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On BV functions and essentially bounded
divergence-measure fields in metric spaces

Vito Buffa, Giovanni E. Comi and Michele Miranda Jr.

Abstract. By employing the differential structure recently developed by N. Gigli,
we first give a notion of functions of bounded variation (BV) in terms of suitable
vector fields on a complete and separable metric measure space .X; d; �/ equipped
with a non-negative Radon measure � finite on bounded sets. Then, we extend the
concept of divergence-measure vector fields DMp.X/ for any p 2 Œ1;1� and, by
simply requiring in addition that the metric space is locally compact, we determine
an appropriate class of domains for which it is possible to obtain a Gauss–Green
formula in terms of the normal trace of a DM1.X/ vector field. This differential
machinery is also the natural framework to specialize our analysis for RCD.K;1/
spaces, where we exploit the underlying geometry to determine the Leibniz rules for
DM1.X/ and ultimately to extend our discussion on the Gauss–Green formulas.
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1. Introduction

The main purpose of this paper is to investigate integration by parts formulas for essential-
ly bounded divergence-measure fields and functions of bounded variation (BV) in the very
abstract contexts of locally compact and RCD.K;1/ metric measure spaces .X; d; �/.
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In order to deal with “vector fields” on metric measure spaces, one needs of course
to refer to some differential structure of the ambient space, in terms of which the usual
differential objects of the “smooth” analysis and geometry find a consistent and equivalent
counterpart.

To this aim, we chose to follow the approach of [36], where the author builds a first–
orderL2-theory of differential forms and vector fields which is tailored for metric measure
spaces, in particular – when second-order differentiability issues are addressed – those
whose Ricci curvature is bounded from below by someK 2 R. This differential structure,
which was anticipated in the analysis carried on by the same author in [35], relies on the
theory ofLp-normed modules, 1� p �1, whose construction is based on the idea of the
L1-modules previously considered in [60] and which is discussed in detail in [36]. There,
the machinery of such theory serves as the starting point for the settlement of a metric
counterpart to the cotangent bundle, namely the cotangent module L2 .T �X/ defined as
the L2-normed module consisting of square-summable differential forms.

The concept of a differential form is characterized in terms of the minimal weak upper
gradients of Sobolev functions – defined via test plans, [10, 11, 35] – and of suitable par-
titions of the underlying space; by this procedure, the differential of a Sobolev function
arises as the 1-form given accordingly as an equivalence class consisting of the function
itself and the whole space X. Then, by duality – in the sense of normed modules – the
tangent module L2.TX/, namely the L2-normed module having square-summable vector
fields as its own elements, is given as the dual module of L2.T �X/. Of course, taking
into account all the due – albeit expected – technicalities (see in particular Remark 2.23),
this approach can be extended to any couple of conjugate exponents p; q 2 Œ1;1� with
1=p C 1=q D 1, giving rise to the corresponding modules Lp.T �X/ and Lq.TX/. As
this straightforward task was presented in [18], we shall therefore follow that exposition.
This is the main object of Section 2, where we also address all the other fundamental
preliminary tools of our analysis, like the definition of RCD.K;1/ space and the related
consequences of the lower curvature bound, especially in connection with the heat flow.

As one may expect, this language allows for well-posed characterizations of differ-
ential operators such as the gradient of a function and the divergence of a vector field,
whose definitions are consistent with the classical ones of the Euclidean and Riemann–
Finsler geometries.

This is for example the case of the just mentioned RCD.K;1/ spaces, whose core-
characterization is that of infinitesimally Hilbertian spaces X; that is, such that W 1;2.X/
is a Hilbert space [35], whose Ricci curvature is bounded from below by some K 2 R.
Such spaces exhibit several interesting properties, especially in regards with the heat flow
ht WL2.X/! L2.X/, which is given as the gradient flow of the Cheeger–Dirichlet energy
and defines a semigroup .ht /t�0 of linear and self-adjoint operators whose contraction
properties in the metric setting with curvature control – after the pioneering work [15] –
have been extensively studied, during the last decade, in notable papers like [7, 9, 10, 12,
38,47]. For us, the most important property of the heat flow is of course the Bakry–Émery
contraction estimate (2.10), which gives an exponential decay for the norm of the gradient
of a Sobolev function along the heat flow, a decay that is intimately related to the lower
curvature bound of the space. The Bakry–Émery condition will be invoked repeatedly in
Sections 5 and 6, where it will play a fundamental role in establishing the correct forms
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of the Leibniz rules for divergence-measure vector fields, and therefore the Gauss–Green
formulas.

The use of this differential machinery is essential also in our characterization of BV
functions on general metric measure spaces, which is the central topic of Section 3. Indeed,
by considering the subclass of those essentially bounded vector fields in L1.TX/ whose
divergence belongs to L1.X/, namely1 D1.X/, we find that it is possible to characterize
the total variation of a function in a familiar way:

(1.1) kDuk.�/ D sup
° Z

�

u div.X/ d�I X 2D1.X/; supp.X/ b �; jX j � 1
±
;

where � � X is any open set.
Our procedure is inspired by [32], where BV functions are characterized by means

of (bounded) Lipschitz derivations, namely linear operators acting on Lipschitz functions,
ıWLipbs.X/! L0.X/, satisfying the Leibniz rule and the locality condition

jı.f /j.x/ � g.x/Lipa.f /.x/

for �-almost every x 2 X, for all f 2 Lipbs.X/ and for some g 2 L0.X/, where Lipa.f /

denotes the asymptotic Lipschitz constant of f , see Definition 3.1. As for the L1 mod-
ules, also this class of objects was previously treated in more generality in [60].

Our characterization of BV functions instead, rather than relying on Lipschitz deriva-
tions, actually incorporates Sobolev derivations, whose notion is taken from [36] and reads
as follows: given any two conjugate exponents p; q 2 Œ1;1�, a linear map LWD1;p.X/!
L1.X/ satisfying

jL.f /j � `jDf j

for any f 2 D1;p.X/ and for some ` 2 Lq.X/ is a Sobolev derivation, see Definition 3.7
below. Under some additional assumptions, it turns out that the class of Lipschitz deriva-
tions can be actually extended to that of Sobolev ones, thanks to suitable approximation
procedures. Then, by arguments based on the theory of Lp-normed modules and on the
properties of the modules Lp.T �X/ and Lq.TX/, we are able to prove that there exists a
one-to-one correspondence between the vector fields in the class D1.X/ and the bounded
Lipschitz derivations used in [32]. This result (stated in Lemma 3.11, Lemma 3.12 and
Theorem 3.14) allows us to define BV functions. Indeed, it is the starting point for our
construction of the BV space in a similar manner as in [32] and for the derivation of (1.1),
which produces an equivalent characterization of functions with bounded variation (The-
orem 3.16).

As the definition of BV involves an integration by parts (or Gauss–Green) formula, it
appears natural to study such formulas in more depth and detail.

The classical statement of the Gauss–Green formula in the Euclidean space Rn re-
quires a vector field F 2 C 1c .R

nIRn/ and an open set E such that @E is a C 1 smooth
.n � 1/-dimensional manifold, in order to conclude thatZ

E

divF dx D �
Z
@E

F � �E dHn�1;

1See Definition 2.21 for the characterization of the spaces Dq.X/, q 2 Œ1;1�.
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where �E is the unit interior normal to @E and Hn�1 is the .n � 1/-dimensional Haus-
dorff measure. These assumptions on the integration domain and on the field are clearly
too strong for many practical purposes, and indeed an immediate consequence of the Euc-
lidean theory of BV functions is that we can extend this formula to the sets of finite
perimeter (employing the reduced boundary FE and the measure theoretic unit interior
normal instead of the classical notions). Instead, looking for sharp regularity assump-
tions on the vector fields, it is convenient to consider the space of essentially bounded
divergence-measure fields DM1.X/, namely those X 2 L1.TX/ whose distributional
divergence is a finite Radon measure (among which we can mention, as examples in the
metric setting, the elements of the subclass L1.TX/ \D1.X/ of essentially bounded
vector fields, where D1.X/ is the set of those X 2 L1.TX/ with summable divergence).

The space DM1.X/was originally introduced in the Euclidean framework by G. An-
zellotti in 1983 ([14]), in order to study the pairings between vector valued Radon meas-
ures and bounded vector fields. One of the main results of his seminal work is an integra-
tion by parts formula for DM1 vector fields and continuous BV functions on a bounded
open set � with Lipschitz boundary. In particular, in Theorem 1.2 of [14], the author
proved the existence of essentially bounded normal traces on the boundary of the Lipschitz
domain. This family of vector fields was then rediscovered in the early 2000’s and stud-
ied by many authors aiming to a variety of applications of the generalized Gauss–Green
formulas (we refer for instance to [2, 23, 31, 40, 48–51, 53, 54]). At first, the integration
domains were taken with C 1 or Lipschitz regular boundary, and subsequently the case of
sets of finite perimeter was considered in [24, 26, 27, 52]. In particular, in [26] the authors
extended to DM1 the methods of Vol’pert’s proof of the integration by parts formulas for
essentially bounded BV functions, [58, 59]. The generalized method consists in proving a
Leibniz rule for DM1-fields and essentially bounded scalar functions of bounded vari-
ation and in applying this formula to the characteristic function of a set of finite perimeter:
then, the Gauss–Green formulas are a simple consequence of some identities between
Radon measures derived from the Leibniz rule.

More precisely, Theorem 3.2 in [26] states that, if F 2DM1.Rn/ andE is a bounded
set of finite perimeter in Rn, then there exists interior and exterior normal traces .Fi � �E /,
.Fe � �E / 2 L

1.F EIHn�1/ such that we have the following Gauss–Green formulas:

divF.E1/D �
Z

FE

Fi � �E dHn�1 and divF.E1 [F E/D �

Z
FE

Fe � �E dHn�1;

where E1 is the measure theoretic interior of E; that is, the set of points with Lebesgue
density 1. We stress the fact that we obtain two formulas since the divergence of the field
may be concentrated on an .n � 1/-dimensional set (such as the reduced boundary), due
to the possible jump discontinuities of the field. This explains the necessity of having two
different normal traces. Indeed, as an example one may consider

F.x/ D
x

jxjn
�RnnB.0;1/.x/

(where B.0; 1/ denotes the unit ball centered in the origin): it is possible to show that
.Fi � �B.0;1// D 0, while .Fe � �B.0;1// D 1.

We refer to [26] for a more detailed exposition of the history of the divergence-measure
fields and their applications in Rn, and to [21, 28–30, 41] for some recent developments.
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It seems natural to investigate the possibility to extend the theory of divergence-
measure fields and Gauss–Green formulas to non-Euclidean settings, and indeed there
has been some research in this direction: in [18, 19, 42], the authors considered doubling
metric measure spaces supporting a Poincaré inequality, while in [25] the class of hori-
zontal divergence-measure fields in stratified groups is studied; lastly, in the more recent
paper [17], a Gauss–Green formula for sets of finite perimeter was proved in the context
of an RCD.K; N / space by means of Sobolev vector fields in the sense of [36]. In par-
ticular, in [42] the authors employed the Cheeger differential structure (see [20]) to prove
a Gauss–Green formula on the so-called regular balls, and later, in [18, 19], a Maz’ya-
type approach based on [44], Section 9.5, allowed to write a similar formula in terms of
the rough trace of a BV function. On the other hand, in [25] the authors exploited the
approach developed in [26] and proved that it is possible to extend the method to strat-
ified groups. In Sections 5 and 6 we shall follow a similar method in the framework of
locally compact RCD.K;1/metric measure spaces; that is, we shall first derive a Leibniz
rule and then use it to obtain suitable identities between Radon measures, from which the
Gauss–Green formulas shall follow.

Having the appropriate class of vector fields to work with, we can start to discuss the
main topic of our work, namely the investigation of the Gauss–Green formulas. In Sec-
tion 4 we define the space of p-summable divergence-measure fields on a general metric
measure space X, DMp.X/, and, as an interesting byproduct of the definitions and of the
differential structure we are using, we show that, if X 2 DMp.X/, for p 2 .1;1�, the
measure div.X/ is absolutely continuous with respect to the q-capacity, where q denotes
the conjugate exponent of p.

Then, we refine the analysis of [18] – which was tailored to geodesic spaces – to give
a Gauss–Green formula on regular domains in a locally compact metric measure space,
requiring no further structural assumptions to be satisfied.

The hypothesis of local compactness will be essential here, and also in Sections 5
and 6, since we will often need to rely on the Riesz representation theorem and its corol-
laries in our arguments.

Inspired by [42], we generalize the concept of regular balls by considering the class
of regular domains formerly introduced in [18], namely those open sets � � X of finite
perimeter for which the upper inner Minkowski content of their boundary satisfies

M�
i .@�/ WD lim sup

t!0

�.� n�t /

t
D kD1�k.X/;

where, for t > 0,
�t WD ¹x 2 �I dist.x;�c/ � tº:

From our analysis, it turns out that the main notable properties of any regular domain�
are the following:
• Just like regular balls, also regular domains admit a defining sequence .'"/">0 of

bounded Lipschitz functions, which somehow encodes the properties of the domain
itself (Definition 4.10).

• The perimeter measure of � can be approximated in the sense of Radon measures via
the family of measures jD'"j�; that is, jD'"j� * kD1�k, as " ! 0 (Proposition
4.11).
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These two facts together entitle us to make use of similar arguments as in the proof
of Theorem 5.7 in [42], and therefore to establish the Gauss–Green formula given in
Theorem 4.13 below, which features the first occurrence of the interior normal trace
.X � ��/

�
@�

of a vector field X 2 DM1.X/. We then extend our discussion on reg-
ular domains by imposing further assumptions on our selected domain �, finding the
conditions which first allow us to determine the exterior normal trace .X � ��/C@� of
X 2 DM1.X/ and the related integration by parts formula, Theorem 4.15. We conclude
this section with Corollary 4.19, where we find suitable sufficient conditions on � and
div.X/ under which the interior and exterior normal traces coincide. In such case, they
are denoted by .X � ��/@�.

It is worth to mention that a similar connection between the normal traces and the
Minkowski content of the boundary of the domain was considered in the Euclidean space
in Propositions 6.1 and 6.2 of [21], in the spirit of Theorem 2.4 in [54].

From Section 5 onwards, our analysis moves definitively to the realm of (locally com-
pact) RCD.K;1/ spaces.

Here we address in particular the issue of Leibniz rules for DM1.X/ vector fields and
the action of BV functions on such objects. Our aim is to extend the product rules already
established in the Euclidean spaces in Theorem 3.1 of [22] and Theorem 2.1 of [34].
In order to do so, we have to use extensively the self-adjointness and the contraction
properties of the heat flow ht , and above all the Bakry–Émery contraction estimate in
the self-improved form (2.10). Our arguments eventually lead to Theorem 5.3, where we
essentially prove that the action of f 2 BV.X/ – the pairing between Df and X – on
X 2DM1.X/ produces a vector field fX still in DM1.X/, and that any accumulation
pointDf .X/ of the family of measures .dhtf .X/�/t>0 in M.X/ is absolutely continuous
with respect to the total variation measure kDf k. This fact will be then fundamental to
define the normal traces of a divergence-measure field.

This is indeed the starting point of Section 6, where the interior and exterior distribu-
tional normal traces of X 2 DM1.X/ on the boundary @E of a set of finite perimeter
E � X are given as the functions hX; �E i

� ; hX; �E i
C

@E 2 L
1.X; kD1Ek/ such that

2D1E .1EX/ D hX; �E i
�
@E kD1Ek and 2D1E .1EcX/ D hX; �E i

C

@E kD1Ek:

Due to the non-uniqueness of the pairing, a priori, we cannot ensure the uniqueness of
these normal traces either. Indeed, from this point on, we shall assume to have fixed a
sequence tj ! 0 such that

dhtj .1E /.1EX/� * D1E .1EX/ and dhtj .1E /.1
c
EX/� * D1E .1

c
EX/:

Nevertheless, our arguments allow us to establish the relation between the interior and
exterior distributional normal traces of X on E and on Ec (Remark 6.1). It is also not
difficult to notice that the sequence .htj 1E /j2N admits a subsequence converging in the
weak* topology of L1.X; kdiv.X/k/ to some function z1E , which is again a priori not
unique, being a weak* limit point of a uniformly bounded sequence. The analysis of Sec-
tion 6.1 starts with a discussion on the level sets of z1E , zEs WD ¹z1E D sº: we give a weaker
notion of measure-theoretic interior and exterior of E related to z1E , namely zE1 and zE0,
and of measure-theoretic boundary

e@�E WD X n
�
zE0 [ zE1

�
:
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Taking then into account also the weak* accumulation points y1E of the sequence
.htj 1E /j2N in L1.X; kD1Ek/, we first obtain in Theorem 6.3 a refinement of the Leib-
niz rules for DM1.X/ vector fields and then, with Proposition 6.5 and Proposition 6.6
we investigate further the properties of traces and the relation between the divergence-
measure div.X/ and the sets zE1 and e@�E. The discussion culminates with Theorem 6.7,
which is a second refined version of the Leibniz rule between X and 1E and is funda-
mental in the derivation of the Gauss–Green formulas in Section 6.2.

The issue of the dependence on the approximating sequence .htj 1E /j2N can be solved
under the additional assumption that kdiv.X/k � �. Indeed, in Section 6.3, it is showed
that the interior and exterior distributional normal traces of X 2DM1.X/ on the bound-
ary of E are uniquely determined and coincide. In this case, the unique normal trace is
denoted by hX; �E i@E .

We then reconsider en passant a particular case of regular domains to give a charac-
terization of the sets z�0 and z�1 to conclude that, when kdiv.X/k � �, the normal trace
coincides with the distributional one; that is, .X � ��/@� D hX; ��i@�.

Our survey on Gauss–Green formulas ends with Section 6.5, where we formulate the
hypothesis that the weak* limit points y1E of ht1E in L1.X; kD1Ek/ are constant func-
tions. Indeed, if X is a Euclidean or a Wiener space (see Proposition 4.3 in [5]), given a
measurable setE satisfying either 1E 2BV.X/ or 1Ec 2BV.X/, we have the convergence

ht1E
�
*

1

2
in L1.X; kD1Ek/:

However, the proof of this result relies heavily on a Leibniz rule for the total variation, a
tool which is not available at present in the more abstract context of a general RCD.K;1/
space. Nevertheless, in Theorem 6.17 we prove that

�

Z
X

y1E dkD1Ek D
1

2
;

for any weak* limit y1E of some subsequence of ht1E . As an easy corollary, it follows
that, if y1E is a constant function, it must be equal to 1=2. It is worth to mention that this
fact does not depend on the local compactness of the space, as one would expect, since the
Wiener spaces are not locally compact in general. However, we need that supp.�/ D X,
an assumption which does not seem too restrictive for our purposes.

A first interesting consequence of the condition y1E D 1=2 is that the distributional
normal traces of anyX 2DM1.X/ coincide kD1Ek-almost everywhere on the set zE0 [
zE1 and that the space X admits a “tripartition” up to a kdiv.X/k-negligible set, namely

kdiv.X/k
�
X n . zE0 [ zE1=2 [ zE1/

�
D 0:

Thanks to this result, we finally obtain a refinement of the Gauss–Green formulas previ-
ously given in Section 6.2, as the weak* limit y1E does not appear anymore in the improved
version of the results.
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2. Preliminaries

Throughout this paper, .X; d;�/ shall always be a complete and separable metric measure
space endowed with a non-negative Radon measure �; additional hypotheses on the space
will be made from time to time as soon as they are needed. A �-measurable set E in X
will be simply called measurable when no ambiguity occurs. Given x 2 X and r > 0, we
denote by Br .x/ the open ball centered in x with radius r ; that is,

Br .x/ WD ¹y 2 X W d.x; y/ < rº:

For any open set � � X, we shall denote by M.�/ the space of signed finite Radon
measures on �. Moreover, by Lipb.�/ and by L0.�/ we shall indicate the spaces of
bounded Lipschitz functions and of measurable functions in �, respectively.

In addition, following the notation of [13], we set

Cbs.�/ WD ¹f 2 Cb.�/ W supp.f / b �º;

where we write Ab B to mean that A�B is bounded and dist .A;Bc/ > 0. Analogously,
we set Lipbs.�/ to be the set of Lipschitz functions in Cbs.�/. If � D X, then Cbs.X/
and Lipbs.X/ are the spaces of continuous and Lipschitz functions with bounded support,
respectively.

We denote by Lipa.f / the asymptotic Lipschitz constant of f , namely

(2.1) Lipa.f /.x/ WD lim
�!0

Lip.f; B�.x//;

where, for any set E � X, one defines

Lip.f;E/ WD sup
x;y2E Ix¤y

jf .x/ � f .y/j

d.x; y/
�

We recall a notion of weak convergence for Radon measures, following the mono-
graph [16], Chapter 8.

Definition 2.1. Given a sequence of finite Radon measures .�j /j2N �M.X/, we say that
.�j /j2N is weakly convergent to � in M.X/ if

lim
j!C1

Z
X
f d�j D

Z
X
f d�; 8f 2 Cb.X/;

and we write �j * �.

The above notion of convergence is the natural generalization of the weak� conver-
gence in the duality of C.K/ with M.K/, the space of finite Radon measures on K, for
any compact set K � X.

This duality allows us to deduce that, for a Radon measure � 2M.X/, its total variation
in X is given by

k�k.X/ D sup
° Z

X
f d� W f 2 Cb.X/; jf .x/j � 1; 8x 2 X

±
:
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Since the class of bounded Lipschitz functions Lipb.X/ constitutes a subalgebra of
Cb.X/ and its restriction toK for any compact setK �X is a subalgebra ofC.K/ contain-
ing a non-zero constant function and which separates points, it turns out that the restriction
of Lipb.X/ to K is dense in C.K/, so that we also obtain

k�k.X/ D sup
° Z

X
f d� W f 2 Lipb.X/; jf .x/j � 1; 8x 2 X

±
:

Of course, this argument can be also extended to Radon measures on open sets�� X
to deduce that for any � 2M.�/,

k�k.�/ D sup
° Z

�

f d� W f 2 Lipb;c.�/; jf .x/j � 1; 8x 2 X
±
;

where
Lipb;c.�/ WD ¹f 2 Lipb.X/ W dist .supp.f /;�c/ > 0º :

We recall the notion of uniform tightness of a family of Radon measures and Pro-
horov’s theorem on the necessary and sufficient conditions for the weak convergence of
Radon measures (for which we refer to Theorem 8.6.2 in [16]).

Definition 2.2. A family of Radon measures M on a metric space X is called uniformly
tight if for all " > 0 there exists a compact setK" such that k�k.X nK"/ < " for all � 2M.

Theorem 2.3. Let .X; d / be a complete separable metric space and let M be a family of
Radon measures on X. Then the following conditions are equivalent:

(1) every sequence .�j /j2N �M contains a weakly convergent subsequence ;
(2) the family M is uniformly bounded and uniformly tight.

2.1. Sobolev spaces via test plans

Let C.Œ0; 1�;X/ denote the space of continuous curves equipped with the supremum norm.
Note that, since the underlying metric space is complete and separable, C.Œ0; 1�;X/ will
be complete and separable as well.

Definition 2.4. We define the evaluation map et WC.Œ0; 1�;X/! X, t 2 Œ0; 1� as

et ./ WD t D .t/; 8 2 C.Œ0; 1�;X/:

Any curve  2 C.Œ0; 1�;X/ is called p-absolutely continuous, for some p 2 Œ1;1�, if there
exists f 2 Lp.0; 1/ such that

(2.2) d.t ; s/ �

Z s

t

f .r/ dr; 8 t; s 2 .0; 1/ with t < s;

and in this case we write  2 ACp.Œ0; 1�;X/.
By Theorem 1.1.2 in [8], to every p-absolutely continuous curve we can associate the

metric derivative (or the speed) t 7! j Pt j 2Lp.0; 1/ defined as the essential infimum of all
the f 2 Lp.0; 1/ satisfying (2.2), and which is representable in terms of an incremental
ratio for almost every t 2 .0; 1/:

j P j.t/ WD lim
h!0

d.tCh; t /

h
�
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Let P .C.Œ0; 1�;X// be the space of probability measures along continuous curves.

Definition 2.5. Let � 2 P .C.Œ0; 1�; X//. We say that � has bounded compression
whenever there exists a constant c D c.�/ > 0 such that

.et /# � � c.�/�; 8t 2 Œ0; 1�:

If p 2 Œ1;1/, � has bounded compression, it is concentrated on ACp.Œ0; 1�;X/ andZZ 1

0

j Pt j
p dt d�./ <1;

then it will be called a p-test plan.
If p D 1, � has bounded compression, it is concentrated on AC1.Œ0; 1�;X/ and

Lip./ 2 L1.C.Œ0; 1�;X/;�/, then it will be called an1-test plan.

As it is customary – see for instance [39], Section 3.2 –, given a non-negative locally
finite Radon measure � and p 2 Œ1;1�, we say that a �-measurable function f WX! R
is p-summable, and we write f 2 Lp.X; �/, if kf kLp.X;�/ <1, where

kf kLp.X;�/ WD

8<:
�Z

X
jf jp d�

�1=p
if p 2 Œ1;1/;

inf¹� > 0 W �.¹jf j > �º/ D 0º if p D1:

Then, we introduce an equivalence relation on Lp.X; �/, by declaring f1; f2 2 Lp.X; �/
equivalent if and only if

�.¹x 2 X W f1.x/ ¤ f2.x/º/ D 0:

Finally, we define theLp-spaceLp.X; �/ as the vector space of such equivalence classes.
As it is well known, Lp.X; �/ equipped with the p-norm k � kLp.X;�/ WD k � kLp.X;�/ is a
Banach space. With a little abuse of terminology, in the rest of the paper we shall refer to
p-summable functions, rather than to equivalence classes. In addition, we shall simplify
the notation in the case � D � by removing the reference measure, namely Lp.X/ WD
Lp.X; �/.

We can now give a definition of Sobolev–Dirichlet classes in terms of test plans.

Definition 2.6. Let p 2 Œ1;1� and let q be its conjugate exponent, that is, 1=pC 1=qD 1.
The Sobolev–Dirichlet classD1;p.X/ consists of all Borel functions f WX! R for which
there exists a non-negative g 2 Lp.X/ satisfying

(2.3)
Z
jf .1/ � f .0/j d�./ �

ZZ 1

0

g.s/ j Psj dsd�./

for every q-test plan �. Following the usual terminology, we shall say that g is a p-weak
upper gradient of f .

We note that, even though in the literature the above definition is mostly given for
p 2 .1;1/, the existence of p-test plans for any p 2 Œ1;1� entitles us to define the
Sobolev–Dirichlet classes also for the limiting values of p.
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We recall that, by [10], Section 5.2, and [11], Section 4.5, for every f 2 D1;p.X/
there exists a unique minimal 0 � g 2 Lp.X/ such that (2.3) holds. Such a function will
be called the minimal p-weak upper gradient of f and we shall denote it by jDf j. This
allows to define a semi-norm on D1;p.X/, by setting

(2.4) kf kD1;p.X/ WD kjDf jkLp.X/ :

Remark 2.7. As it is natural to expect, the minimal p-weak upper gradient satisfies the
following properties (see [35, 36] and the references therein):

(1) Sub-linearity: jD. f̨ C ˇg/j � j˛j jDf j C jˇj jDgj for all ˛; ˇ 2 R, f; g 2
D1;p.X/.

(2) Weak Leibniz rule: jD.fg/j � jf j jDgj C jgj jDf j for all f; g 2 D1;p.X/ \
L1.X/.2

(3) Locality: jDf j D jDgj �-almost everywhere on ¹f D gº for all f; g 2 D1;p.X/.
(4) Chain rule: jDf j D 0 on f �1.N / for every f 2D1;p.X/ and every L1-negligible

Borel set N � R. Moreover, if 'W I ! R is Lipschitz and f 2 D1;p.X/, with
I � R open such that �.f �1.R n I // D 0, then we have ' ı f 2 D1;p.X/ and

jD.' ı f /j D j'0 ı f jjDf j

�-almost everywhere, where j'0 ı f j is defined arbitrarily on the points where '
fails to be differentiable.

We observe that the asymptotic Lipschitz constant Lipa.f / is an upper gradient of f ;
so we get jDf j � Lipa.f / �-almost everywhere [11, 32]. This simple fact will play an
important role in Lemma 3.11.

Thanks to this notion of Sobolev–Dirichlet class, the definition of Sobolev spaces may
be given in a traditional fashion.

Definition 2.8. For all p 2 Œ1;1�, we set

W1;p.X/ WD ¹f 2 D1;p.X/ W kf kLp.X/ <1º;

and we endow this space with the semi-norm

kf k1;p WD

8<:
�
kf k

p

Lp.X/ C kf k
p

D1;p.X/

�1=p if p 2 Œ1;1/;

max
®
kf kL1.X/ ; kf kD1;1.X/

¯
if p D1:

where kf kD1;p.X/ is given by (2.4). Let� be the equivalence relation on W1;p.X/ defined
by setting f � g if and only if kf � gk1;p D 0. We define the Sobolev space W 1;p.X/
as the quotient

W 1;p.X/ WD W1;p.X/= �

endowed with the norm k � kW 1;p.X/ WD k � k1;p .

As in the case of the Lp-spaces, with a little abuse of terminology we shall refer to
W 1;p-functions, rather than to equivalence classes.

2This intersection has to be intended in the sense that the Borel functions f;g 2D1;p.X/ are also essentially
bounded.



V. Buffa, G. E. Comi and M. Miranda Jr. 894

To conclude this section, it is worth spending some words on an equivalent character-
ization of Sobolev spaces via test plans which involves the concept of “negligibility” of a
family of curves with respect to any such probability measure. To this aim, below we shall
recollect the salient arguments of [35], Appendix B.

Definition 2.9. A Borel set � � C.Œ0; 1�;X/ is called p-negligible whenever �.�/ D 0
for any q-test plan �, where p; q 2 Œ1;1� are such that 1=p C 1=q D 1.

In this sense, any property will be said to hold for p-almost every curve if the set
where it fails is p-negligible.

Definition 2.10. A Borel function f WX! R is said to be Sobolev along p-almost every
curve if for p-almost every  the composition f ı  coincides almost everywhere in Œ0; 1�
with an absolutely continuous function f W Œ0; 1�! R. Thus, to any function f which is
Sobolev along p-almost every curve we associate a p-weak upper gradient, i.e., a Borel
map gWX! Œ0;1� such that

jf .1/ � f .0/j �

Z 1

0

g.s/ j Psj ds for p-almost every  .

This notion of Sobolev spaces turns out to be indeed equivalent to Definition 2.6.

Theorem 2.11 (Theorem B.4 in [35]). Let p; q 2 Œ1;1� be any two conjugate exponents.
If f WX! R and gWX! Œ0;1� are two Borel functions, with g 2 Lp.X/, then the fol-
lowing statements are equivalent :

(1) f 2D1;p.X/ and g is a p-weak upper gradient of f in the sense of Definition 2.6,

(2) f is Sobolev along p-almost every curve and g is a p-weak upper gradient of f
in the sense of Definition 2.10.

We finish the present survey on Sobolev spaces by recalling a result on Lipschitz
approximation of functions in W 1;p.X/ for p 2 .1;1/.

Proposition 2.12. Let p 2 .1;1/. If f 2 W 1;p.X/, then there exists a sequence
.fk/k2N � Lipbs.X/ such that

(2.5) lim
k!C1

Z
X
jfk � f j

p
C jLipa.fk/ � jDf j j

p d� D 0:

Proof. Let f 2 W 1;p.X/. Then, Theorem 6.1 in [1] implies that f has a p-relaxed
slope which is equal to its minimal p-weak upper gradient jDf j 2 Lp.X/. Hence, Pro-
position 4.2 in [1] yields the existence of a sequence of functions .fk/k2N such that
fk 2 Lipbs.X/ for all k 2 N and (2.5) holds.

2.2. The differential structure

Below, we shall briefly discuss the differential machinery that we are going to use for the
rest of the paper. As anticipated in the introduction, this will provide a metric counterpart
to the notions of cotangent and tangent bundles. We recall that, while [36] provided this
structure for the case p D 2 only, a straightforward generalization of such construction for
any exponent p 2 Œ1;1� was given in Chapter 5 of [18], so here we shall follow the latter
as our main reference.
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We notice that for a full understanding of this setting, a throughout treatment of the the-
ory of Lp-normed modules would be necessary; this task was carried on in detail in [36].
Nevertheless, for the reader’s convenience, we shall include a brief account on this theory
in Appendix A.

Definition 2.13. We shall call pre-cotangent module the set

PCMp WD
°
¹.fi ;Ai /ºi2N W .Ai /i2N�B.X/;fi2D

1;p.X/8i2N;
X
i2N

kjDfi jk
p

Lp.Ai /
<1

±
;

where the Ai ’s form a disjoint partition of X, D1;p.X/, p 2 Œ1;1/, denotes the Sobolev–
Dirichlet class of order p as in Definition 2.6, and B.X/ denotes the set of all equivalence
classes of measurable subsets of X, with A;B � X being equivalent whenever

�.A�B/ D 0; where A�B WD .A n B/ [ .B n A/:

When p D 1, in the corresponding definition of PCM1 we shall simply require
the fi ’s to be in D1;1.Ai / for all i 2 N and

sup
i2N
kjDfi jkL1.Ai / <1:

We introduce an equivalence relation � on PCMp by setting

¹.fi ; Ai /ºi2N � ¹.gj ; Bj /ºj2N

whenever jD.fi � gj /j D 0 �-almost everywhere on Ai \ Bj for all i; j 2 N.
PCMp=� turns into a vector space if we define the sum and the multiplication by

scalars as

Œ.fi ; Ai /i �C Œ.gj ; Bj /j � D Œ.fi C gj ; Ai \ Bj /i;j � and �Œ.fi ; Ai /i � D Œ.�fi ; Ai /i �:

Let Sf.X; �/ denote the space of simple functions, that is, those of the form

h D
X
j2N

1Bj � aj ;

where ¹Bj ºj2N is a partition of X. If Œ.fi ; Ai /i � 2 PCMp=�, then we define the multiplic-
ation with h 2 Sf.X; �/ as

hŒ.fi ; Ai /i � WD Œ.ajfi ; Ai \ Bj /i;j �:

This operation gives a bilinear map Sf.�/ � PCMp=�! PCMp=� such that

1X Œ.fi ; Ai /i � D Œ.fi ; Ai /i � :

Definition 2.14. Consider the map j � j� W PCMp=�! Lp.X/ given by

jŒ.fi ; Ai /i �j� WD jDfi j �-almost everywhere on Ai for all i 2 N;

this map, namely the pointwise norm on PCMp=�, is well defined thanks to the above
definition of the equivalence relation on PCMp .
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Since D1;p.X/ is a vector space, one has the following inequalities for j � j�:

jŒ.fi C gj ; Ai \ Bj /i;j �j� � jŒ.fi ; Ai /i �j� C jŒ.gj ; Bj /j �j�;

j� Œ.fi ; Ai /i �j� D j�j jŒ.fi ; Ai /i �j� ;

jh Œ.fi ; Ai /i �j� D jhj jŒ.fi ; Ai /i �j� ;

(2.6)

valid �-almost everywhere for every Œ.fi ; Ai /i �; Œ.gj ; Bj /j � 2 PCMp=�, h 2 Sf.�/ and
� 2 R.

The above arguments, in particular (2.6), allow us to define a norm on PCMp=�.

Definition 2.15. We define k � kLp.T �X/ W PCMp=�! Œ0;1/, p 2 Œ1;1/ by setting

kŒ.fi ; Ai /i �k
p

Lp.T �X/ WD

Z
X
jŒ.fi ; Ai /i �j

p
� d� D

X
i2N

Z
Ai

jDfi j
p d� D

X
i2N

kjDfi jk
p

Lp.Ai /
:

We notice that the space Lp.T �X/ is actually an Lp-normed module in the sense of
Definition A.4.

As in Definition 2.13, when p D1, we set k � kL1.T �X/ to be

kŒ.fi ; Ai /i �kL1.T �X/ WD sup
i2N
kjDfi jkL1.Ai /:

The completion of PCMp=� with respect to the norm k � kLp.T �X/ will be called
cotangent module and denoted by Lp.T �X/. Consequently, its elements will be called
p-cotangent vector fields or, more traditionally, p-integrable 1-forms when p <1, essen-
tially bounded 1-forms when p D1.

The choice of the terminology “cotangent”, as explained in [35, 36], is due to the fact
that p-weak upper gradients are defined by means of a .p; q/-duality between test plans
and speeds of curves, so in some geometric sense they constitute “cotangent” objects to
the metric space X.

Having a notion of “1-form” at our disposal, we are entitled to define the differential
of any Sobolev function as follows.

Definition 2.16. Given a function f 2D1;p.X/, we define its differential df 2Lp.T �X/
as

df WD Œ.f;X/� 2 PCMp=�� L
p.T �X/:

Here, .f;X/ stands for .fi ; Ai /i2N with f0Df , A0DX and fiD0, AiD; for every i > 0.

Of course, the differential is linear by construction (in particular, it is L1-linear) and
the definition of pointwise norm ensures that

jdf j� D jDf j

�-almost everywhere for all f 2D1;p.X/. Moreover, d is local; this means that for any
f; g2D1;p.X/ one has dfDdg �-almost everywhere on ¹fDgº ([36], Theorem 2.2.3).

Putting together Theorem 2.2.6 in [36] and Corollary 2.2.8 in [36] (and the respective
generalizations featured in [18]), we get the usual calculus rules for the differential.
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Proposition 2.17. Let p 2 Œ1;1�. The following equations hold �-almost everywhere:
(1) d.fg/ D gdf C f dg for all f; g 2 D1;p.X/ \ L1.X/;

(2) dfD0 on f �1.N / for all f 2D1;p.X/ and every L1-negligible Borel set N�R;
(3) d.' ı f /D .'0 ı f /df for all f 2D1;p.X/ and every 'WI !R Lipschitz, where

I � R open is such that �.f �1.R n I // D 0 and '0 ı f is defined arbitrarily on
f �1.¹non-differentiability points of 'º/.

We recall now another useful property of the differentials of Sobolev–Dirichlet func-
tions, stated in Proposition 2.2.5 of [36] for p D 2 and generalized in Proposition 5.4.7
of [18].

Lemma 2.18. Let p 2 Œ1;1/. Then Lp.T �X/ is generated in the sense of modules
.Definition A.6/ by the space ¹df W f 2 W 1;p.X/º.

Now, by duality (in the sense of modules, see [36]; see also Appendix A), with the
cotangent module Lp .T �X/ it is possible to define a “tangent module”. To this aim, let
p; q 2 Œ1;1� be any two conjugate exponents, 1=p C 1=q D 1.

Definition 2.19. The tangent module Lq.TX/ is the dual module of Lp.T �X/. The ele-
ments of Lq .TX/ will be called q-vector fields.

Remark 2.20. We explicitly point out that, by the theory of Lp-normed modules (see
Remark A.5), for all p 2 Œ1;1� the module dual of Lp.T �X/ is indeed an Lq-normed
module, where 1=pC 1=qD 1, even in the extreme cases pD 1;qD1 and pD1;qD 1.
In addition, thanks to Remark A.5 and Lemma 2.18, we can define a pointwise norm j � j
on Lq.TX/ by setting

jX j WD ess-sup
®
jdf .X/j W f 2 D1;p.X/; jdf j� � 1

¯
for every X 2 Lq.TX/.

With the machinery discussed so far, it comes a “natural” notion of divergence of a
vector field.

Definition 2.21. For q 2 Œ1;1� we define

Dq.X/ WD
°
X 2 Lq.TX/I 9f 2 Lq.X/ W

Z
X
fgd�D �

Z
X

dg.X/d�; 8g 2W 1;p.X/
±
;

where as usual p is the conjugate exponent to q.
Clearly, Dq.X/ � Lq.TX/; the function f , which is unique by the density of

W 1;q.X/ in Lq.X/, will be called the q-divergence of the vector field X , we shall write
div.X/ WD f , and the space Dq.X/ will be obviously referred to as the domain of the
q-divergence.

Remark 2.22. The linearity of the differential implies that Dq.X/ is a vector space and
hence that the divergence is a linear operator. Moreover, the Leibniz rule for differentials
immediately yields the same property for the divergence as well: given X 2 Dq.X/ and
f 2 L1.X/ \D1;p.X/ with jdf j� 2 L1.X/, one has

fX 2Dq.X/ and div.fX/ D df .X/C f div(X).
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In fact, these hypotheses give df .X/C f div.X/ 2 Lp.X/ and for all g 2 W 1;q.X/ one
has fg 2 W 1;p.X/, whence

�

Z
X
gf div.X/ d� D

Z
X

d.fg/.X/ d� D
Z

X
gdf .X/C dg.fX/ d�;

so the claim holds.

We conclude this section with some important comments on the choice of giving the
notions of cotangent and tangent modules for arbitrary exponents p; q 2 Œ1;1�.

Remark 2.23. Note that, until now, we have not made any structural assumptions on the
metric measure space .X; d; �/. This means that the minimal p-weak upper gradient of
any Sobolev function f 2 W 1;p.X/ depends on p. Precisely, as the class of q-test plans
contains the one of q0-test plans for q � q0, thenD1;p.X/ � D1;p0.X/ for p � p0, so that
for any f 2 D1;p.X/, one has that if g is a p-weak upper gradient of f , it is also a p0-
weak upper gradient. In particular, for the minimal upper gradient it holds jDf jp � jDf jp0
�-almost everywhere in X. The paper [33] contains a throughout discussion of the depend-
ence of p-weak upper gradients on p and provides also examples of spaces X where,
for f 2 D1;p.X/ \ D1;p0.X/, one has jDf jp ¤ jDf jp0 on a set of positive measure.
Thus, without any structural assumptions, then alsoLp.T �X/ andLq.TX/ depend on the
respective exponents. This issue is removed when .X; d; �/ is endowed with a doubling
measure and supports a Poincaré inequality, [20], or when it is an RCD.K;1/ space, [37];
then, since in the ensuing discussion we shall work mainly in the RCD.K;1/ setting, all
these problematics will not be relevant to us.

In particular, when the dependence on the exponent is removed, given any X 2

Dp.X/ \Dq.X/, from the definition of divergence it follows that there exist fp; fq 2
Lp.X/ \ Lq.X/, fp D divp.X/ and fq D divq.X/, such that for any g 2 W 1;p.X/ \
W 1;q.X/ one has Z

X
.fp � fq/ g d� D 0;

so that fp � fq D 0 �-almost everywhere, whence the uniqueness of the divergence ofX .

2.3. RCD.K;1/ spaces and the heat flow

In this section we recall the notion of an RCD.K;1/ metric measure space, naively, a
space whose Ricci curvature is bounded from below by some K 2 R, along with its most
notable properties, which we shall use extensively in the upcoming sections. The con-
struction of such spaces relies heavily on the theories of gradient flows and of optimal
transport, see for instance [8] and [57] respectively.

To get started, we give the following basic definition.

Definition 2.24. Let p 2 Œ1;1/. We define the Cheeger–Dirichlet energy EpWL2.X/!
Œ0;1� as the functional given by

Ep.f / WD

´
1
p

R
X jDf j

pd�; f 2 D1;p.X/ \ L2.X/;

C1; otherwise:
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Remark 2.25. In particular, when p D 2, the Cheeger–Dirichlet energy E2 allows us to
characterize the domain of the Laplace operator – or, more simply of the Laplacian – as

D.�/ WD ¹f 2 L2.X/ W @�E2.f / ¤ ;º;

where @�E2.f / denotes the sub-differential of E2 at f , namely,

@�E2.f / WD
°
v 2 L2.X/I E2.f /C

Z
X
vg d� � E2.f C g/; 8g 2 L2.X/

±
;

with the convention @�E2.f /D;whenever E2.f /DC1. Thus said, whenever f 2D.�/
we define its Laplacian �f 2 L2.X/ as

�f WD �v;

where v is the element with minimal norm in @�E2.f /.

By the properties of the minimal weak upper gradient, Ep is convex and lower semi-
continuous; moreover, its domain is dense in L2.X/.

A key-tool in the definition of RCD.K;1/ spaces is the concept of “Infinitesimal
Hilbertianity” of the metric measure space, first introduced in [35].

Definition 2.26. .X; d; �/ will be said infinitesimally Hilbertian whenever W 1;2.X/ is a
Hilbert space. This is equivalent to ask that the semi-norm k � kD1;2.X/ satisfies the paral-
lelogram rule, and that the 2-energy E2 is a Dirichlet form.

Besides infinitesimal Hilbertianity, in order to come to the main definition we also
need the concept of entropy of a probability measure.

Definition 2.27. The relative entropy is defined as the functional E�WP .X/!R[ ¹C1º
given by

E�.m/ WD

´R
X � log.�/ d�; if m D �� and .�log.�//� 2 L1.X/;

C1; otherwise:

Last but not least, a fundamental role in the description of RCD.K;1/ spaces is played
by the Wasserstein space of probability measures on X.

Definition 2.28. We denote by .P2.X/; W2/ the Wasserstein space of probability meas-
ures on X with finite second moment, i.e.,

P2.X/ WD
°
m 2 P .X/ W

Z
X
d2 .x; x0/ dm <1; 8x0 2 X

±
;

endowed with the Wasserstein distance W2 given by

(2.7) W 2
2 .m1;m2/ WD inf

° Z
X�X

d2.x; y/ d.x; y/ W  2 �.m1;m2/
±
;

where

�.m1;m2/ WD ¹ 2 P .X �X/ such that � i#./ D mi for i D 1; 2º

and � i denotes the canonical projection over the i -th component, for i D 1; 2.
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We are now able to give the definition of RCD.K;1/ spaces.

Definition 2.29. A complete and separable metric measure space .X; d;�/ endowed with
a non-negative Radon measure � will be called an RCD.K;1/ space, for some K 2 R,
if it is infinitesimally Hilbertian and, for every �; � 2 P2.X/ with finite relative entropy,
there exists aW2-geodesic mt with m0 D � and m1 D � and such that, for every t 2 Œ0; 1�,

E�.mt / � .1 � t /E�.�/C tE�.�/ �
K

2
t.1 � t /W 2

2 .�; �/:

Another tool which will be of great use to us is the “heat flow”, whose analysis has
been discussed extensively in [10].

Definition 2.30. The heat flow ht , t � 0, is the L2-gradient flow of the Cheeger–Dirichlet
2-energy E2.

As observed in [10,36], the theory of gradient flows ensures the existence and unique-
ness of the heat flow as a 1-parameter semigroup .ht /t�0, ht WL2.X/! L2.X/, such that
for every f 2 L2.X/ the curve t 7! ht .f / is continuous on Œ0;1/, absolutely continuous
on .0;1/ and moreover fulfills the differential equation

d
dt

ht .f / D �.htf /

for almost every t > 0, which means ht .f / 2 D.�/ for every f 2 L2.X/ and for every
t > 0. In addition, one has khtf � f kL2.X/ ! 0 as t ! 0 for any f 2 L2.X/.

The infinitesimal Hilbertianity of RCD.K;1/ spaces ensures that, in our setting,
.ht /t�0 defines a semigroup of linear and self-adjoint operators.

Also, from the analysis carried on in [10], we have that for every p 2 Œ1;1� it holds

(2.8) khtf kLp.X/ � kf kLp.X/

for every t � 0 and for every f 2 L2.X/ \ Lp.X/. Then, by a density argument we can
uniquely extend the heat flow to a family of linear and continuous operators ht WLp.X/!
Lp.X/ of norm bounded by 1 for every p 2 Œ1;1�, as the contraction results proved in [7]
and [9] showed.

In regard to our discussion, the most important property of the heat flow is the Bakry–
Émery contraction estimate

(2.9) jDhtf j2 � e�2Kt ht .jDf j2/;

�-almost everywhere for every t � 0 and for every f 2 W 1;2.X/, see [9], [38] and the
seminal paper [15].

Actually, we shall use the Bakry–Émery estimate in its “self-improved” version estab-
lished by [47] in the RCD.K;1/ setting:

(2.10) jDhtf j � e�Kt ht .jDf j/

�-almost everywhere for every t � 0 and for every f 2 W 1;2.X/.
It is important to notice that, as explained in Section 6 of [9], Section 4 of [12],

and then ultimately proved in Section 4 of [47], the Bakry–Émery estimate and the
RCD.K;1/ condition are actually equivalent requirements.
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We also recall that ht maps contractively L1.X/ in Cb.supp.�//, by Theorem 6.1
in [9] and Theorem 7.1 in [7], and that

(2.11) 8f; g 2 L2.X/; f � g C c for some c 2 R implies htf � htg C c;

by Theorem 4.16 in [10].
The lower curvature bound implies also that

(2.12) ht1 D 1:

Indeed, by Theorem 4.24 in [56], when the metric measure space .X; d; �/ has curvature
bounded from below by someK 2 R, then for every x 2 X and every � > 0 there is c > 0
such that

(2.13) �.B�.x// � ce
c�2 ;

which in turn yields (2.12) by the remarks after Theorem 4 in [55].
Lastly, another property of the heat flow which will be useful to us is the following:

(2.14) c.K; t/ jDhtf j
2
� htf 2 � .htf /2 ;

valid �-almost everywhere in X, for every t � 0 and for every f 2 L2.X/ for some
positive constant c D c.K; t/ (see [12, 47]).

3. Characterization of BV functions

In the rest of the paper we shall make an explicit use of BV functions. To this aim, for the
first part of this section we shall recall the derivation approach of [32], and then we will
see that the differential machinery discussed in Section 2.2 entitles us to give an equivalent
definition of BV functions in terms of D1.X/ vector fields.

We recall that the derivation approach of [32] is equivalent to the relaxation procedure
performed by [45] and also to the “weak BV” space described in [3]; we refer in particular
to Section 7 of [3] and Section 7.3 of [32] for an extensive discussion on the equivalences
of BV spaces.

Let .X; d; �/ be a complete and separable metric measure space endowed with a non-
negative Radon measure � which is finite on bounded sets.

3.1. The derivation approach

Definition 3.1. We say that a linear map ıWLipbs.X/! L0.X/ is a Lipschitz derivation,
and we write ı 2 Der.X/, if it satisfies the following properties:

(1) Leibniz rule: ı.fg/ D f ı.g/C gı.f / for every f; g 2 Lipbs.X/;
(2) Weak locality: there exists some function g 2 L0.X/ such that

jı.f /j.x/ � g.x/Lipa.f /.x/

for �-almost every x 2 X and for all f 2 Lipbs.X/, where Lipa.f /.x/ denotes
the asymptotic Lipschitz constant of f at x, as defined in (2.1).

The smallest function g satisfying (2) will be denoted by jıj. In the case jıj 2 Lp.X/, we
shall write ı 2 Lp.X/.
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We notice that, thanks to the weak locality condition in the definition of derivations,
any ı 2 Der.X/ can be extended to Liploc.X/.

We define the support of a derivation ı 2 Der.X/ in the usual distributional sense.
Indeed, we say that ı D 0 on a open set V if ı.f / D 0 for any f 2 Lipbs.X/ such that
supp.f / � V , and then we set

supp.ı/ WD X n
[

V open; ıD0 on V

V:

It is possible to define the divergence of a derivation by requiring that the usual integ-
ration by parts formula holds.

Definition 3.2. Given ı 2 Der.X/ with ı 2 L1loc.X/, we define its divergence as the oper-
ator div.ı/WLipbs.X/! R such that

f 7! �

Z
X
ı.f / d�:

We say that div.ı/ 2 Lp.X/ if this operator admits an integral representation via a unique
Lp.X/ function h D div.ı/: Z

X
ı.f / d� D �

Z
X
hf d�:

For all p; q 2 Œ1;1�, we shall set

Derp.X/ WD ¹ı 2 Der.X/I ı 2 Lp.X/º; and
Derp;q.X/ WD ¹ı 2 Der.X/I ı 2 Lp.X/; div.ı/ 2 Lq.X/º:

When p D1 D q, we write Derb.X/ instead of Der1;1.X/.
The domain of the divergence is then characterized as

D.div/ WD ¹ı 2 Der.X/I jıj; div.ı/ 2 L1loc.X/º;

which contains Derp;q.X/ for all p; q 2 Œ1;1�.
With these tools available, we may proceed as in [32] to give the definition of BV

functions.

Definition 3.3. Let u 2 L1.X/. We say that u is of bounded variation in X, and we write
u 2 BV.X/, if there is a linear and continuous map LuWDerb.X/!M.X/ such that

(3.1)
Z

X
dLu.ı/ D �

Z
X
u div.ı/ d�

for all ı 2 Derb.X/ and satisfying Lu.hı/ D hLu.ı/ for any h 2 Lipb.X/.
We say that a measurable set E has finite perimeter in X if 1E 2 BV.X/.

As observed in [32], the above characterization is well-posed since, if we take any
two maps Lu; QLu as in Definition 3.3, the Lipschitz-linearity of derivations ensures that
Lu.ı/D QLu.ı/ for all ı 2 Derb.X/. In other words, when u 2 BV.X/ the measure-valued
map Lu is uniquely determined and we shall write Du.ı/ WD Lu.ı/.
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We combine now the statements of Theorems 7.3.3 and 7.3.4 in [32], which allow us
to recover the usual properties of BV functions, including the representation formula for
the total variation as the supremum ofZ

�

u div.ı/ d�

taken over all derivations ı such that supp.ı/ b �.

Theorem 3.4 (Theorems 7.3.3 and 7.3.4 in [32]). Assume u 2 BV.X/. There exists a non-
negative, finite Radon measure � 2M.X/ such that for every Borel set B � X one has

(3.2)
Z
B

dDu.ı/ �
Z
B

jıj�d� 8ı 2 Derb.X/;

where jıj� denotes the upper-semicontinuous envelope of jıj. The least measure � satisfy-
ing (3.2) will be denoted by kDuk, the total variation of u. Moreover,

kDuk.X/ D sup ¹jDu.ı/.X/jI ı 2 Derb.X/; jıj � 1º :

Finally, the classical representation formula for kDuk holds, in the sense that, if � � X
is any open set, then

(3.3) kDuk.�/ D sup
° Z

�

u div.ı/ d�I ı 2 Derb.X/; supp.ı/ b �; jıj � 1
±
:

Remark 3.5. As a consequence of (3.3) and of the Leibniz rule for derivations, we see
that, if E is a set of finite perimeter in X, then

(3.4) kD1Ek.X n @E/ D 0:

Hence, if �.@E/D 0, then the measures � and kD1Ek are mutually singular. In addition,
we notice that, if E is a measurable set,Z

�

1Ediv.ı/ d� D �
Z
�

1Ecdiv.ı/ d�

for any open set � and ı 2 Derb.X/; supp.ı/ b �. Hence, if we have 1E 2 BV.X/
or 1Ec 2 BV.X/, then the Radon measures kD1Ek and kD1Eck are well defined and
coincide.

We recall now an approximation result for BV functions analogous to Proposition 2.12
for Sobolev spaces.

Proposition 3.6. If f 2 BV.X/, then there exists a sequence .fk/k2N in Lipbs.X/ such
that fk ! f in L1.X/ and Lipa.fk/� * kDf k in M.X/.

Proof. This result follows by combining Proposition 4.5.6 and Theorem 7.3.7 in [32].



V. Buffa, G. E. Comi and M. Miranda Jr. 904

3.2. The approach via vector fields. Proof of the equivalence

Before discussing our equivalent characterization of the BV space, we need to introduce
the notion of Sobolev derivations following the definition given in [36].

Definition 3.7. Let p; q 2 Œ1; 1� be two conjugate exponents. A linear map
LWD1;p.X/! L1.X/ such that

(3.5) jL.f /j � `jDf j

�-almost everywhere for every f 2 D1;p.X/ and for some ` 2 Lq.X/ will be called
a q-Sobolev derivation. The set of q-Sobolev derivations LWD1;p.X/! L1.X/ will be
denoted by S-Derq.X/.

Of course, the usual calculus rules hold for this definition as well. It is interesting to
notice that, roughly speaking, the space of q-Sobolev derivations contains the space of
q-summable Lipschitz derivations with divergence in Lq.X/ for q > 1. In order to make
this statement rigorous, we start with the following technical lemma.

Lemma 3.8. Let q 2 .1;1� and p 2 Œ1;1/ be conjugate exponents. Any ı 2 Derq;q.X/
may be uniquely extended to a linear continuous map QıWD1;p.X/\ .Lp.X/[L1.X//!
L1.X/ satisfying

(3.6)
Z

X
h Qı.f / d� D �

Z
X
f .hdiv.ı/C ı.h// d�

for all f 2 D1;p.X/ \ .Lp.X/ [ L1.X//; h 2 Lipbs.X/, and

(3.7) j Qı.f /j � ` jDf j

�-almost everywhere for every f 2 D1;p.X/ \ .Lp.X/ [ L1.X//, where

` D

´
jıj if q 2 .1;1/;
kıkL1.X/ if q D1:

Proof. Let at first q 2 .1;1/ and let ı 2 Derq;q.X/. Then, for any f 2 Lipbs.X/ we have

jı.f /j � jıj � Lipa.f /; with jıj 2 Lq.X/; and(3.8) Z
X
ı.f /d� D �

Z
X

div.ı/ f d�; with div.ı/ 2 Lq.X/:(3.9)

We start by showing that we can extend ı to functions inW 1;p.X/ WDD1;p.X/\Lp.X/,
where p is the conjugate exponent of q, in such a way that (3.7) holds with ` D jıj.
Hence, let f 2W 1;p.X/. Thanks to Proposition 2.12, we know that there exists a sequence
.fk/k2N � Lipbs.X/, such that

fk ! f in Lp.X/ and Lipa.fk/! jDf j in Lp.X/:

Hence, thanks to (3.8), it is easy to see that .ı.fk//k2N is a bounded sequence in L1.X/,
so that .ı.fk/�/k2N is uniformly bounded in M.X/. In addition, this sequence is also
uniformly tight. Indeed, since jıj 2 Lq.X/, for all " > 0 there exists a compact set K"
such that Z

XnK"

jıjq d� �
� "

Cf

�q
;
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where
Cf WD sup

k

kLipa.fk/kLp.X/ <1:

Thanks to (3.8) and Hölder’s inequality, we see that

kı.fk/�k.X nK"/ D

Z
XnK"

jı.fk/j d� �
Z

XnK"

jıjLipa.fk/ d�

�

� Z
XnK"

jıjq d�
�1=q
kLipa.fk/kLp.X/ � ":

Therefore, Theorem 2.3 yields the existence of a subsequence .ı.fkj /�/j2N weakly con-
verging to a Radon measure, which we denote by ıf . By the Leibniz rule (point (1) in
Definition 3.1) and (3.9), the measure ıf acts on h 2 Lipbs.X/ in the following way:Z

X
h dıf D lim

j!C1

Z
X
hı.fkj / d� D � lim

j!C1

Z
X
fkj .hdiv.ı/C ı.h// d�

D �

Z
X
f .hdiv.ı/C ı.h// d�:

This shows that ıf does not depend on the converging subsequence and is indeed unique.
In particular, for all h 2 Lipbs.X/, we haveˇ̌̌ Z

X
hdıf

ˇ̌̌
D lim
k!C1

ˇ̌̌ Z
X
hı.fk/d�

ˇ̌̌
� lim inf
k!C1

Z
X
jhj jıjLipa.fk/d�D

Z
X
jhj jıj jDf jd�;

from which we deduce that kıf k � jıjjDf j� in the sense of Radon measures. There-
fore, ıf is indeed absolutely continuous with respect to �, and we denote by Qı.f / its L1

density. Thus, it is clear that Qı.f / is well defined for all f 2 W 1;p.X/ and it is a con-
tinuous linear operator fromW 1;p.X/ to L1.X/ satisfying (3.6) and (3.7) with ` D jıj. In
addition, we have Qı.f / D ı.f / for all f 2 Lipbs.X/, since, thanks to (3.6), the Leibniz
rule (point (1) in Definition 3.1) and (3.9), for all h 2 Lipbs.X/ we haveZ

X
h Qı.f / d� D �

Z
X
f .hdiv.ı/C ı.h// d� D

Z
X
hı.f / d�:

Thus, Qı is the unique extension of ı to W 1;p.X/. In the case f 2 D1;p.X/ \ L1.X/, we
may not have f 2 Lp.X/, and so we need to proceed by approximation with Lipschitz
cutoff functions. For some fixed x0 2 X and all R > 0, we define

�R.x/ WD 1BR.x0/.x/C
�
2 �

d.x; x0/

R

�
1B2R.x0/nBR.x0/.x/:

It is easy to see that �R 2 Lipbs.X/ � D
1;p.X/ \ L1.X/ and it satisfies

�R.x/� 1 on BR.x0/; �R.x/� 0 on X nB2R.x0/ and jD�Rj �
1

R
1B2R.x0/nBR.x0/:

Therefore, we have

(3.10) jD.f �R/j � �RjDf j C jf j jD�Rj

by the weak Leibniz rule for the minimal p-weak upper gradient, see point (2) of
Remark 2.7. This implies f �R 2 W 1;p.X/, so that Qı.f �R/ is well defined for all R > 0.
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In addition, we notice that the sequence . Qı.f �R//R>0 is Cauchy with respect to L1loc-
convergence: indeed, for any R; r > 0, by (3.7) and (3.10) we have

j Qı.f .�R � �r //j � jıj .j�R � �r j jDf j C jf j.jD�Rj C jD�r j// ;

so that for any bounded set B � X we obtainZ
B

j Qı.f .�R � �r //j d� D 0

for all R > r > 0 such that B � Br .x0/. Hence, by considering a covering of X of balls
¹Bk.x0/ºk2N and a gluing argument, we may deduce the existence of a subsequence
. Qı.f �Rj //j2N converging to a function ı.f / in L1loc.X/, a priori depending on the sub-
sequence. In addition, since Qı satisfies (3.7) on W 1;p.X/, we obtain the estimate

j Qı.f �Rj /j � jıj.�Rj jDf j C jf jjD�Rj j/;

which easily implies jı.f /j � jıj jDf j �-almost everywhere, so that we also deduce that
ı.f / 2 L1.X/. In addition, thanks to (3.6), for all h 2 Lipbs.X/ we haveZ

X
hı.f / d� D lim

j!C1

Z
X
h Qı.f �Rj / d� D � lim

j!C1

Z
X
hf �Rj div.ı/C f �Rj ı.h/ d�

D �

Z
X

f .hdiv.ı/C ı.h// d�:

This shows that ı.f / does not depend on the subsequence and is unique. In this way, we
extend Qı to a linear operator fromD1;p.X/\L1.X/ intoL1.X/ satisfying (3.6) and (3.7)
with ` D jıj, which we still denote by Qı, with a little abuse of notation.

We now consider the case q D 1 and p D 1, and we start by assuming f 2

W 1;1.X/ WDD1;1.X/\L1.X/. We notice that f 2BV.X/, with kDf kD jDf j�. Thanks
to Proposition 3.6, we know that there exists a sequence .fk/k2N � Lipbs.X/ such that

fk ! f in L1.X/ and Lipa.fk/� * kDf k:

Therefore, (3.8) implies

jı.fk/j � jıjLipa.fk/ � kıkL1.X/Lipa.fk/

�-almost everywhere. Hence, Theorem 2.3 implies that the sequence .Lipa.fk/�/k2N is
uniformly bounded and tight, since it is weakly converging, and thus we conclude that the
sequence .ı.fk//k2N is uniformly bounded and tight, again by Theorem 2.3. Therefore,
we can proceed as we did in the case q 2 .1;1/ in order to deduce the existence of a Radon
measure ıf 2M.X/ which is the weak limit of a subsequence .ı.fkj //j2N . Then, we can
employ the Leibniz rule to show that ıf does not depend on the converging subsequence
and that it is unique. In addition, we notice that for all h 2 Lipbs.X/, (3.8) impliesˇ̌̌ Z

X
h dıf

ˇ̌̌
D lim
k!C1

ˇ̌̌ Z
X
hı.fk/ d�

ˇ̌̌
� lim inf
k!C1

Z
X
jhj jıjLipa.fk/ d�

� kıkL1.X/ lim inf
k!C1

Z
X
jhjLipa.fk/ d� D kıkL1.X/

Z
X
jhj jDf j d�;

from which we deduce that kıf k � kıkL1.X/jDf j� in the sense of Radon measures.
Therefore, ıf is indeed absolutely continuous with respect to �, and we denote by Qı.f /
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its L1 density. Thus, it is clear that Qı is a linear continuous operator from W 1;1.X/
to L1.X/ satisfying (3.6) and (3.7) with ` D kıkL1.X/. In addition, we can show that Qı
is an extension of ı, arguing by approximation and by the Leibniz rule as in the case q 2
.1;1/. Finally, we can extend Qı to a continuous linear operator from D1;1.X/ \ L1.X/
toL1.X/ arguing by approximation with cutoff functions as we did in the case q 2 .1;1/,
with the only difference that now in (3.7) we have ` D kıkL1.X/.

Remark 3.9. We wish to underline the fact that the approximation argument of
Lemma 3.8 does not work in the case q D 1 and p D 1, since in general it is not pos-
sible to approximate functions in W 1;1.X/ with sequences of Lipschitz functions with
bounded support. In addition, unless .X; d; �/ is the space Rn endowed with the stand-
ard Euclidean distance and Lebesgue measure Ln, we cannot prove that each function
in W 1;1.X/ admits a representative in Lipb.X/, given that it is enough to choose as X a
suitable subset of Rn, for n� 2, to obtain counterexamples (see Section 2.3 in [6]). Hence,
not even a different approximation approach based only on the use of a cutoff sequence
seems to be working, without some other assumptions on .X; d; �/.

We proceed now to show, in the case q >1, the existence of an extension of a derivation
in Derq;q.X/ to the whole Sobolev–Dirichlet class D1;p.X/, where p is the conjug-
ate exponent to q; in this way proving that each ı 2 Derq;q.X/ admits an extension to
S-Derq.X/.

Lemma 3.10. Let q 2 .1;1�. Any ı 2 Derq;q.X/ may be extended to a q-Sobolev deriv-
ation ı 2 S-Derq.X/ satisfying (3.5) with

(3.11) ` WD

´
jıj if q 2 .1;1/;
kıkL1.X/ if q D1:

Proof. Let p 2 Œ1;1/ be the conjugate exponent to q and let f 2D1;p.X/. For all k 2N
we set

Tk.f / WD

8̂<̂
:
k if f � k;
f if � k < f < k;

�k if f � �k:

Clearly, Tk.f / 2 D1;p.X/ \ L1.X/, and, thanks to point (4) of Remark 2.7, we have
jDTk.f /j D jDf j1¹jf j<kº �-almost everywhere. Hence, the unique extension Qı of ı given
by Lemma 3.8 can be applied to Tk.f /, and (3.7) yields

(3.12) j Qı.Tk.f //j � ` jDTk.f /j D ` jDf j1¹jf j<kº � ` jDf j;

where ` is defined as above. Since `jDf j 2 L1.X/, we deduce that the sequence
. Qı.Tk.f //�/k2N is uniformly bounded in M.X/. In addition, (3.12) easily implies also
the uniform tightness, since, for all " > 0, there exists a compact set K" such thatZ

XnK"

` jDf j d� < ";

so that Z
XnK"

j Qı.Tk.f //j d� �
Z

XnK"

` jDf j d� < ":
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Therefore, Theorem 2.3 yields the existence of a subsequence . Qı.Tkj .f //�/j2N weakly
converging to a Radon measure, which we denote by ıf . Thanks to (3.12), we deduce
that kıf k � `jDf j�, since, for all h 2 Cb.X/, we haveˇ̌̌ Z

X
h dıf

ˇ̌̌
D lim
j!C1

ˇ̌̌ Z
X
h Qı.Tkj .f // d�

ˇ̌̌
� lim inf
j!C1

Z
X
jhj` jDf j1¹jf j<kj º d�

�

Z
X
jhj` jDf j d�:

Hence, there exists a function ı.f / 2 L1.X/ such that ıf D ı.f /� and jı.f /j � `jDf j.
Thus, we constructed a linear continuous map ıWD1;p.X/ ! L1.X/ satisfying (3.5).
Finally, it is clear that, if f 2 D1;p.X/ \ L1.X/, then Qı.Tk.f // D Qı.f / for k large
enough, so that ı D Qı on D1;p.X/ \ L1.X/, and this shows that ı is an extension of
the derivation ı, since Qı is the unique extension of ı to D1;p.X/ \ L1.X/, thanks to
Lemma 3.8.

We wish to stress the fact that the extension ı given by Lemma 3.10 is a priori not
unique. However, we will prove that it is indeed unique, thanks to the one-to-one corres-
pondence between the derivations in Derq;q.X/ and the fields in Dq.X/, which is treated
in the following statements.

Lemma 3.11. Let q 2 Œ1;1�. Any vector field X 2 Dq.X/ induces a unique derivation
ıX 2 Derq;q.X/ given by ıX D X ı d, and

(3.13) jıX .'/j � Lipa.'/ jX j

�-almost everywhere for every ' 2 Lipbs.X/, so that jıX j � jX j. In addition, we have
div.ıX / D div.X/ and ıX 2 S-Derq.X/, satisfying (3.5) with ` D jX j.

Proof. It is easy to see that ıX defined as above satisfies the Leibniz rule in Definition 3.1,
thanks to Proposition 2.17, and that for all ' 2 Lipbs.X/ we have ıX .'/ D d'.X/, so that

(3.14) jd'.X/j � jd'j�jX j D jD'j jX j � Lipa.'/ jX j

�-almost everywhere, since Lipa.'/ is an upper gradient of '. This gives point (2) of
Definition 3.1 with g D jX j. Then, it follows that jıX j � jX j 2 Lq.X/. In addition, we
notice that ıX D X ı d can be naturally extended to D1;p.X/, thanks to the properties of
the differential (Definition 2.16); and, analogously to (3.14), for all f 2 D1;p.X/ we get

jıX .f /j D jdf .X/j � jdf j�jX j D jDf j jX j

�-almost everywhere, which clearly implies (3.5) with ` D jX j. Finally, we notice that,
for any  2 Lipbs.X/, we haveZ

X
 div.ıX / d� D �

Z
X
ıX . / d� D �

Z
X

d .X/ d� D
Z

X
 div.X/ d�:

This means that div.ıX / D div.X/ 2 Lq.X/, thus proving our claim.
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We show now the converse statement; that is, the fact that every derivation in
Derq;q.X/ induces a vector field Xı 2Dq.X/, in the case q > 1.

Lemma 3.12. Let q 2 .1;1� and ı 2 Derq;q.X/. Then there exists a unique vector field
Xı 2Dq.X/ such that ı D Xı ı d. In addition, we have

(3.15) jXı j �

´
jıj if q 2 .1;1/;
kıkL1.X/ if q D1:

and div.Xı/ D div.ı/.

Proof. Thanks to Lemma 3.10, we may extend ı to a q-Sobolev derivation ı 2 S-Derq.X/,
a priori not unique. By the theory of Lp-normed modules, see [36] and Appendix A,

Lq.TX/ D HOM.Lp.T �X/; L1.X//;

where 1=p C 1=q D 1. As a consequence, using Theorem 5.5.4 in [18]3 and the fact that
ı 2 S-Derq.X/, we deduce that there exists Xı 2 L

q.TX/ such that ı D Xı ı d, which
means that ı.'/ D d'.Xı/ for all ' 2 Lipbs.X/, since ı D ı on Lipbs.X/. Moreover,
Lemma 3.10 implies that, for all f 2 D1;p.X/,

jdf .Xı/j D jı.f /j � ` jDf j D ` jdf j�

�-almost everywhere, where ` is defined as in (3.11). Hence, by Remark A.5 and
Lemma 2.18, �-almost everywhere we have

jXı j WD ess-sup
®
jL.Xı/j W L D df for f 2 D1;p.X/; jLj� � 1

¯
D ess-sup

®
jdf .Xı/j W f 2 D

1;p.X/; jdf j� � 1
¯
� `;

which implies (3.15), thanks to (3.11).
We notice that Xı depends a priori on the choice of the extension ı of ı to D1;p.X/.

However, this dependence is actually illusory. Indeed, assume that there exist two such
extensions ı1; ı2. Then, there exists two fieldsXı1 ;Xı2 2 L

q.TX/ such that ıi D Xı i ı d
for i D 1; 2. However, these extensions ı1; ı2 coincide with the unique extension Qı of ı to
W 1;p.X/ given by Lemma 3.8, so that, for all f 2 W 1;p.X/, we have

df .Xı1/ D ı1.f / D
Qı.f / D ı2.f / D df .Xı2/;

which clearly implies df .Xı1 �Xı2/D 0 for all f 2W 1;p.X/. Thus, we conclude that it
must beXı1 D Xı2 , by the linearity of the pairing and thanks to Lemma 2.18. This proves
the uniqueness of the vector field, which we shall denote simply by Xı . We conclude the
proof by showing that div.Xı/ D div.ı/. Let  2 Lipbs.X/ and notice thatZ

X
 div.Xı/ d� D �

Z
X

d .Xı/ d� D �
Z

X
ı. / d� D

Z
X
 div.ı/ d�:

Since  is arbitrary, we conclude that Lq.X/ 3 div.ı/ D div.Xı/, which means that
Xı 2Dq.X/.

3Notice that Theorem 5.5.4 in [18] is a generalization to any exponent q 2 .1;1� of Theorem 2.3.3 in [36],
which was proved only for the case q D 2.
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Corollary 3.13. Let q 2 .1;1�. Any ı 2 Derq;q.X/ may be uniquely extended to a q-
Sobolev derivation ı 2 S-Derq.X/ satisfying (3.5) with

` D

´
jıj if q 2 .1;1/;
kıkL1.X/ if q D1:

Proof. Lemma 3.10 provides the existence of such extension. The uniqueness follows by
exploiting Lemma 3.12: indeed, we can associate to ı a unique vector Xı 2Dq.X/ such
that ı D Xı ı d. This means that ı can be naturally extended to D1;p.X/, where p is the
conjugate exponent to q, by setting ı.f / WD df .Xı/ for all f 2 D1;p.X/, which is well
posed, since df 2 Lp.T �X/ and Xı 2 Lq.TX/. In order to show that this extension is
indeed unique, let Tk.f / be the truncation of f defined as in the proof of Lemma 3.10
and let Qı be the unique extension of ı to D1;p.X/ \ L1.X/. Since Qı is unique, it must
coincide with Xı ı d on D1;p.X/ \ L1.X/. Thanks to point 3 of Proposition 2.17, we
have

dTk.f / D 1¹jf j<kº df;

so that
Qı.Tk.f // D dTk.f /.Xı/ D 1¹jf j<kº df .Xı/:

Thanks to the estimates on jXı j given in Lemma 3.12, we clearly have df .Xı/ 2 L1.X/.
Therefore, Lebesgue’s dominated convergence theorem implies that

Qı.Tk.f //! df .Xı/ in L1.X/ as k !C1;

which means that ı WD Xı ı d is the unique extension of ı to D1;p.X/. Finally, the estim-
ates on ` follow immediately from those on jXı j given in Lemma 3.12.

All in all, we have just proved the following result.

Theorem 3.14. Let .X;d;�/ be a complete and separable metric measure space endowed
with a non-negative Radon measure � which is finite on bounded sets and let q 2 .1;1�.
Then, any vector field X 2Dq.X/ induces a unique derivation ıX 2 Derq;q.X/ satisfying
ıX D X ı d, jıX j � jX j and div.ıX / D div.X/. Vice versa, any derivation ı 2 Derq;q.X/
induces a unique vector field Xı 2Dq.X/ satisfying ı D Xı ı d ,

jXı j �

´
jıj if q 2 .1;1/;
kıkL1.X/ if q D1:

and div.Xı/ D div.ı/.

In conclusion, Lemma 3.11, Lemma 3.12 and Theorem 3.14 entitle us to characterize
the space of BV functions in the following alternative way.

Definition 3.15. Let u 2 L1.X/. We say that u 2 BVD.X/ if there exists a continuous
linear map LuWD1.X/!M.X/ such that

(3.16)
Z

X
dLu.X/ D �

Z
X
u div.X/ d�

for all vector fields X 2D1.X/.
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In the same fashion as for Definition 3.3, we observe that also the above charac-
terization is well-posed, in the sense that, when u 2 BVD.X/, the map Lu is uniquely
determined. Therefore, we shall write, with no ambiguity, Du.X/ instead of Lu.X/.

It is worth noticing that, if q D 1 – which is the case of interest for BV functions –,
Theorem 3.14 obviously gives a bijection between Derb.X/ and D1.X/. This fact has an
immediate yet notable consequence.

Theorem 3.16. We have the equivalence

(3.17) BV.X/ D BVD.X/:

In particular, if ı 2 Derb.X/ and X 2 D1.X/ are associated by the bijection given by
Theorem 3.14, then the signed measuresDu.ı/ andDu.X/ coincide, and the same is true
for their respective total variations.

Proof. Given u 2 L1.X/, for all X 2D1.X/ we haveZ
X
u div.X/ d� D

Z
X
u div.ıX / d�;

where ıX 2 Derb.X/ is the unique derivation associated to X given by Lemma 3.11. On
the other hand, for all ı 2 Derb.X/ we haveZ

X
u div.ı/ d� D

Z
X
u div.Xı/ d�;

where Xı 2 D1.X/ is the unique vector field associated to ı given by Lemma 3.12.
Therefore, a straightforward application of Theorem 3.14 – with ı and X associated by
the bijection – allows us to conclude.

The above result motivates the following definition.

Definition 3.17. Let V1.X/ denote any of the spaces Derb.X/ or D1.X/. If u 2BV.X/,
we say that the measure-valued map DuW V1.X/ ! M.X/ satisfying (3.1) or (3.16)
respectively, is the gradient of u.

We observe that this notation is chosen in order to emphasize the fact that the meas-
ure Du.X/ – or, Du.ı/ – can be seen as a pairing between the vector field X – or, the
derivation ı – coherently with the definition of pairing measure given in Section 5.

Remark 3.18. We explicitly point out that by virtue of Theorem 3.16 and Theorem 7.3.7
in [32], BVD.X/ is also equivalent to the “relaxed” BV space treated in [45].

Moreover, Theorem 3.4 continues to hold also for the definition via vector fields, so
that for any open set � � X we have an analogous representation formula for the total
variation, given by

kDuk.�/ D sup
° Z

X
u div.X/ d�I X 2D1.X/; supp.X/ b �; jX j � 1

±
;

which is obviously lower semicontinuous with respect to the L1-convergence. Clearly, the
observations in Remark 3.5 apply also to Definition 3.15 as well.

In the following sections we shall always consider BV functions in the sense of Defin-
ition 3.15, to be coherent with our choice of using the differential machinery of [36].
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4. Divergence-measure fields and Gauss–Green formulas on regular
domains

In this section we introduce the main object of our discussion, namely the essentially
bounded divergence-measure vector fields DM1.X/, in terms of which we shall under-
take the task of obtaining integration by parts formulas featuring their (interior and
exterior) normal traces. We start with the main definitions and properties in a general
metric measure space .X; d; �/ satisfying no specific structural assumptions. Then, we
consider a particular class of integration domains on which we achieve integration by
part formulas; to this purpose, however, as the Riesz representation theorem will be often
needed to achieve our claims, we shall require in addition the space X to be locally
compact.

As we already mentioned in the introduction, this part is based on [18], where the issue
was attacked in a geodesic space, and which in turn started from the analysis made by the
authors of [42] in the context of a doubling metric measure space supporting a Poincaré
inequality and equipped with the Cheeger differential structure (introduced in [20]).

Let .X; d; �/ be a complete and separable metric measure space equipped with a non-
negative Radon measure �, finite on bounded sets. Recall that the differential operator
satisfies the Leibniz rule, namely

(4.1) d.fg/ D f dg C gdf:

for any f; g 2 Lip.X/.

Definition 4.1. We say that X 2 Lp.TX/, 1 � p � 1, is a p-summable divergence-
measure field, and we write X 2 DMp.X/, if its distributional divergence, which we
continue to denote as div.X/, is a finite Radon measure; that is, div.X/ is a measure
satisfying

(4.2) �

Z
X
g ddiv.X/ D

Z
X

dg.X/ d�

for every g 2 Lipbs.X/. If p D 1, we say that X 2 DM1.X/ is an essentially bounded
divergence-measure field.

In the following, we shall be concerned mostly with the case p D1.
We prove now a simple version of a Leibniz rule for fieldsX 2DMp.X/ and bounded

Lipschitz scalar functions f with df 2 Lq.T �X/, where p; q 2 Œ1;1� are conjugate
exponents. This condition is equivalent to ask that the minimal weak upper gradient jDf j
belongs toLq.X/. To this purpose, we notice that for any g 2 Lipbs.X/ andX 2 Lp.TX/,
the L1-linearity of the differential ensures that

(4.3) dg.fX/ D f dg.X/

for every f 2 Lipb.X/.

Lemma 4.2. Let p; q 2 Œ1;1� be such that 1=p C 1=q D 1. Let X 2 DMp.X/ and
f 2 Lipb.X/ with df 2 Lq.T �X/. Then, fX 2 DMp.X/ and

(4.4) div.fX/ D f div.X/C df .X/�:
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Proof. It is clear that fX 2 Lp.TX/. Let g 2 Lipbs.X/. By applying (4.1)–(4.3), we getZ
X

dg.fX/ d� D
Z

X
f dg.X/ d� D

Z
X

d.fg/.X/ d� �
Z

X
gdf .X/ d�

D �

Z
X
fg ddiv.X/ �

Z
X
g df .X/ d�

Hence, div.fX/ 2M.X/ and (4.4) holds.

We show now a result on the absolute continuity of the measure kdiv.X/kwith respect
to the q-capacity, which extends analogous properties of the divergence-measure fields in
the Euclidean framework (for which we refer to [26,46]). To this aim, let us first recall the
notion of q-capacity of any set A � X.

Definition 4.3. Let� � X be an open set and let A ��. We define the relative q-capac-
ity, 1 � q <1, of A in � as the (possibly infinite) quantity

(4.5) Capq.A;�/ WD inf
®
kuk

q

W 1;q.X/
I u 2W1;q.X/ such that 0� u� �� and ujA D 1

¯
:

If � D X, we set Capq.A/ WD Capq.A;X/.

Remark 4.4. We notice that, thanks to the density of Lipschitz functions inside Sobolev
spaces (Theorem 7.3 in [11]), the infimum in (4.5) may be taken over Lipschitz functions
in W 1;q.X/.

We prove now a technical lemma on compact sets with zero q-capacity (an analogous
result in the Euclidean setting has been proved in Lemma 2.8 of [26]).

Lemma 4.5. Let q 2 Œ1;1/ and let K � X be a compact set such that Capq.K/ D 0.
Then there exists a sequence of functions 'k 2 Lipbs.X/ such that

(1) 0 � 'k � 1,

(2) 'k � 1 on K for any k,

(3) k'kkW 1;q.X/ ! 0 as k !C1,

(4) 'k ! 0 pointwise in X nK.

Proof. We start by noticing that Capq.K; �/ D 0 for any open set � � K. Indeed, if
K � � and we choose � 2 Lipbs.�/ satisfying � � 1 on K, then, for any u 2 W1;q.X/
such that 0 � u � 1 and ujK D 1, we have

Capq.K;�/ �
Z

X
.j�ujq C jD.�u/jq/ d� � C�;q

Z
X
.jujq C jDujq/ d�;

for some C�;q > 0. Hence, since u was arbitrary, we conclude that Capq.K; �/ D 0.
Actually, this argument, combined with Remark 4.4, shows also that the infimum may be
taken on Lipbs.�/. Let now �k be a sequence of bounded open sets satisfying �k � K
and

T1
kD1�k D K. Let also "k a non-negative vanishing sequence. Then, by the above

argument, for any k there exists 'k 2 Lipbs.�k/\W1;q.X/ such that 0 � 'k � 1, 'k � 1
on K and k'kkW 1;q.X/ < "k . This ends the proof.
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The following result extends Proposition 7.1.8 in [18] to any pair of conjugate expo-
nents p;q and uses the same arguments based on the Hahn decomposition as in Lemma 3.6
of [42], and in Theorem 2.15 of [26] for the Euclidean case.

Proposition 4.6. Let 1 < p �1 and 1� q <1 be such that 1=pC 1=qD 1, and letX 2
DMp.X/. Then, for any Borel set B such that Capq.B/ D 0, we have kdiv.X/k.B/ D 0.

Proof. Let B be a Borel set such that Capq.B/ D 0. Since div.X/ is a signed Radon
measure, we are entitled to consider its positive and negative parts, namely div.X/C and
div.X/� respectively. By the Hahn decomposition theorem, there exist disjoint Borel sets
B˙ � B with BC [B� D B such that˙div.X/ B˙ � 0. Hence, we need to prove that
div.X/.B˙/ D 0, and, in order to do so, it suffices to show that div.X/.K/ D 0 for any
compact subset K of B˙, thanks to the interior regularity of kdiv.X/k.

Without loss of generality, let K � BC, since the calculations in the caseK � B� are
the same. Since Capq.K/D 0, by Lemma 4.5 there exists a sequence .'k/k2N � Lipbs.X/
such that 0� 'k � 1, 'k D 1 onK, k'kkW 1;q.X/! 0 as k!C1, and 'k! 0 pointwise
in X nK. Then, it follows thatˇ̌̌ Z

X
'kddiv.X/

ˇ̌̌
D

ˇ̌̌ Z
X

d'k.X/d�
ˇ̌̌

� kjD'kjkLq.X/ kjX jkLp.X/ � k'kkW 1;q.X/ kjX jkLp.X/ ! 0(4.6)

as k!C1. On the other hand, since 0 � 'k � 1 for any k 2 N and kdiv.X/k.X/ <1,
thanks to the Lebesgue dominated convergence theorem, we get

div.X/.K/ D lim
k!C1

Z
X
'k ddiv.X/;

which, combined with (4.6), implies div.X/.K/ D 0.

We give now a definition of regularity on domains that will allow us to establish
some integration by parts formula. As a starting point we recall the notion of upper inner
Minkowski content of a set: if we set

�t WD ¹x 2 �I dist.x;�c/ � tº; for t > 0,

then we define

M�
i .@�/ WD lim sup

t!0

�.� n�t /

t
�

Definition 4.7. An open set�� X is said to be a regular domain if it has finite perimeter
in X, namely 1� 2 BV.X/, and if

kD1�k .X/ DM�
i .@�/:

In the following, we shall make use of the coarea formula for Lipschitz functions.
We recall that this result was proved for BV functions on doubling metric measure spaces
supporting a Poincaré inequality in Proposition 4.2 of [45]; however, the same property
holds as well for Lipschitz functions also in our more general setting by the remarks at the
beginning of Section 4 in [4].
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Proposition 4.8. Let f 2 Liploc.�/, let � � X be an open set, and denote

Et WD ¹x 2 �I f .x/ > tº; t 2 R:

Then, for any open set A � � one has

(4.7)
Z C1
�1

kD1Et k.A/dt D kDf k.A/:

Remark 4.9 (Examples of regular domains). As anticipated in the introduction, the class
of regular domains was introduced in [18] as a generalization of the so-called regular
balls previously considered in [42]. In the latter work, the authors considered a doubling,
geodesic metric measure space supporting a Poincaré inequality: in such setting it is actu-
ally possible to see that almost every ball is a regular domain, in the sense that for any
x0 2 X and for L1-almost every � > 0, � D B�.x0/ is a regular domain. Let us briefly
discuss this claim4.

We recall that, under the geodesicity assumption, by the results of [20] we have that
the distance function

dx0.x/ WD d.x; x0/ 8x0 2 X

(which is obviously a Lipschitz function) is such that its minimal weak upper gradient
satisfies

(4.8) jDdx0 j.x/ D 1

for �-almost every x 2 X. Thus, to see that � D B�.x/ is a regular domain for almost
every � > 0, we can invoke the coarea formula (4.7) together with the condition (4.8) to
find

�.B�.x0/nB��h.x0//

h
D
1

h

Z
B�.x0/nB��h.x0/

jDdx0.x/jd�.x/D
1

h

Z �

��h

kD1Bt .x0/k.X/dt:

So, the claim follows by considering the Lebesgue points of the map t 7! kD1Bt .x0/k.X/.

Definition 4.10. Given a regular domain �, for " > 0 we set

(4.9) '�" .x/ WD

8̂<̂
:
0; x 2 �c ;

dist.x;�c/="; x 2 �n�";

1; x 2 �":

We call .'�" /">0 the defining sequence of the regular domain�. In the following, we shall
simply write '", when the relation to � is unambiguous.

4Actually, it is not strictly necessary to ask that .X; d;�/ is also geodesic. Indeed, by the doubling condition
and the Poincaré inequality, as shown in Chapter 8 of [39], the metric space turns out to be quasiconvex, and this
fact allows for .X; d; �/ to be made geodesic by a suitable bi-Lipschitz transformation of the metric, meaning
that we can choose a geodesic metric which is bi-Lipschitz equivalent to the original one (and which preserves
the doubling property of the measure �). So, in choosing dx0 .x/ we may definitely work with such a geodesic
bi-Lipschitz metric change in order to exploit (4.8).
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Of course, .'"/">0 � Lipb.X/ by construction.
As we shall prove in the following statement, thanks to the properties of regular

domains, the measures jD'"j� converge weakly to kD1�k. To this aim, as we already
pointed out, we shall need to assume the space X to be locally compact, in order to exploit
useful consequences of the Riesz representation theorem.

Proposition 4.11. Let X be locally compact, let � � X be a regular domain and let
.'"/">0 be its defining sequence. Set

�".E/ WD
�..� n�"/ \E/

"

for any Borel set E. Then, we have

�" * kD1�k and(4.10)
jD'"j� * kD1�k:(4.11)

Proof. Thanks to Proposition 1.80 in [6], it is sufficient to prove that, for any open set
A � X, we have

(4.12) lim
"!0

�".X/ D kD1�k.X/ and lim inf
"!0

�".A/ � kD1�k.A/;

and

(4.13) lim
"!0

Z
X
jD'"j d� D kD1�k.X/ and lim inf

"!0

Z
A

jD'"j d� � kD1�k.A/:

Since � is a regular domain, we have

lim sup
"!0

�".X/ D kD1�k.X/:

Then, by exploiting the coarea formula (4.7), the fact that the function g.x/D dist.x;�c/
is Lipschitz with jDg.x/j � 1, and �" D ¹g > "º, we obtain

�..� n�"/ \ A/

"
D
1

"

Z
.�n�"/\A

d� �
1

"

Z
.�n�"/\A

jDgj d�

D
1

"

Z
R
kD1¹g>sºk..�n�"/ \ A/ ds

D
1

"

Z "

0

kD1�sk.A/ ds D
Z 1

0

kD1�"sk.A/ ds:

Hence, by Fatou’s lemma and the lower semicontinuity of the perimeter measure (see
Remark 3.18), using the fact that�"s converges to� in measure for any s 2 Œ0; 1�, we get

lim inf
"!0

�..�n�"/ \ A/

"
� lim inf

"!0

Z 1

0

kD1�"sk.A/ ds

�

Z 1

0

lim inf
"!0

kD1�"sk.A/ ds � kD1�k.A/;
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for any open set A � X. Then, if A D X, we get

lim inf
"!0

�".X/ � kD1�k.X/;

and this proves (4.12), which implies (4.10). We notice now thatZ
X
jD'"j d� D

Z
�n�"

jDgj

"
d� �

�.�n�"/

"
�

Hence, we immediately get

(4.14) lim sup
"!0

Z
X
jD'"j d� � lim

"!0

�.�n�"/

"
D kD1�k.X/:

Then, arguing with the coarea formula as above, for any open set A we obtainZ
A

jD'"j d� D
Z
.�n�"/\A

jDgj

"
d� D

Z 1

0

kD1�"sk.A/ ds:

Thus, Fatou’s lemma, the fact that�"s converges to� in measure and the lower semicon-
tinuity of the perimeter measure imply that

lim inf
"!0

Z
A

jD'"j d� � kD1�k.A/:

This proves the second part of (4.13), while we obtain the first by taking A D X and
employing (4.14). Thus, (4.11) follows and this ends the proof.

Remark 4.12. An interesting byproduct of the proof of Proposition 4.11 is that, if � is a
regular domain, the measures �" WD

R 1
0
kD1�"skds weakly converge to kD1�k. We leave

the details to the interested reader.

We are now able to prove an integration by parts formula for regular domains and
vector fields in DM1.X/, following in part the footsteps of the proof already given in
Theorem 5.7 of [42]; this result can be actually seen as an improvement of Theorem 7.1.7
in [18].

Theorem 4.13. Let X be locally compact, letX 2DM1.X/, and let��X be a regular
domain. Then there exists a function .X � ��/�@� 2 L

1.@�; kD1�k/ such that

(4.15)
Z
�

f ddiv.X/C
Z
�

df .X/ d� D �
Z
@�

f .X � ��/
�
@� dkD1�k;

for every f 2 Lipb.X/ such that supp.f 1�/ is a bounded set. In addition, we have the
following estimate:

(4.16) k.X � ��/
�
@�kL1.@�;kD1�k/ � kjX jkL1.�/:

As it is done in the literature on weak integration by parts formulas, for instance in
the Euclidean space, we shall call the function .X � ��/�@� the interior normal trace of X
on @�.
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Proof. Let .'"/">0 be the defining sequence of � as in (4.9). It is clear that f '" 2
Lipbs.X/, so that, by (4.4), we haveZ

X
f d'".X/ d� D

Z
X

d.f '"/.X/ d� �
Z

X
'" df .X/ d�

D �

Z
X
'"f ddiv.X/ �

Z
X
'" df .X/ d�:

Since '" converges to 1� everywhere and supp.f '"/ � supp.f 1�/ is a bounded set, the
Lebesgue dominated convergence theorem entails the existence of

(4.17) lim
"!0

Z
X
f d'".X/ d� D �

Z
�

f ddiv.X/ �
Z
�

df .X/ d�:

Let us now define the map
TX .f / WD lim

"!0
T "X .f /;

for any f 2 Lipb.X/, where

T "X .f / WD

Z
X
f d'".X/ d�:

It is clear that we have the estimate

jT "X .f /j � kjX jkL1.�/

Z
X
jf j jD'"j d�:

Hence, by (4.11), we deduce

(4.18) jTX .f /j � kjX jkL1.�/

Z
@�

jf j dkD1�k � kjX jkL1.�/kf kL1.X;kD1�k/:

We notice that, since Lipbs.X/ is dense in Cbs.X/ and Cbs.X/ is dense in L1.X; kD1�k/,
TX may be extended to a continuous linear functional in the dual of L1.X; kD1�k/.
Therefore, by the Riesz representation theorem and the fact that kD1�k.X n @�/ D 0

(see Remark 3.5), there exists a function .X � �/�
@�
2 L1.@�; kD1�k/ such that

(4.19) TX .f / D

Z
@�

f .X � ��/
�
@� dkD1�k;

for any f 2 Lipbs.X/. Since

TX .f / D �

Z
�

f ddiv.X/ �
Z
�

df .X/ d�;

by (4.17), we immediately obtain (4.15) for any f 2 Lipbs.X/. Let us now consider f 2
Lipb.X/ such that supp.f 1�/ is bounded. It is easy to notice that, for any cutoff � 2
Lipbs.X/ such that � � 1 on supp.f 1�/, we haveZ

�

f ddiv.X/C
Z
�

df .X/ d� D
Z
�

�f ddiv.X/C
Z
�

d.�f /.X/ D �TX .�f /

D �

Z
@�

�f .X � ��/
�
@� dkD1�k D �

Z
@�

f .X � ��/
�
@� dkD1�k:

Hence, we get (4.15) in this general case. Finally, the estimate (4.16) follows easily
by (4.18) and (4.19).
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Thanks to this result, we immediately obtain a Gauss–Green formula for regular
domains.

Corollary 4.14. Let X be locally compact, let X 2 DM1.X/, and let � � X be a
bounded regular domain. Then we have

(4.20) div.X/.�/ D �
Z
@�

.X � �/�@� dkD1�k:

Proof. Take f D 1 in Theorem 4.13.

We prove now an integration by parts formula on the closure of a given open set �,
under the assumption that �c is a regular domain.

Theorem 4.15. Let X be locally compact, let X 2 DM1.X/ and let � � X be an
open set such that �c is a regular domain. Then there exists a function .X � ��/C@� 2
L1.@�; kD1�k/ such that

(4.21)
Z
�

f ddiv.X/C
Z
�

df .X/ d� D �
Z
@�

f .X � ��/
C

@�
dkD1�k;

for every f 2 Lipb.X/ such that supp.f 1�/ is a bounded set. In addition, we have the
following estimate:

(4.22) k.X � ��/
C

@�
kL1.@�;kD1�k/

� kjX jkL1.�c/:

If � is also bounded, then we have

(4.23) div.X/.�/ D �
Z
@�

.X � ��/
C

@�
dkD1�k:

Analogously as before, we shall call the function .X � ��/C@� the exterior normal trace
of X on @�.

Proof. Let � 2 Lipbs.X/ be a cutoff function such that � � 1 on supp.f 1�/. Then, �f 2
Lipbs.X/, and so (4.2) impliesZ

X
�f ddiv.X/C

Z
X

d.�f /.X/ d� D 0:

By (4.15), we have

0 D

Z
�

�f ddiv.X/C
Z
�

d.�f /.X/ d�C
Z
�c
�f ddiv.X/C

Z
�c

d.�f /.X/ d�

D

Z
�

�f ddiv.X/C
Z
�

d.�f /.X/ d� �
Z
@�

�f .X � ��c /
�
@� dkD1�k

D

Z
�

f ddiv.X/C
Z
�

df .X/ d� �
Z
@�

f .X � ��c /
�
@� dkD1�k:

Thus, if we set .X � ��/C@� WD �.X � ��c /
�
@�

, we get (4.21) and (4.22), by Theorem 4.13.
Finally, if � is bounded, we can take f D 1 and obtain (4.23).
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Remark 4.16. It is not difficult to see that one can argue in an analogous way as in the
proof of Theorem 4.15 to achieve an integration by parts formula on any closed set C
such that �.C/ > 0 and C c is a regular domain. The condition �.C/ > 0 is necessary so
that 1C is not identically zero, as a BV function. Under this and the previous assumptions,
we obtain the existence of .X � �C /C@C 2 L

1.@C; kD1C k/ such thatZ
C

f ddiv.X/C
Z
C

df .X/ d� D �
Z
@C

f .X � �C /
C

@C
dkD1C k;

for every f 2 Lipb.X/ such that supp.f 1C / is a bounded set. In addition, we have the
following estimate:

k.X � �C /
C

@C
kL1.@C;kD1C k/ � kjX jkL1.C c/:

If then C is also bounded, we obtain

div.X/.C / D �
Z
@C

.X � �C /
C

@C
dkD1C k:

We consider now a particular subfamily of regular domains, in order to obtain both
integration by parts formulas, from the interior and the exterior, with the same perimeter
measure.

Corollary 4.17. Let X be locally compact, let X 2 DM1.X/, and let � � X be a
regular domain such that �c is a regular domain and �.@�/ D 0. Then .X � ��/C@� 2
L1.@�; kD1�k/, and we have (4.15),

(4.24)
Z
�

f ddiv.X/C
Z
�

df .X/ d� D �
Z
@�

f .X � ��/
C

@�
dkD1�k;

and

(4.25)
Z
@�

f ddiv.X/ D �
Z
@�

f ..X � ��/
C

@�
� .X � ��/

�
@�/ dkD1�k;

for every f 2 Lipb.X/ such that supp.f 1�/ is a bounded set. If � is also bounded, then
we have

(4.26) div.X/.@�/ D �
Z
@�

..X � ��/
C

@�
� .X � ��/

�
@�/ dkD1�k:

Proof. Since �.@�/ D 0, then kD1�k D kD1�k. Therefore, it is enough to apply The-
orems 4.13 and 4.15. Then, by setting f D 1 in the case � is bounded, we immediately
get (4.26).

Remark 4.18. Under the assumptions of Corollary 4.17 and arguing as in the proof of
Theorem 4.15, we obtain the following relations:

.X � ��c /
�
@� D �.X � ��/

C

@�
and .X � ��c /

C

@�
D �.X � ��/

�
@�:

We conclude this section with a refined result in the special case in which the measure
div.X/ is absolutely continuous with respect to �, which includes the case X 2D1.X/.
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Corollary 4.19. Let X be locally compact, let X 2 DM1.X/ be such that kdiv.X/k �
�, and let � � X be a regular domain such that �c is a regular domain and �.@�/ D 0.
Then we have

(4.27) .X � ��/
�
@� D .X � ��/

C

@�
; kD1�k-a.e. in @�:

Thus, there exists a unique normal trace, which we denote by .X � ��/@�, satisfying

k.X � ��/@�kL1.@�;kD1�k/ � kjX jkL1.�/ and(4.28) Z
�

f ddiv.X/C
Z
�

df .X/ d� D �
Z
@�

f .X � ��/@� dkD1�k(4.29)

for every f 2 Lipb.X/ such that supp.f 1�/ is a bounded set. If � is also bounded, then
we have

(4.30) div.X/.�/ D �
Z
@�

.X � ��/@� dkD1�k:

Proof. By the absolute continuity property of div.X/, we have kdiv.X/k.@�/ D 0, so
that (4.25) reduces toZ

@�

f ..X � ��/
C

@�
� .X � ��/

�
@�/ dkD1�k D 0;

for any f 2 Lipb.X/ such that supp.1�f / is bounded. Hence, we obtain (4.27), and so
we are allowed to set .X � ��/@� WD .X � ��/�@�. Finally, (4.28), (4.29) and (4.30) follow
immediately from (4.16), (4.15) and (4.20).

5. Leibniz rules

In this section .X; d; �/ will be assumed to be a locally compact RCD.K;1/ metric
measure space. It is important to notice that such assumption is not too restrictive: indeed,
there is a variety of results holding in locally compact (or even compact) RCD.K;1/
spaces (see for instance Remark 3.5 in [37]). In addition, there are examples of locally
compact RCD.K;1/ spaces which cannot be RCD.K;N / for any finiteN : as an example,
we may consider .Rn;d;/, where d is the usual Euclidean distance, and  is the Gaussian
measure e�Kjxj

2=2Ln.
We observe that by (2.13), the reference measure � is automatically finite on bounded

sets. Recall also the definition of heat flow ht along with its properties given above in
Section 2.3.

In order to obtain a generalization of Lemma 4.2 to scalar functions of bounded vari-
ation, we need two preliminary technical results concerning the regularizing properties of
the heat flow.

Lemma 5.1. Let f 2 L1.X/ \ BV.X/. Then, we have htf 2 Lipb.X/ and jDhtf j 2
L1.X/ for all t > 0. In addition, we get jDhtf j� * kDf k as t ! 0C and

(5.1)
Z

X
'jDhtf j d� � e�Kt

Z
X

ht' dkDf k



V. Buffa, G. E. Comi and M. Miranda Jr. 922

for all t > 0 and non-negative ' 2 Cb.X/. If supp.�/ D X, then (5.1) holds also for any
non-negative ' 2 L1.X/.

Proof. Since f 2L1.X/\L1.X/, it is clear that f 2L2.X/, so that htf is well defined.
The L1-estimate on htf comes from (2.8). As a consequence, (2.14) together with The-
orem 6.2 in [9] imply htf 2 Lipb.X/.

By (2.10) and the semigroup property, for any s; t > 0 we have jDhtCsf j �
e�Ktht .jDhsf j/. Hence, for any non-negative ' 2 Cb.X/, we get

(5.2)
Z

X
' jDhtCsf j d� � e�Kt

Z
X
' ht jDhsf j d� D e�Kt

Z
X
.ht'/ jDhsf j d�;

where we explicitly used the self-adjointness of the heat flow.
By Proposition 5.2 in [43], if f 2 BV.X/ thenZ

X
jDhsf j d�! kDf k.X/

as s ! 0. Moreover, the lower semicontinuity of the total variation yields

lim inf
s!0

Z
A

jDhsf j d� � kDf k.A/

for any open setA�X. Now, Proposition 1.80 in [6] entails the convergence jDhsf j�*
kDf k as s ! 0. Therefore, we can pass to the limit as s ! 0 in the inequality (5.2) to
get (5.1) for any non-negative ' 2 Cb.X/.

Now, we can take the supremum over ' 2 Cb.X/, 0 � ' � 1, to get

kDhtf kL1.X/ � e
�Kt
kDf k.X/;

which in turn gives jDhtf j 2 L1.X/. Finally, in the case supp.�/ D X, let us consider a
non-negative ' 2 L1.X/: for any " > 0, we have h"' 2 Cb.X/, by the L1-contractivity
property, and so we getZ

X
h"' jDhtf j d� � e�Kt

Z
X

htC"' dkDf k

for any t > 0. Hence, by taking the limit as "! 0, we get (5.1).

We notice that, in the case ' D 1, (5.1) was already proved in Proposition 1.6.3 of [13]
under the more general assumption that f is only a function of bounded variation.

Lemma 5.2. Let X 2 L1.TX/ and f 2 L1.X/ \ BV.X/. Then the family of measures
.d.htf /.X/�/t>0 satisfies

(5.3)
Z

X
jd.htf /.X/j d� � kjX jkL1.X/e�Kt kDf k.X/;

and any of its weak limit pointDf .X/ 2M.X/ satisfies

(5.4) jDf .X/j � kjX jkL1.X/ kDf k:
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Proof. By (5.1), for any ' 2 Cb.X/ and t > 0, we getˇ̌̌ Z
X
' d.htf /.X/ d�

ˇ̌̌
� kjX jkL1.X/

Z
X
j'j jDhtf j d�

� k'kL1.X/ kjX jkL1.X/e
�Kt
kDf k.X/;

which implies (5.3), by passing to the supremum on ' 2 Cb.X/ with k'kL1.X/ � 1.
This means that the family of measures d.htf /.X/� is uniformly bounded in M.X/.
In addition, this family of measures is uniformly tight: indeed, arguing as above we can
see that kd.htf /.X/�k � kjX jkL1.X/k.Dhtf /�k, and the family .k.Dhtf /�k/t>0 is
uniformly tight by Theorem 2.3, since j.Dhtf /j� * kDf k as t ! 0C, by Lemma 5.1.
Hence, by Theorem 2.3 we conclude that there exists a measure Df .X/ and a positive
vanishing sequence .tj /j2N such that

dhtj f .X/� * Df .X/ in M.X/:

In order to prove (5.4), we choose a non-negative ' 2 Cb.X/ and we employ (5.1) once
more to getˇ̌̌ Z

X
' dDf .X/

ˇ̌̌
D lim
j!1

ˇ̌̌ Z
X
' d.htj f /.X/ d�

ˇ̌̌
� lim inf

j!1

Z
X
' jd.htj f /.X/j d�

� lim inf
j!1

e�Ktj kjX jkL1.X/

Z
X

htj .'/ dkDf k D kjX jkL1.X/

Z
X
' dkDf k:

Theorem 5.3. Let X 2 DM1.X/ and f 2 L1.X/ \ BV.X/. Then fX 2 DM1.X/.
In addition, there exists a non-negative sequence .tj /j2N with tj & 0 such that

htj f
�
* zf in L1.X; kdiv.X/k/;

dhtj f .X/� * Df .X/ in M.X/;(5.5)

and it holds

(5.6) div.fX/ D zf div.X/CDf .X/;

where the measure Df .X/ satisfies (5.4). In addition, if we assume kdiv.X/k � �, then
we have

(5.7) zf .x/ D f .x/ for kdiv.X/k-a.e. x 2 X;

and there exists a uniqueDf .X/ 2M.X/ satisfying

dhtf .X/� * Df .X/ as t & 0 in M.X/

and (5.4). In this case, it holds

(5.8) div.fX/ D f div.X/CDf .X/:
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Proof. We notice again that, since f 2L1.X/\L1.X/, it is clear that f 2L2.X/. Then,
we start by approximating f via htf . Thanks to Lemma 5.1, we know that htf 2 Lipb.X/
and jDhtf j 2 L1.X/, so that we can employ (4.4) to obtain

�

Z
X

dg..htf /X/ d� D
Z

X
g ddiv..htf /X/

D

Z
X
.htf /g ddiv.X/C

Z
X
gd.htf /.X/ d�(5.9)

for any g 2 Lipbs.X/. By the L2-convergence htf ! f as t & 0 and by (4.3), we getZ
X

dg..htf /X/ d� D
Z

X
.htf / dg.X/ d�!

Z
X
f dg.X/ d� D

Z
X

dg.fX/ d�:

Using (2.8), we have jhtf .x/j � kf kL1.X/ for any x 2 X. In particular, .htf /t�0 is
uniformly bounded in L1.X; kdiv.X/k/. Hence, there exist zf 2 L1.X; kdiv.X/k/ and
a positive sequence tj & 0 such that htj f

�
* zf in L1.X; kdiv.X/k/. This yieldsZ

X

�
htj f

�
g ddiv.X/!

Z
X

zf g ddiv.X/

as j !1. Finally, Lemma 5.2 implies that there exists a finite Radon measure Df .X/
satisfying (5.4) and such that, up to extracting a further subsequence,Z

X
g d.htj f /.X/ d�!

Z
X
g dDf .X/:

All in all, we obtain Xf 2 DM1.X/ and (5.6). Finally, in the case kdiv.X/k � �, we
immediately getZ

X
g htf ddiv.X/!

Z
X
gf ddiv.X/ for all g 2 Lipbs.X/;

thanks to the L2-convergence htf ! f as t & 0. This proves (5.7). Then, (5.9) implies
that, for any sequence .tj /j2N for which (5.5) holds, we getZ

X
g dDf .X/ D lim

j!C1

Z
X
gd.htj f /.X/ d�

D lim
j!C1

Z
X
.htj f /g ddiv.X/C

Z
X

dg..htj f /X/ d�

D lim
t&0

Z
X
.htf /g ddiv.X/C

Z
X

dg..htf /X/ d�

D

Z
X
gf ddiv.X/C

Z
X

dg.fX/ d� D
Z

X
gf ddiv.X/ �

Z
X
g ddiv.fX/:

This immediately implies thatDf .X/ is unique and (5.8) holds. In addition, we get

dhtf .X/�D div.ht .f /X/� htf div.X/ * div.fX/� f div.X/DDf .X/ as t & 0;

and this ends the proof.
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6. Gauss–Green formulas on sets of finite perimeter in RCD.K;1/
spaces

From this point onwards, we shall assume .X; d; �/ to be a locally compact RCD.K;1/
space, unless otherwise stated.

In this section we formally introduce the notion of interior and exterior distributional
normal traces on the boundary of sets of finite perimeter (which may be in general different
from those defined in Theorems 4.13 and 4.15) for a divergence-measure field, in order
to achieve the Gauss–Green and integration by parts formulas. Following the Euclidean
approach (see for instance Theorem 3.2 in [26]), we define these distributional normal
traces as the densities of suitable pairings involving the given field and the characteristic
function of the set with respect to the perimeter measure of the set itself. Even though
in the general case these traces are not uniquely determined, since we do not have the
uniqueness of the pairing term in the Leibniz rule (Theorem 5.3), we shall also consider
some additional assumptions which allow us to obtain a unique distributional normal trace.

6.1. Distributional normal traces and Leibniz rules for characteristic functions

Let X 2 DM1.X/ and let E � X be a measurable set such that 1E 2 BV.X/ or 1Ec 2
BV.X/. By Remark 3.5, we know that kD1Ek is well defined and equal to kD1Eck. Let
.ht /t�0 denote as usual the heat flow: by Lemma 5.2, there exists a sequence tj ! 0 and
two measuresD1E .1EX/ andD1E .1EcX/ such that

(6.1)
d.htj 1E /.XE /� * D1E .XE /;

d.htj 1E /.XEc /� * D1E .XEc /
in M.X/,

where we have set XE WD 1EX and XEc WD 1EcX , a notation which we shall keep
throughout the remaining sections of the paper.

Again by Lemma 5.2, these weak limit measures satisfy the following estimates:

(6.2) jD1E .XE /j � kjX jkL1.E/kD1Ek and jD1E .XEc /j � kjX jkL1.Ec/kD1Ek:

We observe that, since the pairing measures D1E .�/ are absolutely continuous with
respect to the perimeter measure, thanks to (6.2), we are entitled to consider their densities.
Thus, we define the interior and exterior distributional normal traces of X on @E as the
functions hX; �E i

�
@E and hX; �E i

C

@E in L1.@E; kD1Ek/ satisfying

2D1E .XE / D hX; �E i
�
@E kD1Ek and(6.3)

2D1E .XEc / D hX; �E i
C

@E kD1Ek:(6.4)

In addition, since htj 1E is uniformly bounded in L1.X; kdiv.X/k/, up to extracting
a subsequence, we can assume that there exists z1E 2 L1.X; kdiv.X/k/ such that

(6.5) htj 1E
�
* z1E in L1.X; kdiv.X/k/:

We notice that, since z1E is kdiv.X/k-measurable, then it coincides with a Borel measur-
able function outside of a kdiv.X/k-negligible set. Therefore, without loss of generality,
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we shall always choose z1E to be Borel measurable. Since z1E is a representative of 1E , it
is relevant to consider the level sets of this function; that is,

(6.6) zEs WD ¹z1E D sº:

It is clear that zEs is a Borel set for any s 2 Œ0; 1�. In particular, zE1 and zE0 can be seen
as weaker “versions” of the measure-theoretic interior and exterior of E. It seems then
natural to define a measure theoretic boundary related to z1E as the Borel set

e@�E WD X n . zE1 [ zE0/:

We stress the fact that the notions of distributional normal traces ofX on the boundary
of E and representative of E introduced above are heavily dependent on the choice of the
sequence .tj /j2N . In the following, we will always consider the sequence .tj /, or suitable
subsequences, along which (6.1) and (6.5) hold.

In the following remark we show some easy relations between z1E and z1Ec , and the
distributional normal traces of an essentially bounded divergence-measure field on the
boundary of E and Ec .

Remark 6.1. Let X 2 DM1.X/ and let E � X be a measurable set such that
1E 2 BV.X/ or 1Ec 2 BV.X/. Let tj ! 0 be a sequence satisfying htj 1E

�
* z1E and

htj 1Ec
�
* z1Ec in L1.X; kdiv.X/k/ (up to extracting a subsequence, this always holds

true). Then, we observe that
htj 1E D 1 � htj 1Ec :

It is then clear that

(6.7) z1E D 1 � z1Ec ;

which implies

(6.8) zE1 D e.Ec/0; zE0 D e.Ec/1; zE1=2 D e.Ec/1=2; e@�E D e@�Ec :
In addition, since

d.htj 1Ec /.X/ D �d.htj 1E /.X/;

it follows that

(6.9) D1Ec .X/ D �D1E .X/

in the sense of Radon measures. Arguing analogously, we also obtain

D1E .XE / D �D1Ec .XE / and D1E .XEc / D �D1Ec .XEc /:

This easily implies the following relations between the distributional normal traces on E
and Ec :

hX; �E i
�
@E D �hX; �Ec i

C

@Ec and hX; �E i
C

@E D �hX; �Ec i
�
@Ec :

We also notice that the linearity property of the pairingD1E .�/ implies

(6.10) D1E .X/ D D1E ..1E C 1Ec /X/ D D1E .XE /CD1E .XEc / ;
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from which, thanks to (6.3) and (6.4), we get

(6.11) D1E .X/ D
hX; �E i

�
@E C hX; �E i

C

@E

2
kD1Ek:

In the case of a Borel measurable set E, it is actually possible to characterize the
sets zE1 and zE0 in terms of E and its complementary.

Remark 6.2. Let E be a Borel measurable set such that 1E 2 BV.X/ or 1Ec 2 BV.X/.
Since it obviously holds ht1Ec D 1 � ht1E , without loss of generality we can assume
1E 2 BV.X/, which implies ht1E 2 L2.X/ and ht1E ! 1E in L2.X/ as t ! 0.

If we now take X 2 DM1.X/ and a positive vanishing sequence .tj /j2N such that

htj 1E
�
* z1E in L1.X; kdiv.X/k/, by the L2-convergence we have, up to some sub-

sequence, the pointwise convergence htj 1E .x/! 1E .x/ for �-almost every x 2 X.
Hence, there exists a Borel set NE such that �.NE / D 0 and htj 1E .x/! 1E .x/ for

any x … NE . Therefore, for any  2 L1.X; kdiv.X/k/ we haveZ
X
 .htj 1E / dkdiv.X/k !

Z
X
 z1E dkdiv.X/k

and Z
XnNE

 .htj 1E / dkdiv.X/k !
Z

XnNE

 1E dkdiv.X/k;

by Lebesgue’s dominated convergence theorem. We stress the fact that 1E is measurable
with respect to kdiv.X/k, since E is a Borel set. This means that

z1E .x/ D 1E .x/ for kdiv.X/k-a.e. x … NE ;

and so we get that E nNE D zE
1 nNE , up to a kdiv.X/k-negligible set. Thanks to (6.8),

we can argue similarly with Ec and zE0, so that we obtain

kdiv.X/k..E� zE1/ nNE / D 0 and kdiv.X/k..Ec� zE0/ nNE / D 0:

In addition,

e@�E nNE D X n . zE1 [ zE0 [NE / � .E n . zE
1
[NE // [ .E

c
n . zE0 [NE //;

and so we get
kdiv.X/k.e@�E nNE / D 0:

Thus, we conclude that zE1 and zE0 are the representatives of the sets E and Ec with
respect to the measure kdiv.X/k X nNE , respectively.

We employ now these remarks to obtain a refinement of the Leibniz rule for charac-
teristic functions of Caccioppoli sets.

As a preliminary, we observe that htj 1E is uniformly bounded in L1.@E; kD1Ek/.
Hence, there exists a function y1E 2 L1.@E; kD1Ek/ such that, up to a subsequence,

(6.12) htj 1E
�
* y1E in L1.@E; kD1Ek/:
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As in the case of z1E , there exists a Borel representative of y1E which coincides with it
up to a kD1Ek-negligible set, and, unless otherwise stated, we shall always consider this
representative.

Theorem 6.3. Let X 2 DM1.X/ and let E � X be a measurable set such that 1E 2
BV.X/ or 1Ec 2 BV.X/. Then, we have 1EX 2 DM1.X/ and the following formulas
hold :

div.XE / D z1E div.X/CD1E .X/;(6.13)

div.XE / D .z1E /2 div.X/C y1ED1E .X/CD1E .XE /;(6.14)
z1E .1 � z1E / div.X/ D y1ED1E .XE / � .1 � y1E /D1E .XEc /:(6.15)

Proof. Let first 1E 2 BV.X/. By (5.6) we immediately get (6.13), by extracting a suitable
subsequence of a sequence .tj /j2N such that (6.1) and (6.5) hold. In order to prove (6.14),
we approximate 1E via ht1E and, employing (4.4) and (6.13), we get

div..ht1E /XE / D ht1Ediv.XE /C d.ht1E /.XE /�

D .ht1E /z1Ediv.X/C .ht1E /D1E .X/C d.ht1E /.XE /�:(6.16)

We select now a non-negative sequence .tj /j2N , tj & 0, such that (6.1), (6.5) and (6.12)
hold, and we easily get (6.14).

Now, let E be such that 1Ec 2 BV.X/. For any g 2 Lipbs.X/, we haveZ
X
g ddiv.XEc / D �

Z
X

dg.XEc / d� D �
Z

X
1Ecdg.X/ d�

D �

Z
X

dg.X/ d�C
Z

X
1Edg.X/ d� D

Z
X
g div.X/C

Z
X

1Edg.X/ d�;

from which it follows thatZ
X

1E dg.X/ d� D
Z

X
g d.div.XEc / � div.X//;

which easily implies that XE 2 DM1.X/ and

(6.17) div.XE / D div.X/ � div.XEc /:

Hence, by applying (6.13) to 1Ec and (6.17), we obtain

(6.18) div.XE / D div.X/ � div.XEc / D .1 � z1Ec /div.X/ �D1Ec .X/:

Therefore, thanks to (6.7), (6.18) and (6.9), we get (6.13) for E such that 1Ec 2 BV.X/.
Arguing analogously, we obtain also (6.14).

Finally, if we subtract (6.14) from (6.13), we get

z1E .1 � z1E / div.X/C .1 � y1E /D1E .X/ �D1E .XE / D 0:

Thus, (6.10) directly entails (6.15).
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Remark 6.4. We notice that, if we consider the Euclidean space .Rn; j � j;Ln/, then the
functions z1E and y1E coincide with the precise representative of 1E almost everywhere
with respect to the .n � 1/-dimensional Hausdorff measure, thanks to De Giorgi’s blow-
up theorem (Theorem 3.59 in [6]). Roughly speaking, the richer structure of the Euclidean
space makes the finer analysis that we just performed in our more abstract setting unne-
cessary. However, already in the framework of stratified groups it is necessary to consider
an object similar to z1E (see [25], Section 5).

In the following proposition, we summarize some elementary properties of distribu-
tional normal traces.

Proposition 6.5. Let X 2 DM1.X/ and let E � X be a measurable set such that
1E 2 BV.X/ or 1Ec 2 BV.X/. Then, hX; �E i

�
@� ; hX; �E i

C

@E 2 L
1 .@E; kD1Ek/, with

the estimates

k hX; �E i
�
@E kL1.@E;kD1Ek/ � 2kjX jkL1.E/ and

k hX; �E i
C

@E kL1.@E;kD1Ek/ � 2kjX jkL1.Ec/:

(6.19)

In addition, it holds

(6.20) z1E .1 � z1E / div.X/ D
y1E hX; �E i

�
@E � .1 �

y1E / hX; �E i
C

@E

2
kD1Ek:

Proof. It is easy to see that (6.2) implies (6.19). As for (6.20), it follows directly from
(6.15), (6.3) and (6.4).

We employ now Proposition 6.5 to investigate further the relation between the measure
div.X/ and the sets zEs .

Proposition 6.6. Let X 2 DM1.X/ and let E � X be a measurable set such that 1E 2
BV.X/ or 1Ec 2 BV.X/. Then, we have

y1ED1E .XE / zE1 [ zE0 D .1 � y1E /D1E .XEc / zE1 [ zE0;(6.21)
y1E hX; �E i

�
@E D .1 �

y1E / hX; �E i
C

@E ; kD1Ek-a.e. on zE1 [ zE0;(6.22)

z1E D y1E ; kdiv.X/k-a.e. on e@�E:(6.23)

Proof. It is clear that (6.21) follows immediately from (6.15), by restricting the measures
to zE1 [ zE0. Then, (6.3), (6.4) and (6.21) easily imply (6.22). In order to prove (6.23), we
start by considering the sequence htj 1E satisfying (6.5) and (6.12). Then, since z1E .1 �
z1E / 2 L1.X; kdiv.X/k/, it follows that

.htj 1E /z1E .1 � z1E / div.X/ * .z1E /
2.1 � z1E / div.X/:

Taking into account (6.20), the fact that distributional normal traces are inL1.X;kD1Ek/
and (6.12), we obtain

.htj 1E /z1E .1 � z1E / div.X/ D .htj 1E /
y1E hX; �E i

�
@E � .1 �

y1E / hX; �E i
C

@E

2
kD1Ek

* y1E
y1E hX; �E i

�
@E � .1 �

y1E / hX; �E i
C

@E

2
kD1Ek:
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Employing again (6.20), we get

.z1E /
2.1 � z1E / div.X/ D y1Ez1E .1 � z1E / div.X/;

which yields
.z1E � y1E /z1E .1 � z1E / div.X/ D 0;

from which we infer the thesis.

This result underlines the strict relation between z1E and y1E on e@�E, and is funda-
mental in the proof of the general Gauss–Green formulas.

Theorem 6.7. Let X 2 DM1.X/ and let E � X be a measurable set such that 1E 2
BV.X/ or 1Ec 2 BV.X/. Then, we have

1

1 � y1E
2 L1.X; kD1E .XE /k/ and

1

y1E
2 L1.X; kD1E .XEc /k/:

In addition, the following formulas hold:

div.XE / D 1 zE1div.X/C
1

2.1 � y1E /
hX; �E i

�
@E kD1Ek;(6.24)

div.XE / D 1
zE1[e@�E div.X/C

1

2y1E
hX; �E i

C

@E kD1Ek;(6.25)

1e@�E div.X/ D
y1E hX; �E i

�
@E � .1 �

y1E / hX; �E i
C

@E

2y1E .1 � y1E /
kD1Ek e@�E:(6.26)

Proof. Let

Ak;E WD
°
1 �

1

k
< y1E < 1 �

1

k C 1

±
:

By (6.15) and (6.22), we get

y1E

1 � y1E
D1E .XE / e@�E \ Ak;E D

�
y1E div.X/CD1E .XEc /

� e@�E \ Ak;E

for any k � 1. Hence, we obtainZ
e@�E

1

1 � y1E
dkD1E .XE /k D

1X
kD1

Z
e@�E\Ak;E

1

1 � y1E
dkD1E .XE /k

�

Z
e@�E\A1;E

1

1 � y1E
dkD1E .XE /k C

1X
kD2

Z
e@�E\Ak;E

k

k � 1

y1E

1 � y1E
dkD1E .XE /k

� 2kjX jkL1.E/kD1Ek.e@�E \ A1;E /

C 2

1X
kD2

� Z
e@�E\Ak;E

y1E dkdiv.X/k C kD1E .XEc /k.e@�E \ Ak;E /
�

� 2
�
kjX jkL1.E/ C kjX jkL1.Ec/

�
kD1Ek.e@�E/C 2kdiv.X/k.e@�E/:
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In addition, by (6.21), we get

y1E

1 � y1E
D1E .XE / . zE1 [ zE0/ \ Ak;E D D1E .XEc / . zE1 [ zE0/ \ Ak;E ;

for any k � 1, and this impliesZ
zE1[ zE0

1

1�y1E
dkD1E .XE /k � 2kjX jkL1.E/kD1Ek.. zE

1
[ zE0/ \ A1;E /

C

1X
kD2

k

k � 1
kjX jkL1.Ec/kD1Ek.. zE

1
[ zE0/ \ Ak;E /

� 2.kjX jkL1.E/ C kjX jkL1.Ec//kD1Ek. zE
1
[ zE0/:

Therefore, we obtain 1=.1 � y1E / 2 L1.X; kD1E .XE /k/.
Then, in order to prove 1=y1E 2 L1.X; kD1E .XEc /k/, we proceed in a similar way,

by employing the sets Bk;E WD ¹1=.k C 1/ < y1E < 1=kº.
Hence, we can restrict (6.20) to e@�E, employ (6.23) and divide by y1E .1 � y1E / to

obtain

1e@�E div.X/ D
� 1

2.1 � y1E /
hX; �E i

�
@E �

1

2y1E
hX; �E i

C

@E

�
kD1Ek e@�E:

Thus, (6.26) immediately follows.
If we combine (6.13), (6.11) and (6.26), we obtain

div.1EX/ D 1 zE1 div.X/C z1E1e@�E div.X/CD1E .X/

D 1 zE1 div.X/C y1E1e@�E div.X/C
hX; �E i

�
@E C hX; �E i

C

@E

2
kD1Ek

D 1 zE1 div.X/C
y1E

2.1 � y1E /
hX; �E i

�
@E kD1Ek e@�E � 1

2
hX; �E i

C

@E kD1Ek e@�E

C
hX; �E i

�
@E C hX; �E i

C

@E

2
kD1Ek

D 1 zE1div.X/C
1

2.1 � y1E /
hX; �E i

�
@E kD1Ek e@�E

C
hX; �E i

�
@E C hX; �E i

C

@E

2
kD1Ek zE1 [ zE0:

Now, (6.22) implies

(6.27) hX; �E i
C

@E D

y1E

1 � y1E
hX; �E i

�
@E kD1Ek-a.e. on zE1 [ zE0;

thanks to the summability of 1=.1 � y1E / with respect to the measure j.X � �E /�@E j
kD1Ek D 2kD1E .XE /k. Thus, we substitute hX; �E i

C

@E and we get (6.24).
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As for (6.25), we employ (6.23) to rewrite (6.13) as

div.1EX/ D 1
zE1[e@�E div.X/C 1e@�E .z1E � 1/ div.X/CD1E .X/

D 1
zE1[e@�E div.X/ � 1e@�E .1 � y1E / div.X/CD1E .X/:

Then, by (6.11), (6.26) and (6.27), we get

� 1e@�E .1 � y1E / div.X/CD1E .X/

D

�
�
1

2
hX; �E i

�
@E C

1 � y1E

2y1E
hX; �E i

C

@E

�
kD1Ek e@�E

C
hX; �E i

�
@E C hX; �E i

C

@E

2
kD1Ek

D
1

2y1E
hX; �E i

C

@E kD1Ek e@�E C
�1 � y1E
y1E

C 1
�
hX; �E i

C

@E

2
kD1Ek zE1 [ zE0

D
1

2y1E
hX; �E i

C

@E kD1Ek:

This concludes the proof.

We end this section with a remark in which we consider the possibility of having two
distinct weak* limits of ht1E in L1.X; kdiv.X/k/, and we show that they differ only
inside @E.

Remark 6.8. Let .tj / and .tk/ be two non-negative vanishing sequences such that

htj 1E
�
* z1E and htk1E

�
* z10E in L1.X; kdiv.X/k/;

with z1E ¤ z10E . If we set zE10 WD ¹z10E D 1º, thanks to Theorem 6.7, it is possible to prove
that

(6.28) kdiv.X/k
�
. zE1� zE10/ n @E

�
D 0:

Indeed, by arguing as we did in this section also for the sequence .tk/, we obtain a version
of (6.24) for zE10; that is, there exists y10E and .hX; �E i

�
@E /

0

such that

div.XE / D 1 zE1 0 div.X/C
1

2.1 � y10E /
.hX; �E i

�
@E /
0
kD1Ek:

By combining this with (6.24), we get

.1 zE1 � 1 zE1 0/ div.X/ D
� 1

2.1 � y10E /
.hX; �E i

�
@E /

0

�
1

2.1 � y1E /
hX; �E i

�
@E

�
kD1Ek:

Hence, thanks to (3.4), (6.28) immediately follows. Analogously, it is possible to prove
that

kdiv.X/k
�
. zE0� zE00/ n @E

�
D 0:
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6.2. The Gauss–Green and integration by parts formulas

Before passing to the Gauss–Green formulas, we need the following simple result.

Lemma 6.9. LetX 2DM1.X/ be such that supp.X/ is bounded. Then, div.X/.X/D 0:

Proof. Let g 2 Lipbs.X/ be such that g � 1 on supp.X/. Then, we have gX D X and
gdiv.X/ D div.X/, and so, by (4.4), we get

div.X/ D div.gX/ D gdiv.X/C dg.X/ d� D div.X/C dg.X/ d�;

from which we deduce that dg.X/ D 0. Therefore, by (4.2), we have

div.X/.X/ D
Z

X
g ddiv.X/ D �

Z
X

dg.X/ d� D 0:

We give now the general version of the Gauss–Green formula in locally compact
RCD.K;1/ metric measure spaces.

Theorem 6.10 (Gauss–Green formulas I). Let X 2 DM1.X/ and let E � X be a
bounded set of finite perimeter. Then, we have

div.X/. zE1/ D �
Z
@E

1

2.1 � y1E /
hX; �E i

�
@E dkD1Ek;(6.29)

div.X/. zE1 [ e@�E/ D �
Z
@E

1

2y1E
hX; �E i

C

@E dkD1Ek:(6.30)

Proof. It is enough to recall (6.24) and (6.25), and to apply Lemma 6.9 in order to get

0 D div.XE /.X/ D div.X/. zE1/C
Z

X

1

2.1 � y1E /
hX; �E i

�
@E dkD1Ek;

0 D div.XE /.X/ D div.X/. zE1 [ e@�E/C
Z

X

1

2y1E
hX; �E i

C

@E dkD1Ek:

Then we employ (3.4) and we get (6.29) and (6.30).

The first consequence of Theorem 6.10 are the integration by parts formulas.

Theorem 6.11 (Integration by parts formulas I). Let X 2 DM1.X/, let E � X be a
measurable set such that 1E 2 BV.X/ or 1Ec 2 BV.X/, and let ' 2 Lipb.X/ be such that
supp.1E'/ is bounded. Then, we haveZ

zE1
' ddiv.X/C

Z
E

d'.X/ d� D �
Z
@E

1

2.1 � y1E /
' hX; �E i

�
@E dkD1Ek;(6.31) Z

zE1[e@�E
' ddiv.X/C

Z
E

d'.X/ d� D �
Z
@E

1

2y1E
' hX; �E i

C

@E dkD1Ek:(6.32)

Proof. It is clear that 'XE 2 L1.TX/, and thatXE 2DM1.X/, by Theorem 6.3. Since
supp.1E'/ is bounded, there exists a cutoff function � 2 Lipbs.X/ such that � � 1 on
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supp.1E'/. It is clear that �'1E D '1E , and that �' 2 Lipbs.X/. Hence, by Lemma 4.2,
we have �'XE D 'XE 2 DM1.X/ and

div.'XE / D div.�'XE / D �' div.XE /C d.�'/.XE /�
D �' div.XE /C1E� d'.X/�C1E' d�.X/� D �' div.XE /C1E d'.X/�:

Now, we notice that kdiv.XE /k.Ec/ D 0: indeed, for any  2 Lipbs.E
c/, we haveZ

X
 ddiv.XE / D �

Z
X

d .XE / d� D 0:

Hence, div.XE / D div.XE / E, and this means that

�' div.XE / D ' div.XE /:

Then, by (6.24) and (6.25), we have

div.'XE / D 1 zE1' div.X/C
1

2.1 � y1E /
' hX; �E i

�
@E kD1Ek C 1Ed'.X/�;

div.'XE / D 1
zE1[e@�E ' div.X/C

1

2y1E
' hX; �E i

C

@E kD1Ek C 1Ed'.X/�:

Hence, we evaluate these equations over X and we employ Lemma 6.9, in order to obtain

div.'XE /.X/ D 0;

since supp.'XE / is bounded. Thus, thanks to (3.4), we get (6.31) and (6.32).

6.3. The case kdiv.X/k � �

We study now the Gauss–Green formulas for fields with absolutely continuous divergence-
measure such as, for instance, the elements of L1.TX/ \D1.X/. This property of the
divergence-measure implies that, in particular, the distributional normal traces are unique
and do not depend on any approximating sequence.

Proposition 6.12. Let X 2 DM1.X/ be such that kdiv.X/k � � and let E � X be a
measurable set such that 1E 2 BV.X/ or 1Ec 2 BV.X/. Then, we have

(6.33) z1E .x/ D 1E .x/ for kdiv.X/k-a.e. x 2 X;

kdiv.X/k. zE1�E/D 0 and kdiv.X/k.e@�E/D 0. In addition, there exists a unique distri-
butional normal trace hX; �E i@E 2 L

1.@E; kD1Ek/, which satisfies

(6.34) div.XE / D 1E div.X/C hX; �E i@E kD1Ek:

Proof. It is easy to notice that (6.33) is a consequence of (5.7). Then, the negligibility
of the sets zE1�E and e@�E with respect to the measure kdiv.X/k follows from (6.33).
Hence, (6.20) implies that

y1E .x/ hX; �E i
�
@E .x/ D .1 �

y1E .x// hX; �E i
C

@E .x/ for kD1Ek-a.e. x 2 X;
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from which we can define

hX; �E i@E WD
1

2.1 � y1E /
hX; �E i

�
@E D

1

2y1E
hX; �E i

C

@E

to be the unique distributional normal trace of X on @E. All in all, we get (6.34) as a
consequence of (6.25), (6.33) and the uniqueness of the distributional normal trace.

The Leibniz rule given in Proposition 6.12 allows us to obtain the following Gauss–
Green and integration by parts formulas.

Theorem 6.13 (Gauss–Green formulas II). LetX2DM1.X/ be such that kdiv.X/k��
and let E be a bounded set of finite perimeter. Then, we have

(6.35) div.X/.E/ D �
Z
@E

hX; �E i@E dkD1Ek:

Proof. It is enough to recall (6.34), and to apply Lemma 6.9 in order to get

0 D div.XE /.X/ D div.X/.E/C
Z

X
hX; �E i@E dkD1Ek:

Then, (3.4) implies (6.35).

Theorem 6.14 (Integration by parts formulas II). Let X 2 DM1.X/ be such that
kdiv.X/k � �, let E � X be a measurable set such that 1E 2 BV.X/ or 1Ec 2 BV.X/,
and let ' 2 Lipb.X/ be such that supp.1E'/ is bounded. Then, we have

(6.36)
Z
E

' ddiv.X/C
Z
E

d'.X/ d� D �
Z
@E

' hX; �E i@E dkD1Ek:

Proof. Let at first ' 2 Lipbs.X/. By Lemma 4.2 and Proposition 6.12, we have 'XE 2
DM1.X/ and

div.'XE / D ' div.XE /C d'.XE /�
D 1E ' div.X/C ' hX; �E i@E kD1Ek C 1Ed'.X/�;(6.37)

thanks to (4.4) and (6.34). Since supp.'XE / is bounded, Lemma 6.9 implies that

div.'XE /.X/ D 0:

By evaluating (6.37) over X and using (3.4), we get (6.36) for ' 2 Lipbs.X/. Now, let
� 2 Lipbs.X/ be a cutoff function such that � � 1 on supp.1E'/. Since �' 2 Lipbs.X/,
we get Z

E

�' ddiv.X/C
Z
E

d.�'/.X/ d� D �
Z
@E

�' hX; �E i@E dkD1Ek:

It is easy to notice that �� 1 on supp.1E '/, and that d.�'/D d' on E, and this ends the
proof.
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6.4. The case of regular domains

In this section, we compare the two different integration by parts formulas that we obtain
on a regular domain �, namely (4.15) and (6.31). In particular, we are able to find some
characterization for the sets z�1 and z�0.

Proposition 6.15. Let X 2 DM1.X/ and let � be a regular domain such that �c is
a regular domain and �.@�/ D 0. Let z�1; z�0 be defined as in (6.6), for some weakly*
converging sequence htj 1�

�
* z1� in L1.X; kdiv.X/k/. Then, we have

(6.38) kdiv.X/k..�� z�1/ n @�/ D 0 and kdiv.X/k..�c� z�0/ n @�/ D 0:

Proof. If we apply (6.31) to E D �, and we subtract it from (4.15), we getZ
X
f .1� � 1z�1/ ddiv.X/ D �

Z
@�

f
�
.X � �/�@� �

1

2.1 �c1�/ hX; ��i�@�
�

dkD1�k;

for any f 2Lipb.X/ such that supp.f 1�/ is bounded. If we choose now f 2Lipbs.Xn@�/,
we obtain Z

X
f .1� � 1z�1/ ddiv.X/ D 0;

from which the first equality in (6.38) follows. As for the second, it is enough to argue in
a similar way, employing (4.21) and (6.32).

In particular, in the case of absolutely continuous divergence-measure, it follows that
the normal trace on regular domains coincide with the distributional one.

Corollary 6.16. Let X 2 DM1.X/ such that kdiv.X/k � �, and let � be a regular
domain such that �c is a regular domain and �.@�/ D 0. Then, we have .X � ��/@� D
hX; ��i@�.

Proof. It is an immediate consequence of (6.36) applied to E D � and of (4.29).

6.5. The case OE � 1=2

In this section, we show that it is possible to refine the results of Sections 6.1 and 6.2
under the additional assumption that, for any measurable set E satisfying 1E 2 BV.X/
or 1Ec 2 BV.X/, the weak� limit points y1E of ht1E in L1.X; kD1Ek/ are constant
functions.

We wish to underline the fact that there exist non trivial RCD.K;1/ spaces enjoying
such property. Indeed, in the Euclidean space .Rn; j � j;Ln/, ifE or RnnE is a set of finite
perimeter, we have

ht1E .x/!
1

2

for any x in the reduced boundary of E, as a simple consequence of the blow-up property.
In addition, y1E is unique and constant in the Wiener spaces .X; k � k; /, where .X; k � k/
is a Banach space and  is a Gaussian probability measure. Indeed, Ambrosio and Figalli
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proved in Proposition 4.3 of [5] that, if E or Ec is a set of finite perimeter in .X; k � k; /,
then

ht1E
�
*

1

2
in L1.X; kD1Ek/:

Hence, also in the Wiener spaces we have y1E � 1=2. However, it is relevant to underline
that the Wiener spaces are not locally compact, and so our theory for the Gauss–Green
formulas cannot be applied there, a priori.

Actually, we can prove that, if we assume the constancy of the weak� limit points of
ht1E inL1.X;kD1Ek/, then the limit is unique and equal to 1=2. To prove this result, we
show first the following general property of the weak� limit points y1E 2 L1.X;kD1Ek/.
We stress the fact that such property does not require the local compactness of the
RCD.K;1/ metric measure space, but it is necessary to assume that supp.�/ D X.

Theorem 6.17. Assume supp.�/ D X. Let E � X be a measurable set such that either
1E 2 BV.X/ or 1Ec 2 BV.X/. Then, any weak� limit y1E of ht1E in L1.X; kD1Ek/
satisfies

(6.39) �

Z
X

y1E dkD1Ek D
1

2
�

Proof. Without loss of generality, we can assume 1E 2 BV.X/ (since clearly ht1Ec D
1 � ht1E ); under these hypotheses one has ht1E 2 L2.X/ \ Cb.X/, since supp.�/ D X,
and jDht1E j 2 L1.X/. Now, let X 2D1.X/ such that jX j � 1. We haveZ

X
.ht1E / 1E div.X/ d�„ ƒ‚ …

(A)

D

Z
X

1E div..ht1E /X/ d�„ ƒ‚ …
(B)

�

Z
X

1E d.ht1E /.X/ d�„ ƒ‚ …
(C)

:

Let us consider the term (B) right above: we see thatZ
X

1E div..ht1E /X/ d� D �
Z

X
dD1E .ht1EX/ D �

Z
X
.ht1E / dD1E .X/:

Therefore, it follows thatˇ̌̌ Z
X

1E div..ht1E /X/ d�
ˇ̌̌
�

Z
X
.ht1E / dkD1Ek:

As for (C), notice that, by the fact that jd .ht1E /.X/j � jX jjDht1E j and (5.1),ˇ̌̌ Z
X

1E d.ht1E /.X/ d�
ˇ̌̌
�

Z
X

1E jX jjDht1E j d� �
Z

X
1E jDht1E j d�

� e�Kt
Z

X
ht1E dkD1Ek:

Hence, we find that (A) satisfies the following bound:ˇ̌̌ Z
X
.ht1E /1E div.X/ d�

ˇ̌̌
�

Z
X

ht1E dkD1Ek C e
�Kt

Z
X

ht1E dkD1Ek:
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Now, upon passing to the supremum over X 2D1.X/ with jX j1 � 1, we get

(6.40) kD.ht1E /1Ek.X/ �
Z

X
ht1E dkD1Ek C e

�Kt

Z
X

ht1E dkD1Ek:

We notice that by (2.8) we have 0 � ht1E .x/ � 1 for every x 2 X. Hence, the sequence
.ht1E /t�0 is uniformly bounded in L1.X; kD1Ek/, and then there exist a positive

decreasing sequence tj & 0 and a function y1E 2 L1.X; kD1Ek/ such that htj 1E
�
* y1E

in L1.X; kD1Ek/.
Clearly, (6.40) holds for t D tj as well; then, by the lower semicontinuity of the total

variation, we can let j !1 and we get

kD1Ek.X/ � lim inf
j!1

kD.htj 1E /1Ek.X/ � lim inf
j!1

.1C e�Ktj /

Z
X

htj 1E dkD1Ek

D 2

Z
X

y1E dkD1Ek:

Therefore, we obtain

�

Z
X

y1E dkD1Ek �
1

2
�

In order to prove the opposite inequality, we focus on 1Ec . Arguing as before, we
notice that 0 � ht1Ec � 1 and so there exists a weak� limit pointb1Ec of this family in
L1.X; kD1Ek/. The convergence htj 1E

�
* y1E entails that, up to a subsequence, there

existsb1Ec such that htj 1Ec
�
*b1Ec , satisfyingb1Ec D 1 � y1E .

Since in general 1E 2 BV.X/ does not mean that 1Ec 2 BV.X/, we need to verify the
previous computations for 1Ec . For any X 2D1.X/ we haveZ

X
.ht1Ec /1Ec div.X/ d� D

Z
X
.ht .1 � 1E //.1 � 1E / div.X/ d�

D

Z
X
.1 � ht1E /.1 � 1E / div.X/ d�

D

Z
X
.1 � ht1E � 1E C .ht1E /1E / div.X/ d�

D �

Z
X
.ht1E / div.X/ d� �

Z
X

1E div.X/ d�C
Z

X
.ht1E /1E div.X/ d�

D �

Z
X
.ht1E / div.X/ d� �

Z
X

1E div.X/ d�C
Z

X
1E div..ht1E /X/ d�

�

Z
X

1E d.ht1E /.X/ d�

D

Z
X
.1 � 1E / d.ht1E /.X/ d� �

Z
X

1E div.ht .1 � 1E /X/ d�

D

Z
X

1Ec d.ht1E /.X/ d�C
Z

X
ht1Ec dD1E .X/:
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Now we pass to the supremum over X 2D1.X/ with kXk1 � 1 in order to find

kD.ht1Ec /1Eck.X/ � .1C e�Kt /
Z

X
ht1Ec dkD1Ek:

We consider again the sequence tj & 0 in such a way that htj 1Ec
�
*b1Ec and we pass to

the limit as j !1 exploiting the lower semicontinuity to get

kD1Ek.X/ � lim inf
j!1

kD.htj 1Ec /1Eck.X/ � lim inf
j!1

.1C e�Ktj /

Z
X

htj 1Ec dkD1Ek

� 2

Z
X

b1Ec dkD1Ek:

Hence, we get

�

Z
X

b1Ec dkD1Ek �
1

2
;

and so
�

Z
X

y1E dkD1Ek �
1

2
�

Thus, we finally obtain (6.39).

Corollary 6.18. Let E � X be a measurable set such that either 1E 2 BV.X/ or 1Ec 2
BV.X/. Assume that the weak� limit points y1E of ht1E in L1.X; kD1Ek/ are constant
functions. Then, there exists a unique weak� limit y1E D 1=2.

Proof. Since any weak� limit point y1E is constant, (6.39) implies that

y1E D �

Z
X

y1E dkD1Ek D
1

2
�

In view of these results, in the rest of this section we shall assume that, for any meas-
urable set E such that 1E 2 BV.X/ or 1Ec 2 BV.X/, we have y1E � 1=2. In addition, the
RCD.K;1/metric measure space .X; d;�/ is chosen to be locally compact and such that
supp.�/ D X.

Under these assumptions, it is possible to refine many of the result of Section 6.1 and
Section 6.2.

Proposition 6.19. Let X 2 DM1.X/ and let E � X be a measurable set such that
1E 2 BV.X/ or 1Ec 2 BV.X/. Then, we have

hX; �E i
�
@E D hX; �E i

C

@E ; kD1Ek-a.e. on zE1 [ zE0;(6.41)

kdiv.X/k
�
Xn. zE0 [ zE1=2 [ zE1/

�
D 0; and(6.42)

z1E D
�
1 zE1 C

1
2
1 zE1=2

�
; kdiv.X/k-a.e. in X:(6.43)

Proof. Since y1E � 1=2, (6.22) implies (6.41). Analogously, (6.23) yields easily (6.43)
and (6.42).
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This result shows that there is a “tripartition” of X up to a kdiv.X/k-negligible set,
that is, z1E .x/ 2 ¹0; 1=2; 1º for kdiv.X/k-almost every x 2 X, which in turn allows us to
refine the Gauss–Green formulas.

Theorem 6.20. Let X 2 DM1.X/ and let E � X be a measurable set such that 1E 2
BV.X/ or 1Ec 2 BV.X/. Then, we have

div.XE / D 1 zE1div.X/C hX; �E i
�
@E kD1Ek;(6.44)

div.XE / D 1 zE1=2[ zE1div.X/C hX; �E i
C

@E kD1Ek; and(6.45)

1 zE1=2 div.X/ D
�
hX; �E i

�
@E � hX; �E i

C

@E

�
kD1Ek:(6.46)

Proof. We notice that (6.42) implies kdiv.X/k.e@�E n zE1=2/ D 0. Hence, thanks to this
fact and y1E � 1=2, it is clear that (6.24), (6.25) and (6.26) imply (6.44), (6.45) and (6.46),
respectively.

Finally, arguing analogously as in Section 6.2 and using the assumption y1E � 1=2, we
easily obtain the following refined versions of the Gauss–Green and integration by parts
formulas.

Theorem 6.21 (Gauss–Green formulas III). Let X 2 DM1.X/ and let E � X be a
bounded set of finite perimeter. Then, we have

div.X/. zE1/ D �
Z
@E

hX; �E i
�
@E dkD1Ek;(6.47)

div.X/. zE1 [ zE1=2/ D �
Z
@E

hX; �E i
C

@E dkD1Ek:(6.48)

Theorem 6.22 (Integration by parts formulas III). Let X 2 DM1.X/, let E � X be a
measurable set such that 1E 2 BV.X/ or 1Ec 2 BV.X/, and let ' 2 Lipb.X/ be such that
supp.1E'/ is bounded. Then, we haveZ

zE1
' ddiv.X/C

Z
E

d'.X/ d� D �
Z
@E

' hX; �E i
�
@E dkD1Ek;(6.49) Z

zE1[ zE1=2
' ddiv.X/C

Z
E

d'.X/ d� D �
Z
@E

' hX; �E i
C

@E dkD1Ek:(6.50)

A. Appendix

In this section we recall the basic notions from the theory of Lp-normed L1 modules
developed in [36]. Hence, from this point on, we follow the notation adopted in [36], by
denoting Lp.X/ WD Lp.X; �/ by Lp.�/.

Naively, an L1-module is a Banach space .M; k � kM/ seen as a module over the
Abelian ring of essentially bounded functions.

To get things started, let us consider a � -finite measure space .X;A; �/.
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Definition A.1 (Definition 1.2.1 in [36]). A Banach space .M; k � kM/ is an L1.�/-
premodule provided there is bilinear map

L1.�/ �M!M;

.f; v/ 7! f � v;

namely the pointwise multiplication, such that

.fg/ � v D f � .g � v/;

1 � v D v;

kf � vkM � kf kL1.�/kvkM;

for every v 2M and f; g 2 L1.�/, where 1 D 1X.
An L1.�/-premodule becomes an L1.�/-module if the following additional prop-

erties are satisfied:
– (Locality): for every v 2M and An 2 B.X/, n 2 N, one has

1An � v D 0; 8n 2 N H) 1S
n2N An � v D 0:

– (Gluing): for any sequences .vn/n2N �M and .An/n2N � B.X/ such that

1Ai\Aj � vi D 1Ai\Aj � vj ; 8i; j 2 N; and lim
n!1

Xn

iD1
1Ai � vi


M
<1;

there exists v 2M such that

1Ai � v D 1Ai � vi ; 8i 2 N; and kvkM � lim
n!1

Xn

iD1
1Ai � vi


M
:

As expectable, with the definition ofL1.�/-module it comes a natural notion of mod-
ule morphisms.

Definition A.2. Let M;N be two L1.�/-modules. We say that T WM! N is a module
morphism whenever is a bounded linear map from M to N viewed as Banach spaces,
satisfying

T .f � v/ D f � T .v/; 8v 2M; f 2 L1.�/:

The set of all module morphisms T WM! N will be denoted by HOM.M;N /.

It can be seen that HOM.M;N / has a canonical structure of L1.�/-module, whose
norm – as a Banach space – is just the operator norm

(A.1) kT k WD sup
kvkM�1

kT .v/kN :

Since L1.�/ has a natural structure of L1.�/-module, a notion of duality can be
given in the following sense.

Definition A.3. Let M be an L1.�/-module. The dual module M� is defined as

M� WD HOM.M; L1.�//:
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Of course, by (A.1) one immediately gets

kT kM� D sup
kvkM�1

kT .v/kL1.�/:

It is interesting to notice that by virtue of this definition, one has that the dual ofLp.�/
is precisely Lq.�/, where p; q 2 Œ1;1� with 1=p C 1=q D 1; see Example 1.2.7 in [36].

If it is possible to endow an L1.�/-module with an “Lp-norm”, then one has the
following definition.

Definition A.4. Let M be an L1.�/-premodule and p 2 Œ1;1�. We say that M is an
Lp.�/-normed premodule if there is a non-negative map j � j� WM! Lp.�/ such that

kjvj�kLp.�/ D kvkM and jf � vj� D jf jjvj�

�-almost everywhere for all f 2 L1.�/ and all v 2M.
We shall call j � j� the pointwise Lp.�/-norm or, more simply, the pointwise norm.
When an Lp.�/-normed premodule is also an L1.�/-module, it will be called an

Lp.�/-normed module.

It is easy to see that j � j� WM! Lp.�/ is continuous, thanks to the simple inequality

kjvj� � jwj�kLp.�/ � kjv � wj�kLp.�/ D kv � wkM;

valid for all v;w 2M. Also, j � j� is local in the sense that for any v 2M and E 2 B.X/,

v D 0 �-almost everywhere on E ” jvj� D 0 �-almost everywhere on E;

see Proposition 1.2.12 in [36].

Remark A.5. By Proposition 1.2.14 in [36], if M is an Lp.�/-normed module, p 2
Œ1;1�, then its dual module M� is an Lq.�/-normed module, 1=pC 1=q D 1 with point-
wise norm defined by

jLj� WD ess- sup
v2MI jvj�1 �-a.e.

jL.v/j;

where we have now denoted by j � j the pointwise norm on M. Then, by duality one also
finds

jvj D ess- sup
L2M�I jLj��1 �-a.e.

jL.v/j:

Finally, we recall the notions of generating sets and span over L1.�/-modules.

Definition A.6. Let M be an L1.�/-module, V �M a subset and A 2 B.X/. The span
of V on A, denoted by SpanA.V /, is the subset of M made of vectors v concentrated on A
with the following property: there are .An/�B.X/, n 2N, disjoint such that AD

S
i Ai

and for every n elements v1;n; : : : ; vmn;n 2 M and functions f1;n; : : : ; fmn;n 2 L
1.�/

such that

�Anv D

mnX
iD1

fi;n vi;n:

We refer to SpanA.V / as the space spanned by V on A, or simply spanned by V if AD X.
Similarly, we refer to the closure SpanA.V / of SpanA.V / as the space generated by V
on A, or simply as the space generated by V if A D X.
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