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Abstract 
Condition based maintenance of machine tools is critical in order to improve maintenance efficiency, keep 

high production rate and minimize the environmental impact. Vibration monitoring is a very popular method 

adopted when it comes to assessing the health conditions of sub-systems such as feed axis, gearbox or single 

components as the tool itself. Most papers of recent literature are mainly focused on traditional machining 

process like milling, turning and drilling, whereas to the authors’ best knowledge little attention seems to 

be addressed to broaching process. Aiming to contribute to fill this gap, the present work illustrates the 

experimental campaign that was conducted on a broaching machine both in its healthy condition and in a 

few failure states.  The experimental results of some different analysis techniques that were investigated 

confirm the possibility of distinguishing between healthy and faulty conditions of the tool; yet, further 

investigations are required in order to improve accuracy and robustness of the procedure. 

1 Introduction 

Predictive maintenance, sometimes called “on-line monitoring” or “condition-based maintenance”, is a 

maintenance strategy that uses the actual operating condition of plant equipment and systems to optimize 

total plant operation [1]. As a result, predictive maintenance can avoid unnecessary equipment replacement, 

save costs, and improve process safety, availability, efficiency and environmental sustainability [2]. Despite 

all the technological developments, an automated manufacturing is not achievable without reliable condition 

monitoring systems [3]. Machine tools can be considered the backbone of modern manufacturing due to 

their complex machining capabilities. Obviously, as machine tools gain complexity, so do their maintenance 

requirements. As the maintenance of those systems can be very expensive, the maintenance actions must be 

optimized in order to maximize economic profitability. Usually the most critical systems are feed drives, 

that are composed of an actuator and guideways or slides. Monitoring the health state of feed drives can 

prove useful in optimizing maintenance actions [4]. Ball-screw systems are very common in industrial 

applications and due to high-dynamics functioning, the ball screw is usually in gradual wear state, affecting 

the resulting product quality. Condition monitoring of ball-screw systems can be accomplished through 

analysis of vibration signals [5, 6]  and/or motor current consumption [5], with particular attention to wear 

detection and performance degradation. However, while these methods are sensor-based, meaning that the 

installation of external sensors is required, wear detection is feasible even by analysis of internal control 

signals [7] resulting in a less expensive set-up. Along with ball-screw drives, bearings are one of the essential 

components of a machine tool whose failure is one of the most prevalent reasons for machine failure. Fault 

detection of bearings can be a challenging task, especially under operating conditions in an industrial 

environment. A survey of methods for condition monitoring of bearings in machine tools can be found in 

[8], whereas an example of fault detection method based on the analysis of both vibration and acoustic 

signals is reported in [9]. Among other systems, gearboxes are usually found in tool machines as speed 

reduction between motor and the tool is often required. An effective way of assessing the health conditions 

of a machine tool gearbox by means of  built-in position sensors is presented in [10]. Finally, since tool 
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failure represents the 20% of machine tool downtime [11], an accurate Tool Condition Monitoring (TCM) 

is essential in order to increase productivity, increase product quality and reduce maintenance costs. TCM 

has received a lot of attention in the last years  [12–14], however the majority of these works are mainly 

focused on traditional machining process like milling, turning and drilling while giving very little attention 

to the broaching process, likely due to the high initial investment costs [16] with respect to the relatively 

low cost per part. To the authors’ best knowledge, the only example of work about condition monitoring of 

a broaching machine can be found in [15]. The aim of the present study is to explore predictive maintenance 

strategies for TCM on a broaching machine based on vibration signals, in order to assess the feasibility of 

its implementation as a real business optional service. An experimental campaign is conducted on a test 

facility in order to assess the effectiveness of different kinds of analysis. In particular, faults are artificially 

induced on a broaching machine tool during the test stage with the help of the manufacturer company. The 

vibration signals related to the faults and the healthy conditions are measured by using four triaxial 

accelerometers arranged along the machine basement. Different types of fault were investigated and the 

detection performance provided by the different procedures are evaluated and compared. 

2 Materials and method 

The experiments were conducted on a broaching machine made for production of lock plugs, more 

specifically to derive the profile where the key is inserted. The machine main axis controls a transmission 

chain which drags 16 workpiece carriers, fixed to the chain with a relative distance of 311mm, whereas the 

broach tool is fixed. The latter is made of high-speed steel and is 1600mm long, yet divided in 16 separate 

sectors with 10 teeth each thus resulting in a 10mm tool pitch. The chain maximum speed is 11.41 m/min 

corresponding to a production rate of 2200 pc/h.  

The machine is quite flexible and the workpieces that can be machined may vary to a certain extent: in the 

tests performed, lock-cylinders made of a brass alloy, 39.35mm long and with a 14mm diameter have been 

targeted. Being the first laboratory test performed on the (unknown) machine, a redundant sensor setup was 

arranged, with 4 triaxial accelerometers placed on the machine basement, almost equidistant along the entire 

length of the tool (Fig. 1). It is worth observing that for practical implementation in industry, a highly 

simplified setup would be required for the sake of overall cost sustainability (e.g. up to 2 single-axis sensors 

at most). The signals were measured with sampling frequency Fs = 8192 Hz for a duration Tₛ = 30 s; all the 

measurements were repeated three times for the sake of data reliability. 

The tests were carried out in many different operating conditions in order to possibly better interpret the 

experimental data. In this paper, for the sake of synthesis, only the underlined conditions in the following 

list will be referred to: 

 transmission chain velocity:  

o 10.37m/min (production rate 2000pc/h); 

o 94.70m/min (1826pc/h); 

 carriers loaded with workpiece: 

o all the carriers (real operating condition); 

o no carrier (in order to get the vibration signature of the machine in no-load condition); 

o just one carrier; 

o two consecutive carriers; 

o 8 carriers (in the sequence: loaded-empty-loaded-empty-…); 

 tool condition: 

o healthy, i.e. no faults, hereinafter conventionally referred to as NF; 

o 1 broken tooth, F1 (the first tooth of the fifteenth broach segment was removed, Fig. 2a); 

o 3 broken teeth, F2 (the first 3 teeth of the fifteenth broach segment were removed, Fig. 2b).  
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Figure 1: Machine front view and sensors locations (P1 – P4). 

 

 

(a) (b) 

Figure 2: Induced tool fault: one tooth broken (a), three teeth broken (b). 

3 Signal processing and results  

Preliminary analyses to check data repeatability and to understand physical events in the machine 

functioning whose effects are visible in the vibration signals were performed considering NF tool health 

state and the combination of the conditions non-underlined in the list of Section 2. The results are not 

discussed in this report.  

Focusing on the comparison of NF vs. F1 and F2 tool states, three kinds of analysis are reported and the 

corresponding results discussed in this Section. In particular, the very standard technique used at first and 

based on Time-, Frequency-, and Time-Frequency domains analyses of the measured signals did not provide 

any evidence of fault presence (Section 3.1). Hence, limited signal blocks were properly extracted from the 

measures and the investigation of their mutual correlations was performed (Section 3.2), leading to 

promising results. Finally, based on the latter, the analysis of cross-correlations was enforced through the 

implementation of classification algorithms based on Machine Learning (Section 3.3). 

3.1 Analysis-1: standard processing of measured accelerations 

The occurrence of severe damages was expected to alter considerably the dynamic response of the machine, 

possibly exciting to a certain extent the first mode(s) of the structure due to impact-like contact of the 

workpiece with the first healthy tooth remained after the removal of 1 (F1) or 3 (F2) teeth, resulting in a 

higher level of vibration. On the contrary, based on all the standard analyses performed (statistical 

parameters calculation, analyses of the Fourier and Short-Time-Fourier Transforms…), even in the extreme 
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case F2 the vibration signature retrieved at the machine basement proved basically identical to the NF one. 

As an example, Table 1 reports the RMS values of all the signal acquired for the two conditions NF and F2, 

showing that no discrimination can be reliably done based on the vibration severity. In Fig. 3, still as an 

example, the timeseries of signal P4Y, being P4 the position closest to the damage, are plotted: they clearly 

appear very similar. In particular, large amplitude peaks can be observed as dominating the machine 

response. These spikes are probably due to the impact between the cam-based mechanism for loading the 

workpieces on the carriers and the carriers themselves: indeed, their period is about 1.8s which corresponds 

to the feed rate when the machine is operated for a production of 2000 pc/h.  

Table 1: RMS values [g] of the signals computed for conditions NF and F2 

 P1X P1Y P1Z P2X P2Y P2Z P3X P3Y P3Z P4X P4Y P4Z 

NF 0.14 0.28 0.07 0.14 0.20 0.07 0.08 0.20 0.07 0.24 0.26 0.12 

F2 0.13 0.27 0.08 0.14 0.20 0.07 0.08 0.20 0.07 0.22 0.25 0.13 

% -4.3% -5.0% 2.7% 1.5% -1.5% 2.8% 1.2% -1.0% 1.4% -7.1% -1.2% 2.5% 

 

   

(a) (b) 

Figure 3: Signals acquired in healthy tool condition NF (a), faulty condition with three teeth broken F2 (b). 

The same conclusions hold true for all the other signals and signal parameters as well as for the spectral 

analyses, which are not reported here. The apparent insensitivity of the machine vibration levels with respect 

to the presence of faults may be reasonably due to the very high stiffness of the basement which has to 

guarantee strict machining tolerances and accuracy. Since an alternative setup arrangement was not possible 

(i.e. with sensors placed over the tool or on the moving parts), a different approach was investigated. 

The next step was trying to exclude the contribution of the large peaks in the computation of the statistical 

parameters by extracting the segments of signal between the spikes. As a result, 16 data blocks of a duration 

Tb  1.76s were extracted from the original signals for each channel and each test, and are conventionally 

named extracted blocks hereafter. Figure 4 shows the results of statistical analysis following this procedure 

(limited to channels in the Y direction). In particular, the RMS and kurtosis values are reported as the 

arithmetic mean of the parameters computed for each block extracted from an acquisition; the corresponding 

standard deviation σ is also reported through vertical segments indicating ±σ intervals, which proves the 

data repeatability and thus an acceptable reliability of results (as also shown in Fig. 5 where, as an example, 

the 16 PSDs of the extracted blocks are basically superimposed). In Fig. 4 it can be perceived that no big 

differences can be observed when moving from condition NF to condition F2, that is to say the introduction 

of the fault does not affect significantly the statistical parameters computed even neglecting the dominant 

peaks of the entire acquisition. Unfortunately, the comparison of the PSDs computed as average over the 16 

extracted blocks for a given acquisition (resolution f = 1/ Tb  0.57Hz), is not able to reveal any difference 

neither in the Frequency domain (e.g. see the PSDs of P4Y extracted blocks in Fig. 6).  
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(a) (b) 

  

(c) (d) 

Figure 4: Mean RMS value in NF (a) and F2 (b) conditions; mean kurtosis value in NF (c) and F2 (d) 

conditions for signals in Y direction (± standard deviation intervals are indicated by the green vertical bars). 

  

Figure 5: PSD of the 16 extracted blocks from channel P4Y in NF condition. 
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Figure 6: average PSD of channel P4Y extracted blocks, computed in different NF and F2 conditions. 

3.2 Analysis-2: signal cross-correlation 

Since the basic analysis techniques did not perform as expected, an exploratory approach based on the cross-

correlation functions and their statistical analysis was undertaken, based on idea of the authors who had met 

similar problems in a previous application [17]. In a few words, auto- and cross- correlations analysis 

performed for monitoring the possible presence of leaks in a water distribution pipeline had proven that the 

presence of faults would make the signal correlation functions more similar to the trend of the auto-

correlation of Gaussian white noise than in the case of healthy conditions (in particular as for the presence 

and distribution of spikes, which can be quantitatively evaluated through the kurtosis coefficient of the 

function signals). The processing followed five main steps: 

1. the repeatability of the extracted signal blocks was verified (Section 3.1); 

2. every entire acquisition was replaced with one representative extracted block, arbitrarily chosen as 

the one having the lowest RMS value; 

3. the representative extracted blocks were grouped in three classes, featuring the same direction of 

the corresponding channels that they were from; 

4. the cross-correlations between each representative extracted blocks belonging to the same group 

were computed; 

5. the statistical parameters of the cross-correlation functions were computed and compared. The most 

meaningful parameter proved to be the kurtosis coefficient, which is the only one feature that will 

be discussed in the following. 

A flowchart summarizing these steps as well as the combinations of signals used to compute the cross-

correlation functions is presented in Fig. 7. The process proposed above was repeated for both a NF and a 

F2 conditions so as to compute the corresponding percentage variation of the kurtosis values.  

Figure 8 shows the different plots of the normalized cross-correlation functions between representative 

extracted blocks from channels P1Y and P4Y, for NF and F2 conditions, respectively, whereas Fig. 9 reports 

the percentage variation of the kurtosis value for each combination of signal defined in Fig. 7 when moving 

from the NF condition to F2. Regarding Fig. 9, large positive increases of the kurtosis values can be observed 

when the fault is introduced, especially for the cross-correlation between sensors P1 and P4 in Y direction. 

This result makes sense as P1 and P4 are the sensors further apart and P4 is the closest one to the induced 

fault. As a consequence, it could be reasonably expected that the related signals features the lowest degree 

of similarity when the fault is introduced and therefore a significant change in the cross-correlation function. 

Percentage variations of kurtosis values computed for the cross-correlation functions are significantly large 

and positive in both the Y and Z directions and thus they might be targeted as a meaningful index for 

monitoring the broach tool health condition. It is worth noting that, unexpectedly, the kurtosis variation in 

the X direction – the same as the machining process flow – is completely different from the other ones. 
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Figure 7: Work flow of Analysis-2 procedure. 

  

(a) (b) 

Figure 8: Normalized cross-correlation functions of the representative extracted blocks for channel P1Y and 

P4Y in NF (a) and F2 conditions (b). 

3.3 Analysis-3: machine learning 

Given the promising results obtained at Section 3.2 yet aiming at more robust findings, the implementation 

of Machine Learning algorithms was undertaken. Based on the same previous work-flow, different 

combinations of signals were initially investigated in order to build the data-set for both the training and the 

test stages of the three tested algorithms, namely Random Forest, Support Vector Machine, and k-Nearest 

Neighbours. Regarding performance, usually the larger the training set the better the accuracy of the 

algorithm and therefore the cross-correlation functions were particularly suitable to get a significant size of 

the data-set. Nevertheless, from the huge amount of preliminary results (here not reported for obvious 

reasons), it turned out quite surprisingly that reducing the analysis to just one channel, namely P4X, allowed 

for increased accuracy and thus it was.the only one considered to compute features and feed the algorithms.  

The features were computed both for (i) the extracted blocks from the “physical” signal and (ii) the cross-

correlation functions of the 16 extracted blocks . Going into details, as the training set needs for 

“observations” of both conditions, the channel P4X coming from NF and F2 conditions were employed for 

building the training set. Hence, a total of 16 blocks were extracted from each signal and related one to 

another following the scheme shown in Fig. 10: every block was correlated with all the other blocks 

extracted from the same signal avoiding repetitions and auto-correlations, leading to a total number of 240 
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observations. Finally, the features were computed in different domains. A first set was computed directly 

on the cross-correlation functions while the second set was computed as the ratio between the parameters 

computed for each extracted block (“physical” time signals) following the same combinations of Fig. 10 – 

employed for the computation of the cross-correlation functions – in order to keep consistency in the feature 

space. The parameters computed on the segments came both from the Time domain (statistical parameters) 

and the Frequency domain (amplitude peak and corresponding frequency in the PSD). The feature vectors 

obtained for every observation were then labelled and fed into the classification stage as shown in Fig. 11. 

 

Figure 9: Percentage variation of the kurtosis value computed over the normalized cross-correlations. 

The algorithm selected as the most suitable for the present application is a k-Nearest Neighbour (kNN) with 

k equal to 10, distance set to Euclidean, weights being proportional to the distance and feature normalization. 

This algorithm is capable of categorizing objects based on the classes of their first k nearest neighbours in 

the dataset assuming that objects near each other are similar. Basically, the algorithm predictions assume 

that objects near each other are similar.  At first, the tests were conducted by comparing NF condition with 

the case F2 following the results obtained in Section 3.2. This was done in order to investigate a basic 

capability of the implemented procedure of detecting an induced fault even if being far from a real-world 

scenario. The features employed were basically Mean Absolute Deviation (MAD), Inter Quartile Range 

(IQR), Root Mean Square (RMS), Crest Factor (CF), Skewness and Kurtosis, Range, Amplitude Peak and 

the corresponding location and the mean normalized frequency. These features were computed on the cross-

correlations and on the extracted blocks (from the time signals) yet substituting the last two with the 

amplitude peak and the corresponding frequency of the PSD. Figure 12 shows the performance of the 

algorithm in the validation stage and test stage, respectively, by means of the so-called confusion matrices 

that give the specific accuracy for each class rather than the overall accuracy. Basically, the confusion matrix 

shows for each class the accuracy reached, usually called True Positive Rate (TPR), and the miss 

classification error called False Negative Rate (FNR). The rows of the confusion matrix correspond to the 

true class and the columns correspond to the predicted class. Diagonal and off-diagonal cells correspond to 

the percentage of correctly and incorrectly classified observations, respectively. A plot of both the training 

set and test set in the feature space limited to two dimensions (i.e. two features) is shown in Fig. 13 where 

the green points are associated with healthy state and the red ones with the fault presence. 

Finally, the proposed procedure was tested on the less severe damage condition, namely one tool tooth 

broken (F1). This was done with the purpose of simulating a real-world scenario and so checking the 

feasibility of the procedure as a real business option. Figure 14 shows the results obtained following the 

same procedure as before. As expected, the overall accuracy reached by the algorithm decreased, due to the 

rise of misclassified observations while keeping a high TPR for the faulty condition. 
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Figure 10: Scheme for computing the cross-correlation functions among the extracted blocks. 

 

Figure 11: Analysis-3 work flow 

 

  

(a) (b) 

Figure 12: Performance of the proposed procedure when comparing conditions NF and F2 for validation 

data (a) and test data (b). 
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(a) (b) 

Figure 13: Data sets used for training (a) and test (b) stages when comparing conditions NF and F2. 

  

(a) (b) 

Figure 14: Performance of the proposed procedure when comparing conditions NF and F1 for validation 

data (a) and test data (b). 

4 Conclusion 

This paper presented the investigation of experimental vibration signals in order to define a method for the 

assessment of tool condition. The basic techniques have proven ineffective to detect a faulty condition from 

the accelerometer signals and consequently an alternative approach was undertaken. Specifically, the 

kurtosis value of the cross-correlation functions computed among limited data blocks properly extracted 

from the overall time signals acquisitions led to good results, showing a large increase with respect to the 

broach healthy condition when a fault was artificially induced on some tool teeth. Morevoer, in order to 

reach higher accuracy and robustness a machine learning k-NN algorithm was implemented, validated and 

tested on data coming from different tests, while computing the features both on the above mentioned cross-

correlation functions and the time signals themselves. The experimental results showed high accuracy when 

trying to recognize observations associated with faulty conditions whereas the healthy state identification 

resulted in lower accuracy and this task keeps challenging. Hence, further investigations are needed in order 

to improve accuracy and robustness of the algorithm. 
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(a) (b) 

Figure 15: Data sets used for training (a) and test (b) stages when comparing conditions NF and F1. 

References 

[1] R. K. Mobley, An Introduction to Predictive Maintenance, Butterworth-Heinemann, 2002. 

[2] H. M. Hashemian, "State-of-the-Art Predictive Maintenance Techniques," IEEE Transactions On 

Instrumentation and Measurement, vol.60, no. 1, pp. 226-236, 2011. 

[3] D. Goyal, and B. S. Pabla, "Condition based maintenance of machine tools - A review," CIRP Journal 

of Manufacturing Science and Technology, no. 10, pp. 24-35, 2015. 

[4] Q. Butler, D.Stephenson, Y. Ziada, and S. A. Gadsden, "Condition Monitoring of Machine ool Feed 

Drives: A Review," Journal of Manufacturing Science and Engineering, vol. 144, no. 10, 2022. 

[5] P. Jia, Y. Rong, and Y. Huang, "Condition monitoring of the feed drive system of a machine tool based 

on long-term operational modal analysis," International Journal of the Machie Tools and 

Manufacture, vol. 146, 2019. 

[6] W. Lee, J. Lee, M. S. Hong, S-H. Nam, Y. Jeon, and M. G. Lee, "Failure Diagnosis System for a Ball-

Screw by Using Vibration Signals," Shock and Vibration, 2015. 

[7] X. Tiandong, S. Kehne, T. Fujita, A. Epple, and C. Brecher, "Condition Monitoring of Ball-Screw 

Drives Based on Frequency Shift," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 

1211-1219, 2020. 

[8] S. Schwendmann, Z. Amjad, and A. Sikora, "A survey of machine-learning techniques for condition 

monitoring and predictive maintenance of bearings in grinding machines," Computers in Industry, vol. 

25, 2021. 

[9] M. Iqbal, and A. K. Madan, "CNC Machine-Bearing Fault Detection Based on Convolutional Neural 

Network Using Vibration and Acoustic Signal," Journal of Vibration Engineering &Technologies, 

pp.1-9, 2022. 

[10] Y. Zhou, T. Tao, X. Mei, G. Jiang, and N. Sun, "Feed-axis gearbox condition monitoring using built-

in position sensors EEMD method," Robotics and COmputer-Integrated Manufacturing, vol. 27, pp. 

785-793, 2011. 

[11] S. Y. Liang, R. L. Hecker, and R. G. Landers, "Machining Process Monitoring and Control: The State-

of-the-Art," Journal of Manufacturing Science and Engineering, vol. 126, no. 2, pp. 297-310, 2004. 

CONDITION MONITORING 520



[12] G. Byrne, D. Dornfeld, I. Inasaki, G. Kettler, W. Konig, and R. Teti, "Tool COndition Monitoring 

(TCM) - The Status of Research and Industrial Application," CIRP Annals, vol. 44, no. 2, pp. 541-

567, 1995. 

[13] A. G. Rehotn, J. Jiang, and P. E. Orban, "State-of-the-art methods and results in tool condition 

monitoring: a review," The International Journal of Advanced Manufacturing Technology, vol. 26, 

pp. 693-710, 2005. 

[14] N. Ambhore, D. Kamble, S. Chinchanikar and V. Wayal, "Tool condition monitoring system: A 

review," in Proceedings of the 4th International Conference on Materials Processing and 

Characterization, 2015, pp. 3419-3428. 

[15] D. A. Axinte, and N. Gindy, "Tool condition monitoring in broaching," WEAR, no. 254, pp. 370-382, 

2003. 

[16] P. J. Arrazola, J. Rech, R. M'Saoubi, and D. Axinte, "Broaching: Cutting tools and machine tools for 

manufacturing high quality features in components," CIRP Annals - Manufacturing Technology, vol. 

69, pp. 554-577, 2020. 

[17] A. Martini, A. Rivola, and M. Troncossi, "Autocorrelation Analysis of Vibro-Acoustic Signals 

Measured in a Test Field for Water Leak Detection," Applied Sciences, vol. 8, 2018. 

CONDITION MONITORING 521


