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Abstract
We consider extensions of non-singular maps which are exact, respectively K-mixing, or at
least have a decomposition into positive-measure exact, respectively K-mixing, components.
The fibers of the extension spaces have countable (finite or infinite) cardinality and the action
on them is assumed surjective or bijective.We call these systems, respectively, fiber-surjective
and fiber-bijective extensions. Technically, they are skew products, though the point of view
we take here is not the one generally associated with skew products. Our main results are an
Exact and a K-mixing Decomposition Theorem. The latter can be used to show that a large
number of periodic Lorentz gases (the term denoting here general group extensions of Sinai
billiards, including Lorentz tubes and slabs, in any dimension) are K-mixing.

Keywords Extensions of dynamical systems · Exactness · K-property · Decomposition
theorem · Skew products · Lorentz gas · Lorentz tube · Sinai billiard

Mathematics Subject Classification 37A40 · 37A35 · 37C83 · 37D25 · 37A20

1 Introduction

A non-invertible map T : M −→ M, which is two-sided non-singular for the σ -finite
measure space (M,A , μ), is called exact if

⋂

n∈N
T−nA = N , (1)

where N is the null, or trivial σ -algebra on M, containing only the zero-measure sets
and their complements. Its significance is that the dynamical system (M,A , μ, T ) carries
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vanishing information about its initial conditions into the far future; equivalently, it retains
vanishing information about the state of the system in the remote past. In fact, if an observer
makes a finite-precision measurement of the state of the system at present time and O is the
(necessarily finite) σ -algebra representing the resolution of the measurement, the resolution
that the observer obtains on the state of the system at time −n is given by T−nO ⊆ T−nA ,
which becomes trivially coarse as n → ∞.

If T is an invertiblemap the above definition cannotwork, in general, because T−nA = A
for all n. One uses instead the definition of K-mixing, a.k.a. K-property (after Kolmogorov),
which means that there exists a σ -algebra B ⊂ A such that

TB ⊃ B, σ

(
⋃

n∈N
T nB

)
= A mod μ,

⋂

n∈N
T−nB = N , (2)

where σ(·) means the σ -algebra generated by a family of subsets. In this case, the σ -algebra
O of the present-time observation, being finite, can be approximated to any degree by a
σ -algebra O ′ ⊆ T NB, for some N . This implies that

⋂
n T

−nO ′ = N , leading to the same
interpretation as before.

In this paperwe study the exact, respectivelyK-mixing, components of extensions of exact,
respectively K-mixing, dynamical systems, or at least dynamical systems whose exact/K-
mixing components have positive measure. If To is an endomorphism of the Lebesgue space
(M0,Ao, μo), we consider the system (M,A , μ, T ), where M := Mo × I and I is a
countable (finite or infinite) set. The map T : M −→ M acts as

T (x, i) := (To(x),�(x, i)), (3)

where the functions �(x, ·) : I −→ I are surjective or bijective, depending on the sought
result (of course the two assumptions coincide when I is finite). As for A and μ, they
are the natural lifts of Ao and μo, respectively, to Mo × I (see Sect. 2 for details). If the
functions �(x, ·) are surjective, respectively bijective, we say that T is a fiber-surjective,
respectively fiber-bijective, extension of To. These two classes of dynamical systems are
quite general. For example, every group extension, that is, a case where I is an abelian group
and �(x, i) = i + ψ(x), for some ψ : Mo −→ I, is fiber-bijective. Notable examples
are periodic Lorentz gases, which are Z

d -extensions of Sinai billiards. The recent paper
[17] studies the exact components of certain Markov maps of R, including Z-extensions of
expanding circle maps.

A term that is often used for systems similar to fiber-surjective maps is skew products, but
when one speaks of a skew product, one usually means the case where I is an uncountable
space with some structure (measure-theoretic, topological, differentiable, etc.) and To is an
automorphism of ameasure space (typically a probability space).More importantly, the focus
tends to be on the action of the maps �(T n−1

o (x), ·) ◦ · · · ◦�(To(x), ·) ◦�(x, ·) on I, rather
than the dynamics of T on the wholeMo × I, as is the case here. (See [5, 12] for results on
the exactness of certain families of skew products.)

We describe our main results in some detail. If (M0,Ao, μo, To) is exact and T is fiber-
surjective, there are at most countably many ergodic components of T . Each of them is
partitioned into m ∈ Z

+ ∪ {∞} positive-measure sets, which we call atoms, and T maps
atoms onto atoms. If m ∈ Z

+, T acts as an m-cycle between the atoms and Tm is exact
on each of them. If m = ∞, T acts as a shift between the atoms. A completely analogous
theorem is proved for the case where (M0,Ao, μo, To) is K-mixing and T is fiber-bijective
(subject to a natural technical condition). In this case, for m ∈ Z

+, Tm is K-mixing on the
atoms of an m-cycle. Theorems of this kind are sometimes called Spectral Decomposition
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Theorems [11, 18], a phrase we choose to avoid in the context of infinite ergodic theory. Here
we refer to them, respectively, as the Exact and the K-mixing Decomposition Theorem. In
addition, assuming that T is fiber-bijective (even for the case of To exact), we are able to
provide extra information on the structure of the ergodic components and of the atoms within
cycles. This implies in particular that, if T is conservative (i.e., recurrent), it is isomorphic
to another map T1 on (M,A , μ) whose atoms are made up of sets Mo × {i}.

Finally, as an application of the K-mixing Decomposition Theorem, we show that, rather
generally, a periodic Lorentz gas is K-mixing if and only if it is conservative. In particular,
this establishes the K-property for a large number of periodic Lorentz tubes and slabs (see
Sect. 4).

The paper is organized as follows. In Sect. 2 we present the mathematical setup, establish
the notation that is used throughout the paper, and state our main results, which are proved
in Sect. 3. In Sect. 4, which is designed to be read independently of Sect. 3, we show how to
apply the K-mixing Decomposition Theorem to periodic Lorentz gases.

2 Setup and Results

Given a dynamical system (Mo,Ao, μo, To), with (Mo,Ao, μo) a Lebesgue measure space
and To : Mo −→ Mo bimeasurable and two-sided non-singular (i.e., μo(A) = 0 ⇔
μo(T−1

o A) = 0), we consider its extension (M,A , μ, T ), where:

• M := Mo × I, for some countable (finite or infinite) I;
• A is the lift of Ao to M, i.e., A := σ({A × {i} | A ∈ Ao, i ∈ I});
• μ is the lift of μo to M, i.e., μ is the measure on A uniquely defined by μ(A × {i}) =

μo(A), for all A ∈ Ao and i ∈ I;
• T is a bimeasurable self-map of M given by T (x, i) = (To(x),�(x, i)). Depending on

the context, we assume that, for μo-a.a. x ∈ Mo,

�x := �(x, ·) : I −→ I is surjective or bijective. (4)

In the first case we call T a fiber-surjective extension of To; in the second case, we call it
a fiber-bijective extension of To. Clearly, the two conditions are equivalent if #I < ∞.

Observe that, since To is bimeasurable, the bimeasurability of T is equivalent to
the condition that the level sets of �(·, i) are measurable, that is, for all i, j ∈ I,
{x ∈ Mo | �(x, i) = j} ∈ Ao. This is in turn equivalent to the measurability and bimeasur-
ability of � w.r.t. the power set of I.

We denote by π : M −→ Mo the natural projection π(x, i) := x . By construction,
π ◦ T = To ◦ π . The main purpose of assumption (4) is to also have π ◦ T−1 = T−1

o ◦ π , in
the sense of a relation between sets, as follows.

Lemma 2.1 If T is a fiber-surjective extension of To then, for all A ∈ A ,

π T−1A = T−1
o π A mod μ.

Proof It is enough to show thatπ(T−1(y, j)) = T−1
o (π(y, j)) = T−1

o (y), forμ-a.e. (y, j) ∈
M. By fiber-surjectivity, for μo-a.e. x ∈ T−1

o (y), there exists i ∈ I such that T (x, i) =
(y, j). Also, clearly, no x /∈ T−1

o (y) can be such that T (x, i) = (y, j) for some i . Thus,
μ-a.s. in (y, j), which implies μo-a.s. in y and thus μo-a.s. in x (by the non-singularity of
To),

π(T−1(y, j)) = π({(x, i) ∈ M | T (x, i) = (y, j)}) = T−1
o (y), (5)
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which is equivalent to the desired claim. �

Proposition 2.2 If T is fiber-surjective, T is two-sided non-singular if and only if To is. If T
is fiber-bijective, T preserves μ if and only if To preserves μo.

Proof The two-sided non-singularity is an immediate consequence of Lemma 2.1, since, for
all A ∈ A , μ(A) = 0 ⇔ μo(π A) = 0.

As for the second statement, it suffices to check the preservation of μ on all sets of the
type B × { j}. By the injectivity of a.a. �x , cf. (4), the sets

Bi := {x ∈ Mo | T (x, i) ∈ B × { j}} (6)

are disjoint mod μo in Mo. In other words, π is injective mod μ on T−1(B × { j}), giving

μ(T−1(B × { j})) =
∑

i∈I
μ(Bi × {i}) = μo

(
⊔

i∈I
Bi

)
= μo(T

−1
o B), (7)

where the last equality follows from the surjectivity of a.a. �x . Since μ(B × { j}) = μo(B),
this concludes the proof of the second statement. �

Convention From now on, all statements about sets are intended modulo null sets, w.r.t. the
relevant measure. For example, if A, B ∈ M, the equality A = B means μ(A�B) = 0; the
inclusion A ⊆ B means μ(A \ B) = 0; with A ⊂ B implying in addition that μ(B \ A) > 0.
The convention includes σ -algebras. For instance, A ⊆ B is intended in the sense that the
inclusion holds for the respective completions.

We now present our decomposition theorems and corollaries. In order to do so, we recall
that, for any non-singular dynamical system (M,A , μ, T ), M can be decomposed into a
conservative part C and a dissipative part D [1, Sect. 1.1]. C is the part where Poincaré
recurrence holds, D is the measurable union of all wandering sets. This is called the Hopf
decomposition of T and is such that T−1C ⊇ C and T−1D ⊆ D. It T is measure-preserving,
these inclusions become equalities. It is easy to see that Tm , m ≥ 2, has the same Hopf
decomposition as T . The proofs of all the following results are given in Sect. 3.

Theorem 2.3 Let (Mo,Ao, μo, To) be exact with (M,A , μ, T ) a fiber-surjective extension,
as defined earlier. Then the tail σ -algebra

T (T ) :=
⋂

n∈N
T−nA

is atomic, in the sense that it is generated by a partitionP ofM, with the following properties:

(i) Every P ∈ P (henceforth called an atom ofP or T (T )) has positive (possibly infinite)
measure. In particular, P is countable.

(ii) For all P ∈ P and n ∈ Z, T n P ∈ P .
(iii) All ergodic components are of the form E = EP := ⋃

n∈Z T n P, for some P ∈ P . An
ergodic component can comprise a finite number m of atoms, in which case we call it an
m-cycle, or an infinite number of atoms, in which case we call it a chain.

(iv) If P ∈ P and m ∈ Z
+ are such that Tm P = P, then Tm |P : P −→ P is exact. If in

addition μ(P) < ∞, then EP belongs to the conservative part of the system.

If T is also fiber-bijective then:
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(v) Given an ergodic component E , # {i ∈ I | (x, i) ∈ E} is constant for μo-a.e. x ∈ Mo.
Denoting it NE ∈ Z

+ ∪ {∞}, it follows that π |E : E −→ Mo is NE -to-1 and onto,
whence μ(E) = NE μo(Mo).

(vi) If E = EP is an m-cycle, then also # {i ∈ I | (x, i) ∈ P} is constant for μo-a.e. x ∈ Mo.
Denoting it NP ∈ Z

+ ∪ {∞}, it follows that π |P : P −→ Mo is NP-to-1 and onto,
whence μ(P) = NP μo(Mo). Furthermore, NP = NP ′ for all atoms P ′ of EP . Thus,
μ(P) = μ(P ′) and μ(EP ) = mμ(P).

(vii) If T is conservative, T is isomorphic to another fiber-bijective extension T1, defined again
on (M,A , μ), the atoms of whose σ -algebra are made up of entire levels Mo × {i}.

One need not assume the exactness of the base system to ensure that a fiber-bijective
extension has an atomic tail σ -algebra. If the base system itself has an atomic tail σ -algebra,
this property carries over to the extension.

Corollary 2.4 Assertions (i)–(iv) of Theorem 2.3 also hold in the casewhere the tail σ -algebra
of (Mo,Ao, μo, To) is atomic, i.e., T (To) is generated by a partition with positive-measure
elements. Moreover, if P is an atom of T (T ), then π P is an atom of T (To).

Analogous results hold for the case where To is K-mixing. The familiar reader will see
how the extra assumption on the B-measurability of �(·, i) is obvious if T is to exploit the
K-property of To.

Theorem 2.5 Let (Mo,Ao, μo, To) be K-mixing w.r.t. the σ -algebra Bo ⊂ Ao, with
(M,A , μ, T ) a fiber-bijective extension, as defined earlier. Denote by B the lift of Bo

to M. Assume that � is measurable w.r.t. B (equivalently, �(·, i) : Mo −→ I is Bo-
measurable for all i ; equivalently, the level sets of �(·, i) are Bo-measurable). Then the
σ -algebra

TB (T ) :=
⋂

n∈N
T−nB

is atomic, being generated by a partition P of M with the following properties:

(i) Every P ∈ P (again called an atom of P or TB (T )) has positive (possibly infinite)
measure. In particular, P is countable.

(ii) For all P ∈ P and n ∈ Z, T n P ∈ P .
(iii) All ergodic components are of the form E = EP := ⋃

n∈Z T n P, for some P ∈ P .
(iv) If P ∈ P and m ∈ Z

+ are such that Tm P = P, then Tm |P : P −→ P is K-mixing
w.r.t. the σ -algebra B ∩ P := {A ∩ P | A ∈ B}. In particular, if μ(P) < ∞, then EP
belongs to the conservative part of the system.

(v) Given an ergodic component E , # {i ∈ I | (x, i) ∈ E} is constant for μo-a.e. x ∈ Mo.
Denoting it NE ∈ Z

+ ∪ {∞}, it follows that π |E : E −→ Mo is NE -to-1 and onto,
whence μ(E) = NE μo(Mo).

(vi) If E = EP is an m-cycle, then also # {i ∈ I | (x, i) ∈ P} is constant for μo-a.e. x ∈ Mo.
Denoting it NP ∈ Z

+ ∪ {∞}, it follows that π |P : P −→ Mo is NP-to-1 and onto,
whence μ(P) = NP μo(Mo). Furthermore, NP = NP ′ for all atoms P ′ of EP . Thus,
μ(P) = μ(P ′) and μ(EP ) = mμ(P).

(vii) If T is conservative, there is an isomorphism of dynamical systems that takes T to another
fiber-bijective extension T1 on (M,A , μ), andmapsTB (T ) to a σ -algebrawhose atoms
are made up of entire levels Mo × {i}.
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Corollary 2.6 Assertions (i)–(iv) above also hold in the case where (Mo,Ao, μo, To) has an
atomic K-mixing decomposition relative to Bo, that is,

ToBo ⊃ Bo, σ

(
⋃

n∈N
T n
o Bo

)
= Ao mod μ, TBo(To) is atomic.

Moreover, if P is an atom of TB (T ), then π P is an atom of TBo(To).

3 Proofs

Proof of Theorem 2.3 It is a general simple fact that A ∈ T (T ) if and only if A = T−n T n A,
for all n ∈ N. For any such A, Lemma 2.1 gives

π A = π T−n T n A = T−n
o T n

o π A, (8)

and so π A ∈ T (To) = No, by the exactness of To, whereNo is the trivial σ -algebra ofMo.
This implies that if μ(A) > 0 (and so μo(π A) > 0), then

μ(A) ≥ μo(π A) = μo(Mo). (9)

Since (Mo,Ao, μo) is a Lebesgue space and I is countable, (M,A , μ) is also a Lebesgue
space. Therefore, there exists a unique measurable partition P that generates T := T (T )

(the uniqueness is intended mod μ, according to our convention) [19]. Let D be the union of
all the zero-measure elements ofP: D ∈ T because it is the complement of the (necessarily
countable) union of all the positive-measure elements of P .

We claim that μ(D) = 0. If not, by construction, D is infinitely divisible in T , in
the sense that any of its positive-measure subsets can be split into two positive-measure
subsets belonging to T . In particular, there exist D1, D2 ∈ T , with μ(D1), μ(D2) > 0 and
D = D1  D2. Recursively, for every n ≥ 2 and i1, . . . , in−1, in ∈ {1, 2}, there exists a set
Di1,...,in−1,in ∈ T such that

Di1,...,in−1,in ⊂ Di1,...,in−1 , μ(Di1,...,in−1,in ) > 0. (10)

By (9), then, μ(Di1,...,in−1,in ) ≥ μo(Mo). For every ı̄ = (i1, . . . , in, . . .) ∈ {1, 2}Z+
, define

Dı̄ :=
∞⋂

n=1

Di1,...,in ∈ T . (11)

Clearly, μ(Dı̄ ) ≥ μo(Mo), but the sets {Dı̄ } are uncountably many and disjoint, in contra-
diction with the fact that (M,A , μ) is σ -finite (being Lebesgue). This proves our claim and
assertion (i) of Theorem 2.3.

Now, recall that T is invariant for both T and T−1. If P, P ′ ∈ P and n ∈ Z, the case
0 < μ(T n P∩ P ′) < μ(P ′) cannot occur, otherwise T n P∩ P ′ would be a strict subset of the
atom P ′. Also T n P ⊃ P ′ is excluded, otherwise, since T is two-sided non-singular, T−n P ′
would be a strict subset of the atom P . (Notice that, if n > 0, we must also use the identity
T−nT n P = P .) It follows that T n P is either P ′ or disjoint from P ′, mod μ, yielding (ii).

Assertion (iii) is a simple consequence of the fact that any invariant set A = T−1A belongs
to T and thus must be a union of atoms.

As for (iv), it suffices to observe that, for a general T , T (Tm) = T (T ) for all m > 0;
and T (T |A) = T (T ) ∩ A, for any invariant set A. Under our hypotheses, this implies that

T (Tm |P ) = T (Tm) ∩ P = T (T ) ∩ P = N ∩ P, (12)
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the trivial σ -algebra on P . Hence Tm |P is exact. For the second assertion of (iv), we first
observe that, by the Poincaré Recurrence Theorem applied to Tm |EP , P belongs to the
conservative part of Tm , which coincides with C, the conservative part of T . Secondly, any
other atom P ′ of EP can be rewritten as P ′ = T n P , for some n > 0. Since TC ⊆ C, we have
that P ′ ⊆ C, ending the proof of (iv).

For the rest of the proof we assume that T is fiber-bijective. For x ∈ Mo, set fE (x) :=
# {i ∈ I | (x, i) ∈ E}. Since E is T -invariant and T is fiber-bijective, fE is a To-invariant
observable of Mo, taking values in N ∪ {∞}. By the ergodicity of To, fE is a.e. equal to a
constant value NE , which cannot be zero because μ(E) > 0. This proves (v).

The first part of (vi) is proved by the above argument applied to P , Tm and Tm
o . The fact

that NP = NP ′ , whenever P ′ is an atom of EP , comes from the fiber-bijectivity of T n , for
n ∈ Z

+ such that T n P = P ′.
Lastly,we prove (vii).Wewill construct an isomorphismofmeasure spacesφ : M −→ M

bydefining it separately on each atom P ∈ P . Sofix any such P and consider NP ∈ Z
+∪{∞}

as given by (vi). For x ∈ Mo, set Px := {i ∈ I | (x, i) ∈ P}. Since I is countable, we endow
it with a well-order whereby, for μo-a.e. x , Px can be enumerated as {i j (x)}NP

j=1, where
i j : Mo −→ I is recursively defined by

i1(x) := min {i ∈ I | (x, i) ∈ P} , (13)

i j+1(x) := min
{
i ∈ I

∣∣ i > i j (x), (x, i) ∈ P
}
. (14)

These expressions prove that the functions i j are measurable. Now, if NP ∈ Z
+, set ZNP :=

{1, 2, . . . , NP }; if NP = ∞, set ZNP := Z
+. For x such that #Px = NP , set

φP (x, i j (x)) := (x, j). (15)

This defines a bijection φP : P −→ Mo × ZNP mod μ. The expression φ−1
P (x, j) =

(x, i j (x)) shows that φ
−1
P is measurable, whereas the fact that, for all B ∈ Ao and j ∈ ZNP ,

φ−1
P (B × { j}) := {

(x, i j (x)) | x ∈ B
} =

⊔

k∈I
(B ∩ i−1

j (k)) × {k}. (16)

proves thatφP ismeasurable and carries themeasureμ|P to themeasureμo×# onMo×ZNP ,
where # is the counting measure.

We aggregate all bijections φP to construct a bijection φ : M −→ ⊔
P∈P Mo × ZNP

(all bijections are intended mod μ and μo ×#, respectively). We do so, with a slight abuse of
notation on the codomain, by defining φ(x, i) := φP (x, i) whenever (x, i) ∈ P . Evidently,∑

P∈P NP = #I and this cardinality can be finite or countably infinite. In either case, there
exists a bijection γ : ⊔

P∈P ZNP −→ I. Defining � : M −→ M via � := (id, γ ) ◦ φ

results in an automorphism of the measure space (M,A , μ) which, by construction, acts
on the factor Mo as the identity. In other words, it commutes with the projection π . Setting
T1 := � ◦ T ◦ �−1 gives the sought isomorphism, because T1 ◦ π = π ◦ T1 and the atoms
of the tail σ -algebra of T1 are the sets �P = Mo × γ

(
ZNP

)
, for all P ∈ P . �

Proof of corollary 2.4 This corollary is in fact a porism, in that its proof derives not from the
statement of Theorem 2.3, but from its proof, which we refer the reader to.

Let D be the union of all the null elements of T := T (T ). Proving the absurdity of the
claim μ(D) > 0 is slightly more involved that in the proof of Theorem 2.3, because A ∈ T
no longer implies (9). On the other hand, for any atom Po of T (To), Po × I ∈ T (because
T−nT n(Po × I) = (T−n

o T n
o Po) × I = Po × I). So, for some Po, D′ := D ∩ (Po × I)

must have positive measure. But D′ is infinitely divisible by construction and, for all A ∈ T
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with A ⊆ D′ and μ(A) > 0, the inequality μ(A) ≥ μo(π A) = μo(Po) holds for the same
reasons as for (9). This leads to a contradiction as in (10)–(11). Assertion (i) is proved. As
for (ii)–(iv), the proof of Theorem 2.3 works as is.

Regarding the last assertion ofCorollary 2.4, we already know thatπ P ∈ T (To). Given an
atom Po ofT (To), it cannot beπ P∩Po ⊂ Po, otherwise Powould not be an atom; and neither
can be that Po ⊂ π P , for in that case (Po × I) ∩ P ∈ T (T ), with μ((Po × I) ∩ P) > 0.
Since P is an atom, this would imply P ⊆ Po × I and thus π P ⊆ Po, a contradiction.
Therefore π P must either coincide with or be disjoint from Po (mod μo). �

Proof of Theorem 2.5 The ideahere is to reduce the invertible dynamical system (M,A , μ, T )

to a non-invertible system whose base dynamics is exact, cf. [16, Rmk 3.3], and then apply
Theorem 2.3.

LetQo denote the partition ofMo associated toBo and [x] the element ofQo containing
a given x ∈ Mo. For B ⊆ Mo, denote [B] := {[x] ∈ Qo | x ∈ B}. Observe that this
transformation of sets is invertible mod μo on Bo, in the sense that, if B, B ′ ∈ Bo and
[B] = [B ′], then B = B ′ modμo (this is one of the properties of the correspondence between
σ -algebras andmeasurable partitions in Lebesgue spaces [19]). This shows that the collection
[Bo] := {[B] | B ∈ Bo} is a σ -algebra for Qo and the measure μ[Bo]([B]) := μo(B) is
well-defined on it. Finally define TBo : Qo −→ Qo via TBo([x]) = [To(x)]. This definition
is well-posed since To is K-mixing w.r.t. Bo, implying that ToQo is a finer partition than
Qo. Clearly (Qo, [Bo], μ[Bo], TBo) is a two-sided non-singular factor of (Mo,Bo, μo, To),
which is non-invertible because ToQo is strictly finer than Qo. The factor property shows
that T (TBo) = [TBo(To)] = [N ]. that is, TBo is exact.

We make the analogous construction for Q := Qo × I, which is evidently the partition
of M corresponding to B. We end up with the system (Q, [B], μ[B ], TB ), which is thus a
fiber-bijective I-extension of (Qo, [Bo], μ[Bo], TBo). A very important remark here is that
TB is well-defined if and only if � is B-measurable.

Theorem 2.3 can be applied to TB , implying properties (i)–(vii) for the dynamics of TB
onT (TB ). But the transformationB � A �→ [A] is invertible modμ, in the sense explained
earlier, so P is an atom of TB (T ) if and only if [P] is an atom of T (TB ), and they have the
same measure, respectively w.r.t. μ and μ[B ]. This proves all the assertions of Theorem 2.5,
except for the K-mixing of Tm |P w.r.t. B ∩ P , when P is part of an m-cycle.

The triviality ofTB∩P (Tm) is equivalent to the triviality ofTB (T )∩P ,which is equivalent
to the triviality of T (TB ) ∩ [P], which we have proved. For the two remaining conditions
of (2) we state the following lemma, which will be proved at the end of Sect. 3.

Lemma 3.1 With the notation Bo × I := {B × {i} | B ∈ Bo, i ∈ I}, the following hold:

(i) For all n ∈ N, T n(σ (Bo × I)) ⊇ σ(T n
o Bo × I);

(ii) σ

(
⋃

n∈N
σ(T n

o Bo × I)

)
= σ

(
σ

(
⋃

n∈N
T n
o Bo

)
× I

)
.

Lemma 3.1(i), with n = 1, gives

TB = T (σ (Bo × I)) ⊇ σ(ToBo × I) ⊃ σ(Bo × I) = B, (17)
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which in turn implies Tm(B ∩ P) = (TmB) ∩ P ⊃ B ∩ P . Furthermore,

σ

(
⋃

n∈N
T nB

)
= σ

(
⋃

n∈N
T nσ(Bo × I)

)

⊇ σ

(
⋃

n∈N
σ
(
T n
o Bo × I

)
)

= σ

(
σ

(
⋃

n∈N
T n
o Bo

)
× I

)

= σ(Ao × I) = A ,

(18)

where the second line comes from Lemma 3.1(i), the third line comes from Lemma 3.1(ii),
and the fourth line comes from the hypothesis σ

(⋃
n∈N T n

o Bo
) = Ao. But (18) must be a

chain of equalities because its leftmost term cannot exceed A . The K-property of Tm |P is
proved. �

Proof of Corollary 2.6 This proof employs a combination of arguments explained in the two
preceding proofs.

One constructs the systems (Qo, [Bo], μ[Bo], TBo) and (Q, [B], μ[B ], TB ) as in the
proof of Theorem 2.5, and reasons as in the proof of Corollary 2.4 to show that T (TB ), and
therefore TB (T ), is atomic with the properties (i)–(iii) and part of (iv). The K-property of
Tm |P , when P is an atom of an m-chain, was already established in the previous proof. The
last claim of Corollary 2.6 is proved as in the proof of Corollary 2.4. �

Proof of Lemma 3.1 We start with inclusion (i). Since T n is invertible, T n(σ (Bo × I)) is a
σ -algebra, so it suffices to show that T n

o Bo × I ⊆ T n(σ (Bo × I)). We may assume n = 1
(otherwise we use T n

o , T n in lieu of To, T ). For all B ∈ Bo and j ∈ I, we need to prove
that ToB × { j} ∈ T (σ (Bo × I)). For i ∈ I, set Bi := B ∩ {x ∈ Mo | �(x, i) = j}. Since
�(·, i) is Bo-measurable, Bi ∈ Bo. By fiber-bijectivity, B = ⊔

i∈I Bi . Therefore

ToB × { j} =
(
To

⊔

i∈I
Bi

)
× { j} = T

(
⊔

i∈I
Bi × {i}

)
∈ T (σ (Bo × I)) , (19)

where the second equality comes from the definition of Bi .
As for (ii), clearly, for all n ∈ N,

T n
o Bo × I ⊆ σ

(
σ

(
⋃

n∈N
T n
o Bo

)
× I

)
, (20)

which readily implies the left-to-right inclusion of (ii). On the other hand, take B × {i} ∈
σ(

⋃
n∈N T n

o Bo) × I. Then

B × {i} ∈ σ

(
⋃

n∈N
(T n

o Bo × I)

)
⊆ σ

(
⋃

n∈N
σ(T n

o Bo × I)

)
. (21)

Since the above r.h.s. is a σ -algebra, the right-to-left inclusion of (ii) follows. �
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Fig. 1 A (proper) periodic Lorentz gas in R
2

Fig. 2 A Lorentz tube in the space E2 = R × T 1

Fig. 3 A Lorentz slab in the space E3 = R
2 × T 1

4 Application to Periodic Lorentz Gases

In this section we use Theorem 2.5, or rather Corollary 2.6, to show that, under general
hypotheses, a periodic Lorentz gas is K-mixing if and only if it is conservative. This will
readily imply that many 2-dimensional periodic Lorentz gases and d-dimensional periodic
Lorentz tubes and slabs are K-mixing. In what follows we use the term ‘Lorentz gas’ in its
most general meaning of a billiard system defined by infinitely many convex scatterers in an
unbounded space.

We consider a periodic Lorentz gas in the space Ed := R
d1×T d2 , where d1 ∈ Z

+, d2 ∈ N,
d1 + d2 = d , and T d2 is a d2-dimensional torus (not necessarily the standard one). So, for
d1 = d and d2 = 0, Ed coincides with R

d . See Figs. 1, 2 and 3 for examples.
More in detail, we study the system (M,A , μ, T ) given by a 	-extension of the billiard

map (Mo,Ao, μo, To) of a d-dimensional Sinai billiard, where:
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• 	 is a co-compact lattice of Rd1 , naturally acting on Ed .
• The Sinai billiard is defined by a finite number of scatterers O
, 
 ∈ L, on Ed/	. The

O
 are pairwise disjoint, regular, strictly convex closed sets of Ed . (It is not important to
prescribe the degree of regularity at this stage, but do observe that ∂O
 is assumed to be
regular and not just piecewise regular. See however Remark 4.4.)

• Mo := ⊔

∈L M


o, where

M

o :=

{
(q, v) ∈ ∂O
 × R

d
∣∣ v · nq ≥ 0, |v| = 1

}
(22)

and nq is the outer unit normal to O
 in q . Any such pair (q, v) is also called a line
element of O
, and we refer to

�o := (Ed/	) \
⊔


∈L
O
 (23)

as the billiard table of the Sinai billiard.
• Ao is the natural Borel σ -algebra onMo andμo is the usual invariant measure for billiard

maps, defined on eachM

o by dμo(q, v) = (v ·nq)dqdv, where dq is the (hyper)surface

element of ∂O
 at q , and dv is the (hyper)surface element of Sd−1 := {
v ∈ R

d | |v| = 1
}

at v.
• To : Mo −→ Mo is defined so thatTo(q, v) = (q ′, v′) is the line element that the forward

trajectory of (q, v) in �o takes on right after its first collision with some scatterer O
.
• M = Mo×	 and, for x = (q, v) ∈ Mo and i ∈ 	,�(x, i) = i+ψ(x) (cf. beginning of

Sect. 2), where ψ is the discrete displacement function, defined as follows. We consider
the periodic Lorentz gas, that is, the billiard in

� := Ed \
⊔


∈L

⊔

i∈	

O

i , (24)

where O

i is the copy of O
 in the i th copy of the fundamental domain of 	 within Ed .

(In other words, if we tile Ed by means of 	 and draw all the scatterers O
 in the 0th

tile, then O

i := O
 + i , a subset of the i th tile.) So, ψ(x) = j if and only if the forward

trajectory in � of x = (q, v), with q ∈ ∂O

0, for some 
, has its first collision with a

scattererO
′
j , for some 
′. (In other words, the forward trajectory of (q, v) in the periodic

Lorentz gas, with q interpreted as a point in the 0th tile, has its first collision in the j th

tile.) This completely defines T . A and μ are then defined out of Ao and μo as in Sect.
2. Finally, we refer to � as the billiard table of the Lorentz gas, or simply the billiard
table.

A simple but important observation here is that one could also define (M,A , μ, T ) as
the scatterer-to-scatterer billiard map for the table �. In this case M would be given as⊔


∈L
⊔

i∈	 M

i , whereM



i is the set of all line elements for the scatterer O


i ; and T would
be the first-return map to M of the billiard flow in �. Finally, μ would be the billiard
measure on the Borel σ -algebra A ofM. This dynamical system is evidently isomorphic to
the extension system introduced earlier, so much so that we use the same notation for both.

When d1 = 1 and d ≥ 2, these Lorentz gases are also referred to as Lorentz tubes, see
Fig. 2; when d1 = 2 and d ≥ 3, they are also called Lorentz slabs, see Fig. 3.

In the interest of generality, the next proposition is formulated in a relatively abstract
manner, but we will see below that it can be applied easily to many examples of periodic
Lorentz gases.
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Proposition 4.1 Let (M,A , μ, T )beaperiodicLorentz gas corresponding to aSinai billiard
(Mo,Ao, μo, To), as described above. Assume the following:

(a) To has an atomic K-mixing decomposition in the sense of Corollary 2.6, relative to some
σ -algebra Bo.

(b) T is conservative.
(c) For all m ∈ Z

+, 
 ∈ L and i ∈ 	, the first-return map of Tm to M

i , denoted (Tm)M


i
,

is ergodic. (Observe that (Tm)M

i
is well-defined μ-almost everywhere because Tm is

conservative by (b).)

Then T is K-mixing relative to B, the lift of Bo.

Remark 4.2 Viceversa, anyK-mixingLorentz gas, with no extra assumptions, is conservative.
This is because anymeasure-preserving, invertible, ergodic dynamical system is conservative.
In fact, for a measure-preserving system, C andD are invariant [1, Prop. 1.1.6]. If the system
is also ergodic, then eitherM = C orM = D. In the latter case, it is easy to find a wandering
set W such that

⊔
n∈Z T nW , which is invariant because T is invertible, has positive but not

full measure.

Proof of Proposition 4.1 By Corollary 2.6,TB (T ), the tail σ -algebra ofB w.r.t. T , is atomic,
with generating partition P .

We first claim that P is coarser than {M

i }
∈L,i∈	 , that is, every M


i is contained in
an atom of P . By (b), every atom of P is part of an m-cycle, for some m ∈ Z

+. Thus,
if M


i intersects (in a positive-measure set) some atom P of order m, then M

i ∩ P is

invariant for (Tm)M

i
. By (c), then, M


i ⊆ P , which proves the claim. Using an imprecise

but understandable expression,we describe the inclusionM

i ⊆ P by saying that the scatterer

O

i of the Lorentz gas is contained in P .
Let us now prove that T is ergodic. If it were not, M could be split into two disjoint

invariant sets A and B with μ(A), μ(B) > 0. In the imprecise language just introduced,
every scatterer of the Lorentz gas is contained in either A or B. Take two scatterers O1 and
O2 which are contained in A and B, respectively, and realize the minimum distance between
all such pairs of scatterers. The existence ofO1 andO2 is guaranteed by the facts that neither
A nor B is empty and the configuration of scatterers is periodic and locally finite. Now,
clearly there exists a segment connecting O1 and O2 that is tangent to no scatterer of the
Lorentz gas. This is then a portion of a billiard trajectory (called non-singular in jargon)
whose perturbations still connect O1 to O2, implying that T takes a positive-measure set
from A to B, a contradiction. So, T is ergodic and M is an m-cycle.

By Theorem 2.5(iv), it only remains to prove that m = 1. Assume by contradiction that
m ≥ 2. Given an atom P , set Pj := T j P , for all 0 ≤ j ≤ m − 1. Take a scatterer O0

contained in P0. Varying a line element (q, v) with q ∈ ∂O0 and v directed outwardly w.r.t.
O0, we are bound to find a segment qq2, with q2 on the boundary of some scatterer O2,
such that the interior of qq2 contains exactly one point of intersection q1 with a scatterer
O1, as in Fig. 4. The segment is then tangent to O1 in q1 and is part of a billiard trajectory
which is called singular precisely because of that tangency. The existence of this segment is a
consequence of the facts that all scatterers are convex (soO0 cannot be entirely “surrounded”
by a unique scatterer) and that, for μ-a.e. (q, v), the half-line defined by (q, v) intersects a
scatterer of the Lorentz gas in a point different from q (otherwise the base system, the Sinai
billiard, would not be well-defined). Observe that, since the ambient space Ed may have a
toroidal factor,O1 andO2 may in principle coincide withO0, although we will soon see that
this is not the case. In any event, the three segments qq1, qq2, and q1q2 can be independently
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Fig. 4 Illustration of an argument for the proof of Proposition 4.1

perturbed into non-singular trajectory segments connecting, respectively, O0 to O1, O0 to
O2, andO1 toO2, cf. Fig. 4. SinceO0 is contained in P0, the properties of them-cycle imply
that both O1 andO2 are contained in P1 and, at the same time,O2 is contained in P2 (or P0,
if m = 2), which is a contradiction. �

The researcher with a basic familiarity with hyperbolic billiards will see how to use
Proposition 4.1 to prove that a given Lorentz gas is K-mixing. First of all, the vast majority
of Sinai billiards that have been studied (a very partial list of references includes [3, 4, 6,
11, 22–24]; see also [7, 8]) are known to be K-mixing w.r.t. the σ -algebra Bo generated
by a suitable family of local stable manifolds (LSMs), so ascertaining (a) likely boils down
to a verification in the literature. The lifts to M of the LSMs for the base system are thus
LSMs for the extension and generateB by definition. The first ingredient in the proof of any
ergodic property for a hyperbolic billiard is the so-called fundamental theorem, a.k.a. local
ergodic theorem, which in our case reduces to the following property: for all 
 ∈ L, μo-a.e.
pair of points x, y ∈ M


o is connected via a chain of alternating local stable and unstable
manifolds (LSUMs), with the property that all intersection points between successive LSUMs
can be chosen in a pre-determined full-measure subset ofM


o. Now, if T is conservative, the
LSUMs for T inM


i are also LSUMs for (Tm)M

i
, for all m ≥ 1, because, by definition, all

points in the same LSM have the same itinerary in terms of the scatterers hit by the forward
trajectories, and analogously for LUMs and backward trajectories. Finally, the usual zig-zag
argument for LSUMs (in the terminology of [13]) shows that (Tm)M


i
is ergodic, yielding

(c).
This method applies easily to all d-dimensional Lorentz tubes whose base system is K-

mixing because of a hyperbolic structure as described above. In fact, the conservativity of T
comes from a known result by Atkinson [2], whereby a Z-valued (or R-valued) cocycle over
an ergodic dynamical system is recurrent if and only if its displacement function (assumed
to be integrable) has zero average; see also [10, 21]. As for Lorentz slabs and 2-dimensional
properLorentz gases, independent results bySchmidt [20] andConze [9] show that recurrence
(thus conservativity) is implied by the CLT for the displacement function; see also [15]. So, if
the base Sinai billiard is K-mixing by way of the standard hyperbolic structure, and satisfies
a CLT for observables that are locally constant outside its singularity set, the corresponding
Lorentz slab (or Lorentz gas, in the 2D case) is K-mixing.

Remark 4.3 For the sake of exposition, we have chosen to discuss only Lorentz gases in
Ed , which is practically a Euclidean space, but the same ideas and arguments apply to
more general ambient spaces, as in the example of Fig. 5. In fact, T d2 can be replaced by a
polyhedron with d1 pairs of identified parallel facets, with the other facets regarded as hard
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Fig. 5 A Lorentz tube with hard walls (cf. Remark 4.3)

Fig. 6 A Lorentz tube with (hard walls and) piecewise regular scatterers (cf. Remark 4.4)

walls for the billiard dynamics. Proposition 4.1 still holds in many cases: one need only check
that the scatterers of the Lorentz gas cannot be divided into invariant families (of scatterers)
or m-cycles with m ≥ 2 (whose atoms are made up of whole scatterers). The method of
application of Proposition 4.1 is then the same as described above, showing for example that
the Lorentz tube of Fig. 5 is K-mixing.

Remark 4.4 One could also extend the above technique to certain Lorentz gases whose scat-
terers are only piecewise regular. An analogue of Proposition 4.1 can be proved in some
cases, with the difference that, in place ofM


i , one usesM

, j
i , the part of phase space asso-

ciated to the j th regular component of ∂O

i . (The proof might be cumbersome in this case,

and depends on which regular boundary components of other scatterers are “seen” by each
regular boundary component of each scatterer.) It is not hard to see that the whole procedure
works for the Lorentz tube of Fig. 6, which is therefore K-mixing.
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