I1; ð11Þ

where Γ is the domain in ϕ for which JðϕÞ > 0 and I0; I1

are appropriate constants that can be computed numeri-
cally. It is indeed possible to compute the integral analyti-
cally, but this is not needed in this case as we are only
interested in its behavior with respect to η. When studying
the function 1=ðcos 2ϕ − αÞ, it turns out that

I0 < 0 if

�
α ≥ 1;

−1 ≤ α < 1 and −α ≤ η ≤ 1

and

I0 > 0 if

�
α ≤ −1;
−1 ≤ α < 1 and −1 ≤ η ≤ −α:

When I0 < 0, A8 is a nonincreasing function of η,
whereas for I0 > 0, A8 is a nondecreasing function of η.
For jαj < 1, A8 is bounded in the interval ½0; π=2�, while

for jαj > 1, it reaches its maximum at η ¼ −sgnðαÞ with a
value of

Amax
8 ¼ 2π

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − 1

p

αþ 1

�
: ð12Þ

Concerning the UFPs of Group 3, the equation of the
separatrix has two solutions, namely J ¼ 1, i.e., the border
of the allowed circle, and

JðϕÞ ¼ αþ η

cos 2ϕ − α
: ð13Þ

This solution is acceptable when 0 < JðϕÞ < 1 and repre-
sents two curves, each one connecting a pair of the fourUFPs
with J ¼ 1, which are found for ϕu ¼ 1=2 acosð−2α − ηÞ.
Each curve is called a coupling arc. We define the area of
each of the two symmetrical regions delimited by these arcs
and by the allowed circle asADðηÞ (see Fig. 2, top). Thevalue
of AD is given by the integral of 1 − JðϕÞ

AD ¼ η

Z
ϕ2;−

ϕ1;þ

dϕ
α − cos 2ϕ

þ
Z

ϕ2;−

ϕ1;þ
dϕ

2α − cos 2ϕ
α − cos 2ϕ

¼ ηI2 þ I3; ð14Þ

where I2; I3 are appropriate constants that can be computed
numerically.
As for the case of A8, we are interested to study how AD

varies as a function of η, which depends on the sign of I2.
We have the following

I2 > 0 if

�
α ≥ 1;

−1 ≤ α < 1 and −1 − 2α ≤ η ≤ −α

and

I2 < 0 if

�
α ≤ −1;
−1 ≤ α < 1 and −α ≤ η ≤ 1 − 2α:

:

For the case of A8, AD is monotonically nonincreasing if
I2 < 0 and monotonically nondecreasing if I2 > 0.
Finally, UFPs might exist either for ϕ ¼ 0; π or for

ϕ ¼ π=2; 3π=2. We analyze the case α > 1 and 1 − 2α <
η < −1, where two UFPs are found for ϕ ¼ 0 and ϕ ¼ π
(the case of ϕ ¼ π=2; 3π=2 is analogous).
To express the solution, it is useful to define the

parameters a ¼ α − 1 and u ¼ −ðηþ 1Þ=ð2aÞ, so that
u ∈ ½0; 1�. Therefore we have

FIG. 1. Diagram of the possible phase-space topologies as a
function of η and α. The letters refer to the portraits shown in
Fig. 3, and the prime indicates a rotation by π=2 with respect to
the configuration shown in Fig. 3.
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JðϕÞ ¼ auþ sin2 ϕ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϕþ 2auð1 − uÞ

p
aþ 2 sin2 ϕ

: ð15Þ

The solutions delimit three regions of phase space: an
upper and a lower region, both with area AΘ1

, and a central
region, with area AΘ2

. The two outer regions each enclose
one stable fixed point where ϕ ¼ π=2 or ϕ ¼ 3π=2 while
the inner region encloses the stable origin. The correspond-
ing phase-space topology with the definition of the areas is
shown in the bottom plot of Fig. 2.
The area of these regions can be evaluated by the integrals

AΘ1
ðuÞ ¼ 2

Z
π

0

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϕþ 2auð1 − uÞ

p
aþ 2sin2 ϕ

AΘ2
ðuÞ ¼ 2

Z
π

0

dϕ
auþ sin2 ϕ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2ϕþ 2auð1 − uÞ

p
aþ 2 sin2 ϕ

;

ð16Þ

where A1ðuÞ is symmetric with respect to u ¼ 1=2. We
define the area of the entire three-region structure as
AΘ ¼ 2AΘ1

þ AΘ2
, noting that

AΘð1=2� vÞ þ AΘ2
ð1=2 ∓ vÞ ¼ 2π ð17Þ

for any v ∈ ½0; 1=2�.
It is possible to show that AΘ2

grows as u is increased
(and η decreased). On the other hand, AΘ1

reaches its
maximum at u ¼ 1=2. AΘ is also monotonic. At u ¼ 0,
AΘ ¼ Amax

8 , while for u ¼ 1, AΘ ¼ 2π, and the three-region
structure covers the entire allowed circle, whose area is
given by Aac ¼ 2π.

C. Classification of the phase-space topology

Using the information on the existence and type of
stability of the fixed points, it is possible to reconstruct all
possible phase-space topologies, as shown in Fig. 3, as a
function of η and α. Phase-space portraits, represented
using Cartesian coordinates, are shown with α along the
vertical direction (increasing from bottom to top) and η in
the horizontal direction (increasing from left to right). In
this way, a resonance-crossing process occurs according to
a sequence of phase-space structures corresponding to a
certain row shown in Fig. 3. In all cases shown, the initial
phase-space structure is the simplest and transforms
through different sequences of topologies to a final con-
figuration that is again the simplest possible.
In general, when jηj ≫ 1, only the fixed point in J ¼ 0

exists. As jηj is decreased, the origin then becomes unstable
and a figure of eight appears in which two stable fixed
points are present either along the horizontal or the vertical
axis. The existence of four fixed points on the border of the
allowed circle creates two coupling arcs, each enclosing
one stable fixed point.
The case α ¼ 0 is the simplest with a highly symmetrical

phase-space structure, which is mirrored around η ¼ 0.
When 0 < α < 1 a, rich combination of phase-space
structures appears, which is reduced when α ¼ 1, although
horizontal coupling arcs are generated for the first time.
Finally, for α > 1, a new structure appears, corresponding
to the birth of two unstable fixed points, which were absent
for smaller values of α. Details of the transition between the
phase-space topology ðBÞ and ðCÞ in Fig. 3 are shown in
Fig. 4. The orbits of the system are displayed for α ¼ 2 and
three values of η to visualize the transition from the figure-
of-eight shaped region, with two stable and one unstable
fixed points, to the new structure, which features three
stable and two unstable fixed points.
We underline that in Fig. 3, only the phase-space

portraits corresponding to α > 0 are presented, as due to
the symmetries of the Hamiltonian under consideration, the
case α < 0 is the same as α > 0 provided that the sign of η
is reversed and ϕ is shifted by π=2.

FIG. 2. Definition of the names of the various phase-space
regions in coordinates ð ffiffiffiffiffi

2J
p

cosϕ;
ffiffiffiffiffi
2J

p
sinϕÞ, corresponding to

the topologies, shown in Fig. 3, G (top plot) and C (bottom plot).
Note that the area of the allowed circle, i.e., the region inside the
red circle, is indicated by Aac. The nomenclature has been
introduced in Sec. II B.
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D. Resonance-crossing process

We analyze the resonance-crossing process for the
Hamiltonian (4) in which η is varied by means of a
variation of the parameter δ, representing the distance to
the resonance. As the phase-space variables are dimension-
less, so are η and δ. In this study, δ is slowly varied from
δ ≫ 1 to δ ≪ −1, with δðλÞ ∝ ϵt, where ϵ > 0 is the small
parameter that controls the adiabaticity of resonance

crossing. By applying the approach used in Refs. [1,7],
it is possible to show that the correct adiabatic parameter is
actually given by ϵ=ðGJ2bÞ2, which means that whenever ϵ
is varied, G should be readjusted according to the scaling
law G ≈

ffiffiffi
ϵ

p
to keep the crossing process invariant.

We assume that the parameter variation is performed
under adiabatic conditions so that the adiabatic theory for
Hamiltonian systems holds [5,34–39]. We recall that

FIG. 3. Possible phase-space topologies for the Hamiltonian (4) as a function of α (vertical direction) and η (horizontal direction),
using Cartesian coordinates ð ffiffiffiffiffi

2J
p

cosϕ;
ffiffiffiffiffi
2J

p
sinϕÞ. Note that η is decreasing from left to right, as we describe a process where η starts at

η ≫ 1 and ends at η ≪ 1. The border of the allowed circle is depicted in red, the coupling arcs are in blue, and the figure-of-eight
separatrix is in green. The letters indicate the topology type marked in Fig. 1.

FIG. 4. Details of the transition between the phase-space topology ðBÞ and ðCÞ shown in Fig. 3 for α ¼ 2. We remark that a bifurcation
phenomenon occurs at the origin at η ¼ −1.
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adiabatic theory describes the evolution of the orbits using
the action-angle variables of the frozen Hamiltonian in each
region defined by the separatrix curves. The area enclosed
by an orbit, i.e., 2π times the initial action Ii, remains
almost constant during the variation until its value coin-
cides with the area of the regions delimited by a separatrix.
It then crosses the separatrix and enters into a growing
region of phase space with a probability proportional to the
time derivative of the area of each region. At the separatrix
crossing, the adiabatic theory has to be improved [35], since
the action function is singular and the action value may have
small stochastic changes. After the separatrix crossing, the
new actionvalue of the orbit corresponds to the area enclosed
by the separatrix at the crossing time divided by 2π and is
preserved in the adiabatic approximation.
Let us follow the evolution of an initial condition during

such a resonance-crossing process, starting from the
simplest case, i.e., α ¼ 0. The sketch of possible phenom-
ena that occur during the resonance-crossing process is
shown in Fig. 5, where the phase-space portraits of Fig. 3
are depicted and information about possible transitions
between the different phase-space regions is included. The
dotted arrows indicate the possible transitions that do not
imply any separatrix crossing, whereas the continuous
arrows indicate transitions between regions that require
separatrix crossing.
At first, when η ≥ 1, the particle has an action Ii ¼

Ai=2π where Ai is the area enclosed by the orbit. We remark
that A8ðηÞ and ADðηÞ reach their maximum values at η ¼ 0,
when they degenerate [40], and that 0 ≤ A8 ≤ π, while
0 ≤ AD ≤ π=2.
When η becomes smaller than 1, several phase-space

regions are generated by the appearance of stable and
unstable fixed points and the orbit will be confined in the
area outside of A8 and AD as long as A8ðηÞ ≤ Ai ≤
Aac − 2ADðηÞ. We define η� as the value of η when one of
the two limiting conditions is first met, i.e., either Ai þ
2ADðη�Þ ¼ Aac or Ai ¼ A8ðη�Þ, where Aac has been intro-
duced in Fig. 2.
In the first case, the particle is trapped in the left lobe,

with a new enclosed area A1 ¼ ADðη�Þ ¼ ðAac − AiÞ=2.

When η < 0, the lobe becomes the left half of the new,
horizontally oriented figure of eight, which starts shrinking.
The particle remains within the lobe until η ¼ η��, when
A8ðη��Þ=2 ¼ A1. At that moment, the particle is released
out of the separatrix and is enclosed in the area
Af ¼ A8ðη��Þ ¼ 2A1 ¼ Aac − Ai. This value is conserved
in the final state when η ≤ −1.
On the other hand, if the initial condition satisfies

Ai ¼ A8ðη�Þ, the particle is initially trapped in the upper
lobe of the vertically oriented figure of eight, with an
enclosed area A1 ¼ A8ðη�Þ=2 ¼ Ai=2. When η < 0, the
particle stays in the upper region delimited by the coupling
arc. This lobe shrinks, and for η ¼ η��, when ADðη��Þ ¼ A1,
the particle is released from the lobe, with a new orbit area
Af ¼ Aac − 2ADðη��Þ ¼ Aac − 2A1 ¼ Aac − Ai. In both
cases, we have Af ¼ Aac − Ai, which means that if the
particle had an initial action value Ii ¼ Ai=ð2πÞ, it will
end up having an action If ¼ Af=ð2πÞ ¼ ðAac − AiÞ=2π ¼
1 − Ii or, transforming back to Ix and Iy coordinates,

Ix;f ¼ Iy;i; Iy;f ¼ Ix;i; ð18Þ

corresponding to an emittance exchange mediated by the
resonance-crossing process.
The same reasoning applied to the cases 0 < α < 1 and

α ¼ 1 yielded the same result. We observe that when
1 > η > −α, the particle is trapped in the figure of eight
or one of the lobes and is detrapped when −α > η >
−1 − 2α.
The analysis of the case α > 1 is more involved, as three

possibilities exist. Let us consider the changes in the phase-
space topology in a qualitative way. As η decreases, the
figure of eight appears when η ¼ 1 and grows until it
reaches its maximum area at η ¼ −1 when a bifurcation
phenomenon occurs. When η < −1, a new structure
appears (see Fig. 4), which is divided into three parts
and with total area AΘ that satisfies Amax

8 ≤ AΘ ≤ Aac

when η ∈ ½−1; 1 − 2α�.
Let us consider the three possible cases. If Ai < Amax

8 , the
particle is trapped in the figure of eight when −1 ≤ η ≤ 1,
enclosing an area A1 ¼ Ai=2. It then moves into the zone

FIG. 5. Sketch of the resonance-crossing process (η decreases from left to right) for the simple case α ¼ 0. The dotted arrows indicate
the transition between regions that do not imply separatrix crossing, whereas continuous arrows indicate the transition between regions
that require separatrix crossing.
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AΘ1
, and as AΘ1

> Amax
8 for η ∈ ½1 − 2α;−1�, this occurs

without crossing any separatrix during that interval.
However, for η < 1− 2α, the particle is released back to
the center for η ¼ η�� when AD ¼ A1 ¼ Ai=2. Hence, the
final area is Af ¼ Aac − 2A1 ¼ Aac − Ai and the emittance
exchange holds as seen in the previous cases.
If Ai > Amax

8 , the first trapping occurs for η ∈
½1 − 2α;−1�. AΘ1

varies in a symmetrical way with respect
to η ¼ 1 − α, and its derivative is positive only if η > 1 − α.
Therefore, defining η� as the solution of equation
AΘ1

ðη�Þ ¼ Ai, if η� > 1 − α, the particle can be trapped
according to a probability law [34], either in AΘ1

(with
probability P1) or in AΘ2

(with probability 1 − P1). If
η� < 1 − α, the particle is trapped in AΘ2

.
A particle trapped at η ¼ η� in AΘ1

has the orbit area
AΘ1

ðη�Þ. As AΘ1
grows and then shrinks back to the same

area when η�� ¼ 1 − α − η�, the particle reaches the final
area AΘ2

ðη��Þ and the following relation holds

Af ¼ AΘ2
ðη��Þ

¼ AΘðη��Þ − 2AΘ1
ðη�Þ

¼ AΘðη� þ 1 − αÞ þ AΘ2
ðη�Þ − Ai

¼ 2π − Ai: ð19Þ

The last equality is derived from Eq. (17), and once more an
emittance exchange occurs.
The third possibility is that a particle with Ai ¼ AΘðηÞ at

η ¼ η� ∈ ½1 − 2α;−1� is immediately trapped in AΘ2
. When

η� > 1 − α, this occurs with a probability P1, with prob-
ability 1 − P1, this does not occur and the previous case
applies. On the other hand, when η� < 1 − α, trapping in
AΘ2

is guaranteed and the final area is Af ¼ AΘ2
ðη�Þ, or

Af ¼ Ai − 2AΘ1
ðη�Þ, which does not result in an emittance

exchange. This brings us to an interesting observation.
Unlike the case of the ð1;−1Þ linear coupling resonance
[1], in which the amplitude detuning affects only the
adiabaticity of the crossing process, in the case of the
ð2;−2Þ nonlinear coupling resonance, the amplitude detun-
ing might perturb the emittance exchange proper and could
even prevent it from occurring. Such an effect is due to the
phase-space topology that, when α > 1, features structures
that may prevent emittance exchange.
The possible processes that occur for α > 1 are sum-

marized in Fig. 6, where the areas of the phase-space
regions, computed by means of numerical evaluation of the
corresponding integrals, are plotted as functions of η. The
blue curve represents the outer area, A8 or AΘ, the red curve
represents the area of the region around the stable point in
ϕ ¼ π=2, and the black curve represents the area of the
region that includes the origin when it is stable. The green
line shows the area evolution of a particle that is trapped
inside the figure of eight region, while the solid purple line
shows a particle that is first trapped in AΘ1

. The dotted

purple line and the orange line are two particles that are
immediately trapped in AΘ2

. Note that the purple line
bifurcates since both outcomes are possible for a particle
with Amax

8 ≤ Ai ≤ AΘð1 − αÞ.
In summary, when jαj ≤ 1, we expect that due to a

resonance-crossing process, the initial normalized action Ji
of each particle becomes 1 − Ji, corresponding to an
exchange of the values of Ix and Iy. On average, this
results in the exchange of emittances εx ¼ hIxi and εy ¼
hIyi after the crossing.
On the contrary, when jαj > 1, only some initial con-

ditions undergo the action jump Ji → 1 − Ji and contribute
to emittance exchange. The final efficiency in the exchange
of emittances will therefore depend on the fraction of
particles with the right initial conditions. This corresponds
to particles with sufficiently small or large Ji, depending on
the sign of α and the direction of resonance crossing. The
emittance exchange performance in conditions of high
amplitude detuning is therefore sensitive to the initial
distribution, in particular to the initial emittance ratio.

FIG. 6. Scheme of the trapping process in the case α > 1. Thick
lines represent the areas of the different phase-space regions as a
function of η (note the reversed horizontal scale, as we describe a
process in which η decreases with time). The same color
represents a continuity of a region throughout the intervals
1 > η > −1, −1 > η > 1 − 2α, 1 − 2α > η > −1 − 2α. Thin
lines show the evolution of the area with three possible initial
conditions. The green line represents a particle that is first trapped
in A8 and then released from AD. The purple line shows (with a
bifurcation) the two possible outcomes of a particle trapped either
in AΘ1

and then released, or in AΘ2
at η� > −1 − α. Finally, the

orange line represents a particle trapped in AΘ1
when

η� < −1 − α.
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III. THE MAP MODEL

The dynamics generated by the Hamiltonian (A2)
correspond to the quasiresonant normal form expansion
of a 4D Hénon-like map [41] with cubic nonlinearity (see
Appendix B). This polynomial map simulates the one-turn
map of an FODO cell in which a normal octupole,
represented as a single-kick element, is located. In
Courant-Snyder coordinates, the Hénon-like map reads

0
BBB@

x0

p0
x

y0

p0
y

1
CCCA ¼ Rðωx;ωyÞ

0
BBB@

x

px þ K3

6
β2xðx3 − 3βxy2Þ

y

py þ K3

6
β2xðβ2y3 − 3βx2yÞ

1
CCCA;

ð20Þ

where R is a 4 × 4, block diagonal matrix, whose blocks are
2 × 2 rotation matrices of frequencies ωx, ωy. The param-
eter β ¼ βy=βx represents the ratio of the β functions at the
location of the octupole, andK3 is the normalized octupolar
strength, defined as

K3 ¼
l
Bρ

∂
3By

∂x3
; ð21Þ

where Bρ is the magnetic rigidity, l is the length of the
octupole, and By is the vertical component of the mag-
netic field.
By computing the normal form expansion of Eq. (20),

we can establish the correspondence between the param-
eters of the Hamiltonian (A16) and those of the map in the
neighborhood of the origin (see Appendix B), namely

G ¼ K3

βxβy
4

;

αaa ¼ −K3

�
1

4
β2x þ βxβy þ

1

4
β2y

�
;

αab ¼
K3

2
βy

�
βx þ

βy
2

�
;

αbb ¼ −K3

β2y
4
: ð22Þ

These formulas show that a normal octupole always
generates an amplitude-dependent detuning, which is
reflected in the values of αaa and αab. It is worth recalling
that, thanks to superperiodicity, it is possible to assume that
additional octupoles can be installed in the ring lattice so
that they only contribute to amplitude detuning and not to
the resonant term. This configuration has been included in
our model by changing the rotation frequency of the matrix
R in Eq. (20) by introducing action-dependent terms, i.e.,

ωx → ωx þ αxxIx þ αxyIy;

ωy → ωy þ αxyIx þ αyyIy: ð23Þ

Although the case β ¼ 1 represents a simplification of
the general case, it retains some interest. By fixing
αxx ¼ αyy ¼ 0, the parameter αxy can be used to control
the value of α in Eq. (4). In this case, the computation of the
normal form on the map of Eq. (20) with the amplitude-
dependent rotation frequencies of Eq. (23) gives

αaa ¼ −
3

2
K3 − 4αxy; αab ¼

3

4
K3 þ 2αxy; ð24Þ

and the parameter α of Eq. (4) is given by

α ¼ −3 − 8
αxy
K3

: ð25Þ

In the numerical simulations using the map of Eq. (20),
and adding the amplitude-dependent terms of Eq. (23), we
remark that the amplitude-dependent rotation of Eq. (23)
uses the invariants of the frozen system to evaluate Iz; z ¼ x
or y. In a nonlinear system, the linear actions Iz ¼ 1=2ðz2 þ
p2
zÞ are not invariant for the dynamics, and an approxima-

tion of the actual invariant can be obtained by using
Birkhoff normal forms [41] (see also Appendix B). For
the case of numerical simulations, we computed the
correction up to the fourth order using the software
described in [42]. Neglecting this effect would move each
particle to a different value of the action at each application
of the amplitude-dependent rotation, thus causing a loss of
symplecticity of the system.

IV. RESULTS OF NUMERICAL SIMULATIONS

We measure the performance of the emittance exchange
process for resonance ð2;−2Þ by computing the evolution
of a Gaussian distribution of initial conditions ρðIx; IyÞ
under the dynamics generated by the map of Eq. (20)
iterated for N turns, with or without amplitude-detuning
terms. We recall that no complete and rigorous results for
the adiabatic theory of time-dependent symplectic maps are
available. On the other hand, the use of the interpolating
Hamiltonian allows one to apply a perturbation approach.
In the numerical simulations, ωx is kept constant while ωy

is linearly varied in N equal steps between the initial value
ωy;i ¼ ωx þ δmax and the final value ωy;f ¼ ωx − δmax, to
cross the resonance, so that ωy varies by 2δmax=N at each
time step. The initial and final emittances were then
compared with the figure of merit Pna, introduced in
Ref. [4], used to assess how well the emittance exchange
occurred. Pna is defined as

Pna ¼ 1 −
hIx;fi − hIx;ii
hIy;ii − hIx;ii

ð26Þ
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that satisfies Pna ¼ 1 when no emittance exchange occurs
and Pna ¼ 0 when the exchange is perfect.
The presence of a halo in the final distribution is

expected for a small set if initial conditions due to the
changes in the adiabatic invariant at separatrix crossing
when the time variation is not perfectly adiabatic [5]. This
phenomenon needs to be determined quantitatively by
means of numerical simulations to provide a complete
assessment of the resonance-crossing process. To this aim,
it is possible to define the so-called halo parameter [43]:

hz ¼
hz4i
hz2i2 − 2 z ¼ x or y: ð27Þ

The quantity hz is the kurtosis of the beam distribution,
which measures how the distribution reaches its peak in
comparison with a Gaussian. Following [43], the standard
normalization is modified so that hz ¼ 0 for a Kapchinskij-
Vladimirskii distribution [44], which is known to have no

halo, and hz ¼ 1 for a Gaussian distribution so that hz > 1
indicates a halo larger than that of a Gaussian distribution.
Numerical simulations were used to study the behavior

of Pna, hx, and hy as a function of various parameters,
namely the frequency excursion δmax, the octupole strength
K3, the ratio between initial emittances hIy;ii=hIx;ii, the
number of turns N of the resonance-crossing process, and
the detuning parameter αxy. For all numerical simulations,
we set ωx ¼ 2.602, βx ¼ βy ¼ 1, αxx ¼ αyy ¼ 0. When not
otherwise stated, we used the default parameters
δmax ¼ 0.01, K3 ¼ 10, N ¼ 106, using Np ¼ 104 initial
conditions with hIx;ii ¼ 1 × 10−4, hIy;ii ¼ 4 × 10−4. Note
that since δðλÞ in Eq. (3) is defined as δðλÞ ¼ ωx − ωy,
δmax > 0 corresponds to a process in which δ (and η, if
K3 > 0) is varied from an initial negative value to a final
positive value.
Figure 7 (top left) shows the performance of the

emittance exchange as a function of the detuning parameter
α for two reciprocal values of the initial emittance ratio.

FIG. 7. Simulation results of Pna as a function of the detuning parameter α for two reciprocal values of the initial emittance ratio (top
left), frequency excursion δmax (top right), normal octupole strength K3 (bottom left), and number of turns N (bottom right). Seven
values of α representing all possible regimes were used. A positive value of δmax indicates a process where ωy;i > ωx > ωy;f and vice
versa for δmax < 0 (simulation parameters: ωx ¼ 2.602, βx ¼ βy ¼ 1, αxx ¼ αyy ¼ 0, δmax ¼ 0.01, K3 ¼ 10, N ¼ 106, Np ¼ 104,
hIx;ii ¼ 1 × 10−4, hIy;ii ¼ 4 × 10−4). The vertical black dotted lines indicate the nominal value of the parameters.
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The values of α are obtained by varying the parameter αxy
(the value corresponding to K3 ¼ 10 is shown on the top
horizontal scale). It is clearly visible how Pna is close to
zero in the −1 < α < 1 region, where the theory predicts a
perfect exchange of emittance, while it grows considerably
once jαj > 1. Furthermore, the behavior has a clear
symmetry, i.e., Pna is invariant for transformations of the
form

α → −α;
hIx;ii
hIy;ii

→

�hIx;ii
hIy;ii

�
−1
: ð28Þ

Indeed, this transformation in action corresponds to a
transformation of type J → 1 − J for the value of the
variable J ¼ Ja=Jb ¼ Ix=ðIx þ IyÞ.
This can be explained by considering some further

symmetries of the underlying Hamiltonian that are ana-
lyzed in Appendix C.
In the other graphs of Fig. 7, we present data sampled at

seven values of αxy to test the exchange of emittance in the
seven possible regimes of α. Figure 7 (top right) shows Pna
as a function of the frequency excursion δmax, and in this
case, Pna fulfills the following symmetry

α → −α; δmax → −δmax; ð29Þ

which is a direct consequence of the properties of the
Hamiltonian expressed in Eq. (5).
Figure 7 (bottom left) shows the emittance exchange

performance as a function of the octupole strength K3, and
in this case, the symmetry

α → −α; K3 → −K3 ð30Þ

is only approximately satisfied (this behavior is also
discussed in Appendix C).
Figure 7 (bottom right) shows Pna as a function of the

number of turns used for the map simulation, which
corresponds to the study of the efficiency of emittance
exchange as a function of the inverse of the adiabaticity
parameter. As expected, the results are well fitted by a
power-law model with an offset, i.e., Pna ¼ aαN−bα þ cα.
This is the typical behavior when separatrices are present in
phase space (see Ref. [1] and references therein). In Fig. 8
(top), Pna is shown in the log-log scale as a function of N
after subtraction of the constant term cα. The fitted straight
lines are also shown and the good agreement is clearly
visible, which confirms the statement about the type of
model that best represents the dependence of Pna on N. In
Fig. 8 (bottom), the value of the fit parameter bα as a
function of α is shown, and the shaded area represents the
error associated with the computation of the fit parameter.
Two regimes are visible: one corresponding to the case
jαj ≤ 1, when the emittance exchange occurs; one corre-
sponding to the case jαj > 1, when only partial emittance

exchange occurs, due to the bifurcation phenomenon of the
origin. It should be stressed, however, that the details of the
observed functional dependence of these parameters on N
and α are model-dependent.
Figure 9 reports the value of Pna as a function of the

initial emittance ratio, for the two directions of resonance
crossing, i.e., δmax > 0 (left column) and δmax < 0 (right
column), and the seven values of α already considered (the
largest in the top row and those closer to zero in the bottom
row).These plots condense the behavior already shown in the
previous figure. Note the symmetry between the logarithmof
the emittance ratio, the sign of α and the sign of δmax.
Furthermore, it should be noted that the vertical scales are
different in the bottomplots, asPna ≈ 0whenα < 1. It is also
worth noting that for hIx;ii ¼ hIy;ii, Pna [Eq. (26)] is not

FIG. 8. Top: log-log scale representation of the data of the
bottom-right plot of Fig. 7, having subtracted the offset cα from
Pna. The fit lines are also shown. Bottom: Values of the parameter
bα of the model PnaðNÞ ¼ aαN−bα þ cα that fits the data of the
bottom-right plot of Fig. 7 as a function of the detuning
coefficient α, which is set by varying αxy. The shaded area
represents the error attributed to the computation of the fit
parameter.
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defined, which explains the fluctuations of Pna as the ratio
approaches 1.
Figure 10 shows the dependence of the halo parameter in

the horizontal (left column) and vertical (right column)
planes as a function of various parameters (reported in the
rows) that characterize the model. The data shown re-
present a moving average as the values of the halo
parameters are rather noisy due to the sensitivity to the
presence of particles in the tails of the distribution with the
fourth power in the definition of hz. Isolated outliers found
at the extremities of the initial distribution are therefore
responsible for the very large values of hz found in the
numerical simulations.
In general, the symmetries observed for Pna are also very

visible for the halo parameters. The vertical plane features
larger values of the halo parameter, which is likely to be
linked to the choice of the distribution of the initial
conditions, which satisfy hIx;ii < hIy;ii. In fact, a similar
situation would be found in the horizontal plane upon
reversing the shape of the distribution of the initial
conditions, i.e., having hIx;ii > hIy;ii. When a full

emittance exchange is expected, e.g., when α < 1 or
jδmaxj large, and hence Pna ≈ 0, both hx and hy approach
1, confirming that the final distribution is still Gaussian.
The dependence of hz on the number of turns N shows a
convergence toward 1 in the horizontal plane. This indi-
cates that a slower, and hence more adiabatic, resonance
crossing is beneficial not only for a good exchange of the
transverse emittances but also for ensuring that the final
distribution is still Gaussian, as expected from the estimates
in [35]. The situation in the vertical plane is somewhat
different, as a small increase of hy is observed as a function
of N. Note that particles with final x or y greater than 5
times the value of the standard deviation have been filtered
out. Even so, the small number of outlier particles tend to
move further away from the origin with each iteration of the
map, which explains the increasing trend of hy.
In Fig. 11, we show the halo parameters hx (top row) and

hy (bottom row) for opposite values of δmax (left and right
columns) and for the seven values of α, as a function of
hIx;ii=hIy;ii. It is clearly seen that for jαj < 1, the final

FIG. 9. Simulation results of Pna as a function of the initial emittance ratio hIy;ii=hIx;ii, for seven values of α representing all the
possible regimes (divided into top and bottom plots) and two values of δmax with different signs (left and right plots). Note the different
vertical scales for plots with jαj ≥ 1 and jαj < 1. As Pna diverges when hIx;ii ≈ hIy;ii, data in the range 5=7 ≤ hIy;ii=hIx;ii ≤ 7=5 have
been excluded from the plot. (Simulation parameters: ωx ¼ 2.602, βx ¼ βy ¼ 1, αxx ¼ αyy ¼ 0, K3 ¼ 10, N ¼ 106, Np ¼ 104).

A. BAZZANI, F. CAPOANI, and M. GIOVANNOZZI PHYS. REV. ACCEL. BEAMS 25, 104001 (2022)

104001-12



FIG. 10. Simulation results of halo parameters hx (left) and hy (right) as a function of the detuning parameter α for two reciprocal
values of the initial emittance ratio (first row), frequency excursion δmax (second row), normal octupole strength K3 (third row), and
number of turns N (fourth row). Seven values of α representing all possible regimes have been used. A positive value of δmax indicates
a process where ωy;i > ωx > ωy;f and vice versa for δmax < 0. Data are shown after applying a moving average of five values.
(Simulation parameters: ωx ¼ 2.602, βx ¼ βy ¼ 1, αxx ¼ αyy ¼ 0, δmax ¼ 0.01, K3 ¼ 10, N ¼ 106, Np ¼ 104, hIx;ii ¼ 1 × 10−4,
hIy;ii ¼ 4 × 10−4).
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distribution is Gaussian-like over a wide range of values of
hIx;ii=hIy;ii while the final distribution deviates from a
Gaussian in the regimes jαj > 1. A symmetry between the
conditions with hIy;ii > hIx;ii or hIy;ii < hIx;ii, the direction
of the resonance-crossing process, represented by the sign
of δmax and the sign of α is also visible.
Finally, in Fig. 12, the distribution of the ratio between

the values of Jb before and after the crossing is plotted for
some values of α, showing that in the map model, the
conservation of Jb, which is derived from the Hamiltonian
analysis, is very well fulfilled, as almost all the conditions
preserve the invariant with a deviation much smaller
than 0.5%.

V. CONCLUSIONS

A Hamiltonian model to describe the crossing of the
nonlinear coupling resonance, known as the Montague
resonance whenever space-charge forces are at its origin,
has been proposed and analyzed in detail. The phase-space

FIG. 11. Simulation results of the halo parameters hx (top plots) and hy (bottom) as a function of the initial emittance ratio hIy;ii=hIx;ii,
for seven values of α representing all possible regimes and two values of δmax with different signs (left and right). Data are shown after
applying a moving average of five values. (Simulation parameters: ωx ¼ 2.602, βx ¼ βy ¼ 1, αxx ¼ αyy ¼ 0, δmax ¼ 0.01, K3 ¼ 10,
N ¼ 106, Np ¼ 104, hIx;ii ¼ 1 × 10−4, hIy;ii ¼ 4 × 10−4).

FIG. 12. Distribution of the ratio Jb;f=Jb;i for three values of α.
(Simulation parameters: ωx ¼ 2.602, βx ¼ βy ¼ 1, αxx ¼ αyy ¼ 0,
δmax ¼ 0.01, K3 ¼ 10, N ¼ 106, Np ¼ 104, hIx;ii ¼ 1 × 10−4,
hIy;ii ¼ 4 × 10−4).
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topology has been studied in combination with the process
of adiabatic trapping induced by the time variation of the
area of the different phase-space regions that appear when
the resonance is crossed.
These analyses show that the exchange of the transverse

emittances is indeed possible and that the actual perfor-
mance depends on the adiabaticity of the crossing process
and on the detail of the phase-space topology generated
during the resonance-crossing process.
By combining the recent results on emittance exchange

for the linear coupling resonance with the manipulation of
transverse emittances by crossing nonlinear 2D resonances
described in this paper, it can be concluded that for the
Montague resonance, which induces a nonlinear coupling
of the transverse planes, the efficiency of emittance
exchange is not always granted, as the presence of
separatrices may prevent this. This is a key difference with
respect to the crossing of the linear coupling resonance,
where emittance exchange always occurs. Another essen-
tial difference is that the performance of the emittance
exchange process with the number of turns used to cross the
resonance is represented by a power law, while in the case
of the linear coupling resonance, this dependence is
exponential. These differences stem from the singularity
of the action-angle variables for the frozen Hamiltonian at
the separatrix curves that have been shown to exist in phase
space for certain values of the model parameters. No
separatrix is present in the linear case.
The impact of the nonlinearities on the behavior of the

Montague resonance makes it important to study the beam
halo during the resonance-crossing process. It has been
shown that for certain initial conditions, the resonance-
crossing process may induce large fluctuations in the
adiabatic invariant to produce a beam halo in the final
distribution. Detailed numerical simulations have revealed
that the halo parameter, introduced to study these fluctua-
tions, inherits the symmetries of the Hamiltonian system
with halo formation mitigated by improving the adiaba-
ticity of the resonance crossing.
The mechanisms discussed here neglect the presence of

periodic variations of the transverse tunes that may be
induced, e.g., by a nonzero value of the linear chromaticity.
These effects might induce trapping and detrapping phe-
nomena that could have a negative impact on the perfor-
mance of the emittance exchange process. The situation
presented can therefore be considered a best-case scenario
of what could occur in a real machine. A mitigation for this
effect would be the reduction of the linear chromaticity
toward zero, provided this can be achieved by ensuring
beam stability. The approach proposed in this paper has
also been shown to be applicable when there is a time
dependence on the resonance strength, which is relevant
when space-charge effects are considered.
The understanding of the details of emittance exchange

and halo formation generated by the crossing of the

nonlinear coupling resonance presented in this paper
may be of great benefit to mitigate the harmful effects
induced by an uncontrolled crossing of the Montague
resonance, which is a rather common occurrence during
the operation of circular accelerators.
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APPENDIX A: DERIVATION OF THE
HAMILTONIAN MODEL

The linear dynamics of a Poincaré section of motion of a
charged particle in a circular accelerator is described by a
symplectic map that, without loss of generality, corre-
sponds to the phase flow of a harmonic oscillator with
phase advance ω, where ωL is the linear tune for a ring of
circumference length L. The presence of an adiabatic
variation in the quadrupole fields changes the tune as
ωðϵNÞ where N is the number of turns. In such a case, it is
possible to interpolate the linear dynamics using a time-
dependent quadratic Hamiltonian

Hðpx; py; x; y; λÞ ¼
p2
x þ p2

y

2
þ 1

2
ðω2

xðλÞx2 þ ω2
yðλÞy2Þ;

ðA1Þ

where λ ¼ λðsÞ with dλ=ds ¼ OðϵÞ, ϵ being the adiabatic
parameter, and we use physical coordinates (the momenta
are normalized with respect to the total momentum). The
presence of a pseudo-octupolar term, whose strength is
represented by the coefficient G, can be introduced to
selectively excite the resonance ð2;−2Þ, and the new
Hamiltonian reads

Hðpx; py; x; y; λÞ

¼ p2
x þ p2

y

2
þ 1

2
ðω2

xðλÞx2 þ ω2
yðλÞy2 þ 2Gx2y2Þ; ðA2Þ

where we assume theG constant. By varying λ, we describe
the resonance-crossing process in the adiabatic approxi-
mation, i.e., ϵ → 0. The results of adiabatic theory do not
depend on the explicit form of the function λðϵÞ, so one can
assume λ ¼ ϵs also in the Hamiltonian (A2) without loss of
generality. In this case, the linear normal form introduces a
further term in the original Hamiltonian. If we indicate with
AðλÞ, the matrix of the transformation Z ¼ z

ffiffiffiffiffiffiffiffiffiffiffi
ωzðλÞ

p
, it

induces the transformation

x ¼ AðλÞX; ðA3Þ
where X is the new coordinate. A generating function
F2ðx;P; λÞ for the symplectic transformation can be written
in the form
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F2ðx;P; λÞ ¼ P⊤A−1ðλÞx ðA4Þ

and the new Hamiltonian reads

HðX;P; λÞ ¼ ωxðλÞ
X2 þ P2

x

2
þ ωyðλÞ

Y2 þ P2
y

2

þ G
ωxðλÞωyðλÞ

X2Y2 þ ϵP⊤ ∂A−1

∂λ
AX; ðA5Þ

where the last term is the time derivative of the generating
function. The final form of the Hamiltonian is as follows:

HðX;P; λÞ ¼ ωxðλÞ
X2 þ P2

x

2
þ ωyðλÞ

Y2 þ P2
y

2

þ G
ωxðλÞωyðλÞ

X2Y2

þ ϵ

2

�
ω0
xðλÞ

ωxðλÞ
XPx þ

ω0
yðλÞ

ωyðλÞ
YPy

�
; ðA6Þ

where ω0 ¼ dω=dλ. The linear action angle variables ðθ; IÞ
can be used to recast the Hamiltonian (A6) in the form

Hðθ; I; λÞ

¼ ωxðλÞIx þ ωyðλÞIy þ
2G

ωxðλÞωyðλÞ
× IxIysin2 θx sin2θy

þ ϵ

�
ω0
xðλÞ

ωxðλÞ
Ix sin θx cos θx þ

ω0
yðλÞ

ωyðλÞ
Iy sin θy cos θy

�
:

ðA7Þ

The introduction of a slow phase ϕa ¼ θx − θy in the
generating function

F2ðθ; JÞ ¼
�
Ja; Jb

��
1 −1
0 1

��
θx

θy

�
ðA8Þ

transforms the Hamiltonian into the form

Hðϕ; J; λÞ ¼ δðλÞJa þ ωyðλÞJb þ
2G

ωxðλÞωyðλÞ
× JaðJb − JaÞsin2ðϕa þ ϕbÞsin2ϕb

þ ϵ

�
ω0
xðλÞ

ωxðλÞ
Ja sinðϕa þ ϕbÞ cosðϕa þ ϕbÞ

þ ω0
yðλÞ

ωyðλÞ
ðJb − JaÞ sin ϕb cosϕb

�
; ðA9Þ

where

δðλÞ ¼ ωxðλÞ − ωyðλÞ ðA10Þ

and it is possible to apply a perturbative approach averaging
over the fast-evolving angle ϕb to obtain the Hamiltonian

Hðϕ; J; λÞ ¼ δðλÞJa þ ωyðλÞJb
þ G
2ωxðλÞωyðλÞ

ðJaJb − J2aÞ

þ G
4ωxðλÞωyðλÞ

JaðJb − JaÞ cos 2ϕa: ðA11Þ

The Hamiltonian (A11) can be recast in the following
form:

Hðϕ; J; λÞ ¼ 1

2ωxðλÞωyðλÞ
½δðλÞ2ωxðλÞωyðλÞJa

þ 2ωxðλÞω2
yðλÞJb þ GðJaJb − J2aÞ

þG
2
JaðJb − JaÞ cos 2ϕa�

¼ 1

2ωxðλÞωyðλÞ
H̃ðϕ; J; λÞ: ðA12Þ

This generates a transformation ðH; tÞ → ðH̃; t̃Þ, where
dt ¼ 2ωxðλÞωyðλÞdt̃. Furthermore, the following holds

ωxðλÞωyðλÞδðλÞ ¼ ωxð0Þωyð0ÞδðλÞ þOðϵ2Þ; ðA13Þ

and the Hamiltonian H̃ reads

H̃ðϕ; J; λÞ ¼ 2ωxð0Þωyð0Þ½δðλÞJa þ ωyðλÞJb
þ G
2ωxð0Þωyð0Þ

ðJaJb − J2aÞ

þ G
4ωxð0Þωyð0Þ

JaðJb − JaÞ cos 2ϕa þOðϵ2Þ�

¼ 2ωxð0Þωyð0ÞĤðϕ; J; λÞ; ðA14Þ

and the coefficient of the resonance term in the Hamiltonian
Ĥ does not depend on time as the time dependence is
part of the remainder Oðϵ2Þ. Furthermore, by a slight
abuse of notation, in the following, we will use
G=ðωxð0Þωyð0ÞÞ → G. We also introduce detuning param-
eters αaa;G and αab;G to represent the coefficients of the J2a and
JaJb terms that do not depend on the angle.
As ϕb is not present in the Hamiltonian, it follows that Jb

is constant up to an error Oðϵ2Þ for a time interval of order
Oðϵ−1Þ. The perturbative approach is possible only if this
error is small so that Jb can be considered constant during
the resonance-crossing process. We remark that the term
ωyJb can be dropped as it affects only the dynamics of ϕb,
which is irrelevant in the case under consideration. In such
a case, the action of the Hamiltonian with one degree of
freedom
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Hðϕ; J; λÞ ¼ δðλÞJa þ
1

2
αaa;GJ2a þ αab;GJaJb

þ GJaðJb − JaÞ cos 2ϕa: ðA15Þ

can be considered an adiabatic invariant up to an error
Oðϵ2Þ for a time interval Oðϵ−1Þ, and we can study the
change of Ja when δðλÞ passes through zero. Note that other
contributions, which do not originate from the ð2;−2Þ
resonance, to the amplitude detuning terms can be included
in the model, inserting into Eq. (A7) the expression
αxxI2x þ 2αxyIxIy þ αyyI2y. Following the same steps, one
arrives at the following model:

Hðϕa; Ja; JbÞ ¼ δðλÞJa þ
1

2
αaaJ2a þ αabJaJb

þ GJaðJb − JaÞ cos 2ϕa

þ
�
ωyðλÞJb þ

1

2
αbbJ2b

�
; ðA16Þ

where

1

2
αaa ¼ αxx − 2αxy þ αyy þ

1

2
αaa;G;

αab ¼ 2αxy − 2αyy þ αab;G;

1

2
αbb ¼ αyy; ðA17Þ

with the resonance-generated contributions αaa;G and αab;G.
At this stage, the term in the square brackets in Eq. (A16)
can be dropped as the Hamiltonian does not depend on ϕb.

APPENDIX B: NORMAL FORM HAMILTONIAN

The relationship between the Hamiltonian of Eq. (4) and
the map of Eq. (20) can be obtained by using normal form
procedure outlined in [41] to calculate the resonant inter-
polating Hamiltonian for the 4D Hénon-like map in
presence of a normal octupole, considering also the extra
detuning terms of Eq. (23).
First of all, Eq. (20) can be written introducing the

complex coordinates z1 ¼ x − ipx, z2 ¼ y − ipy (z� indi-
cating the complex conjugate of z) as z0 ¼ FðzÞ, where

F1 ¼ expðiωx þ iαxxz1z�1=2þ iαxyz2z�2=2Þ ×
�
z1 − i

K3

48
½β2xðz1 þ z�1Þ3 þ −3βxβyðz1 þ z�1Þðz2 þ z�2Þ2�

�
;

F2 ¼ expðiωy þ iαxyz1z�1=2þ iαyyz2z�2=2Þ
�
z2 − i

K3

48
½β2yðz2 þ z�2Þ3 þ −3βxβyðz1 þ z�1Þ2ðz2 þ z�2Þ�

�
: ðB1Þ

As we are interested in the resonant normal form U, i.e.,
the solution of the homological equation

F ∘Φ ¼ Φ ∘U; ðB2Þ

where Φ is a coordinate transformation, for the coupling
resonance, we can set ωx ¼ ωy. Up to order 3, Uðζ; ζ�Þ is
given by

Uj ¼ eiωxζj þ uj;2100ζ12ζ�1 þ uj;1110ζ1ζ�1ζ2 þ uj;0120ζ�1ζ2
2

þ uj;2001ζ12ζ�2 þ uj;1011ζ1ζ2ζ�2 þ uj;0021ζ22ζ�2; ðB3Þ

with j ¼ 1, 2, and where only the resonant monomials have
been considered.
There are no coefficients of U at order 2, therefore the

conjugating functionΦ is the identity up to order 2, and we
should solve Eq. (B2) starting from order 3. Comparing
term by term the polynomials on the two sides of the
homological equation, one obtains the following result:

u1;0021 ¼ 0; u1;0120 ¼ i
K3

16
βxβyeiωx ;

u1;1110 ¼ 0; u1;1011 ¼ i

�
K3

8
βxβy þ

1

2
αxy

�
eiωx ;

u1;2001 ¼ 0; u1;2100 ¼ −i
�
K3

16
β2x −

1

2
αxx

�
eiωx ;

u2;0120 ¼ 0; u2;0021 ¼ −i
�
K3

16
β2y −

1

2
αyy

�
eiωx ;

u2;1011 ¼ 0; u2;1110 ¼ i

�
K3

8
βxβy þ

1

2
αxy

�
eiωx ;

u2;2100 ¼ 0; u2;2001 ¼ i
K3

16
βxβyeiωx : ðB4Þ

The interpolating resonant Hamiltonian Hres ¼ −iH can
be computed using the Lie operator method. Defining
recursively, the Lie derivative as

D0
Hζ ¼ ζ; Dj

Hζ ¼ fDj−1
H ζ; Hg j > 0; ðB5Þ

where f·; ·g stands for the Poisson bracket, we can find that
the interpolating Hamiltonian starts at order 4, and
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∂½H�4
∂ζ�j

¼ e−iωx ½Uj�3 −
�X2
k¼0

1

k!
Dk

½H�≤3ζj

�
3

¼ h0jðζÞ; ðB6Þ

with j ¼ 1, 2, where the symbol ½·�n represents the terms of
order n of a given polynomial.
An integral of Eq. (B6) can be found in the form

H ¼ h01ðζÞζ�1=2þ h02ðζÞζ�2=2, and we obtain the
Hamiltonian

Hres¼
�
αxx
4
−
K3

32
β2x

�
ζ1

2ζ�1
2þ

�
K3

8
βxβyþ

αxy
2

�
ζ1ζ

�
1ζ2ζ

�
2

þ
�
−
K3

32
β2yþ

αyy
4

�
ζ2

2ζ�2
2þK3

32
βxβyðζ�12ζ22þζ21ζ

�
2
2Þ:

ðB7Þ

As the transformation Φ is the identity up to order 2, in
the Hamiltonian, we can replace ζ with z, and using the
action angle coordinates z1 ¼

ffiffiffiffiffiffiffi
2Ix

p
eiϕx , z2 ¼

ffiffiffiffiffiffiffi
2Iy

p
eiϕy ,

one finds

Hres ¼
�
αxx −

K3

8
β2x

�
I2x þ

�
K3

2
βxβy þ 2αxy

�
IxIy

þ
�
αyy −

K3

8
β2y

�
I2y þ

K3

4
βxβyIxIy cos 2ðϕx − ϕyÞ:

ðB8Þ

If ωx ¼ ωy þ δ, and the quasiresonant HamiltonianH, in
leading order in δ, is given by ωxIx þ ωyIy þHres, we can
perform the transformation to the coordinates ðϕa; JaÞ as in
Eq. (A16), which yields

H ¼ δJa þ
K3

4
βxβyJaðJb − JaÞ cos 2ϕa

þ
�
αxx − 2αxy þ αyy −

K3

8
β2x −

K3

2
βxβy −

K3

8
β2y

�
J2a

þ
�
K3

2
βxβy þ

K3

4
β2y þ 2αxy − 2αyy

�
JaJb: ðB9Þ

From this, the correspondence between the quantities G,
αaa and αab of Eq. (3) and the map parameters K3, βx, βy,
αxx, αxy, and αyy can be established.

APPENDIX C: TRANSFORMATION RULES OF
RESONANT HAMILTONIAN

The Hamiltonian (4) changes sign under the transforma-
tion (5), leaving the equations of motion invariant.
However, it fulfills also other symmetries that should be
studied to interpret the results shown in Fig. 7. Starting
from the top-left plot, Pna is invariant under the trans-
formation

α → −α;
hIx;ii
hIy;ii

→

�hIx;ii
hIy;ii

�
−1
; ðC1Þ

and this can be studied by considering the exchange of the
two transverse planes, i.e., Ix ↔ Iy and θx ↔ θy in the
Hamiltonian (A7), which can be recast in the form

HIx↔Iyðθ; I; λÞ

¼ ωxðλÞIy þ ωyðλÞIx þ
2G

ωxðλÞωyðλÞ
× IxIysin2 θxsin2θy

þ ϵ

�
ω0
xðλÞ

ωxðλÞ
Iy sin θy cos θy þ

ω0
yðλÞ

ωyðλÞ
Ix sin θx cos θx

�
:

ðC2Þ
By applying the same transformation (A8), one obtains

HIx↔Iyðϕ; J; λÞ ¼ −δðλÞJa þ ωyJb þ
G

4ωxðλÞωyðλÞ
× JaðJb − JaÞ cos 2ϕa: ðC3Þ

In this case, the amplitude detuning terms read
αxxI2y þ 2αxyIxIy þ αyyI2x, and following the same steps,
one arrives at the following model:

HIx↔Iyðϕa; Ja; JbÞ ¼ −δðλÞJa þ
1

2
α̂aaJ2a þ αabJaJb

þ GJaðJb − JaÞ cos 2ϕa

þ
�
ωyðλÞJb þ

1

2
α̂bbJ2b

�
; ðC4Þ

where

1

2
α̂aa ¼ αxx − 2αxy þ αyy;

α̂ab ¼ 2αxy − 2αxx;

1

2
α̂bb ¼ αxx; ðC5Þ

where the second and third terms differ from the corre-
sponding expressions in Eq. (A17). The previous
Hamiltonian can be put into final form by dropping the
terms in square brackets, i.e.,

HIx↔Iyðϕa; Ja; JbÞ ¼ ½−δðλÞ þ α̂abJb�Ja þ
1

2
αaaJ2a

þ GJaðJb − JaÞ cos 2ϕa

¼ −
�
½δðλÞ − α̂abJb�Ja −

1

2
αaaJ2a

þ GJaðJb − JaÞ cos 2ϕa

�
; ðC6Þ
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where the initial phase of the angle has been shifted
according to ϕa → ϕa þ π=2. This Hamiltonian should
be compared with the original one, i.e., without the
exchange of the transverse planes, namely

Hðϕa; Ja; JbÞ ¼ ½δðλÞ þ αabJb�Ja þ
1

2
αaaJ2a

þGJaðJb − JaÞ cos 2ϕa: ðC7Þ

The two Hamiltonians differ by a global sign and a time-
independent term linear in Ja. This means that the equation
of motions for the actions have the same form, and only the
angles differ by a term linear in the time variable, which is
irrelevant for the resonance-crossing process, and hence
Pna remains invariant.
The other symmetry to be studied is that visible in Fig. 7

(bottom left). In this case, Pna is quasi-invariant under the
transformation

α → −α; K3 → −K3: ðC8Þ

Here, we recall the Hamiltonian system under consid-
eration, namely

H0ðϕ; JÞ ¼ ηJ þ αJ2 þ Jð1 − JÞ cos 2ϕ; ðC9Þ

together with the two model parameters, i.e.,

η ¼ δþ αabJb
GJb

; α ¼ αaa
2G

; ðC10Þ

and we will express the Eqs. (24) and (25) in the following
form:

αaa ¼ γK3 − ξαxy;

αab ¼ γ̂K3 þ ξ̂ αxy;

α ¼ γ̄ − ξ̄
αxy
K3

: ðC11Þ

knowing that G ∝ K3. Let us assume that the Hamiltonian
(C9) is considered for a set of parameters α� and K�

3. The
following expressions can be easily derived:

αxy
� ¼ γ̄ − α�

ξ̄
K�

3;

η� ¼ δþ α�abJb
JbG� ;

α�ab ¼
�
γ̂ −

ξ̂ðα� − γ̄Þ
ξ̄

�
K�

3: ðC12Þ

Let us apply the symmetry (C8), i.e., α� → −α�,
K�

3 → −K�
3. The values of the model parameters in this

case are given by

αxy
�� ¼ γ̄ − α�

ξ̄
jK�

3j;

η�� ¼ −
δþ α��abJb
JbjG�j ;

α��ab ¼
�
−γ̂ −

ξ̂ðα� − γ̄Þ
ξ̄

�
jK�

3j: ðC13Þ

We observe that, while η�� seems to be the opposite of η�,
which is what is needed to satisfy the symmetry (6), in fact,
α��ab ≠ α�ab from which we conclude that the symmetry is
only partially satisfied, in particular, if jγ̄j ≪ jξ̂ðα� − γ̄Þ=ξ̄j.
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Scaramuzzi, R. Steerenberg, and A.-S. Müller, Experimen-
tal evidence of adiabatic splitting of charged particle beams
using stable islands of transverse phase space, Phys. Rev.
ST Accel. Beams 9, 104001 (2006).

[15] A. Franchi, S. Gilardoni, and M. Giovannozzi, Progresses
in the studies of adiabatic splitting of charged particle
beams by crossing nonlinear resonances, Phys. Rev. ST
Accel. Beams 12, 014001 (2009).

[16] J. Borburgh, S. Damjanovic, S. Gilardoni, M. Giovannozzi,
C. Hernalsteens, M. Hourican, A. Huschauer, K. Kahle, G.
Le Godec, O. Michels, and G. Sterbini, First implementa-
tion of transversely split proton beams in the CERN Proton
Synchrotron for the fixed-target physics programme, Euro-
phys. Lett. 113, 34001 (2016).

[17] S. Abernethy et al., Operational performance of the CERN
injector complex with transversely split beams, Phys. Rev.
Accel. Beams 20, 014001 (2017).

[18] A. Huschauer, A. Blas, J. Borburgh, S. Damjanovic, S.
Gilardoni, M. Giovannozzi, M. Hourican, K. Kahle, G. Le
Godec, O. Michels, G. Sterbini, and C. Hernalsteens,
Transverse beam splitting made operational: Key features
of the multiturn extraction at the CERN Proton Synchro-
tron, Phys. Rev. Accel. Beams 20, 061001 (2017).

[19] A. Huschauer, H. Bartosik, S. Cettour Cave, M. Coly, D.
Cotte, H. Damerau, G. P. Di Giovanni, S. Gilardoni, M.
Giovannozzi, V. Kain, E. Koukovini-Platia, B. Mikulec, G.
Sterbini, and F. Tecker, Advancing the CERN proton
synchrotron multiturn extraction towards the high-intensity
proton beams frontier, Phys. Rev. Accel. Beams 22,
104002 (2019).

[20] M. Vadai, A. Alomainy, H. Damerau, S. Gilardoni, M.
Giovannozzi, and A. Huschauer, Barrier bucket and trans-
versely split beams for loss-free multi-turn extraction in
synchrotrons, Europhys. Lett. 128, 14002 (2019).

[21] B. W. St. L. Montague, Fourth-order coupling resonance
excited by space-charge forces in a synchrotron, CERN
Yellow Reports: Monographs, CERN, Geneva, Report
No. CERN-68-38, 1968.
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S. Machida, E. Métral, J. Qiang, R. D. Ryne, and P.
Spentzouris, Benchmarking of simulation codes based

on the Montague resonance in the CERN Proton Synchro-
tron, in Proceedings of the 21st Particle Accelerator
Conference, Knoxville, TN, 2005 (IEEE, Piscataway, NJ,
2005), pp. 330–332.

[26] I. Hofmann, G. Franchetti, M. Giovannozzi, M. Martini,
E. Metral, J. Qiang, and R. D. Ryne, Simulation aspects
of the code benchmarking based on the CERN-PS
“Montague-resonance” experiment, AIP Conf. Proc.
773, 169 (2005).

[27] I. Hofmann and G. Franchetti, Scaling laws for the
Montague resonance, in Proceedings of the 10th European
Particle Accelerator Conference, Edinburgh, Scotland,
2006 (EPS-AG, Edinburgh, Scotland, 2006), pp. 2796–
2798.

[28] I. Hofmann and G. Franchetti, Self-consistent study of
space-charge-driven coupling resonances, Phys. Rev. ST
Accel. Beams 9, 054202 (2006).

[29] J. Qiang, R. D. Ryne, G. Franchetti, I. Hofmann, and E.
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