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Brain-computer interfaces (BCIs) are being investigated as an access pathway

to communication for individuals with physical disabilities, as the technology

obviates the need for voluntary motor control. However, to date, minimal

research has investigated the use of BCIs for children. Traditional BCI

communication paradigms may be suboptimal given that children with

physical disabilities may face delays in cognitive development and acquisition

of literacy skills. Instead, in this study we explored emotional state as an

alternative access pathway to communication. We developed a pediatric

BCI to identify positive and negative emotional states from changes in

hemodynamic activity of the prefrontal cortex (PFC). To train and test the

BCI, 10 neurotypical children aged 8–14 underwent a series of emotion-

induction trials over four experimental sessions (one o	ine, three online) while

their brain activity was measured with functional near-infrared spectroscopy

(fNIRS). Visual neurofeedback was used to assist participants in regulating their

emotional states and modulating their hemodynamic activity in response to

the a�ective stimuli. Child-specific linear discriminant classifiers were trained

on cumulatively available data from previous sessions and adaptively updated

throughout each session. Average online valence classification exceeded

chance across participants by the last two online sessions (with 7 and 8 of

the 10 participants performing better than chance, respectively, in Sessions

3 and 4). There was a small significant positive correlation with online BCI

performance and age, suggesting older participants were more successful at

regulating their emotional state and/or brain activity. Variability was seen across

participants in regards to BCI performance, hemodynamic response, and

discriminatory features and channels. Retrospective o	ine analyses yielded

accuracies comparable to those reported in adult a�ective BCI studies using

fNIRS. A�ective fNIRS-BCIs appear to be feasible for school-aged children,

but to further gauge the practical potential of this type of BCI, replication

with more training sessions, larger sample sizes, and end-users with disabilities

is necessary.
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1. Introduction

Early intervention with alternative and augmentative

communication (AAC) is crucial to mitigate challenges faced by

children with complex communication needs in their cognitive,

social, and educational development (Romski et al., 2015).

However, for children with cerebral palsy, neurodegenerative

disorders or traumatic brain injuries, severe motor impairments

can affect their ability to access AAC devices (Tai et al., 2008).

Most current alternate access options (i.e., mechanical and

proximity switches, adapted trackpads) still require some degree

of voluntary physical movement, making them fatiguing or

unreliable for those with significant disabilities (Myrden et al.,

2014). More recent advances in alternate access technologies,

such as eye gaze devices, head trackers, and custom sensors

for detecting reproducible patterns in limb movements or

vocalizations, are not yet reliable across a wide range of

environments and situations (Myrden et al., 2014).

Recently, brain-computer interfaces (BCIs) have attracted

attention as an AAC technology given their ability to delineate

communicative intent of the user through the direct monitoring

and analysis of brain activity, avoiding the need for voluntary

motor control (McFarland and Wolpaw, 2011; Tabar and

Halici, 2016). Brain-computer interface systems employ signal

processing algorithms to extract relevant features from acquired

brain signals, and then generate classification models to decode

intent or brain state information in real-time (McFarland and

Wolpaw, 2011). Despite recent advancements in the field,

most BCI research to date has focused on typically developing

adults with little work done to investigate the suitability of

BCIs for children (Moghimi et al., 2013; Orlandi et al., 2021;

Karlsson et al., 2022). Further, many BCI systems designed

for communication employ interfaces for spelling (e.g., BCI

spellers based on the P300 paradigm, Rezeika et al., 2018), which

may not be suitable for children with physical disabilities and

concomitant delays in language and cognitive development.

Alternatively, emotions underlie many of our basic needs,

wants, and preferences, and are closely linked to cognition and

memory (LeDoux, 2000). If emotional states can be accessed

through a BCI, they could provide a pathway to communication

that circumvents the need for words or other developed

literacy skills. To design a BCI controlled by emotional states,

we require a model of the underpinning neurophysiological

processes that produce them. Traditionally, emotions have

been modeled as discrete entities, each hypothesized to have

their own distinct physiological “fingerprint,” such as happiness

or anger (Feldman Barrett, 2006). However, a growing body

of research has demonstrated a vast amount of variation in

these physiological templates across individuals and situations

(Hamann, 2012), necessitating a new approach to modeling

emotions. The dimensional model of emotion (Russell, 1980)

instead postulates that any emotional state falls within two

fundamental dimensions: valence, the degree of pleasantness

of an emotion, and arousal, the degree of activation of an

emotion. While the dimensional model effectively captures the

description of an emotional “feeling,” it does not necessarily

explain how these states are generated within the brain (Mühl

et al., 2014). Appraisal models provide such a hypothesis; that

our experience of emotion arises due to systematic “checks”

within cognitive networks of our brains to assess and evaluate

the relevance, significance, and implications of a perceived

stimulus (Scherer, 2005).

Fitting with dimensional and appraisal models, meta-

analyses of neuroimaging studies have demonstrated that large

functional networks are responsible for emotion processing

in the brain, opposed to the simple “one-to-one” mapping of

brain structures typically associated with discrete models of

emotions (Hamann, 2012). After exposure to a stimulus, limbic

neural structures such as the amygdala, the orbitofrontal cortex

(OFC), and the anterior insula integrate the incoming sensory

information with any associated memories of the stimulus

to evaluate its context and assign an emotional value. From

the amygdala, signals are distributed to the hypothalamus

and brainstem, where autonomic and endocrine response

are directed. There are also extensive connections between

these limbic structures and parts of the PFC, where higher-

level cognitive processes are activated in response to the

contextualized emotional stimulus (Davidson, 2002).

It is the activation of the PFC in emotion processing

that would allow emotions to be accessed in non-invasive a

BCI, as other limbic structures are located too deep inside

the skull for superficial detection by portable neuroimaging

modalities (Mühl et al., 2014). The PFC is essential for

evaluating the emotional significance of a stimulus, interpreting

and regulating emotional experience, and directing subsequent

behaviors (Dixon et al., 2017; Hiser and Koenigs, 2018). The PFC

evaluates the core affect of a stimulus—whether it is rewarding

or threatening, and if it should therefore be approached or

avoided (Feldman Barrett et al., 2007; Dixon et al., 2017;

Hiser and Koenigs, 2018). The OFC evaluates incoming sensory

information and appraises personal episodic memories related

to the stimulus (Feldman Barrett et al., 2007; Dixon et al.,

2017). The ventromedial prefrontal cortex (vmPFC) is divided

into several substructures that perform a range of functions

including directing autonomic changes in physiological arousal,

interpreting such autonomic changes to construct subjective

“feelings” of emotions, the appraisal of emotional states of

others, and directing behavioral actions during emotional

responses (Dixon et al., 2017; Hiser and Koenigs, 2018). The

lateral prefrontal cortex, including the dorsolateral (dlPFC) and

ventrolateral (vlPFC) prefrontal cortex broadly is involved in

directing emotional regulation, or the conscious manipulation

of an emotional response according to a desired goal (Ochsner

et al., 2009; Dixon et al., 2017).
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Brain-computer interfaces that seek to detect and interpret

emotional states are known as affective BCIs (Mühl et al., 2014).

Many existing affective BCI studies have attempted to decode

emotional states from electrical brain activity, as measured

non-invasively from the scalp using electroencephalography

(EEG) (Torres P et al., 2020). These studies vary significantly

in methodology, from the way emotions are defined and how

emotional responses are elicited, to what features of the EEG

are extracted and the algorithms used to optimize and classify

these features into categorical emotional states (Mühl et al.,

2014). Thus, unsurprisingly, existing affective BCI studies report

a wide range of results and levels of performance (classification

accuracies ranging from 50% to 90%) (Torres P et al., 2020).

The majority of recent studies (77%) have focused on the

development of novel classification pipelines, using existing

publicly available datasets of EEG recordings generated during

emotion-induction tasks to support their research (Torres

P et al., 2020). There is also a growing trend to employ

deep learning methods like neural networks, although linear

discriminant classifiers remain quite popular (Torres P et al.,

2020). The generalizability of such methods—use of a static

dataset for classifier training and classification models that may

obfuscate underlying neurophysiological phenomena—must be

verified in future work (McFarland et al., 2017; Torres P et al.,

2020).

Functional near-infrared spectroscopy (fNIRS) is an

alternative signal acquisitionmodality that has been increasingly

used in the functional mapping of brain activity (Hoshi, 2003),

including the imaging of prefrontal cortical activation in

emotion processing in adults (Doi et al., 2013) as well as

infants (Maria et al., 2018). Because of its relative comfort and

robustness to motion artifacts compared to EEG (Hoshi, 2003),

fNIRS is particularly suited for exploring BCI solutions for

pediatric users. Functional near-infrared spectroscopy uses light

in the near-infrared range (~700–1,200 nm) to measure cerebral

hemodynamic activity. Near-infrared light is transmitted from

a light source (e.g., LED, laser) through the tissues of the head

and scalp and is absorbed by oxygenated and deoxygenated

hemoglobin (HbO and Hb) in cerebral blood. Unabsorbed light

is scattered throughout the cerebral tissue, reflected back out

of the head, and measured by detectors on the scalp (Gratton

et al., 2003). Change in concentration of oxygenated and

deoxygenated hemoglobin (1[HbO] and 1[Hb]) is calculated

using a modified version of the Beer-Lambert law (Coyle et al.,

2007; Scholkmann et al., 2014), and can be considered an

indirect measure of neuronal activation: neuronal activity in

a region of the brain increases the metabolic demands of that

area, stimulating an increase of blood flow to the brain and

resulting in an overall increase in [HbO] and a decrease in

[Hb] (Hoshi, 2003; Coyle et al., 2007; Scholkmann et al., 2014).

Functional near-infrared spectroscopy is capable of imaging

depths of about 1–2 cm into the scalp, penetrating the cortical

surface, making it a viable option for investigating the activation

of the PFC in emotion processing (Doi et al., 2013; Bendall et al.,

2016).

Several studies have investigated fNIRS as a signal

acquisition modality for affective BCIs. Tai and Chau (2009)

were the first to attempt single-trial classification of emotional

state from cerebral hemodynamic activity, and were able

to discriminate emotion-induced brain activation from a

neutral state with at least 75% accuracy. Hosseini et al.

(2011) and Moghimi et al. (2012), differentiated positive and

negative emotional states induced by affective images and

music excerpts, respectively. Heger et al. (2014) were able

to discriminate emotions on the dimensions of both valence

and arousal at rates significantly above chance. Yanagisawa

and Tsunashima (2015) found that BCI classification accuracy

correlated with the intensity of an individual’s emotional

reactions to stimuli, and Hu et al. (2019) investigated the

discrimination of different types of positive emotions.

An online interface has also been designed where users

could interact with a virtual character through positive

emotions (Aranyi et al., 2016) or anger (Aranyi et al.,

2015). In a series of studies, Trambaiolli et al. used fNIRS

to differentiate emotional states both passively (viewing

emotionally salient images) and actively (self-generating

emotional memories), both offline (Trambaiolli et al., 2018b)

and exploring the effects of online neurofeedback (Trambaiolli

et al., 2018a).

All these reviewed studies were conducted with a population

of neurotypical adults and all but three were conducted offline,

meaning that BCI performance was evaluated retrospectively,

without providing immediate feedback of system control, and

without evaluating the generalizability of classification pipelines

to new, unseen data. In this paper, we describe for the first

time the development, training, and testing of a pediatric

fNIRS BCI system to predict emotional valence in school-

aged children from their cerebral hemodynamic activity in

real-time, with the goal of determining the feasibility of

an affective BCI as an access pathway to communication

for children.

Participants attended four study sessions, the first to

collect data for initial training and development of the

BCI, then the remainder to evaluate the BCI system

online. In each session, participants underwent a series of

emotion-induction trials while their hemodynamic activity

was measured using fNIRS. The collected hemodynamic

signals were labeled and used to train and test a classifier

to recognize emotional valence. During the online

sessions, the BCI classified emotional states in real-time

and participants were presented with visual feedback

representing the real-time emotional state predictions.

Brain-computer interface performance was evaluated through

the percentage of correct classification of emotional states

in real-time (accuracy) as well as classifier sensitivity

and specificity.
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2. Methodology

2.1. Participants

Ten neurotypical children (three male) between the ages

of 8 and 14 years (mean 11.5±1.75 years) were recruited for

this study. Participants were screened for any neurological,

psychological, cardiovascular, or respiratory conditions, as well

as for any history of brain injury or emotional trauma. The

study received approval from the respective research ethics

boards of Holland Bloorview Kids Rehabilitation Hospital

and the University of Toronto, Toronto, Canada. Written

consent/assent was obtained from all participants or their

parent/guardian.

2.2. Instrumentation

Cerebral hemodynamic activity was measured using the

Hitachi ETG-4000 NIRS system (Hitachi Medical Systems,

Tokyo, Japan). A 3 × 5 grid of eight light emitters and seven

light detectors was secured over the PFC using a custom-made

headpiece, with the bottom row of optodes sitting just above

the eyebrows and centered at the nose. Detectors 11 and 12

(Figure 1) were approximately aligned with the Fp1 and Fp2

sites of the 10–20 International System of electrode placement

and the top row were approximately aligned with the F5–Fz–F6

sites (Schudlo and Chau, 2015). Each emitter and detector were

separated by 3 cm, corresponding to a measurement depth of 2–

3 cm (Okada et al., 1997; Haeussinger et al., 2011), reaching the

cortical surface (Coyle et al., 2004b). This arrangement resulted

in 22 integrated channels, as indicated in Figure 1. Data were

sampled at 10 Hz.

2.3. Experimental protocol

2.3.1. Session structure

A single session was comprised of five blocks of emotion

induction trials (Figure 2). Each block began with a 30-s baseline

recording. Then for each trial, a set of emotional stimuli was

presented for a 20-s response period (Coyle et al., 2004b). All

stimuli used for a single trial were matched for valence and

arousal. A prompt on the screen labeled each trial as “positive” or

“negative,” confirming for the participants the intended valence.

For the initial offline session, the participants were instructed

to react naturally to the stimuli. For the online sessions, the

participants were instructed to use the provided visual feedback

as a guide to help strengthen their emotional response. Each

response period was punctuated by a 20-s rest period, allowing

hemodynamic activity to return to baseline levels (Schudlo and

Chau, 2015; Weyand et al., 2015a). There were 12 trials within

one block, for a total of 60 trials (30 positive, 30 negative) in one

session. For the online sessions, the classifier was re-trained after

each block. When a block was completed, participants would

self-select when to proceed, allowing for an optional short break.

Each session took approximately 40–50 min to complete.

2.3.2. A�ective stimuli

Bimodal stimulation has been shown to enhance brain

activation in emotion processing (Baumgartner et al., 2006),

so the affective stimulus set included both visual and auditory

stimuli presented simultaneously. The visual stimuli consisted

of pictures drawn from three standardized databases: the

International Affective Pictures System (IAPS), the Geneva

Affective Pictures Database (GAPED), and the Open Affective

Standardized Image Set (OASIS). These databases are collections

of color photographs from a wide range of semantic categories

that have been reproducibly rated on their affective quality on

scales of valence and arousal (Lang et al., 2008; Dan-Glauser

and Scherer, 2011; Kurdi et al., 2017), and reliably evoke

emotional responses in children (McManis et al., 2001; Sharp

et al., 2006; Hajcak and Dennis, 2009). The selection of pictures

was personalized for each participant. The auditory stimuli

consisted of 20-s excerpts of music, chosen from modern genres

to ensure high saliency for the pediatric population. Excerpts

were sampled without lyrics to reduce potential brain activation

due to mental singing, and were rated by a music therapist

for valence and arousal based on their tempo and mode (Dalla

Bella et al., 2001; Nieminen et al., 2011). The stimulus set for a

single trial was composed of one 20-s musical excerpt and five

affective images, matched for valence and arousal. Each image

was displayed for 4-s each, while themusic excerpt played. Either

a positively- or negatively-valenced set of stimuli was presented

for each trial, in a counter-balanced and pseudo-randomized

order. For the 20-s rest period, a clip of brown noise was played,

and five neutral images were displayed as a control stimulus.

2.3.3. Visual neurofeedback

Visual neurofeedback was provided for the online sessions,

in the form of a vertical bar that filled with color according

to the predicted valence of the response (Figure 3). Each trial

started with the bar at a neutral middle position and would

rise in height if the response was predicted to be positive and

lower in height if the response was predicted to be negative.

Participants were instructed to try to raise or lower the height

of this bar as much as possible over the 20-s trial response

period, according to the prompted valence of that trial. The BCI

would process, analyze, and classify 2-s segments of real-time,

incoming data, and update the height of the feedback bar based

on the classification output. The specific height of the feedback

reflected the probability that the incoming signal segment

belonged to either the positive or negative emotional valence

class. The BCI would analyze each segment cumulatively; that
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FIGURE 1

fNIRS optode configuration over the prefrontal cortex. (Left) The eight light sources (red) and seven light detectors (blue) were arranged in a 3 ×

5 grid over the forehead, resulting in 22 channels (black and white squares). (Right) The optodes, mounted in the headpiece and placed over the

forehead.

FIGURE 2

Overview of session structure. Each of the five blocks began

with a 30-s baseline recording, followed by 12 trials. A trial was

composed of a 20-s response period of stimulus presentation

and a 20-s rest period. For the online sessions, the classifier was

retrained after each block.

is, the first classification output would be based on the first

two seconds of the response period, the second would be based

on the first 4-s, and so on until the classification of the entire

20-s signal.

2.3.4. Questionnaires

At the end of each session, participants answered a short

questionnaire about their subjective experience, which included

questions on their mood, fatigue, and perceived effort and

frustration throughout the session. Participant temperament,

which can affect the experience and ability to regulate emotions

(Rothbart, 2007), was also assessed, using the parent-reported

version of the Early Adolescent Temperament Questionnaire

(EATQ), developed by Capaldi and Rothbart (1992) and

validated by Muris and Meesters (2009).

2.4. Data analysis

2.4.1. Signal processing

Physiological noise sources contaminating the

hemodynamic signal include cardiac activity (0.8–1.2 Hz),

respiration (0.2–0.4 Hz), and Mayer waves, or fluctuations due

to arteriole pulsations (0.1 Hz)(Coyle et al., 2004a; Scholkmann

et al., 2014; Naseer and Hong, 2015). These were removed from

the signal using a third order type II Chebyshev low-pass infinite

impulse response (IIR) filter with a passband of 0–0.1 Hz, a

transition band of 0.1–0.5 Hz, and a stopband cut-off frequency

of 0.5 Hz, with a ripple of 0.1 dB and a minimum attenuation

of 50dB (Schudlo and Chau, 2015; Weyand et al., 2015a). The

mean of the 30-s baseline recording for each block was also

computed and subtracted from subsequent trials in that block

(Rezazadeh Sereshkeh et al., 2019).

2.4.2. Feature extraction and selection

Seven features capturing the morphology of the temporal

hemodynamic signal were investigated as potential feature

types—mean, slope, moving slope (4-s window, 0.5-s overlap),

variance, root mean squared (RMS), skewness, and kurtosis

(Naseer and Hong, 2015). These features were calculated over

the entire 20-s trial response period, for each of the two

chromophores ([HbO] and [Hb]) and each of the 22 channels.

Time-frequency feature (i.e., from wavelet decomposition) were
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FIGURE 3

Screenshots of experimental interface. Each row shows three screenshots, taken at 4, 12, and 20-s of an emotion-induction (or rest) trial. The

top, middle, and bottom rows show a positive trial, rest period and a negative trial, respectively. Each screenshot shows the stimulus image

being presented at that time in the trial, the valence prompt above it, and the feedback bar on the right. Stimulus images were taken from the

IAPS (Lang et al., 2008), GAPED (Dan-Glauser and Scherer, 2011), and OASIS (Kurdi et al., 2017) a�ective image databases. For the positive trial,

the feedback bar is green and increasing in height, representing an increasing probability the incoming signal belongs to the positive class as the

trial proceeds. Similarly, the feedback bar is red and decreasing in height for the negative trial, indicating an increasing probability that the

incoming signal belongs to the negative class as the trial proceeds. The rest trial has no visual feedback.

also considered, but were found in prior work to offer only

marginal value when used in combination with temporal

features compared to temporal features alone (Tai and Chau,

2009). Lateral asymmetry features, comparing the difference in

the hemodynamic signal between the right and left sides of the

PFC, were also investigated but found to not be discriminatory

in preliminary study analyses. The seven feature types were

tested individually for each participant using the data collected

from their first session. The most discriminatory feature for each

participant, i.e., the feature generating the highest classification

accuracy after 10 iterations of 10-fold cross-validation, was then

used to train the classifiers for their upcoming online sessions.

Two chromophores and 22 channels yielded a feature set of

44 features. A 44-dimension feature set was considered too

large for the amount of data that could be collected within a

single session (n = 30 each class) (Jain et al., 2000; Kudo and

Sklansky, 2000). A sequential forward floating search (SFFS)

algorithm was used for feature set dimensionality reduction,

selecting the five best channels for each chromophore, resulting

in a subset of 10 features. Sequential forward floating search

systematically searches through the available features to create

an optimal subset, adding the best l features and removing

the worst r features each iteration based on a fitness criterion

(Pudil et al., 1994). The Fisher criterion was used as the fitness

criterion; refer to Power et al. (2011) and Schudlo and Chau

(2014) for more information on this method. Feature selection

was performed on the partitioned data—that is, the “test” fold

was excluded from feature selection and used only to evaluate

classifier performance.

2.4.3. Classification

A linear discriminant analysis classifier (LDA) was used

to differentiate the acquired hemodynamic signals based on

emotional valence. Linear discriminant analysis is a commonly

used classification algorithm for online BCI applications due

to its speed and low computational cost (Nicolas-Alonso

and Gomez-Gil, 2012). Linear discriminant analysis involves

defining a linear decision boundary that separates the data into

two classes, maximizing the distance between the class means

whileminimizing the variance within each class (Nicolas-Alonso

and Gomez-Gil, 2012).

2.4.4. Online classifier retraining

A classifier was trained for each participant using their

most discriminatory feature (chosen from their first session

results) and was then used to predict emotional valence in
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FIGURE 4

Data analysis pipeline for online sessions.

real-time during the online session (Figure 4). This classifier

was retrained after each block of trials within each online

session, as classifier performance has been shown to improve

with the incorporation of same-day training data (Power et al.,

2012; Rezazadeh Sereshkeh et al., 2019). Retraining involved

running all collected data through the data analysis pipeline,

selecting five new “best channels” for each chromophore, and

then training a new LDA classifier. After each online session, the

classifier was updated to incorporate all existing data from all

completed sessions.

3. Results

3.1. Online session results

For the online sessions, BCI performance was evaluated

based on accuracy of real-time predictions. A correct

classification was tallied if the predicted classification matched

the valence of the stimuli for that trial. Accuracy was defined as

the percentage of correct classifications out of all classifications

made. The average classification accuracy for each participant

for each online session can be seen in Figure 5 and broken

down by block in Table 1. All participants achieved session-wide

average accuracies exceeding chance, as estimated according

to Müller-putz et al. (2008) and Combrisson and Jerbi (2015),

for at least one of the three online sessions, and 8 of the 10

participants exceeded chance level for two of the three online

sessions. None of the participants exceeded chance level for all

three online sessions.

BCI performance tended to improve throughout a single

session: on average, the last block of each session was more

accurate than the first block of that session (e.g., meanS2,B1

= 55.8% and meanS2,B5 = 66.7%). However, these differences

were not found to be significant based on a two-tail t-test. As

more same-day data were accumulated and used to retrain the

classifier, it is expected that accuracy will improve (Power et al.,

2012). In the present study, session length was limited to five

blocks to prevent fatigue among the pediatric participants.

There was also a trend of improvement in performance

across the three online sessions (meanS2 = 56.7%, meanS3 =

60.7%, meanS4 = 61.3%). Only 30% of participants exceeded

chance-level accuracies for the first online session, while 70%

and 80% participants exceeded chance for the second and third

online sessions, respectively. A one-way ANOVA of the average

classification accuracies did not reveal a significant difference

across the sessions (p = 0.38, Shapiro-Wilk test for normality).

This could be attributed to the fact that some participants

exhibited anomalous performance in one of their sessions

(e.g., Participants 2 and 3), deviating from the overall trend

of improvement.

Online classification sensitivity, which refers to the correct

classification of emotion-induction trials with positive valence,

averaged at 59.7%±12.7% across all participants and online

sessions. Sensitivity scores can be found in Figure 6. 20%

of participants achieved above-chance sensitivity scores in

the first online session, but 50% achieved above-chance

sensitivity scores in the second and third online sessions.

With the exception of P6, all participants who achieved

above-chance sensitivity scores in the first or second online

session also achieved above-chance scores in the third

online session.

Average online classification specificity, which refers to the

correct classification of negatively-valenced emotion induction

trials, was observed to be 59.4%± 13.4% across participants and

sessions. 60% of participants achieved above-chance specificity

scores for the first two online sessions, although were not all

the same participants, and 70% of participants achieved above

chance scores for the final online session. Two participants

achieved above-chance scores for all three online session.

Specificity scores can be found in Figure 7.

Total frequency of each channel selected for use after

the feature selection step of the classification pipeline is

shown in Figure 8, across all participants and sessions.

Discriminatory channels varied across participants but

were selected bilaterally, and most frequently selected over

areas corresponding approximately to the ventrolateral and

dorsolateral prefrontal cortices.
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FIGURE 5

Average classification accuracies for each online session. The horizontal line represents the 95% confidence level threshold for the first online

session (based on n = 60 emotion-induction trials). Note that the 95% confidence level threshold drops down from 60% to 58% and 57% with

each session as the amount of cumulative data increases (Müller-putz et al., 2008; Combrisson and Jerbi, 2015). Accuracies exceeding the

upper limit of the 95%, 99%, and 99.9% confidence intervals of chance are marked with *, **, and ***, respectively.

3.2. Interparticipant variability

3.2.1. Hemodynamic response

Figure 9 shows the trial-averaged hemodynamic response

function (HRF) for both 1[HbO] and 1 [Hb] for a single

participant, P4, for the first two sessions. The response

signal from each measurement channel is shown mapped

according to its position over the forehead. A clear distinction

can be seen between the positive and negative response

for both chromophores in both sessions. However, the

responses vary across different session days. Figure 10 shows

the trial-averaged HRFs for just 1[HbO] for P2 for all

four sessions. Once again, variability in the response can be

seen across the different sessions. Interestingly, the HRF for

session 3 appears visually dissimilar from sessions 1 and 2,

which could possibly account for the reduced classification

accuracy achieved in that session. Similar patterns were

seen for the other participants as well. Further analysis

is needed to quantify this intersession variability in the

hemodynamic response.

3.2.2. Mental state

At the end of each session, participants were asked to

complete a questionnaire assessing their mental state before,

during, and after the session in terms of alertness/fatigue,

mood, effort, and frustration. At the group level, there

were no significant correlations between these factors and

BCI performance. However, trends linking mental state and

BCI performance on different sessions days were observed

individually. For example, P4 experienced the greatest amount

of fatigue during their session with their poorest BCI

performance and experienced the least fatigue during their

highest-scoring session, suggesting that their level of fatigue

may have contributed to their ability to use the BCI effectively.

Some work has already been done to investigate the effects

of mood and fatigue on BCI performance (Myrden and

Chau, 2015), this should be extended to pediatric populations

as well.

3.2.3. Age

Figure 11 shows greater-than-chance level online

classification accuracies grouped by age. A significant positive

correlation was found between online BCI performance and

age for statistically accurate online sessions (r = 0.63, p = 0.03).

Three of the highest performers (P5, P7, and P8) were the three

oldest participants, all at least 13 years old. The two lowest

performers (P1 and P9) were two of the youngest participants,

at ages 8 and 10.
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TABLE 1 Online classification accuracies for each session, broken down by block (B1–B5).

Block Participant

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg

Session 2

B1 41.7 41.7 66.7** 33.3 75.0*** 58.3 58.3 33.3 50.0 41.7 50.0

B2 58.3 83.3*** 66.7** 83.3*** 83.3*** 50.0 41.7 50.0 50.0 41.7 60.8*

B3 25.0 66.7** 66.7** 50.0 58.3 58.3 41.7 66.7** 50.0 75.0*** 55.8

B4 75.0*** 66.7** 66.7** 41.7 58.3 66.7** 25.0 66.7** 75.0*** 41.7 58.3

B5 83.3*** 83.3*** 50.0 41.7 66.7** 50.0 33.3 50.0 41.7 83.3*** 58.3

Avg 56.7 68.3** 63.3* 50.0 68.3** 56.7 40.0 53.3 53.3 56.7 56.7 ±16.2

Session 3

B1 66.7** 58.3* 41.7 50.0 50.0 50.0 41.7 75.0*** 75.0*** 50.0 55.8

B2 75.0*** 41.7 25.0 58.3* 58.3* 100.0*** 75.0*** 66.7** 75.0*** 58.3* 63.3**

B3 41.7 75.0*** 58.3* 50.0 58.3* 66.7** 83.3*** 75.0*** 41.7 66.7** 61.7**

B4 41.7 33.3 50.0 66.7** 58.3* 33.3 66.7* 58.3* 75.0*** 75.0*** 55.8

B5 58.3* 66.7** 50.0 83.3*** 83.3*** 75.0*** 75.0*** 83.3*** 33.3 58.3* 66.7**

Avg 56.7 55.0 45.0 61.7** 61.7** 65.0** 68.3*** 71.7*** 60.0* 61.7** 60.7* ±16.1

Session 4

B1 41.7 66.7** 75.0*** 75.0*** 41.7 33.3 58.3* 100.0*** 58.3* 58.3* 61.1*

B2 66.7** 66.7** 75.0*** 33.3 50.0 66.7** 83.3*** 83.3*** 66.7** 50.0 64.2**

B3 50.0 66.7** 91.7*** 83.3*** 66.7** 58.3* 58.3* 66.7** 33.3 50.0 62.5**

B4 66.7** 66.7** 16.7 50.0 41.7 66.7** 75.0** 58.3* 66.7** 58.3* 56.7

B5 66.7** 75.0*** 50.0 50.0 83.3*** 75.0*** 75.0*** 66.7** 66.7** 16.7 67.6***

Avg 58.3* 68.3*** 61.7*** 58.3* 56.7 60.0* 70.0*** 75.0*** 58.3* 46.7 61.3** ±17.2

Entire session averages are bolded. Accuracies exceeding the upper limit of the 95%, 99%, and 99.9% confidence intervals of chance are marked with *, **, and ***, respectively.

FIGURE 6

Average classification sensitivity for each online session. Sensitivity refers to the correctly classified positive emotion-induction trials out of all

positive emotion-induction trials. The horizontal line again represents the 95% confidence level threshold for the first online session. Sensitivities

exceeding the upper limit of the 95%, 99%, and 99.9% confidence intervals of chance are marked with *, **, and ***, respectively.
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FIGURE 7

Average classification specificity for each online session. Specificity refers to the correctly classified negative emotion-induction trials out of all

negative emotion-induction trials. The horizontal line again represents the 95% confidence level threshold for the first online session.

Sensitivities exceeding the upper limit of the 95%, 99%, and 99.9% confidence intervals of chance are marked with *, **, and ***, respectively.

FIGURE 8

Channel selection frequency across participants and sessions. (A) Channel selection frequency for 1[Hb] features. (B) Channel selection

frequency for 1[HbO] features. The bottom row corresponds to channels directly over the nose; channels 2 and 3 correspond approximately

with Fp1 and Fp2 of the 10/20 EEG standard montage.

3.2.4. Temperament

The parent-reported Early Adolescent Temperament

Questionnaire (EATQ) assessed participants’ temperament

along ten different dimensions: activation control, affiliation,

aggression, attention, depressive mood, fear, frustration,

inhibitory control, shyness, and surgency. Each question

on the EATQ was answered with a five-point Likert scale

and was categorized under one of the 10 dimensions. Mean

scores for each dimension were calculated by averaging

the responses for all the questions pertaining to that

dimension, resulting in a score from 1 to 5 for each of

the 10 dimensions. These scores were compared to online

BCI performance (classification accuracy, sensitivity, and

specificity) for each participant. No significant correlations

were found between BCI performance and any of the

temperament measures.
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FIGURE 9

Trial-averaged hemodynamic response functions (1[HbO] and 1[Hb]) for P4 for Sessions 1 and 2. (A) 1[HbO] for Session 1, (B) 1[HbO] for

Session 2, (C) 1[Hb] for Session 1, and (D) 1[Hb] for Session 2. The response function for each channel is shown mapped according to its

position over the forehead. The lighter shade (green) indicates the average of all positive trials, and the darker shade (red) indicates the average

of all negative trials from the respective session.

3.3. O	ine cross-validated classification
results

In addition to the real-time, online classification accuracies,

10 iterations of 10-fold cross-validation were used to

evaluate BCI performance offline. The resulting average

classification accuracies can be found in Table 2. Thirty-eight

of the forty sessions exceeded the 95% confidence level

of chance of 65% (Müller-putz et al., 2008; Combrisson

and Jerbi, 2015). Thirty-five of the forty exceeded the

99% confidence level, and fifteen of the forty sessions

exceeded the 99.9% confidence level. The average offline

classification accuracies across all participants was 78.4%±7.8%,

77.4%±3.7%, 76.7%±9.5%, and 76.9%±7.7% for sessions

1–4, respectively.

4. Discussion

4.1. Feasibility of a pediatric fNIRS
a�ective BCI

The results of this study suggest that it is possible to

discriminate emotional valence from hemodynamic activity

in children based on a bimodal emotion-induction task. Out

of all 40 sessions, there were only two where chance level

classification accuracies were not achieved in an offline 10-fold

cross-validation analysis. Average cross-validated classification

accuracies for each participant across their four sessions ranged

from 70.0% to 85.3% (mean 77.3%±7.2%). This study is the

first, to the authors’ knowledge, to investigate an affective

BCI for children using fNIRS, and the classification accuracies
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FIGURE 10

Trial-averaged hemodynamic response functions (1[HbO]) for P2 for all four sessions. (A) 1[HbO] for Session 1, (B) 1[HbO] for Session 2, (C)

1[HbO] for Session 3, and (D) 1[HbO] for Session 4. The response function for each channel is shown mapped according to its position over the

forehead. The lighter shade (green) indicates the average of all positive trials, and the darker shade (red) indicates the average of all negative

trials from the respective session.

achieved in this study are similar to those reported in affective

fNIRS-based BCI studies conducted in adult populations. The

average cross-validated classification accuracies are comparable

to studies with analogous classification tasks (i.e., discriminating

positive and negative valence), such as Hosseini et al. (2011)

(mean accuracy 70.6%) and Moghimi et al. (2012) (mean

accuracy 71.9%). Tai and Chau (2009) and Trambaiolli et al.

(2018b) achieved higher classification accuracies (mean 84.6%

emotion vs. neutral, and 89.9% positive vs. neutral, 81.5%

negative vs. neutral, respectively), although the classification

task in these studies was between a presumably more distinct

set of classes—i.e., emotional vs. a neutral/rest state, rather

than positive vs. negative. Heger et al. (2014) reported lower

classification accuracies, but were investigating the multi-class

discrimination of emotional arousal in addition to valence.

The study results also suggest that emotion prediction in

children in real-time may also be feasible using an fNIRS-

BCI. Every participant in this study had at least one session

where they were able to exceed chance-level classification

accuracies with online emotion prediction, and 8 of the 10

participants exceeded chance level for two of their three online

sessions. A trend of improvement in performance across online

sessions was observed, which could be due to enhanced classifier

performance from an increasing amount of training data or

participants becoming more familiar with emotional regulation.

Limited related work has explored online, real-time classification

of emotional states using fNIRS in adults. In Trambaiolli

et al. (2018a), participants self-regulated their emotional state

using real-time BCI classification output as visual feedback,

and a median of 70% classification accuracy distinguishing
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FIGURE 11

Classification accuracies in excess of chance for online sessions,

grouped by age. There is a moderate significant positive

correlation between age and BCI performance (r = 0.63, p =

0.03).

positive emotional states from neutral was observed with

just over half of their participants achieving this benchmark.

Aranyi et al. mapped affective features in the fNIRS signal to

facial expressions of a virtual character in an affective BCI-

neurofeedback study, and observed that participants were able

to successfully regulate their hemodynamic activity at a success

rate of about 50% for positive (Aranyi et al., 2016) and 67% for

negative emotions (Aranyi et al., 2015).

The ability to differentiate positive and negative emotional

states from hemodynamic activity in a BCI suggests underlying

neurophysiological differences in the processing of emotional

valence. These differences have historically been attributed to

two functional neural systems—the approach system, which

primes an individual for approach, attachment or appetitive

behaviors, and the withdrawal system, which primes an

individual for avoidance, flight or defense (Davidson, 2002).

Stimuli that evoke negative emotions such as fear or anxiety

activate brain regions of the withdrawal system, facilitating

avoidance, while stimuli that produce positive emotions such as

happiness or excitement recruit the approach system, facilitating

advancement toward the rewarding stimulus (Davidson, 2002).

Differential lateral activation has been observed in the PFC,

with right PFC activation associated with unpleasant emotional

stimuli or the withdrawal system, and left PFC activation

associated with pleasant emotional stimuli or the approach

system (Davidson et al., 1990). This is known as the valence

asymmetry hypothesis and has been observed in activation of

the PFC through a variety of imaging modalities including EEG

(Davidson, 1992), fMRI (Canli et al., 1998; Herrington et al.,

2005), and fNIRS (Morinaga et al., 2007; Marumo et al., 2009;

Tuscan et al., 2013; Balconi et al., 2015).

In the current study, features of lateral asymmetry were

not found to be discriminatory for use in an online affective

BCI classification task. Despite the historical popularity of the

valence asymmetry hypothesis, there is also a large body of

work that has failed to support or found only partial support

for the hypothesis, observing overlap in lateral activation of

the PFC in response to positively and negatively valenced

stimuli (Herrmann et al., 2003; Lewis et al., 2007; Yang et al.,

2007; Colibazzi et al., 2010; Hoshi et al., 2011; Moghimi et al.,

2012). It is now more widely accepted that the approach-

withdrawal network may be driven more broadly by goal-

directed motivations rather than valence alone (Carver and

Harmon-Jones, 2009; Berkman and Lieberman, 2010). In this

hypothesis, approach/withdrawal behaviors can be stimulated

either by lower-level stimulus appraisal (i.e., the desire to

move away from something unpleasant, like a disgusting

smell) or higher-level, top-down goal pursuit (i.e., avoiding

a pleasant stimulus like the smell of freshly baked cookies

because it contradicts ones’ desire to lose weight) (Berkman

and Lieberman, 2010). Anger is an example of an emotion

that may have approach-related motivations despite being

negatively valent and has been found to follow asymmetrical

patterns of lateral activation in the PFC consistent with the

approach-withdrawal hypothesis (Carver and Harmon-Jones,

2009; Berkman and Lieberman, 2010). It is possible that in

the current study, had the emotion induction stimuli been

controlled for action (i.e., the desire to approach/withdraw)

rather than valence alone, better performance with the BCI

could have been achieved.

Alternatively, the ability to classify emotional states in real-

time could be a result of learning to self-modulate neural activity

in response to the provided visual neurofeedback (Sitaram

et al., 2017). Neurofeedback training has been investigated to

ameliorate particular behaviors or “rewire” certain pathological

networks, and has shown to produce lasting functional changes

in the brain using EEG (Thibault et al., 2016), fMRI (Paret

et al., 2019), and fNIRS (Kohl et al., 2020). fMRI neurofeedback

training for emotional regulation has been, in particular, quite

broadly researched and has been shown to promote successful

self-regulation of activation in the amygdala, anterior insula,

anterior cingulate cortex (ACC), and the PFC (Linhartová et al.,

2019). Neurofeedback training has also been shown to be feasible

in children, including work by Cohen Kadosh et al. where

children and adolescents were successfully able to upregulate

and downregulate activation in the amygdala using fMRI-based

neurofeedback, mitigating symptoms of anxiety (Cohen Kadosh

et al., 2016; Lipp and Cohen Kadosh, 2020; Zich et al., 2020).

In BCI studies, closed-loop neurofeedback training has been

used to help participants produce more reproducible brain
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TABLE 2 Average o	ine classification accuracies for all four sessions.

Participant

Session P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Avg

1 74.3** 90.2*** 73.3** 74.2** 92.7*** 80.5*** 71.7** 82.8*** 71.0** 73.3** 78.4**

2 75.7** 80.5*** 78.2** 71.7** 78.8** 73.2** 80.0*** 74.3** 77.7** 83.8*** 77.4**

3 62.3 80.0*** 60.0 72.5** 91.3*** 83.3*** 78.5** 79.3** 81.2*** 78.7** 76.7**

4 69.2* 85.5*** 68.5* 78.5** 78.5** 79.2** 82.8*** 88.2*** 72.8** 65.3* 76.9**

Avg 70.4** 84.0*** 70.0** 74.2** 85.3*** 79.0** 78.3** 81.2*** 75.7** 75.3** 77.3**

Accuracies were calculated from 10 iterations of 10-fold cross validation. Accuracies exceeding the upper limit of the 95%, 99%, and 99.9% confidence intervals of chance are marked with

*, **, and ***, respectively.

activity and thus achieve better control with the BCI (Perdikis

and Millán, 2020; Benaroch et al., 2021; Roc et al., 2021).

Further, Weyand et al. (2015b) showed that participants could

eventually “wean off” neurofeedback, gradually learning to self-

modulate their hemodynamic activity in an fNIRS-based BCI in

the absence of any visual feedback. Future investigation would

be needed to see if with additional emotional regulation and

neurofeedback training, better performance could be achieved

in an online, affective, fNIRS-based BCI.

4.2. Interparticipant variability

Brain-computer interface performance varied considerably

across participants, with some achieving online accuracies as

high as 75%, others struggling to surpass the chance level

threshold. Average sensitivity and specificity scores suggest that

some participants may have been better at controlling positively

valenced emotions, while others were better at modulating

negative valenced emotions. This variability in performance was

also supported by variability observed in individual participant

hemodynamic response functions as well as in the selection

of discriminatory channels chosen for each participant by the

feature selection algorithm. Such interparticipant variability is

not uncommon—individual differences in performance have

been well-documented in research on both neurofeedback

training (Alkoby et al., 2018; Kadosh and Staunton, 2019; Weber

et al., 2020) and endogenous BCI paradigms (i.e., modulation

of sensorimotor rhythms through motor imagery) (Saha and

Baumert, 2020; Zhang et al., 2020). The term BCI “inefficacy”

has been coined to describe users who are unable to master

control over their brain activity (Alkoby et al., 2018), and has

been attributed to a variety of psychological, neurophysiological,

structural, and protocol-related factors.

Motivation is one psychological trait that has been shown

to affect individual performance in neurofeedback/BCI

paradigms (Kadosh and Staunton, 2019), with low motivational

incongruence (mismatch between goals and perceived

achievement) (Diaz Hernandez et al., 2018), high mastery

confidence and low incompetence fear (Nijboer et al., 2010),

and increased sensitivity to reward (Alkoby et al., 2018) shown

to correlate with better performance. Characteristics of resting

state or baseline neurophysiological activity have also been

shown to correlate with neurofeedback/BCI performance;

for example, resting state power of the sensorimotor rhythm

frequency band (12–15 Hz) predicted performance in both

neurofeedback conditioning training (Reichert et al., 2015) and

motor imagery-based BCI (Blankertz et al., 2010; Suk et al.,

2014). Structurally, volume of gray and white matter in various

cortical regions (Kasahara et al., 2015; Ninaus et al., 2015) may

also be associated with performance. Finally, protocol-related

factors such as mental modulation or motor imagery strategy

used (Kober et al., 2013), amount of training (Esteves et al.,

2021), and saliency and design of feedback (Lotte et al., 2013)

can also impact performance across individuals. The impact

of these factors has yet to be explored and validated for

pediatric populations, yet the added variability and complexity

of the developing brain will likely further contribute to

individual variations in performance, emphasizing the need

for personalized training protocols, feedback design, and BCI

solutions for pediatric users.

For affective BCIs in particular, differences in temperament

across participants should also be considered, as temperament is

closely linked with ability to self-regulate emotions (Rothbart,

2007; Bates et al., 2008). Temperament has been linked to

differences in recruitment of the approach and withdrawal

systems; it has been found that individuals with higher

withdrawal or avoidant temperaments respond more strongly to

negatively valenced words in an emotional Stroop task, while

individuals with higher approach temperaments responded

more strongly to positively valenced words in the same

task (Mauer and Borkenau, 2007). Further, individuals with

higher approach temperaments experience greater physiological

changes in response to affective images than those with avoidant

temperaments (Yoshino et al., 2005). Effortful control in

particular is a temperamental measure that describes capacity
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and willingness to direct attention and behaviors in order

to achieve desired goals, even in the face of averse or

unpleasant stimulus (Rothbart et al., 2003). Stadler et al. (2007)

observed that children with low levels of effortful control have

reduced activation in the ACC—a crucial component of the

brain’s emotional networks with extensive connections to the

PFC—when viewing affective images. In the current study,

differences in temperament, as measured by the EATQ, were

not found to be correlated with BCI performance. However,

due to the lower power of this study, future work is needed

to more deeply investigate correlations between individual

differences in temperament, emotional self-regulation, and

affective BCI performance.

Finally, some affective images used in the stimulus set

could have elicited empathetic responses in the participants

(i.e., images of children crying). Thus, individual differences

in the ability to experience empathy could also contribute

to the variability observed in performance. There is some

evidence suggesting that predisposition to different types

of empathy leads to different patterns of activation in

the PFC during emotion processing (Light et al., 2009).

However, further research is needed to formalize links

between empathetic predisposition, neurophysiological patterns

of prefrontal activation, and affective BCI performance.

4.3. BCI performance and age

A small significant positive correlation (r = 0.63, p =

0.03) was found between BCI performance and age, with the

three best performers all over 13 years of age. The age of

the participants in this study ranged from 8 to 14 years, a

period over which considerable emotional, neurophysiological,

and cognitive development occurs. Throughout mid-childhood,

ongoing developments in cognition, language, and social

participation facilitate an increase in emotional awareness in the

self and others. Children at this age begin to employ a variety

of emotional self-regulation strategies in a variety of contexts,

such as re-directing attention from emotionally salient stimuli,

re-framing the meaning behind such stimuli, and managing

physiological responses to emotional arousal (Thompson, 1991).

These strategies continue to mature with adolescence as a more

sophisticated sense of self is established and a more nuanced

understanding of emotional experiences of others is developed

(Thompson, 1991). The temperamental measure of effortful

control also plays a key role in the ability to execute emotional

self-regulation strategies (Eisenberg et al., 2011), and has also

been shown to increase throughout adolescence (Atherton et al.,

2020). It is possible that older participants in this study were

better able to execute emotional self-regulation strategies to up-

regulate or down-regulate their emotional responses and thus

achieve better control of the BCI.

Interoception, the perception of one’s internal bodily state,

is also closely linked with emotional self-regulation ability,

with higher interoceptive awareness associated with increased

success in emotional regulation and reappraisal (Füstös et al.,

2013). Interoceptive sensitivity develops throughout childhood

and adolescence (Murphy et al., 2017) and developmental

trajectories have been observed in the activation of brain regions

implicated in interoception, including the insula (where bottom-

up processing of sensory information is integrated with top-

down contextual processing) (Li et al., 2017) and the PFC

(Klabunde et al., 2019). Differences in interoceptive sensitivity

across childhood and adolescence could have led to increasing

success with emotional self-regulation and contributed to the

trend in improvement in affective BCI performance seen with

age in the current study.

Development of temperament, interoception, and

emotional self-regulation are supported by the functional

neural development of the cortex throughout childhood.

The PFC, which directs behaviors required for emotional

self-regulation, begins to develop early in childhood but

continues to mature throughout adolescence (Tsujimoto, 2008).

This maturation process involves a reduction in neuronal

density, synaptogenesis, branching, and increased myelination,

supporting the specialization of the PFC into functional

networks that can carry out the complex cognitive tasks

required for a comprehensive awareness and understanding of

emotion (Casey et al., 2005; Tsujimoto, 2008). It is possible that

the more developed prefrontal cortices of the older participants

evoked more reliable and distinct patterns of hemodynamic

activity in response to affective stimuli, or were better able to

maintain their focus over the course of the session than the

younger participants, allowing them to achieve more accurate

control of the BCI (Myrden and Chau, 2015).

4.4. Intersession (intra-participant)
variability

Across the three online sessions, considerable variation was

seen within each participant’s BCI performance. For example,

P2 achieved accuracies of 68% in sessions 2 and 4 but only

55% in session 3. This variability was also reflected in a

visual inspection of the signal morphology of the HRFs across

different session days. Furthermore, online BCI performance,

using classifiers trained on previous session data, was poorer

than offline BCI performance where classifier models were based

on single-session data. This could have been due in part to this

intersession variability.

Variability in the hemodynamic response across different

days is a known challenge for fNIRS-BCIs. Holper et al.

(2012) found that a greater amount of intersession variability

negatively impacted BCI performance in a motor imagery task.
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Power et al. (2012) found that the hemodynamic response varied

across different days in a mental arithmetic task, and Moghimi

et al. (2015) observed variability in the hemodynamic response

during repeated exposures to musical stimulus. This variability

has been attributed to participant-related factors such as changes

in fatigue, attention, mood, motivation; physiological factors

such as changes in underlying baseline neural activity and basal

metabolic rate; environmental factors such as distractions; and

to instrumentation-related factors such as deviations in optode

placement and calibration (Orihuela-Espina et al., 2010; Power

et al., 2012; Myrden and Chau, 2015).

Psychological factors may have also contributed to intra-

participant variation. Fatigue, a poor mood or sense of

frustration, decreased motivation and attention, could have

led to poorer task performance and lower accuracy, which in

turn may have worsened mood and led to even more fatigue

and frustration as participants struggled to control the BCI.

Literature on mechanisms of learning indicates that while some

level of challenge can lead to effective problem solving, toomuch

frustration can eventually lead to complete disengagement from

a task (D’Mello and Graesser, 2012).

4.5. Comparing online and o	ine BCI
performance

Offline cross-validated classification accuracies from

analyzing BCI performance for each session post-hoc were

consistently higher than the real-time, online classification

accuracies. This suggests that the classifiers used for real-

time prediction had difficulty generalizing to new, unlabeled

data (Jain et al., 2000; McFarland and Wolpaw, 2011). The

online classifiers, trained on previous session data, could have

been limited by intersession variability of the hemodynamic

response. Collecting more same-day data for classifier re-

training, is known to mitigate the effects of intersession

hemodynamic variations (Rezazadeh Sereshkeh et al., 2019).

There were likely samples within the collected data set that

were accompanied by shifts in attention, participant movement,

distractions, fatigue, or blunted emotional reactions. Thus,

higher online classification accuracies might have been achieved

with an optimized subset of training data. Subset selection

can also minimize computational costs in machine learning

problems with large data sets (Mourad et al., 2017).

4.6. Study limitations

1. Modest data quality and quantity: Children have lower

attention spans and fatigue more easily than adults (Plude

et al., 1994). As such, the experimental sessions were

deliberately abbreviated as much as possible, thereby

limiting the amount of data collectable in a single session.

Differences in attention were apparent between younger

and older participants; the younger participants had more

difficulty remaining still and required more frequent breaks.

This restlessness likely augmented the risk of artifacts

in the acquired hemodynamic signal due to optode-scalp

decoupling. Wavering attention likely also contributed to

inconsistency of hemodynamic response. Further, the small

sample size of this study reduced the ability to investigate the

impact of group level differences in age and temperament on

BCI performance.

2. Suboptimal sensor-skin interface: While fNIRS is relatively

robust to motion artifacts (Orihuela-Espina et al., 2010), we

could not arbitrarily increase optode-scalp coupling as the

children could only tolerate a modest level of probe-on-scalp

pressure. In some instances, coupling may have thus been

suboptimal. The signal-to-noise ratio of the hemodynamic

signal is known to depend, in part, on hair color and density,

as well as skin pigmentation (Scholkmann et al., 2014), factors

that were not controlled in our sample.

3. Slow system response: The hemodynamic response is

inherently sluggish, with a post-stimulus peak at about 5–

8-s (Coyle et al., 2004b). The long observation window (20

s) deployed in this study limited the practical real-time

sensitivity of the BCI. Recent work has suggested that a

5-s stimulation interval was optimal for classification in a

sensorimotor fNIRS-BCI task (Afzal Khan and Hong, 2021).

Similar investigations could identify an optimal stimulation

and response window for affective fNIRS-BCI tasks. Future

research may also consider the initial dip in oxygenated

hemoglobin concentration as a discriminating cue (Hong and

Zafar, 2018).

5. Conclusion

Above-chance, online binary differentiation between

prefrontal cerebral hemodynamic responses evoked by visual-

aural affective stimuli was feasible in a sample of 10 school-aged

typically developing children. Classification accuracies from

retrospective offline analyses were comparable to those reported

in adult affective fNIRS-BCI studies. Brain-computer interface

performance was positively correlated with participant age.

High variability was observed across sessions, likely due to a

combination of physiological, environmental, instrumental and

psychological factors. A bimodal affective fNIRS-BCI holds

promise as an access modality for school-aged children but

longitudinal training and evaluation is necessary in future

research to ascertain its practical potential.

This study was the first of its kind to investigate an

affective fNIRS-BCI for a pediatric population. It is also one

of few studies to conduct real-time prediction of affective state

from hemodynamic activity. A BCI that can accurately predict

emotional valence could be used to detect emotional states in
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children with physical disabilities who have had limited success

with existing assistive technologies for communication. The

binary detection of emotional valence could be used to express

feelings, preference or even affirmative/negative responses to

questions, without the need for words or other developed

language abilities. With access to communication, these children

can engage within their communities, learn how to advocate

for themselves, gain independence, and overall improve their

quality of life.
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