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and analyzing Proof of Stake based consensus protocols. Then, we model Hybrid Casper in PRISM+ as a parallel composition

of stochastic processes, thus precisely describing the behavior of the protocol and highlighting its corner cases. PRISM+ is

therefore used to rapidly and automatically analyze the resilience of Hybrid Casper when tuning, up or down, several basic

parameters of the protocol, such as the rates of creating blocks, and the strategies for determining penalties. Finally, we study

the robustness of Hybrid Casper to two well-known attacks: the Eclipse attack and the majority attack.
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1 INTRODUCTION

Blockchain is revolutionizing the way individuals and companies exchange digital assets without the control of a
central authority. This technology has been successfully exploited in different contexts, such as the management
of cryptocurrencies (Bitcoin being the most famous one [37]), running decentralized applications (Ethereum
smart contracts [11]), the implementation of voting systems [10], and decentralized finance [39].

Blockchain’s main novelty is to enable a dynamic and asynchronous network of peer-to-peer nodes to main-
tain a distributed ledger that globally records the occurrence of certain events. Nodes contain a local copy of the
ledger that is updated upon reception of special messages, called transactions. Due to the inherent asynchrony
of the network, the main difficulty that a blockchain-based system must address is the consistency of the ledger
upon updates performed by different nodes. To overcome this problem, these systems rely on a consensus proto-
col that imposes a total order on the updates performed by the nodes. Traditionally, following the seminal work
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by Nakamoto [37], these protocols have been based on a probabilistic mechanism called Proof of Work (PoW)

whereby nodes can update the ledger only if they solve a hard computational problem.
Because of the hardness of the computational problem, PoW has the substantial shortcoming of requiring

a very large amount of computational resources and energy [21]. For this reason, new proposals have been
emerging, the most popular being Proof of Stake (PoS) where nodes can update the ledger with a probability
that is proportional to the quantity of cryptocurrency they invested to be part of the network—the stake. One
of these protocols—the Casper protocol [12]—will be adopted by future releases of Ethereum. In the meantime,
to ensure a smooth transition with minimal impact on the users, Ethereum developers have deployed a hybrid
version of Casper—the Hybrid Casper Protocol—that uses both PoW and PoS [14]. In particular, Hybrid Casper
speeds up block creation by means of a less expensive PoW than Bitcoin (block creation occurs every 14 seconds
in Hybrid Casper [14], whereas it takes 600 seconds in Bitcoin [17]) and uses a voting mechanism to select the
blocks to append to the blockchain.

Votes are expressed by suitable nodes of the network that own a stake, called validators, and for certain blocks,
called checkpoints.1 These checkpoint blocks pass through two stages: the first when the checkpoint is justified,
which means that it has received at least 2/3 of the validators’ votes in terms of stake, and the second is when it
is finalized, which means that it is justified and its child checkpoint is justified as well. Finalization guarantees
consistency of the corresponding blockchains in the distributed ledger.

Since Hybrid Casper is a recent proposal, the protocol may have corner cases that can pave the way to
possible attacks. Therefore, in this article, we present an analysis of Hybrid Casper by means of a formal model
and an automatic verification technique that allow us (i) to predict how it behaves in different settings of the
parameters, (ii) to understand its resilience and robustness to attacks, and (iii) to study new variants of the
protocol. The approach we follow is the one of Bistarelli et al. [9], where the Bitcoin protocol has been analyzed
using PRISM+, an extension of the PRISM model checker [31] with primitives for PoW protocols, such as data
types ledger, block, and set, and the operations upon them. In particular, to cover Hybrid Casper, we have
further extended PRISM+ with data types and operations that are typical of PoS protocols, such as the map data
type to express the table of the stakes and the management of votes. Once the extension has been prototyped,
the protocol is rendered as a parallel composition of PRISM+ processes where the time to create a block and
to broadcast a message is an exponential distribution with a rate parameter associated to process actions.
Henceforth, by tuning up and down the rates, it has been possible to rapidly and automatically analyze different
settings of the basic parameters of the protocol and check the corresponding correctness (e.g., as done in other
works [6, 29]). In particular, we measure the impact of tuning the rates for creating blocks as well as the penal-
ties that nodes have to pay when they vote maliciously and the resistance of the protocol to two well-known
attacks.

The main contributions of this article are the following:
• We first extend PRISM+ with PoS data types and operations; the software package is available online [22]

and can be used to model and study quantitative properties of generic PoW and PoS protocols.
• We then model Hybrid Casper as a PRISM+ process and verify that the model is compliant with the results

of Buterin et al. [14] when the rate of actions are the same. In particular, we show that (i) the probability
of justifying a checkpoint within one epoch is 0.672 and (ii) that the probability of finalizing a checkpoint
within 20 epochs is almost 1.
• We give a stochastic characterization of the safety and liveness properties proposed in the work of Buterin

et al. [14], and we verify that they hold even when changing the time needed to deliver a block.
• We verify that increasing the rate of creation severely impacts on the justification/finalization of blocks. In

particular, we show that when the creation rate is 6 seconds (instead of the standard value of 14 seconds),
the probability of justifying a block within 1 epoch is 0.005.

1Checkpoints are blocks whose block number/height is a multiple of 64, which is is called epoch length.
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• We analyze different penalty strategies, by studying different quotas of penalty in case of misbehaviors of
validators. We show that (i) when the penalty is 40% of the stake, the stake of a misbehaving validator is
almost 0 ether after 17 epochs, even if it misvoted just three times, and (ii) when the penalty is 20% of the
stake, the validator’s stake decreases less rapidly (if it misvoted three times its stake is 7 ether).
• We compute the probabilities of misbehaviors of Hybrid Casper against two well-known attacks. First,

we consider the Eclipse attack, where an adversary obstructs the delivery of messages to some nodes of
the network, and force them to work on an untruthful view of the blockchain. Our results show that the
probability of a successful attack is 0.049. Then, we focus on the majority attack, where an attacker (or a
coalition of attackers) controls the majority of the network and works on creating a separate blockchain.
In this case, we show that the probability of a successful attack is less then 10−4.

The article is organized as follows. Section 2 compares our technique with respect to other analyses. Section 3
contains an overview of the Hybrid Casper protocol and of its consensus algorithm; Section 4 provides a quick
introduction to PRISM, and Section 5 presents PRISM+, the extension of PRISM with the data types for blockchain
system and the new operations we introduce to model PoS consensus algorithms. Our model of Hybrid Casper
is defined in Section 6, and the analyses assessing its coherence are in Section 7. Section 8 presents our study of
the resilience of Hybrid Casper to the changes of different parameters, such as the time needed to create a new
block and different strategies of penalties. It also presents our results about the robustness of the protocol to two
well-known attacks. Section 9 compares our proposal with the literature, and Section 10 draws some conclusions
and discusses possible future work. In Section Appendix A, Table 1 summarizes the notation and the symbols
used in the article.

2 REMARKS ABOUT OUR TECHNIQUE

Assessing the security of a distributed system is a fundamental activity, which is even more stringent for
blockchain systems that manage crypto-assets of a high economic value. Since the security of such systems
strictly depends on the consensus protocol that is used, it is essential to assess which properties this protocol
enjoys. In this section, we overview the automatic techniques that have been proposed in the literature and po-
sition our approach. Additional details can be found in Section 9. There are three mainstream approaches for
automatic analyzing consensus protocols: testing, simulation, and formal verification.

In the first approach, the system under test runs in a virtual network or a simulated environment under varying
configurations that resemble as much as possible the production environment. Usually, the goal is to evaluate
how the system behaves under different values of the parameters such as network conditions, workloads, and
attacks. To perform this evaluation, testers require generating the network traffic, simulating the attackers, and
implementing mechanisms that measure the properties of interest. For example, the test net used in the work
of Buterin et al. [14] tests the behavior of Ethereum protocols in scenarios that are similar to the final one. It
is frequent that testnets spot bugs, but it also happens that bugs may remain uncaught and displayed by the
final system. The testing approach usually imposes a severe burden on testers that have to set up an actual
distributed infrastructure, generate the relevant network traffic, and simulate the attackers. The deployment of a
large-scale distributed computing testnet is often tedious, time consuming, and costly. For these reasons, testers
hardly reproduce a precise deployment environment due to limited financial and timing resources.

The second approach uses simulators [42], which implement the protocols by ad hoc modules that try to re-
construct the overall behavior on a single machine [20]. These implementations rely on simulation models, which
are stochastic in the case of blockchains (e.g., Continuous Time Markov Chain (CTMC), Markov Decision
Process, etc.). Blockchain simulators allow designers to reproduce real-world processes in a low-cost manner,
such as network latency and bandwidth. In addition, by changing parameters of the simulation, the system can
be analyzed without the need to reimplement it. So, simulators allow users to quickly test a blockchain sys-
tem using different settings and parameters to study its behavior under various operational scenarios and to
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choose the proper configuration settings. For example, Gervais et al. [24] introduce a quantitative model based
on Markov chains to compare PoW blockchains. The model allows them to reason about optimal adversarial
strategies while taking into account the adversarial mining power, the impact of eclipse attacks, block rewards,
and real-world network and consensus parameters. The system is however different from the original imple-
mentation, and simulations only highlight particular executions. In general, the development of simulators is
complex. Most simulators can realistically reproduce only one or few aspects of the (blockchain) system leaving
the other ones simplified, or even skipped entirely.

The third approach for verifying distributed protocols relies on formal verification using an automatic tool,
and therefore its application requires no supervision or expertise in mathematical reasoning and covers almost
all possible behaviors of the system. Among the various techniques, model checking has been widely applied
to consensus protocols [19, 33, 35, 45]. With respect to testnets, model checking has the advantage that it is
relatively cheap (no network infrastructure nor the relevant network traffic is needed to be generated) and is
relatively fast to stress-test the protocol under different settings and conditions because it suffices to adjust
the model’s parameters. With respect to simulations, model checking has the advantage to undertake a (more)
complete analysis of the possible executions.

However, model checking has some drawbacks. The first one is that one analyzes an abstract model rather
than the actual implementation of the protocol. Therefore, although being correct, some precision is necessarily
lost. In addition, the definition of the abstract model takes time since it is essential to understand the modeling
language and the protocol (in our case, the process of defining the model took us a couple of weeks or so).

The second drawback is that the analyses are time consuming due to the state explosion problem (the whole
model, or an approximation of it, must be completely generated). For example, in our experiments, verifying a
network with eight nodes takes around 4 hours, whereas it takes around 7 days when the nodes are 16. In partic-
ular, to bound our analyses, we ran the experiments until the results stabilize, which occurred when validators
were in between 12 and 16. (For this reason, 16 has been the maximal size of our networks).

The third one is that, to further reduce the state explosion, one resorts to approximations of model check-
ing, such as the so-called statistical model checking that compromises testing and classical model checking
techniques. For example, PRISM runs the model generating a certain number of samples of execution paths and
evaluates the property being checked along these paths to perform a statistical analysis. To bound the length of
execution paths, the tool imposes a maximum length on the executions.

Overall, we believe that automatic analyses have pros and cons. However, it is possible to use them all together,
with the opportunity to spot a large number of bugs at the early stages of software development. In this view,
we believe that our technique adds a new axis to the analysis of blockchain protocols that may complement the
other techniques.

3 THE HYBRID CASPER PROTOCOL

Ethereum [11] is a peer-to-peer asynchronous network whose state is maintained through a distributed ledger.
This ledger is a tree of blocks with a pointer, called a handle, to a leaf block at maximal depth; the blockchain

is the sequence of blocks from the handle to the root, called a genesis block; and each block in the ledger has a
height which is the length of the path from the block to the genesis block.

Hybrid Casper [14] is a new protocol for Ethereum that keeps the ledgers consistent by using two consensus
techniques: it exploits PoW as block proposal mechanism and PoS to choose a stable blockchain. As usual in
PoW, nodes have to solve a computational problem to add new blocks, whose difficulty is set so that a solution is
found within 14 seconds.2 We overview the protocol by highlighting the main features in different paragraphs.

2See the GitHub implementation at https://github.com/ethereum/eth2.0-specs.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 1, Article 5. Publication date: March 2023.

https://github.com/ethereum/eth2.0-specs


Resilience of Hybrid Casper Under Varying Values of Parameters • 5:5

The Hybrid Casper Smart Contract. The PoS protocol is implemented through a special smart contract stored
on the Ethereum blockchain that records the current set of active nodes and manages their stakes and the voting
process. The nodes of the network that own a stake are called validators, and they can vote for certain blocks. In
particular, nodes willing to become validators create a stake by locking 32 ether, which is performed by calling a
deposit function of the smart contract. Conversely, a validator may exit from the active validator set by invoking
a logout function (validators need to wait a minimum period after depositing before being allowed to withdraw).

Justifications and Finalizations. The goal of the voting process is to justify and finalize checkpoints, which are
blocks whose height is multiple of an epoch3 in the ledger: a checkpoint is justified if it is voted by validators that
own at least 2/3 of the stake of the overall network; when two consecutive checkpoints are justified, the older one
becomes finalized. (The root block of the ledger, the genesis block, is both justified and finalized by definition.)
This mechanism ensures that a finalized block together with all of its ancestors belong to the valid chain and
thus can be considered as permanent (and the transactions linked to the block are permanently recorded on the
blockchain). Once a checkpoint is finalized, the validators are paid, and their payment is proportional to the
deposited stake.

The Fork Choice Rule. During the vote, validators follow the fork choice rule to select the next checkpoint:
the next checkpoint is the block at maximum height that the validator received first. When a set of validators are
incorrect—that is, they deviate from the protocol (e.g., the chosen block is not the one at maximum height that has
been received first or more than one block is voted)—a fork between different justified checkpoints may occur.

Penalties. To prevent validators from misbehaving, the protocol relies on economic incentives and penalties:
validators who voted correctly during an epoch are rewarded, whereas validators who did not are penalized. This
is achieved by adjusting validators’ stakes according their own voting behavior: when a checkpoint is finalized,
the stakes of validators who voted for it are increased by a positive interest rate r (see Section 8.2 for details),
whereas the stakes of validators who voted for other checkpoints are shrunk. The penalties grow in proportion
to the non-voting validators. If epochs fail to be finalized for a long time, the penalties become more and more
severe. When a validator engages in clear misbehavior, such as by voting for conflicting checkpoints, then it is
can be punished by slashing its deposits. Incorrect votes are not punished as harshly as conflicting votes, as there
are protocol behaviors that can cause a validator to fail to produce a valid vote. Note that the the deposits of
validators are updated only after checkpoints get finalized.

Properties of Hybrid Casper. Standard attacks to PoS protocols include the nothing-at-stake attack and the
class of long-range attacks, such as the posterior corruption [15]. In the nothing-at-stake, the attacker generates
multiple conflicting blocks to maximize its benefit without risking its stake. This kind of attack is not possible
in Hybrid Casper by design because of its penalization mechanism: misbehaving validators are discouraged to
generate conflicting blocks by the loss of stake. In the posterior corruption attack, the attacker generates a new
branch starting from an earlier block to overtake the main chain. The core idea is that when stakeholders have
sold their stake in the system, nothing prevents them from performing a history-rewrite attack [16]. In Hybrid
Casper, the blockchain up to the most recently finalized checkpoint will never be reverted, guaranteeing that
a posterior corruption attack cannot be successful. In simple terms, a revision fork that finalizes blocks older
than the last finalized block will be ignored, because all clients will have already seen a finalized block at that
height and will refuse to revert it. Another assumption made is that each client will log in the system and gain
a complete view of the updated chain at some regular frequency [12].

3An epoch is the contiguous sequence of blocks between two checkpoints, including the first but not the latter. We denote the length of an

epoch with lenepoch , and we set it to 64 as in the GitHub implementation.
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4 A QUICK INTRODUCTION TO PRISM

PRISM [31] is a probabilistic model checker that, given a formal description of a system, called the model, com-
putes the likelihood of the occurrence of certain events. The model checker supports different kinds of proba-
bilistic formalism that give semantics to the model. We refer to the work of Kwiatkowska et al. [32] for a full
account of PRISM.

A PRISM system is a parallel composition of interacting modules, where each module represents a (sequential)
agent/process. The internal state of a module is determined by the values assigned to its variables, whereas the
overall state of a system is determined by the internal states of all of its modules. The behavior of a module is
defined by a set of commands that specify how and under which conditions the module performs a transition
and updates its internal state. The syntax of a command is

[a] guard -> rho_1:update_1 +...+ rho_n:update_n;

where a is called action and may be omitted, guard is a predicate over the state variables of the module and those
of other modules, update_i defines the changes of module’s internal state (i.e., a list of assignments to its state
variables), and rho_i is the rate at which update_i is executed. The meaning of the precedig command is the
following: when guard is true, the module chooses a transition (the operator + denotes a choice) according to
the rate rho_i associated to that update. PRISM semantics constrains modules retaining actions with the same
name to synchronize with the corresponding commands (i.e., the modules execute the commands with action a
at the same time).

The example in Listing 1, taken from the documentation,4 helps us understand the semantics of modules. It
models an N-place queue of jobs and a server that removes jobs from the queue and processes them.

The modules queue (lines 6 through 12) and server (lines 14 through 19) synchronize on the action serve.
Module queue has an integer variable q (defined in line 7) representing its size (the constant N defines the capacity
of the queue). Transitions describe the operations on the queue. The first one (line 9) inserts a new element with
rate mu, if the queue is not full (q<N); the insertion is modeled by increasing the value of q. Note that PRISM uses
the prime notation to denote the new value of a variable, in our case q' = q + 1. The second command (line 10)
says that no new element is inserted when the queue is full. The last command (line 11) removes an element, and
it is performed provided that the server can consume an element; for this reason, it has the action name serve
that constrains server to perform a transition with the same name.

In the module server, the Boolean variable s (line 15) defines whether the server is busy or not. When it is
idle, the command at line 17 allows the server to synchronize with queue through the action serve. After this
synchronization, the server updates its state to busy (s'=1). The rate of the synchronization is the product of the
two individual rates (in this case, lambda*1). The second command (line 18) of server states that a busy server
(s=1) may complete its task with rate gamma.

In this article, we focus on CTMC models that are transition systems (as the one earlier) where each transition
is labeled by a positive real number, called rate. In particular, if the rate of a transition from a state s to s ′ is r , then
the probability of moving from s to s ′ within t ≥ 0 time units is 1 − e−r·t —that is, rates are used as parameters
of an exponential distribution. Note that the higher the rate, the higher the probability to leave s in a given time.
For example, in Hybrid Casper, the creation of blocks can be approximated by an exponential distribution with
rate 1/14 (because a block is created every 14 seconds) [14] and an exponential distribution also approximates
the probability of delivering blocks across the network [17].

When a CTMC state has several exiting transitions (e.g., the preceding state x=1), then the probability of
choosing one of them depends on their rates—this is known as the race condition. For example, if r1, . . . , rn are
the rates of transitions exiting from a state s (and entering on pairwise different states), then the probability of
taking a transition with rate ri is ri/R, where R = r1 + · · · + rn . This is due to the fact that the minimum of

4http://www.prismmodelchecker.org/manual/ThePRISMLanguage/Example2.
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1 const int N = 10;

2 const double mu = 1/10;

3 const double lambda = 1/2;

4 const double gamma = 1/3;

5

6 module queue

7 q : [0..N];

8

9 [] q<N -> mu:(q'=q+1);

10 [] q=N -> mu:(q'=q);

11 [serve] q>0 -> lambda :(q'=q-1);

12 endmodule

13

14 module server

15 s : [0..1];

16

17 [serve] s=0 -> 1:(s'=1);

18 [] s=1 -> gamma :(s'=0);

19 endmodule

Listing 1. A PRISM specification modelling a N-place queue and a server.

two exponentially distributed random variables is still an exponentially distributed random variable with a rate
equal to the sum of their rates.

In the following sections, we are interested in the probability of reaching states with a given property within a

certain time. A basic property of Markov chains is that the events are independent from the previous events in
the history—the Markov property. Therefore, the preceding probability is a function of the product of the prob-
abilities in the intermediate states (this function is not simple because one has to consider all possible partitions
of t and all possible paths to reach the state from the initial step).

In the PRISM framework, properties of CTMC models are expressed in Continuous Stochastic Logic

(CSL) [3–5], which is an extension of temporal logic with a probabilistic operator. The formulas we use in this
article always have the form

P=?[F<=t property]

and express the probability that property is eventually true in a state of the model within t time units (starting
from the initial state). In particular, eventuality is expressed by the operator F of CSL logic; the operator ? asks
the model checker to produce a numeric value for the probability. For example, consider the following code that
implement a two-items queue:

1 module C

2 x : [0..2] init 0;

3

4 [] x=0 -> 2 : (x′ = 1);

5 [] x=1 -> 3 : (x′ = 2);

6 [] x=1 -> 5 : (x′ = 0);

7 [] x=2 -> 2 : (x′ = 1);

8

9 endmodule

10

11 label "full" = x = 2;

12 label "empty" = x = 0;

where the variable x can assume three possible values: 0 (the queue is empty), 1 (the queue has one element), and
2 (the queue is full, i.e., it has two elements). According to lines 5 and 6, from state x=1 the system can evolve
either in x=2 with rate 3 and in x=1 with rate 5. The probability that the two-items queue is “full” within 10 time
units is denoted by the CSL formula

P=?[F<=10 "full "].

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 1, Article 5. Publication date: March 2023.



5:8 • L. Galletta et al.

To actually compute this probability, PRISM performs model checking. However, since models may bear infinite
sets of executions (in general and in our case, in particular), PRISM does not undertake an exhaustive explo-
ration of the state-space and sticks to a so-called statistical model checking, which combines model checking and
statistical methods.

In a nutshell, given a model of the stochastic system and a formulaϕ representing the property to verify, PRISM
generates a finite number of executions and evaluates them to determine the fraction of executions satisfying ϕ.
This process computes an approximation q′ of the actual probability q for the formula ϕ and offers a probabilistic
guarantee on the accuracy of q′. In particular, the resulting q′ is such that the probability that the error of the
approximation is too high is bounded by a constant chosen by the user and called the confidence level.

In summary, the core idea of statistical model checking is to conduct partial analyses of the system, monitor
them, and then decide whether the system satisfies the property or not with some degree of confidence.

5 THE EXTENSION PRISM+

PRISM+ extends PRISM by adding a native support for expressing and manipulating dynamic data types, such as
lists and trees, and data types specifically designed for modeling blockchain protocols such as block and ledger.
The goal of our extension is to provide a generic set of primitives that can be used to model and analyze different
kinds of blockchain protocols. In this article, we also provide ad hoc primitives for the PoS protocols, such as
votes, penalties, and rewards. This section describes the data types and the operations PRISM+ provides, and the
implementation of PRISM+ as a fork of PRISM.

5.1 Data Types and Operations

The data types that have been implemented in PRISM+ are block, ledger, set, and map. These data types, par-
ticularly ledger and set, make models of PRISM+ be infinite state. Therefore, we analyze them by means of the
statistical model checking engine. In the following, we present and discuss the representation of these types and
provide a precise semantics of the corresponding operations.

Blocks, noted b, p, . . . , are triples (vn; p; h), where v is the name of the validator v who created the block; n
is a unique numeric label; p, called father, is the name of another block which (vn; p; h) points to; and h is the
height of the block in the ledger. For instance, (v03; v74; 3) is a block named v03, which is the first block created by

v3, whose father is the block named v74 and which is at height 3. The operations on blocks are as follows:

• createB(v, n, L) returns a block (vn; p; h), where p is the handle of the ledger L (see the following) and
h is the height of p plus one;
• isCP(b) returns true if the block b is a checkpoint (i.e., its height is a multiple of 64), false otherwise; and
• height(b) returns the height of b.

Ledgers, noted L, L′, . . . , are tuples 〈T;f;p;K〉, where T is a tree of blocks; f is the name of a block in T (the
last finalized block of L); p is the name of a leaf block at maximal height in the subtree rooted at f, called the
handle of L; and K is a mapping from blocks in T to integers such that if b has been inserted more recently than
b′ in T, then K(b) > K(b′). The root of T is called the genesis block and is denoted by (genesis0; genesis0; 0).
The blockchain of L is the sequence of blocks that starts from the handle and reaches the genesis.

The operations on ledgers are as follows:

• canBeIns(L,b) returns true if b can be inserted in L (i.e., if the father of b is in L) and false otherwise;
• addBtoL(L,b) inserts b in L and returns the updated ledger (precondition: canBeIns(L,b) = true), and

it also updates the mapping K when it updates the handle;
• lastCP(L) and lastboCP(L) return the last checkpoint and the last-but-one checkpoint in L, respectively;
• lastF(L) returns the last finalized block in L (e.g.,) lastF(〈T, f, p, K〉) = f); and
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• updateHF(L,b) takes a ledger L = 〈T; f; p; K〉 and a block b that has been finalized such that K(b) > K(f)
and returns L′ = 〈T; b; p′; K〉, where p′ is the leaf block in the subtree of b such that K(b) is the greatest
value.

A important notion for ledgers is that of fork defined as follows.

Definition 5.1. Let L1 = 〈T1; f1; p1; K1〉, . . . , Ln = 〈Tn ; fn ; pn ; Kn〉 be a set of ledgers, and let m be the maximal
height of the handles p1, . . . , pn . Let also Li1 , . . . , Lik

be the ledgers in the preceding set with the handle at height
m. We say that the set L1, . . . , Ln has a fork of lengthm −h, where h is the length of the maximal common suffix
of the blockchains of Li1 , . . . , Lik

.

The following operations are used to compute and verify forks:

• calculateFork(L1, . . . , Ln) returns the length of the fork in L1, . . . , Ln, 0 if there is no fork.
• verifyCP(L1, . . . , Ln) returns true if lastCP(L1) = . . . = lastCP(Ln) and false otherwise.

Sets, noted S, S′, . . . , are collections of blocks, whose operations are almost standard:

• get(S) returns a block randomly extracted from the set S, and the block is not removed from S;
• add(S,b) returns S ∪ {b};
• receive(S) returns a block b extracted from S;
• remove(S,b) returns S \ b; and
• isEmpty(S) returns true if the set S is empty and false otherwise.

In our Hybrid Casper model, we use them to store the blocks that have been received but have to be inserted in
the local ledger.

Maps, noted H, H′, . . . , are used to record the stakes of validators and the votes of checkpoints. We use the
following operations:

• addVote(H,b,v) returns the update of H where the vote of v for b has been recorded;
• updateS(H,H′,b) returns H updated with the rewards and penalties for each validator according to if they

voted correctly for b or not (the votes are taken from H′), and the techniques for rewarding and penalizing
the validators are described by Buterin et al. [14]; and
• isJust(b, H, H′) returns true if the sum of the stakes of the validators in H that have voted for b is greater

than 2/3 of the total stake of the system and false otherwise, and stakes are retrieved from H′.

5.2 The Implementation of PRISM+

PRISM+ has required a significant programming effort to make the data types of Section 5.1 native. The main
challenge has been the fact that PRISM is not designed to be extended with plug-ins. Thus, we have implemented
our data types and operations modifying the PRISM source code and providing a new software package that
includes our extensions.

To support the augmented syntax, we have first extended the PRISM parser to allow users to use the new
operations as they were built in. In particular, the extension of PRISM expressions with the new types has led to
extending the PRISM abstract class Expression. For example, the implementation of the data type map is done
by the Java class ExpressionMap (see the snippet of code in Listing 2) whose fields are as follows:

• name, which represents the name of the map;
• length , which is the length of the list of blocks; and
• votedBlocks , which is a list of pairs storing the votes of each block.

The constructor of ExpressionMap takes as parameters the name of the map and a list of pairs (validator, vote);
it initializes votedBlocks with the votes—see Listing 2. Note that each vote is stored in the array position
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1 public class ExpressionMap extends Expression {

2

3 private String name;

4 private int length;

5 private List <Pair > votedBlocks;

6

7 public ExpressionMap(String n, List <Pair > b){

8 name = n;

9 this.votedBlocks = new ArrayList <Pair >();

10 if(b!=null) {

11 for(int i=0; i<b.size(); i++) {

12 votedBlocks.add(b.get(i));

13 }

14 }

15 length = votedBlocks.size();

16 }

17 }

Listing 2. The ExpressionMap class.

corresponding to the name of the validator—for example, the vote of validator v1 is stored in position 1 of the
array.

The addition of the new operations to PRISM has required the extension of the class ExpressionFunc where
the built-in operations are defined. For example, the operation addVote(H,b,v) is reported in Listing 3. (All
other operations are implemented following the same schema.)

The operation first checks if the map storing the votes for the block is empty. If it is not, it adds the stake
of the validator who is voting to the corresponding index of the array. If the the map is empty or the block the
validator is voting for is not present in the map, it adds the block and the vote.

6 THE DEFINITION OF HYBRID CASPER IN PRISM+

We model Hybrid Casper in PRISM+ as the parallel composition of n Validator modules and the modules
Vote_Manager, Network and Global. The architecture of our model is presented in Figure 1.

The module Vote_Manager stores the tables containing the votes for each checkpoint and calculates the re-
wards/penalties at the end of each epoch; the module Network implements the broadcast communication mecha-
nism among validators; and Global is an auxiliary module that computes the length of forks—see Section 7. We
note that the management of votes is centralized in Vote_Manager, which corresponds to the smart contract of
Hybrid Casper [14].

In our model and in the analyses presented in next sections, we overlook some details of Hybrid Casper that
are not relevant for the properties we are interested in. In particular, since our goal is to study the behavior of
the protocol to changes of basic parameters, such as the rate of creating new blocks and the percentages in the
penalties system, we assume that

(1) the network consists of validators that also create new blocks;
(2) the PoW is negligible: we model the overall effect of creating a new block through an ad hoc action and we

ignore the algorithmic process of mining; and
(3) blocks are black boxes: we omit any information that is not relevant for the consensus, such as Solidity

transactions.

For the sake of clarity, we present a sugared version of the PRISM+ code; the online repository [22] contains
the actual implementation, the verified properties with the data of our analyses, and the instructions for the use
of the tool. In the following, we present the PRISM+ modules for validators, network, and vote manager. The
Global module will be presented in the next section.
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Fig. 1. The Ethereum PoS model architecture.

1 private ExpressionMap addVote(ExpressionMap table , ExpressionBlock block , String

↪→ validator){

2

3 int j = 0;

4 boolean found = false;
5 for(int i = 0; i<validator.length () and !found; i++) {

6 if(Character.isDigit(nameTmp.charAt(i))) {

7 j = i;

8 found = true;
9 }

10 }

11 String nameTmp2 = validator.substring(j);

12 int whichMiner = 0;

13 if(found) {whichMiner = Integer.parseInt(nameTmp2);}

14 boolean flag = false;
15 if(table.getVotedBlocks ()!=null) {

16 for(int i = 0; i<table.getVotedBlocks ().size(); i++) {

17 if(table.getVotedBlocks ().get(i).getBlock ().equals(block
↪→ )){

18 flag = true;
19 table.addVote(i,whichMiner ,stake);

20 }

21 }

22 if(!flag) {

23 table.addBlock(block ,whichMiner ,stake);

24 }

25 }

26 else {

27 table = new ExpressionMap ();

28 table.addBlock(block ,whichMiner ,stake);

29 }

30 return table;

31 }

Listing 3. The implementation of addVote operation.
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1 module Validator_i

2 STATE_i : [Start ,Create ,Receive ,Move ,Vote ,Check ,Fin] init Start;

3 L_i : ledger init 〈{( genesis0;genesis0 ;0)}; genesis0;genesis0;[ genesis0 �→ 1]〉;
4 c_i : [0..1000] init 0;

5 b_i : block;

6 lastJ_i : block init (genesis0;genesis0 ;0);

7

8 [] (STATE_i=Start) ->

9 mR_i : (b_i′=createB(Validator_i ,c_i ,L_i))�(c_i′=c_i +1)�(STATE_i′=Create );
10 [] (STATE_i=Start) -> hR_i : (STATE_i′=Receive );
11 [] (STATE_i=Start) -> rC_i : (b_i′=lastCP(L_i))�(STATE_i′=Check );
12 [addB_i] (STATE_i=Create)�!isCP(b_i) ->

13 1 : (L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Start);
14 [addB_i] (STATE_i=Create)�isCP(b_i) ->

15 1 : (L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Vote);
16 [voteB_i] (STATE_i=Vote) -> 1 : (STATE_i′=Start );
17 [] (STATE_i=Receive)�!isEmpty(Set_i) ->

18 1 : (b_i′=receive(Set_i ))�(STATE_i′=Move);
19 [] (STATE_i=Receive)�isEmpty(Set_i) -> 1 : (STATE_i′=Start );
20 [removeB_i] (STATE_i=Move)�canBeIns(L_i ,b_i)�isCP(b_i) ->

21 1 : (L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Vote);
22 [removeB_i] (STATE_i=Move)�canBeIns(L_i ,b_i)�!isCP(b_i) ->

23 1 : (L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Start);
24 [] (STATE_i=Move) � !canBeIns(L_i ,b_i) -> 1 : (STATE_i′=Start);
25 [] (STATE_i=Check)�isJust(b_i ,Votes ,Stakes)�lastJ_i=lastboCP(b_i ,L_i) ->

26 1 : (lastJ_i′=b_i)�(L_i′= updateHF(L_i ,lastJ_i ))�(STATE_i′=Fin);
27 [] (STATE_i=Check)�isJust(b_i ,Votes ,Stakes)�lastJ_i != lastboCP(L_i) ->

28 1 : (lastJ_i′=b_i)�(STATE_i′=Start );
29 [] (STATE_i=Check)�!isJust(b_i ,Votes) -> 1 : STATE_i′=Start;
30 [finB_i] (STATE_i=Fin) -> 1 : STATE_i′=Start;
31 endmodule

Listing 4. Pseudocode of a Validator.

6.1 Validator Module

The code of the Validator module is reported in Listing 4. A Validator is defined as a state machine with
seven states. The current state is recorded in the variable STATE_i defined at line 2. The actions of Validator
are guarded by STATE_i and update this variable when executed.

In the initial state Start, the validator may either create a new block and transit to Create state (line 9), or
receive a new block from the network and transit to Receive (line 10), or check whether a checkpoint can be
justified and transit to Check (line 11) only if at the end of an epoch. Since these operations consume time (see
Section 5), they are associated with the rates mR_i, hR_i, and rC_i, respectively. The rates mR_i are defined as
1/s , where s is the number of seconds needed to create a new block, since s = 14 in Hybrid Casper [14], then
mR_i = 1/14. The rates hR_i are complementary to mR_i, and therefore they are defined as hR_i = 1− mR_i (the
rational behind this choice is that a validator is more likely not to create a block rather than to create one). The
rates rC_i represent how often a validator should check for new justified/finalized blocks. According to Buterin
et al. [14], this happens at the end of each epoch, and thus rC_i = 1/(lenepoch × s).

When Validator creates a new block, it updates its ledger and sends the created block to Network (see action
addB_i at lines 12 and 14) to forward it to the other validators. The rate of this action is determined by the
companion action in Network (i.e. 1 × rb ), which expresses the communication latency of the network (c.f. line 6
of Listing 5). In our model, we set rb to either 1/12.6, which is the broadcast delay of the Bitcoin network [17],
or to 1/7, which is the so-called (1/2)-network synchrony—the time to deliver messages is 1/2 of the time to
create a block [13]. If the new block is a checkpoint (the height of the block is a multiple of the epoch length),
Validator transits to Vote state, and otherwise it returns to Start state. In the state Vote, Validator votes by
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synchronizing with Vote_Manager through the action voteB_i; this synchronization causes the addition of the
vote to the table Votes (c.f. line 16).

When Validator tries to receive a new block—state Receive—it verifies whether Network has blocks to de-
liver (lines 17 through 19), and in case it transits to the state Move; otherwise, it returns to Start. In the state
Move, Validator verifies whether the block can be inserted in its own ledger (lines 20 through 23). If this is the
case and the block is a checkpoint, Validator votes for it and otherwise returns to the initial state (line 24).

From the initial state Start, a validator can also transit to the state Check (line 11) with the rate rC_i, only
when it is at the end of an epoch. In this state, Validator verifies whether the last checkpoint, say CL , has
received the majority of the votes (i.e., CL has been justified) and whether the last but one checkpoint in the
blockchain of CL , say CA, is also justified. If this is the case, CA becomes finalized and CL becomes justified—in
lines 25 and 26, this is performed by storing CL in lastF_i and updating the last finalized block of L_i to lastJ_i.
At the same time, the handle of L_i may be updated as well—see the definition of updateHF(L_i,lastJ_i) in
Section 6. If CA is not justified, then CL is stored in lastJ_i (lines 27 and 28). In any case, Validator goes to
Start state and the process starts again.

It is worth noting that a block is added in the correct position of the ledger, even if it is a stale block. In our
model, stale blocks are represented as valid blocks that are not part of the blockchain. On the opposite, an orphan
block is modeled as a block that does not have its entire ancestry (yet) in the local ledger and thus cannot be
added. So an orphan block is not added to the ledger and is left in the local set setMiner_i of Network (see the
following discussion).

6.2 Network Module

The module Network is defined in Listing 5 where the variable N represents the number of validators in the
system. For each validator i, where 1 ≤ i ≤ N, the internal state of Network contains (i) the set of blocks set_i
that represents the messages to be delivered to Validator_i and (ii) the set N_i that records the nodes to which
the Validator_i is connected to. In this section, we assume that validators are totally connected, and therefore
N_i is always equal to {1, . . . , i − 1, i + 1, . . . ,n}. The Network module synchronizes with the validator i who
creates a block by synchronizing on the action addB_i. When this happens, Network updates the sets of blocks
of the validators contained in N_i (line 6). When a block has been added to the local ledger of Validator_i, by
synchronizing with the action removeB_i, Network removes the block from the corresponding set (line 8).

1 module Network

2 for i from 0 to N:

3 SetB_i : set [];

4 N_i : set [];

5 for i from 0 to N:

6 [addB_i] -> rb : foreach k in N_i{ SetB_k′=add(SetB_k ,b_i); }

7 for i from 0 to N:

8 [removeB_i] -> 1 : SetB_i′=remove(SetB_i ,b_i);
9 endmodule

Listing 5. Pseudocode of the Network module.

6.3 Vote Manager Module

The module Vote_Manager is reported in Listing 6. Its internal state consists of a map Stakes that stores the
stakes of validators; a map Votes that takes the name of a block and returns the list of validators who have
voted for the corresponding block; and the epoch that records the height of the last finalized block. The module
synchronizes with the validator i on actions voteB_i and finB_i. The synchronization on voteB_i adds the
vote for the block that is stored in b_i to Votes—that is, the name Validator_i is added to the list of b_i (line 8).
The synchronization on finB_i is used to compute the rewards and penalties for each validator when a block is
finalized. In particular, this happens when the first validator finalizes a block b because, in this case, the height
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of b is higher than epoch. (This is our modeling of Hybrid Casper’s epochs.) In this case, both Stakes and epoch
are updated with the new stakes and height(b), respectively (lines 9 and 10). If the validator is not the first to
finalize, then no update occurs.

1 module Vote_Manager

2 Stakes : map {} ;

3 Votes : map {};

4 epoch = 0 ;

5 for i from 0 to N:

6 Stakes[validator_i] : [0.. MAX_STAKE] init STAKE_i;

7 for i from 0 to N:

8 [voteB_i] -> 1 : Votes′=addVote(Votes ,b_i ,Validator_i );
9 [finB_i] (height(lastF(L_i)) > epoch) ->

10 1: epoch′=height(lastF(L_i))�Stakes′=updateS(Stakes ,Votes ,lastF(L_i ));
11 [finB_i] (height(lastF(L_i)) <= epoch) -> 1: ;

12 endmodule

Listing 6. Pseudocode of the Vote_Manager module.

7 COHERENCE OF THE HYBRID CASPER MODEL

The goal of this section is to validate our model with respect to the literature [13, 14] on Hybrid Casper. To this
aim, we set the basic parameters as follows: (i) lenepoch = 64 (i.e., checkpoints are validated every 64 blocks),
(ii) all validators start with the same amount of stake in the initial state and work honestly (i.e., they never vote
maliciously nor do they create blocks in the wrong position), and (iii) the rate mRi of creating new blocks is 1/14.
Our model may be easily updated to analyze validators (or pools of validators) with different mining rates: it
suffices to set the constants mRi to the corresponding values (we have not undertaken such analyses because we
miss the values).

The experiments that we describe in the rest of the article were carried out on a Virtual Machine with 8 VCPU
and 64 GB of RAM. We set the PRISM+ model checker to generate 100,000 samples of protocol executions. The
verified systems were composed by n validators, with n = 6, 8, 10, 12, 14, 16, and the experiments are always run
until we observed a stabilization of results. Usually with networks larger than 10 to 12 validators, the differences
between the outputs of the analyses are in the order of 10−3. This is due to the fact that we use mean rates to
describe the latency of the network (which are taken from the literature), and therefore the number of nodes has
little impact on the broadcast of blocks. In particular, we strongly believe that our conclusions obtained with, say
14 to 16 validators, are meaningful also for larger networks.

We start by computing the probabilities for creating a new block. Figure 2(a) reports these probabilities, which
are calculated by letting PRISM+ analyze the property:

P =?[F <= T "someCreated"],

where someCreated is a label that identifies all states in which a validator is in the state Create. In this figure
and in Figure 2(b), the broadcast delay rb is 1/7—that is, we assume that the time to deliver messages is 1/2 of the
time to create a block (c.f. (1/2)-network synchrony) [13]. The results we obtain are coherent with the ones in the
literature [13]; in particular, the probability of creating a block within 14 seconds is 0.6 and the one of creating
a block within 50 seconds is 1.

To verify the occurrence of forks in ledgers, we use the following module Global

module Global

difference : [0..N] init 0;

[] (STATE_1 = Start | ... | STATE_n = Start) -> 1 :

(difference′ = calculateFork(L_1 , . . ., L_n))

endmodule

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 1, Article 5. Publication date: March 2023.



Resilience of Hybrid Casper Under Varying Values of Parameters • 5:15

Fig. 2. Results of the analyses for assessing the coherence of the model.

that computes the difference between the ledgers of the system every time one of them is modified (when the
Validator_i changes its state to Start). To this aim, Global invokes the operation calculateFork defined in
Section 5 that stores the length of the fork in the state variable difference. Therefore, following Section 4, the
probability of reaching a state with a fork of length k within the first T time units is defined by the following
formula:

P =?[F <= T difference = k].

Figure 2(b) shows how the probability of having a fork of length k , with 1 ≤ k ≤ 10, varies over the time. We
run the analysis by considering k*14 as bound time. Our results show that the probability of a fork of length 1
is higher than 0.9, whereas the probability decreases as the k increases, and it is 0.009 for forks of length 10.

Figure 2(a) and (d) respectively report the probabilities of justification and finalization within k epochs. These
probabilities are computed by PRISM+ using the formulas

P=?[F<=T "someJustified"] P=?[F<=T "someFinalized"],

where someJustified and someFinalized are the labels that identify all states in which a validator is in the
state Check and the block is justified and finalized, respectively (lines 25 through 28 of Listing 4). The experiments
reported in Figure 2(c) and (d) have been run with two different broadcast delays: the standard broadcast delay of
Bitcoin (i.e., rb = 1/12.6) [17] and the (1/2)-network synchrony delay rb = 1/7. It turns out that when rb = 1/12.6,
the probability of justifying within 1 epoch is 0.389,whereas it is 0.672 when rb = 1/7. This is because, in the first
case, a checkpoint needs more time to reach all nodes in the network. Hence, the voting process is longer and
the probability is smaller when rb = 1/12.6. It is also worth noting that when the epochs are 5, the probability
is greater than 0.96 with both values of rb , which is in accordance with Buterin et al. [13] where this probability
is stated to be greater than 0.5 in one epoch. We finally note that the probability of justifying a block is lower
when rb is equal to the rate of Bitcoin.

In Figure 2(d), we report the probability of finalization within k epochs that have been computed by Buterin
et al. [13] (the red curve in the figure), and we compare these results with those computed by PRISM+ with the
two broadcast values of rb = 1/12.6 and rb = 1/7. Our results are coherent with Buterin et al. [13] but a little
lower for k < 7. We also notice that the probabilities obtained with rates rb = 1/12.6 and rb = 1/7 grow in a
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Fig. 3. Safety and liveness properties.

similar way and are almost the same for k > 7 (e.g., when k = 20, the probability is 0.9994 with rb = 1/12.6,
whereas it is 0.99999 with rb = 1/7).

Finally, Buterin et al. [13] proved properties of safety and liveness for Hybrid Casper. In particular, they define
a protocol to be

• safe when two (or more) conflicting finalized checkpoints cannot occur and
• live when the set of finalized blocks always grows.

Figure 3(a) and (b) show the analyses of safety and liveness in PRISM+ with respect to the broadcast delay rb . In
these analyses, we adopt the setting of Buterin et al. [13], and we suppose that all the validators vote correctly—
that is, they vote only for one checkpoint at the same height. According to our results, the probability of finalizing
two conflicting checkpoints is always 0 (Figure 3(a)) and the probability of finalizing a new checkpoint is always
greater than 0.85 when rb ≥ 1/100 (it is almost 1 with rb ≥ 1/12.6).

8 HYBRID CASPER STRESS TESTS AND ITS ROBUSTNESS TO ATTACKS

The resilience of Hybrid Casper to the changes of different parameters of the protocol is verified in this section.
First, we analyze how the probabilities of forks and justifications change by varying the rate mRi of creating new
blocks. In the following experiments, the broadcast rate rb is set to 1/7 (we assume it depends on technological
constraints of the network, and therefore we adhere to the (1/2)-network synchrony assumption). Next, we
analyze how the percentage of penalties may affect the behavior of malicious validators. Finally, we study the
robustness of Hybrid Casper to two attacks that have been studied in the literature [18, 27]. It is worth noting that
all of these analyses have been done with little effort (by manually changing the PRISM+ settings of the protocol),
which is a benefit of our technique. In particular, regarding the attacks, we model them using the PRISM+ language
and study their impact on the correct execution of the protocol through the verification capabilities of the model
checker.

Hereafter, we will assume that all mRi are equal and generically denote them with mR.

8.1 Different Rates of Creating Blocks

We study the resilience of the protocol when the time for creating blocks is lower than the standard one
(14 seconds in Ethereum). More precisely, we consider the cases where the rates are mR = 1/14, 1/8, 1/7, 1/6,
respectively (i.e., blocks are created within 14, 8, 7, and 6 seconds) and the length of epochs is 64.

The results in Figure 4(a) show that the probability of a fork of length k for mR = 1/8, 1/7, 1/6 is higher than
the one for mR = 1/14 (we run the analyses by considering k*1/mR as bound time). In particular, the probability
of a fork of length 7 (i.e., P7fork

, is 0.25 for mR = 1/6), whereas it is around 0.06 when we consider the other
rates. This may result in a lower probability of justifying a block, because there is a higher probability of having
two different checkpoints at the same height. As expected, when mR = 1/8, 1/7, 1/6, a block must wait for more
epochs to be justified—see Figure 4(c). In particular, with a creation rate mR ≤ 1/7, a block cannot be justified
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Fig. 4. Stress tests with different rates.

within 1 epoch, but after 2 epochs, the probability rapidly increases. Even when mR ≤ 1/8, the probability of
justifying a block within 1 epoch is lower since the analysis shows that P1_just = 0.134. Figure 4(c) reports the
probability Pk_fin of finalization within k epochs. The results are in line with what we expect, and in fact, the
slower the system is to create a block, the lower the probability of finalization is within 2 epochs. This is due to
the fact that also the probability of justification is very low. Moreover, with mR = 1/6, Pk_fin starts to increase
after 9 epochs, becoming 0.915 after 20 epochs.

8.2 Variation of the Penalties

We analyze how the stakes change when the penalties for misbehaving validators vary. In Hybrid Casper, to
incentivize correct behaviors, a bonus is given to validators when they vote checkpoints that are finalized; on
the contrary, a penalty is given to those that clearly misbehave.

In the following analyses, we study how the stakes of malicious validators change. A validator is malicious
when she votes for more than a checkpoint at the same height. To illustrate the technique, we define a stochastic
process that misbehaves with a rate of 1/2. (Other strategies can be easily implemented by changing the code.)
In particular, the stake of validator j at epoch i is defined by stakej (i ) :

stakej (0)
def
= 10 ETH

stakej (i + 1)
def
=

{
stakej (i ) + γ · stakej (i ) if the validator votes correctly
stakej (i ) − γ · stakej (i ) otherwise

that increases or decreases stakes according to a parameter γ . In our experiments (Figure 5), we consider three
values for γ : 20%, 30%, and 40%. In Figure 5(a), we report how the stake of the malicious validator varies while
epochs increase. It points out that the less the penalty is in percentage, the slower the stake decreases (more
than 125 epochs are required to obtain a stake of 0 when γ is 20%) The number of times a validator misbehaves
with respect to the epochs is reported in Figure 5(b). The higher the penalty, the lower the number. In particular,
when γ = 20, the validator misbehaves eight times after 20 epochs, whereas when γ = 30, only six times. When
γ = 40, the validator misbehaves three times at 20 epochs, and this number does not grow anymore since its
stake becomes 0. This confirms that the malicious behavior is discouraged when the penalty is high.
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Fig. 5. Analyses with different penalties.

Fig. 6. How changes the stake of a validator.

We remark that in our model, it is always possible to reach a state of fork due to multiple blocks being mined
at the same time. Thus, if a honest validatorv that follows the fork choice rule votes for a block b that will not be
voted by the majority (simply because v received b first), v’s stake will be shrunk. To illustrate this, we report in
Figure 6 the updates of the stake of a validator (since we want to highlight the ongoing behavior of a validator,
we have chosen the simulator option in PRISM). As the reader can observe, at epoch 16 the stake of the validator
decreases, which is due to the fact that it voted for the wrong checkpoint. The same stake increases because the
validator voted correctly afterward.

8.3 Eclipse Attack

In the Eclipse attack, an adversary attempts to obstruct message delivery at the level of the peer-to-peer network
causing nodes to work on a corrupted or distorted snapshot of the blockchain [18, 27]. The underlying idea of
this attack is that an adversary controls all incoming and outgoing connections of a victim to prevent it from
receiving new blocks from the network. In this way, victims receive new blocks only from the attacker and from
other victims. The attacker waits until the blocks created by victims are likely to be justified by the rest of the
network. Then, she stops eclipsing and publishes the private chain to the network. The attack succeeds when a
block created by the victims or by the attacker is either justified by the network or the honest validators start
using the corrupted chain.

This attack is modeled in PRISM+ as a participant that runs in parallel with honest validators. In particular,
we have modified the Network code in Listing 5—the new code is in Listing 8—and we use the code in Listing 7
for the attacker. The attacker collects the blocks created by the victims in the set setAttack_i. She also counts
both the blocks created by the victims and the ones created by the rest of the network, storing these numbers in
nBlocksAttack and nBlocks, respectively. Since the victims are isolated from the rest of the network, they can
communicate only between them and with the attacker. Thus, in the code of the network, we have modified the
sets the validators and the victims can send blocks to (lines 8 and 9 of Listing 8). As soon as the attacker notices
that the blocks created by the victims are more than those created by the rest of the network (line 15 of Listing 7),
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1 module Attacker_i

2 STATE_i : [Start ,Create ,Receive ,Move ,Vote ,Check ,Fin ,Comm] init Start;
3 setAttack_i : set [];

4 attack : bool init true;
5 nBlocksAttack : [0..1000] init 0;

6 nBlocks : [0..1000] init 0;

7 eclipseAttack_i : bool init false;
8 ...

9

10

11 [] (STATE_i=Start) ->

12 mR_i : (nBlocksAttack '= nBlocksAttack +1)�(b_i′=createB(Validator_i ,c_i ,L_i))
13 �(c_i′=c_i +1)�(STATE_i′=Create );
14 [] (STATE_i=Start)�(nBlocksAttack >nBlocks)�(! isEmpty(setAttack_i )) ->

15 1 : (attack '= false)�(STATE_i′=Comm)�(b_i′=receive(setAttack_i ));
16 ...

17 [addB_i] (STATE_i=Create)�!isCP(b_i)�(attack=true) ->

18 1 : setAttack_i′=add(setAttack_i ,b_i)�(L_i′=addBtoL(L_i ,b_i))
19 �(STATE_i′=Start );
20 [addB_i] (STATE_i=Create)�isCP(b_i)�(attack=true) ->

21 1 : setAttack_i′=add(setAttack_i ,b_i)�(L_i′=addBtoL(L_i ,b_i))
22 �(STATE_i′=Vote);
23 ...

24 [communicate] (STATE_i=Comm) -> (setAttack_i '= remove(setAttack_i ,b_i))�(STATE_i′=Start );
25 [removeB_i] (STATE_i=Move)�canBeIns(L_i ,b_i)�isCP(b_i)�fromVictim (b_i) ->

26 1 : (nBlocksAttack '= nBlocksAttack +1)�(setAttack_i′=add(setAttack_i ,b_i))
27 �(L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Vote);
28 [removeB_i] (STATE_i=Move)�canBeIns(L_i ,b_i)�!isCP(b_i)�fromVictim (b_i) ->

29 1 : (nBlocksAttack '= nBlocksAttack +1)�(setAttack_i′=add(setAttack_i ,b_i))
30 �(L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Start );
31 [removeB_i] (STATE_i=Move)�canBeIns(L_i ,b_i)�isCP(b_i)�!fromVictim (b_i) ->

32 1 : (nBlocks '= nBlocks +1)�(L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Vote);
33 [removeB_i] (STATE_i=Move)�canBeIns(L_i ,b_i)�!isCP(b_i)�!fromVictim (b_i) ->

34 1 : (nBlocks '= nBlocks +1)�(L_i′=addBtoL(L_i ,b_i))�(STATE_i′=Start );
35 ...

36 [] (STATE_i=Check)�isJust(b_i ,Votes ,Stakes)�lastJ_i=lastboCP(b_i ,L_i)�fromVictim (b_i) ->

37 1 : (lastJ_i′=b_i)�(L_i′= updateHF(L_i ,lastJ_i ))
38 �(STATE_i′=Fin)�(eclipseAttack_i′=true);
39 ...

40 endmodule

Listing 7. Pseudocode of an attacker.

the attacker makes them available to the rest of the network (line 24 of Listing 7). The attack is successful when
a block created by the attacker or by one of the victims becomes justified.

To define this property, we introduce the Boolean variable eclipseAttack_i in every validator; this variable
is set to true when the validator is about to justify a block created by a victim or by the attacker (lines 36 through
38). As soon as the attacker publishes all of the blocks, the attack is considered over and all of the validators can
communicate again between each other (lines 12 through 15 of Listing 8). The honest validators may reach a
consensus on this new chain after checking its validity. The probability of a successful attack by one attacker
and an increasing number of victims (from 2 to 5) is computed by the formula

P =?[F <= T "eclipseAttack"],

where eclipseAttack means that at least one of the miner_i Boolean variables eclipseAttack_i is true.
Figure 7(a) shows the probability of a successful attack by varying the rate of creating new blocks.
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Fig. 7. Analysis in the presence of an Eclipse attack.

Fig. 8. Analysis in the presence of a majority attack.

1 module Network

2 for i from 0 to N:

3 SetB_i : set [];

4 N_i : set [];

5 Victims : set [];

6

7 [communicate] -> 1 : foreach k in N_i�Victims{ SetB_k′=add(SetB_k ,b_i); }

8 foreach i in Victims:

9 [addB_i] (attack=true) -> rb : foreach k in Victims{ SetB_k′=add(SetB_k ,b_i); }

10 foreach i N_i�Victims:

11 [addB_i] (attack=true) -> rb : foreach k in N_i�Victims{ SetB_k′=add(SetB_k ,b_i); }

12 for i from 0 to N:

13 [addB_i] (attack=false) -> rb : foreach k in N_i{ SetB_k′=add(SetB_k ,b_i); }

14 for i from 0 to N:

15 [removeB_i] -> 1 : SetB_i′=remove(SetB_i ,b_i);
16 endmodule

Listing 8. Pseudocode of the network in the presence of an attacker.

In every case, this probability increases with the number of victims. In addition, when blocks are created faster
than the standard one, then the probability of a successful attack is much lower. In particular, when mR ≤ 1/8,
the system appears to be more resilient to this attack.

In a simpler version of this attack, the attacker aims to reduce the stake of the victims. Figure 7(b) reports how
the stake of the victims decreases as the length of the epochs changes for different values of mR. It turns out that
these results are in line with those of Figure 7(a)—that is, the attacker does not succeed when mR ≤ 1/8.

8.4 Majority Attack

In a PoS system, a majority attack consists of one validator or a coordinated set of validators that own more
than 34% of the overall stake. When this is the case, a majority attack can impact the blockchain by performing
finalization and justification, since checkpoints can now receive the majority of the votes.
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Figure 8 displays the results obtained by our analysis of the majority attack by changing the total stake owned
by the attacker and the rate of creating new blocks. In this case, the code for the attacker is the one reported
in Listing 4 with the unique difference being the percentage of the stake owned by the attacker. Our results
show that the probability of justifying a block decreases when the percentage of the stake owned by the attacker
increases. This is due to the fact that if the attackers decide to perform a majority attack, the honest part of
the network cannot justify (and finalize) new blocks, and thus the whole system is affected. In addition, the
probability decreases with respect to the rate of creating a new block. This is in line with the idea that the less
time needed to create a block, the faster the attacker. However, due to the slashing conditions, the majority attack
is so costly that it is unlikely that one will ever be launched against this protocol in practice. Thus, in the light
of our preceding results and considering how fast the stake of a malicious validator decreases, it should not be
a problem if one decides to use a faster rate to create new blocks.

9 RELATED WORK

The blockchain was introduced by Haber and Stornetta [26], and only in the past few years, because of Bitcoin,
the problem of analyzing the properties of the consensus protocols and the consistency of the ledgers managed
by these protocols has attracted the interest of several researchers. PoW systems have been largely analyzed to
ensure the correctness of the protocol [23, 41]. For example, Gervais et al. [24] introduce a quantitative framework
to compare PoW blockchains. Their framework is based on Markov Decision Process and focuses on studying
double-spending and selfish mining attacks. In contract, our work considers Hybrid Casper, which is a PoS
consensus algorithm. Moreover, we model the system through CTMC where the participants of the protocol are
expressed as modules in the PRISM language.

For what concerns PoS, to the best of our knowledge, there are few papers that use formal methods to study
the properties of the consensus protocols. Here, we first discuss contributions about Hybrid Casper and then
those contributions about other PoS protocols.

The initial contribution of Hybrid Casper by Buterin et al. [14] also addresses the analysis of few properties.
In particular, it is proved that the incentive mechanisms entail liveness and provide safety guarantees for the
protocol. They also discuss issues related to parameterization, funding, throughput, and network overhead, and
point out potential limitations of the protocol. The properties are analyzed by means of numerical arguments
on the states of possible computations. Our technique is different: we use statistical model checking to analyze
the infinite-state blockchain model. By means of this model, we automatically verify quantitative properties,
particularly those regarding the reachability of certain states of the network, and we can check them with dif-
ferent setting of protocol parameters. Moreover, it is possible to grasp other properties with slight changes of
the model—for example, we need blocks structured as a sequence of transactions and a mechanism to count
transactions therein. With regard to safety and liveness properties demonstrated by Buterin et al. [14], we have
confirmed them even by changing the communication delay.

The safety of Casper has been formally proved using the Isabelle proof assistant [38] and in the Coq theorem
prover [40] by verifying basic properties about the ordering of messages, of justifications, and the state transitions.
Similarly to these papers, our model overlooks the implementation details that do not affect the properties of
interest (e.g., the process of creating new blocks). However, in the foregoing contributions, relevant properties,
such as accountable safety and (a form of) liveness are demonstrated in the case when the set of validators is
dynamic and at least 2/3 of them behave honestly [2]. In that case, different settings require completely new
proofs. On the contrary, our analysis can be easily adapted to different settings of the protocol by changing basic
parameters such as the network delay or adding/removing parallel processes acting as attackers. As said earlier,
in our setting, safety and liveness can be proved in a probabilistic version.

Coq has been also used to verify the Algorand PoS protocol [25]. Its correctness (i.e., two different blocks can
never be certified in the same round even when the adversary completely control the network (asynchronous
safety)) is also demonstrated taking into account network delays, timing issues, and malicious nodes. We believe
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that the same comments presented earlier apply to the analysis of Algorand, once the protocol has been modeled
in PRISM+.

With regard to other PoS protocols, another protocol that has been formally specified in a process calculus is
Tendermint [34, 36, 43]. In this case, similarly to Section 6, the network of validators is modeled as a parallel com-
position of processes and the system is verified by means the PAT model checker [44], which is neither stochastic
nor probabilistic. The authors prove that the consensus protocol is deadlock free and can reach consensus when
at least 2/3 of the validators are in agreement. Our technique, by using a stochastic model checker, allows us to
prove quantitative properties (e.g., probabilities of justification or finalizations) rather than qualitative ones.

PoS-based blockchain design has been also studied by Bentov et al. [7, 8], both alone and in conjunction
with PoW. Although they showed that the protocols are secure against some classes of attacks, no formal proof
has been provided. A PoS protocol with rigorous security guarantees is Ouroboros [28], where persistence and
liveness properties are thoroughly studied. In that context, persistence means that once an honest node declares
a given transaction as “stable,” then all other honest nodes will agree on that choice; liveness means that once
an honestly generated transaction has been made available to the network, then it will become eventually stable.
The authors prove that Ouroboros enjoys these properties in the presence of adversaries through a manual proof.
In our work, we considered a probabilistic version of the safety and liveness property for Hybrid Casper, and we
proved them automatically through a model checker. We are confident that we can adopt our methodology to
study similar properties of Ouroboros as well.

10 CONCLUSION

In this article, we analyzed Hybrid Casper, which will be adopted by Ethereum in the near future and that
combines both PoW and PoS. We analyzed the protocol by means of PRISM+, an extension of the probabilistic
model checker PRISM with primitives for expressing the data types ledger and block, and the operations upon
them (we used a similar technique to analyze the Bitcoin protocol [9]).

Once our model proved coherent with respect to the results by Buterin et al. [13], we exploited the automatic
verification machinery of PRISM+ to perform several probabilistic analyses and to study the protocol behavior
in different settings of the basic parameters, such as the rate of creation of blocks and penalty strategies. Our
results showed that increasing the rate of creation severely impacts on the justification/finalization of blocks
and confirmed that the higher the penalty over the stake, the lower the rate of misbehavior. We also studied
the behavior of Hybrid Casper against two well-known attacks: the Eclipse attack and the majority attack. Our
results confirm that the protocol is robust against these two attacks when the original Hybrid Casper parameters
are considered. We remark that PRISM+ is available online [22] and can be used to model and study quantitative
properties of generic PoW and PoS protocols.

Our current PRISM+model renders validators as pure stochastic processes and abstracts away the fact that they
are actually rationale agents that compete against each other to maximize a given utility function. Therefore, their
behavior is not only driven by the protocol but also by a given strategy that they follow when finalizing blocks.
In such a competitive setting, the strategy of a validator may also depend on the ones of others and validators
may group themselves in coalitions that may collaborate to achieve a common goal. We plan to investigate
these scenarios by extending the model with strategies and possible collaborative behaviors. Presumably, this
will require the formalization of utility functions [30] and will require a particular care because PRISM (and
PRISM+) manifests scalability issues when there are a lot of processes running in parallel (which is the case when
coalitions are modeled).

Since the maximum block size indirectly defines the maximum number of transactions carried within a block,
large blocks may cause slower propagation speeds, which in turn increases the stale block rate. Thus, it could
be interesting to extend our model to take into account the block size and verify how different sizes impact the
security of the system.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 1, Article 5. Publication date: March 2023.



Resilience of Hybrid Casper Under Varying Values of Parameters • 5:23

Moreover, we plan to apply our approach to the Casper protocol. More specifically, we plan to study the
random validation mechanism, which Casper will use to select the validator who can propose a new block [12].
This mechanism seems to be a perfect test-bed for our technique: the rapid analysis of the random protocol
may help in making the right decisions. For example, the simple technique where the hash of the previous block
functions is used as a random seed for leader selection on the next round has already been proven to be vulnerable
to attacks [1]. It is also in our agenda to compare Hybrid Casper and Casper to quantify which one provides a
better trade-off between security and performance and to estimate their resilience to possible attacks.

We finally plan the analysis of other recent Byzantine fault-tolerant protocols such as Algorand [25] and
Tendermint [36] and quantitatively compare them to (Hybrid) Casper.

APPENDIX

A NOTATION AND SYMBOLS

Table 1. Summary of the Symbols Used Throughout the Article

Symbol Value Meaning

rb 1/12.6 Communication latency of the network

mRi 1/14 (1/8, 1/7, 1/6) Time needed to create a new block

hRi 1-mRi Time needed to not create a block

rCi 1/(lenepoch × s) How often a validator should check for new justified/finalized blocks

N 13 Number of validators

γ 20%, 30%, 40% Percentage of the increased/decreased stake

lenepoch 64 Epochs length

Pk_fin N/A Probability that a checkpoint is finalized within k epochs

Pk_just N/A Probability that a checkpoint is justified within k epochs

REFERENCES

[1] Mansoor Ahmed and Kari Kostiainen. 2018. Don’t mine, wait in line: Fair and efficient blockchain consensus with Robust Round Robin.

arXiv:1804.07391 (2018).

[2] Musab A. Alturki, Elaine Li, Daejun Park, Brandon Moore, Karl Palmskog, Lucas Peña, and G. Rosu. 2020. Verifying Gasper with Dynamic

Validator Sets in Coq. Technical Report, University of Illinois at Urbana-Champaign.

[3] Adnan Aziz, Kumud Sanwal, Vigyan Singhal, and Robert K. Brayton. 1996. Verifying continuous time Markov chains. In Computer

Aided Verification. Lecture Notes in Computer Science, Vol. 1102. Springer, 269–276. https://doi.org/10.1007/3-540-61474-5_75

[4] Christel Baier, Boudewijn Haverkort, Holger Hermanns, and Joost-Pieter Katoen. 2000. Model checking continuous-time Markov chains

by transient analysis. In Computer Aided Verification, E. Allen Emerson and Aravinda Prasad Sistla (Eds.). Springer, Berlin, Germany,

358–372.

[5] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. 2003. Model-checking algorithms for continuous-time Markov chains. IEEE

Transactions on Software Engineering 29, 6 (2003), 524–541. https://doi.org/10.1109/TSE.2003.1205180

[6] Stylianos Basagiannis, Sophia G. Petridou, Nikolaos Alexiou, Georgios I. Papadimitriou, and Panagiotis Katsaros. 2011. Quantitative

analysis of a certified e-mail protocol in mobile environments: A probabilistic model checking approach. Computers � Security 30,

4 (2011), 257–272.

[7] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2016. Cryptocurrencies without proof of work. In Financial Cryptography and Data

Security. Lecture Notes in Computer Science, Vol. 9604. Springer, 142–157. https://doi.org/10.1007/978-3-662-53357-4_10

[8] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. 2014. Proof of activity: Extending Bitcoin’s proof of work via proof of stake

[extended abstract]. ACM SIGMETRICS Performance Evaluation Review 42, 3 (2014), 34–37. https://doi.org/10.1145/2695533.2695545

[9] Stefano Bistarelli, Rocco De Nicola, Letterio Galletta, Cosimo Laneve, Ivan Mercanti, and Adele Veschetti. 2021. Stochastic modeling and

analysis of the bitcoin protocol in the presence of block communication delays. Concurrency and Computation: Practice and Experience.

Early view, December 8, 2021. https://doi.org/10.1002/cpe.6749

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 1, Article 5. Publication date: March 2023.

https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1145/2695533.2695545
https://doi.org/10.1002/cpe.6749


5:24 • L. Galletta et al.

[10] Stefano Bistarelli, Ivan Mercanti, Paolo Santancini, and Francesco Santini. 2019. End-to-end voting with non-permissioned and permis-

sioned ledgers. Journal of Grid Computing 17, 1 (2019), 97–118. https://doi.org/10.1007/s10723-019-09478-y

[11] Vitalik Buterin. 2013. Ethereum White Paper. Retrieved November 24, 2022 from https://github.com/ethereum/wiki/wiki/White-Paper.

[12] Vitalik Buterin and V. Griffith. 2017. Casper the friendly finality gadget. arXiv abs/1710.09437 (2017).

[13] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao, Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X. Zhang.

2020. Combining GHOST and casper. CoRR abs/2003.03052 (2020).

[14] Vitalik Buterin, Daniël Reijsbergen, Stefanos Leonardos, and Georgios Piliouras. 2020. Incentives in Ethereum’s hybrid Casper protocol.

International Journal of Network Management 30, 5 (2020), e2098.

[15] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. 2020. A survey on Ethereum systems security: Vulnerabilities,

attacks, and defenses. ACM Computing Surveys 53, 3 (June 2020), Article 67, 43 pages. https://doi.org/10.1145/3391195

[16] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly reconfigurable consensus and applications to provably secure

proof of stake. In Financial Cryptography and Data Security. Lecture Notes in Computer Science, Vol. 11598. Springer, 23–41. https:

//doi.org/10.1007/978-3-030-32101-7_2

[17] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the Bitcoin network. In Proceedings of the13th IEEE Interna-

tional Conference on Peer-to-Peer Computing (IEEE P2P’13). IEEE, Los Alamitos, CA, 1–10. https://doi.org/10.1109/P2P.2013.6688704

[18] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos Patsakis. 2019. A survey on long-range attacks for proof

of stake protocols. IEEE Access 7 (2019), 28712–28725. https://doi.org/10.1109/ACCESS.2019.2901858

[19] Giorgio Delzanno, Michele Tatarek, and Riccardo Traverso. 2014. Model checking Paxos in Spin. In Proceedings of the 5th International

Symposium on Games, Automata, Logics, and Formal Verification (GandALF’14). 131–146. https://doi.org/10.4204/EPTCS.161.13

[20] Carlos Faria and Miguel Correia. 2019. BlockSim: Blockchain simulator. In Proceedings of the 2019 IEEE International Conference on

Blockchain (Blockchain’19). 439–446.

[21] Cambridge Center for Alternative Finance. 2021. Cambridge Bitcoin Electricity Consumption Index. Retrieved November 24, 2022 from

https://cbeci.org/.

[22] Letterio Galletta, Cosimo Laneve, Ivan Mercanti, and Adele Veschetti. 2022. PRISM+ software package, supporting material, and addi-

tional experiments. Retrieved November 24, 2022 from https://github.com/adeleveschetti/casper-analysis.

[23] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin backbone protocol: Analysis and applications. In Advances

in Cryptology—EUROCRYPT 2015. Lecture Notes in Computer Science, Vol. 9057. Springer, 281–310. https://doi.org/10.1007/978-3-662-

46803-6_10

[24] Arthur Gervais, Ghassan O. Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. 2016. On the security and

performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security

(CCS’16). 3–16. http://eprint.iacr.org/2016/555.

[25] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling byzantine agreements for

cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP’17). ACM, New York, NY, 51–68.

[26] Stuart Haber and W. Scott Stornetta. 1990. How to time-stamp a digital document. In Advances in Cryptology—CRYPTO 1990. Lecture

Notes in Computer Science, Vol. 537. Springer, 437–455. https://doi.org/10.1007/3-540-38424-3_32

[27] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. 2015. Eclipse attacks on Bitcoin’s peer-to-peer network. In Proceed-

ings of the 24th USENIX Conference on Security Symposium (SEC’15). 129–144.

[28] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure proof-of-stake

blockchain protocol. In Advances in Cryptology—CRYPTO 2017. Lecture Notes in Computer Science, Vol. 10401. Springer, 357–388.

https://doi.org/10.1007/978-3-319-63688-7_12

[29] Marta Kwiatkowska, Gethin Norman, and David Parker. 2008. Analysis of a gossip protocol in PRISM. ACM SIGMETRICS Performance

Evaluation Review 36, 3 (Nov. 2008), 17–22. https://doi.org/10.1145/1481506.1481511

[30] Marta Kwiatkowska, David Parker, and Clemens Wiltsche. 2018. PRISM-games: Verification and strategy synthesis for stochastic multi-

player games with multiple objectives. International Journal on Software Tools for Technology Transfer 20, 2 (April 2018), 195–210. https:

//doi.org/10.1007/s10009-017-0476-z

[31] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2002. Probabilistic symbolic model checking with PRISM: A hybrid approach.

International Journal on Software Tools for Technology Transfer 2280 (2002), 52–66. https://doi.org/10.1007/3-540-46002-0_5

[32] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Verification of probabilistic real-time systems. In Computer

Aided Verification. Lecture Notes in Computer Science, Vol. 6806. Springer, 585–591. https://doi.org/10.1007/978-3-642-22110-1_47

[33] Marta Z. Kwiatkowska, Gethin Norman, and Roberto Segala. 2001. Automated verification of a randomized distributed consensus pro-

tocol using cadence SMV and PRISM. In Computer Aided Verification. Lecture Notes in Computer Science, Vol. 2102. Springer, 194–206.

https://doi.org/10.1007/3-540-44585-4_17

[34] Jae Kwon. 2014. Tendermint: Consensus Without Mining. Retrieved November 24, 2022 from https://tendermint.com/static/docs/

tendermint.pdf.

[35] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19, 2 (2006), 79–103. https://doi.org/10.1007/s00446-006-0005-x

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 1, Article 5. Publication date: March 2023.

https://doi.org/10.1007/s10723-019-09478-y
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1145/3391195
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1109/ACCESS.2019.2901858
https://doi.org/10.4204/EPTCS.161.13
https://cbeci.org/
https://github.com/adeleveschetti/casper-analysis
https://doi.org/10.1007/978-3-662-46803-6_10
http://eprint.iacr.org/2016/555
https://doi.org/10.1007/3-540-38424-3_32
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/1481506.1481511
https://doi.org/10.1007/s10009-017-0476-z
https://doi.org/10.1007/3-540-46002-0_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-44585-4_17
https://tendermint.com/static/docs/tendermint.pdf
https://doi.org/10.1007/s00446-006-0005-x


Resilience of Hybrid Casper Under Varying Values of Parameters • 5:25

[36] Wai Yan Maung Maung Thin, Naipeng Dong, Guangdong Bai, and Jin Song Dong. 2018. Formal analysis of a proof-of-stake blockchain.

In Proceedings of the 2018 23rd International Conference on Engineering of Complex Computer Systems (ICECCS’18). 197–200. https://doi.

org/10.1109/ICECCS2018.2018.00031

[37] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved November 24, 2022 from https://bitcoin.org/bitcoin.

pdf.

[38] R. Nakamura, T. Jimba, and D. Harz. 2019. Refinement and verification of CBC casper. In Proceedings of the 2019 Crypto Valley Conference

on Blockchain Technology (CVCBT’19). 26–38. https://doi.org/10.1109/CVCBT.2019.00008

[39] E. Napoletano. 2021. Decentralized finance is building a new financial system. Retrieved November 24, 2022 from https://www.nasdaq.

com/articles/decentralized-finance-is-building-a-new-financial-system-2021-04-02.

[40] Karl Palmskog, Milos Gligoric, Lucas Peña, Brandon M. Moore, and G. Rosu. 2018. Verification of Casper in the Coq Proof Assistant.

Retrieved November 24, 2022 from https://core.ac.uk/download/pdf/161954227.pdf.

[41] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain protocol in asynchronous networks. In Advances in

Cryptology—EUROCRYPT 2017. Lecture Notes in Computer Science, Vol. 10211. Springer, 643–673. https://doi.org/10.1007/978-3-319-

56614-6_22

[42] Remigijus Paulavicius, Saulius Grigaitis, and Ernestas Filatovas. 2021. A systematic review and empirical analysis of blockchain simu-

lators. IEEE Access 9 (2021), 38010–38028. https://doi.org/10.1109/ACCESS.2021.3063324

[43] Jun Sun, Yang Liu, Jin Song Dong, and Chunqing Chen. 2009. Integrating specification and programs for system modeling and

verification. In Proceedings of the 2009 3rd IEEE International Symposium on Theoretical Aspects of Software Engineering. 127–135.

https://doi.org/10.1109/TASE.2009.32

[44] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards flexible verification under fairness. In Computer Aided Verification,

Ahmed Bouajjani and Oded Maler (Eds.). Springer, Berlin, Germany, 709–714.

[45] Tatsuhiro Tsuchiya and Andre Schiper. 2007. Model checking of consensus algorit. In Proceedings of the 2007 26th IEEE International

Symposium on Reliable Distributed Systems (SRDS’07). 137–148. https://doi.org/10.1109/SRDS.2007.20

Received 7 March 2022; revised 17 September 2022; accepted 20 October 2022

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 1, Article 5. Publication date: March 2023.

https://doi.org/10.1109/ICECCS2018.2018.00031
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1109/CVCBT.2019.00008
https://www.nasdaq.com/articles/decentralized-finance-is-building-a-new-financial-system-2021-04-02
https://core.ac.uk/download/pdf/161954227.pdf
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1109/ACCESS.2021.3063324
https://doi.org/10.1109/TASE.2009.32
https://doi.org/10.1109/SRDS.2007.20

