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Abstract. The SARS-CoV-2 pandemic has galvanized the interest of the scientific
community toward methodologies apt at predicting the trend of the epidemiological
curve, namely, the daily number of infected individuals in the population. One of
the critical issues, is providing reliable predictions based on interventions enacted
by policy-makers, which is of crucial relevance to assess their effectiveness. In
this paper, we provide a novel data-driven application incorporating sub-symbolic
knowledge to forecast the spreading of an epidemic depending on a set of interven-
tions. More specifically, we focus on the embedding of classical epidemiological
approaches, i.e., compartmental models, into Deep Learning models, to enhance
the learning process and provide higher predictive accuracy.
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1. Introduction

The 21st century has been marked by an ever-increasing level of human activity on the
planet, favoring a global interconnection and new development opportunities. Unfortu-
nately, this phenomenon has led to environment-invasive operations that altered the equi-
librium of our ecosystem, paving the way for the emergence of novel zoonotic viruses
[1]. Among these, airborne diseases are the most worrying, due to their capability of
spreading at a fast pace (e.g, SARS, MERS, H1N1). Most notably, the recent outbreak
of Sars-CoV-2 [2], which started in late 2019, in Wuhan, China. This unexpected sce-
nario has brought to light the unpreparedness of policy-makers and the consequent lack
of prompt and effective responses apt at containing the spread of the virus and mitigating
its effects on global health and socio-economic systems.
For this reason, the creation of preemptive mechanisms and the assessment of the im-
pact of countermeasures on the evolution of the epidemic is of crucial relevance to
help policy-makers in the development of effective containment plans. Such mechanisms
should be capable of coping with the complexity and uncertainty aspects ingrained in
the epidemic phenomena, which are hard to solve with traditional approaches from the
statistical and epidemiological fields - analytically expressing the relationship between
virus spreading, countermeasures, and socio-economic impacts is a non-trivial task. In
this sense Artificial Intelligence can bring great benefits; for instance, the recent advances
made in the field of Deep Learning (DL) [3] allow to extract useful insight from data and
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correctly forecast future scenarios, whereas Combinatorial Optimization [4] can exploit
such insights to produced informed decisions [5].
In this paper, we provide two data-driven approaches incorporating sub-symbolic knowl-
edge to forecast the spreading of an epidemic w.r.t. a set of interventions aimed at coun-
teracting its effects. Thus, the main objective is to identify a model mapping a set of in-
terventions onto the epidemiological curve representing the number of infected individ-
uals in the population. More precisely, we consider Non-Pharmaceutical-Interventions
(NPIs), namely policies that address the epidemic from an administrative perspective
(e.g., lockdowns, public transport access, schools openings) rather than a medical or clin-
ical ones [6,5].
These models can be then used to produced effective policies to battle an outbreak - for
example they could be used to boost Combinatorial processes returning an intervention
plan to contain the spreading of the disease.
The main contributions of this paper are:

• Two methodologies forecasting the trend of an epidemic based on a set of inter-
ventions

• The integration of traditional epidemiological techniques in DL models
• An approach to fit the parametrization of a dynamic system based on temporal

data

The rest of the paper is structured as follows: Section 2 provides the basis to un-
derstand the methodologies proposed in the paper, as well as relevant work related; in
Section 3, we will present the two methodologies at the core of this paper; in Section 4,
we will showcase the experimental results on our frameworks; finally, in Section 5, we
will close the paper with some final comments and pointers to future improvements.

2. Background

The problem of capturing and predicting the dynamics of epidemics is a well-known
and widely studied problem. There have been many attempts to model these phenomena
in the past, from mathematical models to complex networks, and, more recently, agent-
based methods and machine learning [7,8]. Our work is mainly concerned with the use
of classical mathematical approaches to enhance the learning process. In this section, we
will introduce such methods, as well as, prior work related to our research.

2.1. Mathematical Models

Mathematical models are among the first and most successful methods used to approxi-
mate the spreading of a virus during an epidemic. One of the most widely known and ef-
fective mathematical models in epidemiology are Compartmental Models [9]. This class
of methods partitions the population into compartments, or categories, describing the
status of subgroups of individuals w.r.t. the disease. The flow of people from one state to
the other is described by a set of parametrized Ordinary Differential Equations (ODE).
Compartmental methods can be classified into two broad categories:

• Deterministic, that given a certain initial state of the compartments and a set of
parameters, can fully determine the final state of the model through the transition
formulas
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• Stochastic, which are probabilistic formulations of Compartmental models where
uncertainty is represented through stochastic processes, such as Markov Chains
and the Monte Carlo method. The behavior of the system can only be observed
through a simulation

An intuitive example of deterministic compartmental models, is the SIR model, which
divides the population into Susceptible-Infected-Recovered, in which the transition to
one category to the other is described by the following differential system:

dS
dt

=−β
S · I
N

(1)

dI
dt

= β
S · I
N
− γ I (2)

dS
dt

= γ I (3)

, where β is the infection rate — defined as the average number of contacts per per-
son for each time step, multiplied by the probability of disease transmission in a contact
between a susceptible and an infectious subject — and γ is the recovery rate — defined
as the inverse of the recovery period; N is total amount of the population.
Compartmental models are the backbone of epidemics forecasting, as they provide a
clear understanding of the mechanisms underlying the disease spreading allowing for a
deeper theoretical analysis of the phenomenon. However, these methods do not provide
a fine-grained approximation of an epidemic. For instance, Compartmental models as-
sume a homogeneous and well-mixed population with full connection, i.e., all individu-
als make contact at every time step, failing to represent the individual human behavior
which is characterized by high variance and heterogeneity. Moreover, these models do
not allow to assess the impact of a restrictive measure enacted to contain the spreading
of a virus, limiting their usability in decision scenarios.
To address these issues many are the variants of the basic SIR model, such as: SEIR, or
Susceptible-Exposed-Infected-Recovered, and the SIRD, Susceptible-Infected-Recovered-
Deceased. More recently, SIDARTHE [10] which extends the number of compartments
and interaction among them to better represent the COVID-19 virus.

2.2. Related Work

In this section, we briefly introduce some of the main research work focused on forecast-
ing the spreading of a virus through Deep Learning.

Deep Learning. A straightforward approach to approximate the dynamics of an out-
break is two use classical DL techniques designed to handle temporal series. The litera-
ture presents a plethora of successful applications ranging from simple Recursive Neural
Networks (RNN) to more sophisticated applications involving Long-Short Term Neural
Networks (LSTM) [11,12]. Other approaches rely, instead, on the use of Convolutional
Neural Networks, which allow capturing local trends in the data, namely temporal local-
ity when it comes to temporal series [13].
Epidemics find a natural representation in graph networks. Indeed, among the most im-
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portant models approximating these phenomena we find complex network [14]. For this
reason, an increasing trend employs Graph Neural Networks (GNNs) to predict the dy-
namics of an outbreak. In particular, message-passing GNNs, which simulate the contact
among individuals in the population, have produced encouraging results [15,16].

Hybrid Deep Learning. The rise of DL in recent years has led to a crossover of dif-
ferent disciplines, giving birth to a variety of hybrid approaches encapsulating different
methodologies. Predictive epidemiology has been involved in this process, where classi-
cal methods (e.g, mathematical models and complex networks) have been embedded in
the learning process of Deep Neural Networks (DNNs). In [17,18], the authors propose
a hybrid approach involving Auto-Regressive models, approximating the linear compo-
nent of the data, and a DNN capturing non-linearity in the epidemic trend.
More recently, we have seen an attempt to encapsulate into learning processes mathemat-
ical models, and in particular Compartmental models. The main idea is to approximate
the parametrization of the dynamic system through the use of a Feed-Forward Neural
Network (FFNN). In [19], this approach is applied to the COVID-19 epidemic in India,
where the parameters describing the transitions among the compartments of the model
are learned through an incremental learning approach allowing to improve iteratively the
DNN without training it on the whole dataset every time is updated; in [20], a similar
approach is applied to data relative to the COVID-19 epidemic in South Korea.
Another interesting approach proposes an RNN trained using a data sample augmented
through a simulation based on a SEIR model [21] .

Mapping Interventions and Infected. While the previously cited research work deals
mostly with modeling the epidemics spread and predicting its evolution, in this work we
want to go a step further. Our focus is on the use of Deep Learning to forecast the impact
of containment measures on the epidemiological curve. To the best of our knowledge,
very few attempts involving Machine Learning have been made by the scientific com-
munity in this direction. Most notably [5], in which authors have developed an LSTM
mapping NPIs into the new daily infected cases of SARS-CoV-2.
Our methods, partially differentiate from this approach by allowing us to predict the val-
ues for each of the categories in the Compartmental model used to frame the epidemic.

3. Informed Deep Learning for Epidemics

In this paper, we present two DL-based approaches encapsulating neuro-symbolic knowl-
edge to improve the training process in DNNs. The central idea is to exploit the prior
knowledge provided by compartmental models as a mathematical background theory to
frame the dynamics of the outbreak. This is achieved by building a deterministic, para-
metric model of the epidemic based on the differential equations provided by the SIR
model, where the parametrization itself is learned as a function of a set of interventions.
The final approach provides the means to assess the impact of different containment
policies on the underlying compartmental model, i.e., the SIR model.

Formally, we are trying to approximate part of an ODE using a DNN. This method was
first proposed with Universal Differential Equation (UODE) [22]. The idea of UODE
is to approximate part of the dynamic system using a Universal Approximator, such as
a DNN:
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u′ = f (u, t,Uθ (u, t))

, where u is the state of the mechanistic model, f is the differential equation, t is the
current time step, and Uθ is the Universal Approximator, which is trained to optimize a
cost function based on the current state of the dynamic system.
The two methods presented in this paper start from the intuition provided by UODE, and
try to define two distinct ways to tackle this problem, namely:

• Interventions Sequential Mapping: which recovers the parametrization of the
SIR model from a historical series, then maps the interventions onto the parame-
ters (Section 3.1)

• End-to-End Interventions Mapping: that learns the mapping in an end-to-end
fashion (Section 3.2)

3.1. Interventions Sequential Mapping

The Interventions Sequential Mapping (ISM) model aims at approximating the epidemic
using two data-driven models enhanced by a SIR model. The first model is a neural net-
work approximating the parametrization of the SIR model based on the historical series
representing the epidemiological curve (i.e., the daily number of infected individuals),
while the second model, is a regressor - a second DNN - mapping the NPIs onto the
SIR parametrization, thus effectively providing a model capable of forecasting the virus
spreading depending on a set of containment policies.
In the general formulation, a SIR model requires the definition of the values of β and γ .
Both parameterizations are time-dependent since they might vary based on different con-
textual changes. We can apply a simplification by arguing that γ tends to keep a roughly
constant value during an epidemic — since the average recovery period is affected only
by clinical and treatment issues — which eventually become stable whenever a prac-
tice is established — rather than depending on possibly variable external factors. For
instance, many studies point to 14-16 days as the average recovery time for COVID-19
[23,24] On the contrary, β is highly variable, it is influenced by continuously floating
variables such as environmental conditions, containment measures, and ultimately peo-
ple’s behavior. Under these assumptions, we can assign a fixed value to γ , which we can
infer using historical data, while we express β as a time-dependent variable β (t). To
recover the β series, the first model is built as a custom neural network composed of: a
number of layers equal to the time window covered by the data - with length T - where
each layer is composed of a set of neurons representing the state of the SIR model at time
i; a series of T weights represent our current belief on the parametrization of the model,
i.e. β (t).
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Figure 1. Architecture of the first model used to fit the parametrization of the SIR curve

The forward phase runs the SIR simulation - thus using the belief parametrization
- given an initial state, y0 = (S0, I0,R0). This allows to compute a cost function which
will guide the optimization process updating the weights of the network, i.e. our belief β
series:

Loss(y, ŷ) =
1
T

T

∑
t=0

(yt − ŷt)
2 +λΩβ

, where yi = (Si, Ii,Ri) represents our supervision, whereas ŷi the output of the forward
step; Ωβ is a regularization term ensuring there are not steep changes in the β series and
λ its weighting coefficient.

The regularization term formally enforces a soft constraint on β . Intuitively, abrupt
changes in the values of β (t) are unrealistic, therefore the discrepancy between β at time
i−1 and i is unlikely to be very large. This can be expressed through a penalty term of
this form:

Ωβ =
1

T −1

T

∑
t=1

max(0,βt −βt−1)

We can see that changes in the β series of high magnitude lead to increasing values of
the regularization penalizing the loss function. The regularizer is weighted using a λ co-
efficient which is optimized during the training process using a Lagrangian dual method
based on sub-gradient descent [25].

After retrieving the parametrization of the SIR model, we approximate the relation be-
tween the NPIs and β (t) using a DNN. In this phase, we can add other input variables
to help better approximate the mapping NPI-beta. For instance, if we are aware of a
seasonal behavior of the disease (e.g., flu, COVID-19), adding the average temperature
for the time window considered might help better encapsulate the epidemiological trend.

f̃ (SIRt ,NPIt ,Xt) = yt+1
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, where SIRt and NPIt represents respectively the state of the SIR curve and the inter-
ventions at time t, while Xt exogenous variables concurring to a better approximation of
environmental aspects of the epidemic.

Overall, the ISM method represents a valid data-driven solution to approximate the epi-
demic by exploiting pre-existing knowledge regarding epidemics. However, we will in-
troduce a second model integrating the mechanisms of the Compartmental model into
the learning process, allowing for a more refined approximation of the epidemiological
curve.

3.2. End-To-End Interventions Mapping

The second approach tries to overcome the use of two distinct models to approximate
the relation between NPIs and the epidemic curve. The idea is to create an End-to-End
Interventions Mapping (EIM), which encapsulates the compartmental model into the
learning process. The peculiarity of this approach is to directly map the NPIs into the
epidemiological curve, exploiting the SIR model as a theoretical framework but without
striving to explicitly fit the real β parameters. Based on the UODE approach, we can
rewrite the SIR transition system, assuming to have a universal approximator - in our
case a DNN - for β :

βt+1 =Uθ (SIRt ,NPIt ,Xt)

, where SIRt is the state of the SIR model at the current time, NPIt represents the in-
terventions at time t, and Xt exogenous variables concurring to a better approximation
of environmental aspects of the epidemic. In this context, the architecture of the model
consists of a traditional Feed-Forward neural network where the parametrization, θ , can
be optimized via gradient descent based on the following loss function:

Lossθ (y, ŷ) =
1
N

T−1

∑
t=0

(yt(Uθ (SIRt ,NPIt ,Xt))− ŷt+1)
2

, where yi represents the state of the SIR model at time i, based on the parametrization
provided by the universal approximator.

4. Experimental Results

In this section, we present the main experimental results. We decided to test the models
on a synthetic benchmark, generated starting from a SIR simulation, which allowed us
to test the two approaches in an ideal setting. We then proceeded to experiment on a real
time series to verify the usability of the frameworks in more practical scenarios.
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4.1. Experimental Setup

The experiments were performed on an Azure Virtual Machine with 64 non-multithreaded
AMD EPYC 7V12 processor cores, 448 GiB of system memory, and four Nvidia Tesla
v100. Each test instance is defined using different initial conditions, i.e., y0, which allow
to generate multiple epidemic scenarios, e.g., different type of disease or different social
environments. The models are trained assuming prediction horizons of a week, meaning
that the learning target is relative to a week after the state described by input conditions.
The architecture of the models across training instances is kept fixed, namely, 4 layers
with 16 neurons each, which allows to focus on other parameter-dependent behavior and
have a fair comparison among the different approaches.

Baseline Model. To compare the results of our approaches, we established a baseline
model, namely a simple regression network mapping the NPIs on the SIR curve. This
allows to assess the improvements of the model w.r.t. the naive approach, thus proving
that the integration of DNN with compartmental model can improve the learning process.

Evaluation Metrics. All the models are evaluated with a test set, which is the result
of a split on the original dataset holding out 30% of the samples. We then evaluated
the performance of each approach using Mean Squared Error, Mean Absolute Error,
and Mean Average Percentage Error, as well as the training time for each experimental
instance.

4.2. Integration Method

Both models require a numerical iterative method to solve the ODE associated with the
transition formula of the Compartmental model. We decided to use the simplest inte-
gration technique available, namely the Euler’s method. The idea is that given an initial
condition, y0, the state of the dynamic system at time t +1 can be computed as follows:

yt = yt−1 +h f (yt−1)

, where f represents the differential equations associated to a state transition, and h the
step size. The step size, a sub-unitarian increment w.r.t. to the time step, is of crucial
relevance to determine the accuracy of the overall integration process - in our case, the
value h is determined by a hyperparameter K, where h = 1

K . Indeed, the general rule is
that the smaller the increment step the higher the accuracy of the final result, as shown
in Figure 2. During the experimental phase, we decided to test the models for increasing
values of K, namely 1, 10, and 20.
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Figure 2. In reference to the example ODE y′ = y with initial condition y(0) = 1, the graph reports the exact
solution y = ex (black curve) and numerical approximations obtained employing the Euler Method with differ-
ent increments.

4.3. Synthetic Data

The first round of experiments was held on a set of synthetic data. We decided to proceed
with an ideal sample before moving to a real-world application - often the data avail-
able are restricted to past epidemics, which do not encapsulate the plethora of possible
behavior that might be observed during an outbreak. This allowed to remove some of
the confounders present in natural phenomena such as epidemics, e.g., social dynamics,
resilience of the population.
Data are created starting from a SIR simulation with a set of the initial condition, S0, I0,
R0, γ , and β , which were changed to generate different epidemic curves. The data are
relative to 52 weeks, almost a year, in which the outbreak is taking place.
The interventions are generated randomly; to each NPI we associated a strength, namely
the degree of their impact on the curve, measured with a value between 0 and 1, and an
effect, that depending on its strength is going to affect the epidemic, i.e., the SIR curve. In
Figure 3, we can see an example of a SIR model in time and the perturbation introduced
by 5 random NPIs.

4.3.1. Results

The result of the experiments on the synthetic dataset are presented in Table 1, while
in Figure 4 we present the reconstruction of the infected curve on the synthetic dataset.
As we can observe both models, ISM and EIM, perform better than the baseline model,
which does not approximate the curve effectively. Both models confirm that for increas-
ing value of K the performance of the model are more accurate. The ISM approach im-
proves consistently on the Baseline, however the EIM model shows a dramatic decrease
in the error, along with lower computation costs.
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(a) SIR (b) SIR-NPI

Figure 3. On the left side a SIR curve generated with following initial conditions: S0 = 0.99, I0 = 0.01,
R0 = 0.0, γ = 1

15 , β = 0.3. On the right side the same curve computed generating a random set of 5 NPIs for
each time step.

(a) Baseline (b) ISM vs. EIM

Figure 4. Reconstruction of the infected curve using the Baseline model (left), and the ISM and EIM models
(right). The curve in generate with the following initial conditions S0 = 0.99, I0 = 0.01, R0 = 0.0, γ = 1

15 ,
β = 0.3, and K = 10

Model MSE MAE MAPE Time(ms)

NN 0.0057 0.047 2,2 ·108 754

ISM
K=1 0.0017 0.0089 0.16 321541
K=10 0.0018 0.0088 0.16 1531902
K=20 0.0013 0.0086 0.14 2935251

EIM
K=1 0.00027 0.0038 0.08 2199
K=10 0.00021 0.0035 0.09 7283
K=20 0.00019 0.0036 0.10 13222

Table 1. Evaluation Baseline (NN), ISM and EIM models on the Synthetic Dataset

4.4. Real-World Data

We extended the experimental results using a real case scenario. In particular, we used
the COVID-19 data provided by the Italian "Protezione Civile" (Civil protection), which
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monitors the pandemic in Italy from its start2. We focused on ICU hospitalization since
they are not affected by the floating number of tests performed on the population.
Concerning the interventions, we relied on the public data provided by the Oxford Covid-
19 Government Response Tracker, which recorded NPIs relative to economic, political,
and health policies enacted to counteract the spreading of SARS-CoV-2 and its effects.
Figure 5 displays the SIR curve associated with the pandemic in Italy from February
24th, 2020, to May, 8th, 2022. The plot shows how the infected curve (i.e. red line) has
different peaks, representing the multiple waves of the COVID-19 epidemic. Also in this
case, the models are trained assuming a time step of a week.

(a) SIR (b) Infected

Figure 5. SIR curves of SARS-CoV-2 epidemic in Italy - form February 24th, 2020, to May, 8th, 2022

4.4.1. Results

The results of the experiment are presented in Table 2, while in Figure 6 we present
the reconstruction of the curve of ICU hospitalization in Italy. Again, both models show
better performances w.r.t. the baseline. In this context, the EIM approach is the most
accurate.

(a) Baseline (b) ISM vs. EIM

Figure 6. Reconstruction of the curve representing the ICU hospitalization in Italy using the Baseline model
(left), and the ISM and EIM models (right), assuming γ = 1/16 and K = 10

2https://github.com/pcm-dpc/COVID-19
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Model MSE MAE MAPE Time(ms)

NN 0.00069 0.016 1.8 ·1012 1147

ISM
K=1 0.012 0.058 0.33 661705
K=10 0.0092 0.048 0.32 3099793
K=20 0.0090 0.049 0.31 6154240

EIM
K=1 0.000019 0.0026 0.28 2865
K=10 0.000054 0.0030 0.26 9153
K=20 0.000015 0.0024 0.23 23236

Table 2. Evaluation Baseline (NN), ISM and EIM models on the Real-World Dataset

5. Discussion

The two methods proposed in this paper proved to be effective for both synthetic and
real-world data, approximating accurately a variety of scenarios, including very hard in-
stances such as the outbreak of COVID-19 in Italy. Beyond tackling a classical problem
of epidemiology (namely, predicting the spreading of a virus in time) with new tech-
niques, these approaches allow us to assess the effects of policies apt at counteracting
the negative impact of the disease.

Following we highlight some of the crucial aspects associated to the use of these models.

Human Readable Results. The embedding of Compartmental models into the learning
process allow for a better understanding of the dynamics of an outbreak. Indeed, the
categories, or compartments, provide us with the tools and language to understand how
the disease moves within the population, providing the means to describe mathematically
its behavior using the grounding of the real-word data. This is a powerful tool making
the results readable to non-experts that need to understand and justify decisions based on
these models.

Multiple Application. Both models are a solution to the same problem, however, their
payout is different. The ISM approach, proves to be computationally expensive, however
it accurately and explicitly recovers the parameters of the SIR model. This represents a
truthful approximation of the actual value of the β series in the training window, which
can be useful when the parametrization of the model is of interest. Moreover, this ap-
proach can be extended to other dynamic systems. The EIM approach, instead, provides
similar results to ISM but with lower computational costs. This model does not provide
an accurate parameterization of the compartmental model, however, proves to be effec-
tive w.r.t. the learning task.

Decision Support Systems. The methods proposed in this paper can be used as tools
to facilitate a decision-making process during an epidemic. As the COVID-19 pandemic
has taught us, rapid responses to novel viruses are of crucial relevance to prevent losses
of lives and stem its effect on the economy and, in general, society.
Following the idea proposed in [5], this process can be automated if combined with an
optimization process. The idea is to boost the combinatorial problem to find the best pol-
icy to contain the disease, using the DL model to shape the relationship between inter-
ventions and the epidemic. This can be achieved using: either a Black-Box approach,
in which the model is used as an heuristic by the solver [26], that is agnostic w.r.t. the
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structure of the model, or embedding the model, namely codifying the model directly
into the combinatorial process. Both methods proposed in this paper would be suitable
for such application and we plan to extend this work in such direction.

Future Works. Ultimately, we want to point out two major improvements to the current
state of the work: First, the models we propose are not restricted to the use of a SIR
model; one of the models cited in Section 2 might be more suitable depending on the type
of virus and the environment in which the outbreak takes place. Additionally, we could
assess the performances of the models using different integration methods. As previously
stated, we chose the simplest integration method available, which does not exclude the
use of more sophisticated approaches, such as Runge-Kutta methods of higher degree.

6. Conclusion

The recent outbreak of COVID-19 has caught policy-makers unprepared. A fast response
to this exceptional scenario is of crucial relevance. To this end, quickly assessing the
impact of interventions apt at counteracting the spreading of the virus and its negative
effect on the social and economical structure is decisive. In this paper, we have proposed
two DL-based models capable of forecasting the trend of an epidemic depending on a set
of NPIs. Both models incorporate methods from traditional epidemiology to improve the
learning process. The results prove our methods to be effective in forecasting the dynam-
ics of an outbreak both in an experimental setting, simulating different environmental
conditions, and on real-world data. Future work will be focused on further improving the
experimental results through methodological refinements, as well as incorporating the
model into automatic decision processes.
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