
07 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Fabbretti G., Lanese I., Stefani J.-B. (2022). Generation of a Reversible Semantics for Erlang in Maude.
Cham : Springer Science and Business Media Deutschland GmbH [10.1007/978-3-031-17244-1_7].

Published Version:

Generation of a Reversible Semantics for Erlang in Maude

Published:
DOI: http://doi.org/10.1007/978-3-031-17244-1_7

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/907385 since: 2022-11-24

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-17244-1_7
https://hdl.handle.net/11585/907385

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

Fabbretti, G., Lanese, I., Stefani, JB. (2022). Generation of a Reversible Semantics for Erlang in Maude. In:
Riesco, A., Zhang, M. (eds) Formal Methods and Software Engineering. ICFEM 2022. Lecture Notes in
Computer Science, vol 13478. Springer, Cham.

The final published version is available online at: https://doi.org/10.1007/978-3-031-17244-1_7

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-17244-1_7

Generation of a Reversible Semantics for Erlang
in Maude?

Giovanni Fabbretti1[0000−0003−3002−0697], Ivan Lanese2[0000−0003−2527−9995], and
Jean-Bernard Stefani1[0000−0003−1373−7602]

1 Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
2 Focus Team, Univ. of Bologna, INRIA, 40137 Bologna, Italy

Abstract. In recent years, reversibility in concurrent settings has at-
tracted interest thanks to its diverse applications in areas such as error
recovery, debugging, and biological modeling. Also, it has been studied in
many formalisms, including Petri nets, process algebras, and programming
languages like Erlang. However, most attempts made so far suffer from
the same limitation: they define the reversible semantics in an ad-hoc
fashion. To address this limit, Lanese et al. have recently proposed a novel
general method to derive a concurrent reversible semantics from a non-
reversible one. However, in most interesting instances the method relies
on infinite sets of reductions, making doubtful its practical applicability.
We bridge the gap between theory and practice by implementing the
above method in Maude. The key insight is that infinite sets of reductions
can be captured by a small number of schemas in many relevant cases.
This happens indeed for our application: the functional and concurrent
fragment of Erlang. We extend the framework with a general rollback
operator, allowing one to undo an action far in the past, including all
and only its consequences. We can thus use our tool, e.g., as an oracle
against which to test the reversible debugger CauDEr for Erlang, or as
an executable specification for new reversible debuggers.

1 Introduction

Reversible computing studies computational models which have both (stan-
dard) forward and backward notions of execution. Reversibility has attracted
interest thanks to its diverse applications in areas such as debugging [7,5,19,9],
robotics [21], biological modeling [4], and error-recovery [26]. In sequential sys-
tems reversibility is well understood: intuitively it corresponds to undo actions
in reverse order of execution. In concurrent settings, more care is needed. In
2004, Danos and Krivine proposed the notion of causal-consistent reversibility [3],
tailored for concurrent systems. In a concurrent execution, to undo an action
causal consistency only requires to undo its causal consequences first. Actions

? The work has been partially supported by French ANR project DCore ANR-18-CE25-
0007. We thank the anonymous referees for their helpful comments and suggestions.
The second author also thanks INdAM-GNCS Project CUP E55F22000270001 “Pro-
prietà qualitative e quantitative di sistemi reversibili”

2 G. Fabbretti et al.

which have been temporally interleaved with such consequences, but are causally
independent, can be left untouched. Thus, causal consistency undoes events only
if strictly necessary, which is useful to explore concurrent programs that can
be prone to state explosion. Causal-consistent reversibility has been studied
in several formalisms such as process calculi [3,28,2,17], Petri nets [27,23], and
the Erlang programming language [5,19,9,12]. It also led to interesting practical
applications, the most prominent example being as a debugging technique as
proposed in [7] and then implemented in the CauDEr debugger for Erlang [5,19,9].

Most of the reversible semantics above have been devised ad-hoc for a specific
formalism. The process is usually composed of three phases: i) definition of causal
dependencies between events; ii) extension of the non-reversible semantics so
that enough information is kept while going forward; iii) creation of a backward
semantics that allows one to undo actions in a causal-consistent manner and
restore past states. Performing this process manually is time-consuming, error-
prone and lacks generality.

Recently Lanese and Medić proposed a general method to automate the
production of reversible semantics [14]. The method generalizes the ad-hoc
approaches above and works as follows. First, causal dependencies are defined in
terms of resources consumed and produced. Without focusing on the details, let
us consider the following Erlang example.

〈p1, θ, p2 ! hello,me〉 → 〈p1, θ, hello,me〉 | 〈p1, p2, hello〉 (1)

On the left, a process p1 is ready to send a message hello (! denotes message
send). When the reduction is executed the process is consumed to produce the
message 〈p1, p2, hello〉 and the evolution of the process itself after the send. We
say that the reduction consumes the process and produces the continuation and
the message. Then, the non-reversible semantics taken in input is extended so
that each entity is tagged with a unique key, and memories are produced each
time a forward step is performed. Memories are the extra pieces of information
required to restore past states of the system and together with keys they also keep
track of the causal dependencies. Finally, a causal-consistent backward semantics,
symmetric to the forward one, is generated.

Contributions The general method in [14] was only described theoretically. It
takes in input a semantics described as a, possibly infinite, set of ground rules,
making it not immediately clear that an implementation could exist. In this
paper we provide such an implementation in Maude, by using schemas to capture
(possibly infinite) sets of ground rules. As a case study, we use our tool to derive a
causal-consistent reversible semantics for the functional and concurrent fragment
of the Erlang programming language, which matches the one previously produced
by hand [9].

Finally, we extend Lanese et al. approach by defining a causal-consistent
rollback operator, allowing one to undo a past action including all and only its
consequences, on top of the reversible semantics. Rollback is a key primitive for
a concurrent causal-consistent debugger as described in [7]. In the literature,

Generation of a Reversible Semantics for Erlang in Maude 3

examples of causal-consistent rollback operators abound [5,19,9]. Nonetheless
these operators were always designed in an ad-hoc fashion, suffering from the
same limits as the ad-hoc reversible semantics. In contrast, our definition is able
to cope with all the reversible semantics we produce, thanks to their uniformity.
This is beneficial and desirable, as one can change or update the underlying
semantics without the need to redefine the rollback operator.

To sum up, the main contributions of this work are:

– a novel formalization of Erlang in Maude (Sec. 3);

– a tool to derive a causal-consistent reversible semantics from a non-reversible
one (Sec. 4) together with a proof of correctness of the approach (Sec. 5);

– a general definition of a causal-consistent rollback operator, built on top of
the reversible semantics (Sec. 6).

All the code discussed in this paper is publicly available at [29].

2 Background

2.1 The Erlang language

Erlang is a functional and concurrent programming language, it is widely used
and appreciated because it is easy to learn, provides useful abstractions for
concurrent and distributed programming, and because of its support for highly-
available systems. Erlang implements the actor model [10], a concurrency model
based on message passing. In the actor model, each process is an actor that can
interact with other actors only through the exchange of messages, no memory
is shared. Actors are identified by a unique pid (process identifier) and have a
queue of messages which have arrived but have not yet been processed. An actor
evaluates an expression, and has an environment to store variable bindings. Due
to space constraints, here we only briefly describe the main concurrent primitives
of Erlang, send, receive, spawn, and self, more details on the language can be
found in the technical report [6].

The send primitive is written as e1 ! e2, where e1 must evaluate to the pid of
the receiver process and e2 must evaluate to the payload, say v, of the message.
The expression itself evaluates to v and, as a side-effect, the message is sent.

The receive pat1 → exprs1; . . . ; patn → exprsn end construct explores the
queue of messages looking for one mathcing one of the patterns, say pati. If
found, the corresponding branch exprsi is executed.

The spawn primitive creates a new process; it takes as argument the function
f that the new process will execute, together with the parameters for f - if any.
The spawn returns the (fresh) pid of the newly created process and, as a side
effect, the new process is created.

Finally, function self returns the pid of the process who invoked it.

4 G. Fabbretti et al.

fmod BOOL is

sort Bool . var A : Bool .

op true : -> Bool [ctor] . eq true and A = A .

op false : -> Bool [ctor] . eq false and A = false .

op _and_ : Bool Bool -> Bool [assoc ..] . eq A and A = A .

endfm

Fig. 1: Maude module for Booleans3

2.2 Maude

Maude [22] is a programming language that efficiently implements rewriting
logic [24]. Formally, a rewriting theory is a tuple (Σ,E,R), where Σ represents a
collection of typed operators, E a set of equations t = t′, and R a set of semantic
rules t→ t′. In both cases, t, t′ are terms built from the operators in Σ.

The equational side of rewriting logic is well-suited to define the deterministic
part of the model, where we define equivalence classes over terms. Equations can
also be conditional, and conditions can be either the membership of the term to
some kind or other equations.

Rewriting rules define the concurrent (non-deterministic) part of the pro-
gramming language semantics. The set of rules R specifies how to rewrite a
(parameterized) term t to another term t′. Rewriting rules can be conditional
too, and conditions can be equations, as well as other rewriting conditions.

In other words the equational theory specifies which terms define the same
states of a system, only using different syntactical elements, while the rewriting
rules define how the system can evolve and transit from one state to another.

Let us now consider the module in Fig. 1, a sample Maude module that
implements Booleans together with the and operation.

First, the sort Bool is declared. Then, the values true and false are declared
as two constant operators of sort Bool. Successively, the and operation is defined
as a function that takes in input some Bools and produces a Bool as a result.
Finally, the semantics of and is given by the equational theory defined on the
right of the module. Equations are used from left to right to normalize terms.
For instance, the first equation, eq true and A = A, is used to evaluate the and

operator when the first argument has been normalized to true. For simplicity, this
example does not include rewriting rules, memberships nor conditional equations.

As an additional example, we show a rewriting rule generating the Erlang
reduction (1) from the Introduction:

< 1 | exp: 2 ! ’hello’, env: {}, me: _ > =>

< 1 | exp : ’hello’, env: {}, me: _ > ||

< sender: 1, receiver: 2, payload: ’hello’ >

3 Due to space reason we represented the module on two columns, usually Maude
modules are single-columned.

Generation of a Reversible Semantics for Erlang in Maude 5

Labels exp (for the expression under evaluation), env (for the environment)
and me (for the module environment, containing function definitions), and simi-
larly for messages, give names to fields. Also, the first argument in each process is
the pid (pids are integers in our implementation), the special notation highlights
that it can be used as identifier for the tuple. Character _ means that the actual
value is not shown.

We will define the generation of the reversible semantics as a program that,
given the modules of the non-reversible semantics, produces new modules, which
define the reversible semantics.

2.3 Derivation of the Reversible Semantics

The rest of this section summarizes the methodology to automatically derive a
causal-consistent reversible semantics starting from a non-reversible one [14] that
we will use as starting point. The approach requires that the latter is modeled as
a reduction semantics that satisfies some syntactic conditions.

Format of the Input Reduction Semantics We now describe the shape that
the reduction semantics taken in input must have.

The syntax must be divided in two levels: a lower level of entities on which
there are no restrictions, and an upper level of systems of the following form:

S ::= P | opn(S1, . . . , Sn) | 0

where 0 is the empty system, P any entity of the lower level and opn(S1, . . . , Sn)
any n-ary operator to compose entities. An entity of the lower level could be, for
example, a process of the system or a message traveling the network. Among the
operators we always assume a binary parallel operator | .

The rules defining the operational semantics must fit the format in Fig. 2,
where � denotes the relation defining the reduction semantics taken in input.
The format contains rules to: i) allow entities to interact with each other (S-Act);
ii) exploit a structural congruence (Eqv); iii) allow single entities to execute
inside a context (S-Opn); iv) execute two systems in parallel (Par). While (Eqv)
and (Par) are rules that must belong to the semantics, (S-Act) and (S-Opn)
are schemas, and the semantics may contain any number of instances of them. In
the schema (S-Act), the term T [Q1, . . . , Qm] denotes a generic operator of the
reduction semantics taken in input. Actually, rule (Par) is an instance of schema
(S-Opn), highlighting that such an instance is required. Also, reduction (1) from
the Introduction is an instance of schema (S-Act). Moreover, notice that a
notion of structural congruence on systems is assumed. We refer to [14] for more
details on the definition of structural congruence. This is of limited relevance
here, since the only structural congruence needed for Erlang is that parallel
composition forms a commutative monoid, which translates to the same property
in the reversible semantics.

6 G. Fabbretti et al.

(S-Act)
P1 | . . . | Pn � T [Q1, . . . , Qm]

(Eqv)
S ≡ S′ S � S1 S1 ≡ S′1

S′ � S′1

(S-Opn)
Si � S′i

opn(S0, . . . , Si, . . . , Sn)� opn(S0, . . . , S
′
i, . . . , Sn)

(Par)
S � S′

S | S1 � S′ | S1

Fig. 2: Required structure of the semantics in input; S- rules are schemas

Methodology To obtain a forward reversible semantics, we need to track enough
history and causality information to allow one to define a backward semantics
exploiting it. First, the syntax of systems is updated as follows:

R ::= k : P | opn(R1, . . . , Rn) | 0 | [R ;C]

C ::= T [k1 : •1, . . . , km : •m]

Two modifications have been done. First, each entity of the system is tagged
with a key k. Keys are used to distinguish identical entities with a different history.
Second, the syntax is updated with another production: memories. Memories
have the shape µ = [R;C], where R is the configuration of the system that gave
rise to a forward step and C is a context describing the structure of the system
resulting from the forward step. C acts as a link between R and the actual final
configuration. In other words, memories link different states of the entities and
keep track of past states of the system so that they can be restored.

Then, the forward reversible semantics is defined by decorating the rules of
the non-reversible reduction semantics as depicted in Fig. 3, where � is the
relation defining the forward reversible semantics. Now each time a forward step
is performed each resulting entity is tagged with a fresh key, and a memory,
connecting the old configuration with the new one, is produced. E.g., the forward
rule corresponding to reduction (1) from the Introduction is:

k : 〈p1, θ, p2 ! hello,me〉� k1 : 〈p1, θ, hello,me〉 | k2 : 〈p1, p2, hello〉 |
[k : 〈p1, θ, p2 ! hello,me〉 ; k1 : •1 | k2 : •2]

Notice that the approach allows one to manage different rules since the
transformation is defined in terms of the schema they must fit.

The backward rules, depicted in Fig. 4, where is the relation defining the
backward reversible semantics, are symmetric to the forward ones: if a memory
µ = [R ;C] and the entities tagged with the keys in C are both available then a
backward step can be performed and the old configuration R can be restored.
E.g., the backward rule undoing the reduction (1) from the Introduction is:

k1 : 〈p1, θ, hello,me〉 | k2 : 〈p1, p2, hello〉 |
[k : 〈p1, θ, p2 ! hello,me〉 ; k1 : •1 | k2 : •2] k : 〈p1, θ, p2 ! hello,me〉

Generation of a Reversible Semantics for Erlang in Maude 7

(F-S-Act)
j1, . . . , jm are fresh keys

k1 : P1 | . . . | kn : Pn � T [j1 : Q1, . . . , jm : Qm] | [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m]]

(F-S-Opn)
Ri � R′i (keys(R′i) \ keys(Ri)) ∩ (keys(R0, . . . , Ri−1, Ri+1, . . . , Rn) = ∅

opn(R0, . . . , Ri, . . . , Rn)� opn(R0, . . . , R
′
i, . . . , Rn)

Fig. 3: Forward rules of the uncontrolled reversible semantics

(B-S-Act)
µ = [k1 : P1 | . . . | kn : Pn ;T [j1 : •1, . . . , jm : •m]]

T [j1 : Q1, . . . , jm : Qm] | µ k1 : P1 | . . . | kn : Pn

(B-S-Opn)
R′i Ri

opn(R0, . . . , R
′
i, . . . , Rn) opn(R0, . . . , Ri, . . . , Rn)

Fig. 4: Backward rules of the uncontrolled reversible semantics

The reversible semantics produced by this approach captures causal dependen-
cies in terms of resources produced and consumed, since, thanks to the memory,
a causal link is created each time some entities are rewritten. We refer to [14]
for the formal proof of the causal-consistency and of other relevant properties of
the reversible semantics. We also remark that the semantics produced is uncon-
trolled [16], i.e., if multiple (forward and/or backward) steps are enabled at the
same time there is no policy on which one to choose. Both in Fig. 3 and in Fig. 4
we omitted the rule for structural congruence as it is similar to the one in Fig. 2.

3 Formalizing Erlang in Maude

In this section we present the formalization of the semantics of the functional
and concurrent fragment of Erlang in Maude. We mostly follow the semantics
defined in [9]. Technically, we used as starting point the formalization of Core
Erlang [1] in Maude presented in [25], which was aimed at model checking. While
our formalization is quite different from theirs (e.g., we formalize a fragment
of Erlang instead of one of Core Erlang), we were still able to re-use some of
their modules, like the parsing module, and some of their ideas which greatly
simplified the formalization task.

As in [9], our semantics of Erlang has two layers: one for expressions and one
for systems. This division is quite convenient for the formalization in Maude,
as we can formalize the expression level as an equational theory and then use
rewriting rules to describe the system level.

The system level comprises a rewriting rule for each concurrent construct of
the language and a few rules τ for sequential operations. We could define the

8 G. Fabbretti et al.

sequential operations as an equational theory also at the system level, however
equations are applied in a fixed order, hence only one possible interleaving
of sequential steps would have been considered. For rewriting rules instead all
possible orders can be considered, thus enabling all possible interleavings. Notably,
also a different semantics where sequential steps are defined as equations could
be made reversible using the approach we describe in the next section.

Before presenting the rewriting logic, let us discuss the entities that compose
an Erlang system. Processes are defined as tuples of the form:

〈p, θ, e,me〉

where p is the process pid, θ is the environment binding variables to values4, e is
the expression currently under evaluation and me is the module environment,
which contains the definitions of the functions declared in the module, that p
can invoke or spawn. Messages instead are defined as tuples of the form:

〈p, p′, v〉

where p is the pid of the sender, p′ is the pid of the receiver and v is the payload. In
this work, processes and messages are entities in the lower level of the semantics,
denoted as P in Sec. 2.3.

A system is composed of messages and processes, using the parallel operator.
Now, let us analyze in detail the shape of the corresponding rewriting logic

by first analyzing the equational theory for expressions.

3.1 Equational Theory

The theory is defined as a set of conditional (i.e., with an if clause) and uncondi-
tional equations, represented as follow

eq : [equation-name]
〈l, θ, e〉 = 〈l′, θ′, e′〉

ceq : [conditional-equation-name]
〈l, θ, e〉 = 〈l′′, θ′′, e′′〉
if 〈l′, θ′, e′〉 := op(l, θ, e) ∧ 〈l′′, θ′′, e′′〉 := 〈l′, θ′, e′〉

In the equations, to evaluate an expression e we also need two additional
items: an environment θ and a label l. The environment binds each variable to
its value, if any. The label communicates both i) the kind of side effect performed
by the expression, if any; and ii) information on the details of the side effect back
and forth between the expression level and the system level. An example of this
mechanism is presented below.

Example 1 (Equation for self). The unconditional equation below describes the
behavior of self at the expression level.

eq [self] : < self(pid(N)), ENV, atom("self")() > = < tau, ENV, int(N) > .

4 In truth, θ is a stack of environments, such design choice is discussed in Sec. 3.2.

Generation of a Reversible Semantics for Erlang in Maude 9

It reads roughly as follows: if the system level asks to check whether a self

can be performed, communicating that the pid of the current process is N (via
self(pid(N))) and the expression is actually a self (atom("self")()) then the
expression reduces to the pid (int(N)) and the label becomes tau, denoting
successful evaluation of a sequential step. �

Conditional equations can: either define a single step that requires some side
condition (e.g., binding a variable to its value), or perform some intermediate
operation (e.g., selecting an inner expression to evaluate) and then use recursively
other equations (with the clause 〈l′′, θ′′, e′′〉 := 〈l′, θ′, e′〉) to reach a canonical
form. Examples of conditional equations can be found in the technical report [6].

3.2 Expression Management

One of the difficulties of formalizing Erlang lies in the manipulation of expressions.
In fact, a naive management could produce unwanted results or illegal expressions.

Consider the invocation below of function

pow and sub(N,M) → Z = N ∗N,Z −M

which computes the difference between the power of N and M .

X = pow and sub(N,M) → X = Z = N ∗N,Z −M. (2)

By naively replacing the function with its body, we get a syntactically correct
Erlang expression, but it would not have the desired effect, as the variable X
would assume the value N ∗N instead of Z −M , as desired.

Similarly, constructs that produce a sequence of expressions, like case, may
also produce illegal terms. Consider, e.g., the following Erlang expression:

case pow and sub(N,M) of . . . → case Z = N ∗N,Z −M of . . . (3)

In this case the obtained expression is illegal, as case expects a single expression
and not a sequence, and would be refused by an Erlang compiler.

The solution that we adopt to solve both problems consists in wrapping the
produced sequence of expressions with the construct begin_end (the Erlang
equivalent for parentheses), which turns a sequence of expressions into a single
expression.

For instance, in (2) the produced expression would be

X = begin Z = N ∗N,Z −M end.

and in this case X is correctly bound to the result of Z−M . This solution indeed
produces the desired effect also in a real Erlang environment.

For this reason, θ, within a process tuple, is a stack of environments. Each
time that a sequence of expressions is wrapped a new environment with the
appropriate bindings (e.g., the function parameters) is pushed on θ. Then, each
time the sequence of expression is fully evaluated, i.e., the expression looks like
begin v end, then v replaces the expression and an environment is popped from θ.

10 G. Fabbretti et al.

crl [sys-send] :

< P | exp: EXSEQ, env-stack: ENV, ASET > =>

< P | exp: EXSEQ’, env-stack: ENV’, ASET > ||

< sender: P, receiver: DEST, payload: GVALUE >

if < DEST ! GVALUE, ENV’, EXSEQ’ > := < req-gen, ENV, EXSEQ > .

Fig. 5: System rule send

3.3 Rewriting Rules

Let us now focus on rewriting rules, which have the following general shape

crl : [conditional-rule-name]
〈p, θ, e,me〉 | E => 〈p, θ′, e′,me〉 | op(l′, 〈p, θ, e,me〉, E)
if 〈l′, θ′, e′〉 := 〈l, θ, e〉

Here, E captures other entities of the system, if any, that may have an impact on
the reduction, in particular a message that may be received. Rewriting rules are
always conditional, as we always rely on the expression semantics to understand
which action the selected process is ready to perform. Finally, we use op to apply
side effects to E, determined by the label l′ produced by the expression level.
Example 2 below discusses the rewriting rule for send, additional examples can
be found in the technical report [6].

Example 2. The rule in Fig. 5 is used to send a message. The if clause of the rule
uses the equational theory to check if the current expression, EXSEQ, can perform
a send of GVALUE to DEST. This exemplifies how the labels req-gen (a generic
request about which step can be taken, more complex requests are used, e.g.,
for self, see Example 1) and DEST ! GVALUE serve to pass information between
the system and the expression level. Using this information, side effects (in this
case the send of a message) are performed at the system level. If the send can be
performed, then the process evolves to evaluate the new expression EXSEQ’ in the
new environment ENV’, and the new message is added to the system. Here, ASET
includes other elements of the process which are not relevant (currently, only the
module environment). W.r.t. the general schema described above, here E on the
left-hand side is empty, and on the right-hand side op will add the message to E.

Note that the rewriting rule in Sec. 2.2 is an instance of the one above. �

4 Generating the Reversible Semantics

We choose Maude to define the generation of the reversible semantics for two
main reasons. First, Maude is well-suited to define program transformations
thanks to its META-LEVEL module, which contains facilities to meta-represent
a module and to manipulate it. Second, since we defined Erlang’s semantics in
Maude, we do not need to define a parser for it as it can be easily loaded and
meta-represented by taking advantage of Maude’s facilities.

Generation of a Reversible Semantics for Erlang in Maude 11

mod SYSTEM is

...

sort Sys . op #empty-system : -> Sys [ctor] .

subsort Entity < Sys . op _||_ : Sys Sys -> Sys [ctor ...] .

endm

Fig. 6: Extract of the system module for Erlang.

4.1 Format of the Non-Reversible Semantics

As in [14], the input semantics must follow a given format so that the approach
can be applied. Let us describe such format. First, the formalization must include
a module named SYSTEM which defines the system level. As an example, Fig. 6
depicts the system module for the Erlang language. We omit elements that are
not interesting in this context (namely the import of other modules).

The module defines the operators of the system level, as discussed in Sec. 2.3.
For Erlang, we just have parallel composition || and the empty system.

All the operators in the module SYSTEM must take in input and produce
elements of sort Sys. The subsort relation Entity < Sys must be declared as
well, to specify that entities of the lower level are systems. To this end, sorts of
the lower level (in Erlang, messages and processes) must be subsorts of Entity.

Rules of the rewriting theory that define the single steps of the reduction
semantics (like in Fig. 5) must be defined under the module TRANSITIONS.

4.2 Transformation to the Syntax

We describe here how to transform a non-reversible syntax as described above
into a reversible one, as recalled in Sec. 2.3. Roughly, we add keys and memories.

Key is the sort generated by the operator key_ and EntityWithKey is the
sort generated by the operator _*_, that composes an entity and a key.

To define memories, first we declare a new sort Context (which corresponds
to C in the reversible syntax presented in Sec. 2.3), together with an operator
@:_ to create a Context from a key. Then, memories are added by defining the
sort Memory and by defining an operator that builds a memory by combining the
interacting entities with keys with the final configuration of sort Context. E.g.,
the memory created by the reversible version of the reduction in Sec. 2.2 is:

[< 1 | exp: 2 ! ’hello’, ASET> * key(0) ; @: key(0 0) || @: key:(1 0)]

Here, with the variable ASET, we hide the process environment and the module
environment since they are not interesting. EntityWithKey, Context and Memory

are all declared as subsorts of Sys so that system operators can be applied to
them.

12 G. Fabbretti et al.

crl [label sys-send]:

< P | ASET, exp: EXSEQ, env-stack: ENV > * key(L)

=> < sender: P, receiver: DEST, payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > *

key(L) ; @: key(0 L) || @: key(1 L)]

if < DEST ! GVALUE, ENV’, EXSEQ’ > := < req-gen, ENV, EXSEQ > .

rl [label sys-send]:

< sender: P, receiver: DEST,payload: GVALUE > * key(0 L) ||

< P | exp: EXSEQ’, env-stack: ENV’, ASET > * key(1 L) ||

[< P | ASET, exp: EXSEQ, env-stack: ENV > *

key L ; @: key(0 L) || @: key(1 L)]

=> < P | ASET, exp: EXSEQ, env-stack: ENV > * key L

Fig. 7: Reversible rules: send.

4.3 Generating the Reversible Semantics

The transformation to be performed over the rewriting rules is the one described
in Sec. 2.3, rephrased in Maude notation. Rules must be extended to deal with
entities with key, and each time a forward step is taken the resulting entities
must be tagged with fresh keys and the appropriate memory must be created.

The transformation is mostly straightforward, the only tricky part concerns
the generation of fresh keys. Indeed, we need a ’distributed’ way to compute them,
as passing around a key generator would produce spurious causal dependencies.
We solved the problem as follows. Keys are lists of integers. Each time we need to
produce a fresh key, to tag a new entity on the right-hand side of a rule, we take
the key L of the first entity on the left-hand side of the rule, and we tag each of
the new entities with L prefixed with an integer corresponding to the position of
the entity on the right-hand side. Furthermore, we create the required memory.

Fig. 7 shows the reversible rules -forward and backward- for the send rule
depicted in Fig. 5. In the forward rule, on the left-hand side, the process is
initially tagged with a key key(L), then the new entities on the right-hand side
are tagged with fresh keys key(0 L) and key(1 L), built from key(L). Moreover,
the rule also produces a memory binding the old and the new states.

The generation of the backward semantics is easy: a backward rule is obtained
from the forward one by swapping the left- with the right-hand side and dropping
the conditional branch. Indeed, the latter is not required any more because if the
process has performed the forward step, as proved by the existence of a memory
for it, then it can always perform the backward one. One has only to check that
all the consequences of the action have been already undone. This is ensured by
the presence of the entities whose keys are in the context inside the memory.

Generation of a Reversible Semantics for Erlang in Maude 13

Sch R-Sch this paper

Ins R-Ins [14]

→I,E

 s

 g→φ

→I,E

Fig. 8: Schema of the proof of correctness.

5 Correctness

This section is dedicated to prove the correctness of the generated reversible
semantics. This requires to close the gap between the format of the rules expected
by the general method from [14] and the actual format of the rules provided in
input. In fact, the schema of the general method allows for an arbitrary number
of rules, potentially infinitely many, describing the system evolution. Obviously,
to efficiently describe a system, we cannot exploit infinitely many rules. Thus,
in the formalization of the semantics we resorted to schemas, and we used the
expression level semantics so to select only a subset of the possible instances.

For example, let us consider the following processes:

〈p, θ, 2 ! ′hello′, 〉 〈p′, θ′, case 2 ! ′hello′ of . . . , 〉 〈p′′, θ′′, X = 2 ! ′hello′, 〉

The three processes above are all ready to perform the same send action, even
though they have a different shape, nonetheless thanks to the expression level
semantics we are able to formalize their behavior in one single rewriting rule.

However, we need to prove that the instances of the corresponding reversible
rules coincide with the set of reversible instances defined by the approach in [14].
That is, we need to show that the diagram in Fig. 8 commutes.

This result is needed also to ensure that our reversible semantics, defined over
schemas, by construction enjoys the same desirable properties, e.g., loop lemma,
as the reversible semantics defined over ground rules following [14].

Let us begin by discussing the functions on the sides of the square. First,
function s takes in input a set of non-reversible rule schemas of the form
t → t′ if C and generates the corresponding set of reversible (forward and
backward) rule schemas. Then, →I,E takes in input a set of (reversible or non-
reversible) rule schemas and generates all possible instances using substitutions
in I, providing all the possible values for variables, and an equational theory E,
allowing one to check whether the side condition C is satisfied. The side condition
is then dropped. Notably, substitutions i ∈ I instantiate also key variables to
lists of integers. Function →I,E is undefined if there is some i ∈ I which is not
defined on some variables of the schemas. Also, we expect the substitution to
produce well-typed rules (however, we do not discuss typing here). Function
 g models the general approach defined in [14]. Intuitively, g works like s,
but it takes only instances of rule schemas. Also, it adds concrete keys instead of
key variables. Function →φ is a function mapping keys in [14], which are taken
from an arbitrary set, to keys in our approach, which are lists of integers.

14 G. Fabbretti et al.

dep(S, k) when M := getMem(S, k)→
Kc := contextKeys(M), R = {k}
for ki in Kc

R := R ∪ dep(S, ki)

dep(S, k)→
∅

Fig. 9: Dependencies operator

These functions are formally defined in the technical report [6].
The proof of our main result below can be found in [6] as well.

Theorem 1 (Correctness). Given functions g, sand →I,E in Fig. 8 such
that each i ∈ I is injective on key variables, there exists a total function →φ,
injective on key variables belonging to the same rule, s.t. the square in Fig. 8
commutes, i.e., s→I,E= →I,E g→φ

6 Rollback Semantics

In this section we introduce a novel general causal-consistent rollback semantics
built on top of the reversible backward semantics. Although general rollback
semantics have been discussed in the literature [13], to the best of our knowledge
this is the first general causal-consistent rollback semantics which is executable.

Causal-consistent rollback is a key primitive in causal-consistent debugging [7],
which undoes a reduction of the system, possibly far in the past, including all and
only its consequences. Intuitively it performs the smallest amount of backward
steps allowing one to undo the selected action [8]. The workflow is the following:
the user selects a past reduction by means of one of its unique keys (each
key uniquely identifies the reduction consuming it); the set of consequences is
computed; all the consequences are undone in a causal-consistent order.

Let us now describe the workflow in more detail. Given a key k in input,
we want to undo the action that gave rise to the unique memory whose initial
configuration contains k. First, we compute the set of keys dep(S, k), which
contains keys identifying all the consequences of k. The dep operator, depicted
in Fig. 9, recursively adds to set R the consequences of the current key, say
k1. A key k2 is a consequence of k1 if it occurs in the context part of the
memory identified by k1, and there exists a memory where k2 occurs in the initial
configuration. The code in Fig. 9 relies on two auxiliary functions, getMem(S, k)
and contextKeys(M). The former, given a system configuration S and a key k,
returns the unique memory in S containg k in its initial configuration, if any,
while the latter returns the set of keys used in the context part of memory M .
Notably, function getMem(S, k) is used as a guard: if no such memory is found,
we apply the base clause on the right of the figure, returning ∅.

In the second step we need to perform backward steps to undo the computed
dependencies. To this end we need to specify which backward ground rule needs
to be applied. Fortunately, Maude provides a way to rewrite systems that fits

Generation of a Reversible Semantics for Erlang in Maude 15

our needs: the MetaXApply function. MetaXApply given a theory R, a term t, a
rule label l and a substitution σ applies the substitution to rule l (found inside
R) and then tries to apply it anywhere possible inside t.5 Operatively, to undo a
transition it suffices to feed to MetaXApply the backward rules theory (R), the
current system (t), the appropriate backward rule (l), and the selected key that
has to be instantiated in the rule (σ = [k/K] where k is the concrete key and K
the corresponding variable; for simplicity in the implementation we always use
the leftmost key in the rule).

If MetaXApply can perform a rewrite for some key k then its causal conse-
quences have already been undone. Thus, it is enough to apply MetaXApply to
all the keys in dep(S, k), removing a key when the corresponding reduction is
performed. When the set is emptied we have reached the desired configuration.

7 Conclusion, Related and Future Work

We defined a new executable semantics of Erlang using Maude. We also imple-
mented a program able to transform a non-reversible semantics into a reversible
one, providing an implementation of the general method described in [14]. Making
the approach executable posed some challenges. E.g., [14] just declares that keys
are generated fresh, while we had to provide a concrete and distributed algorithm
to generate keys ensuring their freshness. Finally, we presented a causal-consistent
rollback semantics build on top of the backward semantics.

This allows one to use the produced semantics as an oracle against which to
test an implementation, while being confident that it correctly captures the formal
specification given that it is closer to it. Indeed, we applied our framework to
test the reversible debugger CauDEr [18] (forward, backward as well as rollback)
on the case study described in [20], thus gaining confidence on the fact that it
correctly follows the semantics in [9]. Our experiment showed no discrepancies.

Our semantics of Erlang builds on two starting points, the executable semantics
of Core Erlang in Maude described in [25] as well as the reversible semantics
for Erlang described in [9]. While our general approach is close to [25], moving
from Core Erlang to Erlang required to update most of the code. We could have
applied our approach to generate a reversible semantics for Core Erlang from
the irreversible one in [25], however the resulting reversible semantics would be
sequential since the semantics in [25] relies on some global data structures to
simplify the implementation of the model checking analysis, which would create
fake causal dependencies. Notably, translating the semantics for Erlang in [9]
into Maude directly is not trivial due to its high level of abstraction. E.g., the
semantics in [9] resorts to the existence of suitable contexts to identify the redex
inside an expression, while we need to explicitly give an inductive definition to
find the redex. We could have started from [11] (formalized using the K framework
for Maude) instead of [25], however the code in [25] was better documented.

Rollback semantics have been proved of interest for debugging techniques, we
find examples in [7,5,19,9]. The rollback semantics presented here differs from

5 Technicalities have been omitted, we refer to [22] for further details.

16 G. Fabbretti et al.

the ones in [15,5,19,9] as it is agnostic of the underlying formalism, and from the
ones in [7,13,8] as it is more concrete (to the point of being executable). We could
combine generality and executability thanks to use of the Maude framework.

Let us now discuss possible future developments. First, one could apply the
framework to other case studies or larger fragments of Erlang. In doing so one
has to ensure that the causal-dependencies captured by the producer-consumer
model used in [14] are appropriate - for example the model is not well-suited to
capture causal dependencies due to shared memory. For the semantics of a larger
fragment of Erlang, one could take inspiration from the one in [30].

As far as rollback is concerned, one would like to identify states by properties
(e.g., when a given message has been sent), as in [5,19,9], instead of using keys.

References

1. R. Carlsson. An introduction to Core Erlang. In Erlang Workshop, 2001.
2. I. Cristescu, J. Krivine, and D. Varacca. A compositional semantics for the reversible

π-calculus. In LICS, pages 388–397, 2013.
3. V. Danos and J. Krivine. Reversible communicating systems. In CONCUR, volume

3170 of LNCS, pages 292–307, 2004.
4. V. Danos and J. Krivine. Formal molecular biology done in ccs-r. LNCS, 180(3):31–

49, July 2007.
5. G. Fabbretti, I. Lanese, and J. Stefani. Causal-consistent debugging of distributed

Erlang programs. In RC 2021, volume 12805 of LNCS, pages 79–95, 2021.
6. G. Fabbretti, I. Lanese, and J.-B. Stefani. Generation of a reversible semantics for

Erlang in Maude. Research Report RR-9468, Inria, Apr. 2022.
7. E. Giachino, I. Lanese, and C. A. Mezzina. Causal-consistent reversible debugging.

In FASE, volume 8411 of LNCS, pages 370–384. Springer, 2014.
8. E. Giachino, I. Lanese, C. A. Mezzina, and F. Tiezzi. Causal-consistent rollback in

a tuple-based language. J. Log. Algebraic Methods Program., 88:99–120, 2017.
9. J. J. González-Abril and G. Vidal. Causal-consistent reversible debugging: Improving

cauder. In PADL, volume 12548 of LNCS, pages 145–160. Springer, 2021.
10. C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formalism for

artificial intelligence. In IJCAI 73, 1973.
11. J. Kőszegi. KErl: Executable semantics for Erlang. In CEUR Workshop Proceed-

ings 2046, pages 144–166, 2018.
12. P. Lami, I. Lanese, J. Stefani, C. S. Coen, and G. Fabbretti. Reversibility in

erlang: Imperative constructs. In RC 2022, volume 13354 of LNCS, pages 187–203.
Springer, 2022.

13. I. Lanese. From reversible semantics to reversible debugging. In RC, volume 11106
of LNCS, pages 34–46. Springer, 2018.

14. I. Lanese and D. Medic. A general approach to derive uncontrolled reversible
semantics. In CONCUR, volume 171, pages 33:1–33:24, 2020.

15. I. Lanese, C. A. Mezzina, A. Schmitt, and J. Stefani. Controlling reversibility in
higher-order pi. In CONCUR, LNCS, pages 297–311. Springer, 2011.

16. I. Lanese, C. A. Mezzina, and J. Stefani. Controlled reversibility and compensations.
In RC 2012, volume 7581 of LNCS, pages 233–240. Springer, 2012.

17. I. Lanese, C. A. Mezzina, and J. Stefani. Reversibility in the higher-order π-calculus.
Theor. Comput. Sci., 625:25–84, 2016.

Generation of a Reversible Semantics for Erlang in Maude 17

18. I. Lanese, N. Nishida, A. Palacios, and G. Vidal. CauDEr website. URL: https:
//github.com/mistupv/cauder-v2, 2018.

19. I. Lanese, N. Nishida, A. Palacios, and G. Vidal. A theory of reversibility for Erlang.
J. Log. Algebraic Methods Program., 100:71–97, 2018.

20. I. Lanese, U. P. Schultz, and I. Ulidowski. Reversible computing in debugging of
Erlang programs. IT Prof., 24(1):74–80, 2022.

21. J. S. Laursen, U. P. Schultz, and L.-P. Ellekilde. Automatic error recovery in robot
assembly operations using reverse execution. In IROS, pages 1785–1792, 2015.

22. All about maude, 2007.
23. H. C. Melgratti, C. A. Mezzina, and I. Ulidowski. Reversing place transition nets.

Log. Methods Comput. Sci., 16(4), 2020.
24. J. Meseguer. Rewriting logic as a semantic framework for concurrency: a progress

report. In CONCUR 96, pages 331–372, Berlin, Heidelberg, 1996.
25. M. Neuhäußer and T. Noll. Abstraction and model checking of Core Erlang

programs in Maude. ENTCS, 176(4):147–163, Jul 2007.
26. K. S. Perumalla and A. J. Park. Reverse computation for rollback-based fault

tolerance in large parallel systems: Evaluating the potential gains and systems
effects. Cluster Computing, 17(2):303–313, Jun 2014.

27. A. Philippou and K. Psara. Reversible computation in Petri nets. In RC, pages
84–101, 2018.

28. I. C. C. Phillips and I. Ulidowski. Reversing algebraic process calculi. J. Log.
Algebraic Methods Program., 73(1-2):70–96, 2007.

29. Automatic generation of reversible semantics in Maude. https://archive.

softwareheritage.org/browse/origin/directory/?origin_url=https:

//github.com/gfabbretti8/formalization-in-maude-of-erlang.
30. H. Svensson, L. Fredlund, and C. B. Earle. A unified semantics for future Erlang.

In ACM SIGPLAN workshop on Erlang, pages 23–32. ACM, 2010.

https://github.com/mistupv/cauder-v2
https://github.com/mistupv/cauder-v2
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/gfabbretti8/formalization-in-maude-of-erlang
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/gfabbretti8/formalization-in-maude-of-erlang
https://archive.softwareheritage.org/browse/origin/directory/?origin_url=https://github.com/gfabbretti8/formalization-in-maude-of-erlang

	Copertina_postprint_IRIS_UNIBO(2)
	icfem
	Generation of a Reversible Semantics for Erlang in Maude
	Introduction
	Background
	The Erlang language
	Maude
	Derivation of the Reversible Semantics
	Format of the Input Reduction Semantics
	Methodology

	Formalizing Erlang in Maude
	Equational Theory
	Expression Management
	Rewriting Rules

	Generating the Reversible Semantics
	Format of the Non-Reversible Semantics
	Transformation to the Syntax
	Generating the Reversible Semantics

	Correctness
	Rollback Semantics
	Conclusion, Related and Future Work

