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Abstract1

We present distinct, a general method for dif-2

ferential analysis of full distributions that is3

well suited to applications on single-cell data,4

such as single-cell RNA sequencing and high-5

dimensional flow or mass cytometry data. High-6

throughput single-cell data reveal an unprece-7

dented view of cell identity and allow com-8

plex variations between conditions to be discov-9

ered; nonetheless, most methods for differential10

expression target differences in the mean and11

struggle to identify changes where the mean is12

only marginally affected. distinct is based on13

a hierarchical non-parametric permutation ap-14

proach and, by comparing empirical cumulative15

distribution functions, identifies both differen-16

tial patterns involving changes in the mean, as17

well as more subtle variations that do not in-18

volve the mean. We performed extensive bench-19

marks across both simulated and experimen-20

tal datasets from single-cell RNA sequencing21

and mass cytometry data, where distinct shows22

favourable performance, identifies more differ-23

ential patterns than competitors, and displays24

good control of false positive and false discovery25

rates. distinct is available as a Bioconductor R26

package.27

keywords: Differential distribution; Differential anal-28

yses; Differential state; High-throughput single-cell29

data; Single-cell RNA-seq; Single-cell flow and mass cy-30

tometry; Permutation tests.31

Background32

Technology developments in the last decade have led to33

an explosion of high-throughput single-cell data, such34

as single-cell RNA sequencing (scRNA-seq) and high-35

dimensional flow or mass cytometry data, allowing re-36

searchers to investigate biological mechanisms at single-37

cell resolution. Single-cell data have also extended the38

canonical definition of differential expression by dis-39

playing cell-type specific responses across conditions,40

known as differential state (DS) [32], where genes or41

proteins vary in specific sub-populations of cells (e.g.,42

a cytokine response in myeloid cells but not in other43

leukocytes [13]). Classical bulk differential expression44

methods have been shown to perform well when used45

on single-cell measurements [25, 26, 31] and on aggre-46

gated data (i.e., averages or sums across cells), also re-47

ferred to as pseudo-bulk (PB) [7, 32]. However, most48

bulk and PB tools focus on shifts in the means, and49

may conceal information about cell-to-cell heterogene-50

ity. Indeed, single-cell data can show more complex51

variations (Figure 1 and Supplementary Figure 1); such52

patterns can arise due to increased stochasticity and53

heterogeneity, for example owing to oscillatory and un-54

synchronized gene expression between cells, or when55

some cells respond differently to a treatment than oth-56

ers [15, 31]. In addition to bulk and PB tools, other57

methods were specifically proposed to perform differ-58

ential analyses on single-cell data (notably: scDD [15],59

SCDE [14], MAST [11], BASiCS [10,29,30] and mixed60

models [27]). Nevertheless, they all present significant61

limitations: BASiCS does not perform cell-type spe-62

cific differential testing between conditions, scDD does63

not directly handle covariates and biological replicates,64

while PB, SCDE, MAST and mixed models performed65

poorly in previous benchmarks when detecting differ-66

ential patterns that do not involve the mean [7,15].67

Results68

distinct ’s full distribution approach69

To overcome these challenges, we developed distinct, a70

flexible and general statistical methodology to perform71

differential analyses between groups of distributions.72
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distinct is particularly suitable to compare groups of73

samples (i.e., biological replicates) on single-cell data.74

Our approach computes the empirical cumulative dis-75

tribution function (ECDF) from the individual (e.g.,76

single-cell) measurements of each sample, and compares77

ECDFs to identify changes between full distributions,78

even when the mean is unchanged or marginally in-79

volved (Figure 1 and Supplementary Figure 1). First,80

we compute the ECDF of each individual sample; then,81

we build a fine grid and, at each cut-off, we average the82

ECDFs within each group, and compute the absolute83

difference between such averages. A test statistic, sobs,84

is obtained by adding these absolute differences.85

More formally, assume we are interested in compar-86

ing two groups, that we call A and B, for which NA87

and NB samples are available, respectively. The ECDF88

for the i-th sample in the j-th group, is denoted by89

ecdf
(j)
i (.), for j ∈ {A,B} and i = 1, . . . , Nj . We90

then define K equally spaced cut-offs between the mini-91

mum,min, and maximum,max, values observed across92

all samples: b1, . . . , bK , where bk = min + k × l, for93

k = 1, . . . ,K, with l = (max − min)/(K + 1) being94

the distance between two consecutive cut-offs. We ex-95

clude min and max from the cut-offs because, trivially,96

ecdf
(j)
i (min) = 0 and ecdf

(j)
i (max) = 1, ∀j, i. At ev-97

ery cut-off, we compute the absolute difference between98

the mean ECDF in the two groups; our test statistic,99

sobs, is obtained by adding these differences across all100

cut-offs:101

sobs =
K∑
k=1

∣∣∣∣∣
∑NA

i=1 ecdf
(A)
i (bk)

NA
−
∑NB

i=1 ecdf
(B)
i (bk)

NB

∣∣∣∣∣ .
(1)

Note that in differential state analyses, these operations102

are repeated for every gene-cluster combination.103

Intuitively, sobs, which ranges in [0,∞), approximates104

the area between the average ECDFs, and represents105

a measure of distance between two groups of densities:106

the bigger sobs, the greater the distance between groups.107

The number of cut-offs K, which can be defined by108

users, is set to 25 by default, because no detectable109

difference in performance was observed when further110

increasing it (data not shown). Note that, although at111

each cut-off we compute the average across each group’s112

curves, ECDFs are computed separately for each indi-113

vidual sample, therefore our approach still accounts for114

the within-group variability; indeed, at a given thresh-115

old, the average of the sample-specific ECDFs differs116

from the group-level ECDF (i.e., the curve based on117

all individual measurements from the group). The null118

distribution of sobs is then estimated via a hierarchical119
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Figure 1: Cumulative distribution functions (CDFs) unravel
differences between distributions. Density (left panels) and CDF
(right panels) of five differential patterns: differential variability (DV),
and the four proposed by Korthauer et. al. [15]: differential expression
(DE), differential proportion (DP), differential modality (DM), and
both differential modality and different component means (DB).

non-parametric permutation approach (see Methods).120

A major disadvantage of permutation tests, which of-121

ten restricts its usage on biological data, is that too122

few permutations are available from small samples. We123

overcome this by permuting cells, which is still pos-124

sible in small samples, because there are many more125

cells than samples. In principle, this may lead to an126

inflation of false positives due to lack of exchangabil-127

ity (see Methods); nonetheless, in our analyses, distinct128

provides good control of both false positive and false129

discovery rates.130

Importantly, distinct is general and flexible: it targets131

complex changes between groups, explicitly models bio-132

logical replicates within a hierarchical framework, does133

not rely on asymptotic theory, avoids parametric as-134

sumptions, and can be applied to arbitrary types of135

data. Additionally, distinct can also adjust for sample-136

level cell-cluster specific covariates (i.e., whose effect137

varies across cell clusters), such as batch effects. In par-138

ticular, distinct fits a linear mixed effects model with139
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the input data (e.g., normalized counts) as response140

variable, nuisance covariates as fixed effects, and sam-141

ples as random effects. The method then removes the142

estimated impact of fixed effect covariates, and per-143

forms differential testing on these normalized values144

(see Methods).145

Furthermore, to enhance the interpretability of differen-146

tial results, distinct provides functionalities to compute147

(log) fold changes between conditions, and to plot den-148

sities and ECDFs, both for individual samples and at149

the group-level.150

Note that, although distinct and the Kolmogorov-151

Smirnov [18] (KS) test share similarities (they both152

compare distributions via non-parametric tests), the153

two approaches present several conceptual differences.154

Firstly, the KS considers the maximum distance be-155

tween two ECDFs, while our approach estimates the156

overall distance between ECDFs, which in our view is157

a more appropriate way to measure the difference be-158

tween distributions. Secondly, the KS test only com-159

pares two individual densities, while our framework160

compares groups of distributions. Thirdly, while the161

KS statistic relies on asymptotic theory, our framework162

uses a permutation test. Finally, a comparison between163

distinct and scDD [15] based on the KS test (labelled164

scDD-KS ) shows that our method, compared to the KS165

test, has greater statistical power to detect differential166

effects and leads to fewer false discoveries (see Simula-167

tion studies).168

Simulation studies169

We conducted an extensive benchmark, based on170

scRNA-seq and mass cytometry simulated and experi-171

mental datasets to investigate distinct ’s ability to iden-172

tify differential patterns in sub-populations of cells.173

First, we simulated droplet scRNA-seq data via mus-174

cat [7] (see Methods). We ran five simulation repli-175

cates for each of the differential profiles in Figure 1,176

with 10% of the genes being differential in each clus-177

ter, where DE (differential expression) indicates a shift178

in the entire distribution, DP (differential proportion)179

implies two mixture distributions with different propor-180

tions of the two components, DM (differential modal-181

ity) assumes a unimodal and a bimodal distribution,182

DB (both differential modality and different component183

means) compares a unimodal and a bimodal distribu-184

tion with the same overall mean, and DV (differential185

variability) refers to two unimodal distributions with186

the same mean but different variance (Figure 1 and187

Supplementary Figure 1). Each individual simulation188

consists of 4,000 genes, 3,600 cells, separated into 3 clus-189

ters, and two groups of 3 samples each, corresponding190

to an average of 200 cells per sample in each cluster.191

We considered six different normalization approaches:192

counts per million (CPMs), scater ’s logcounts [19],193

linnorm [34], BASiCS [10, 29,30], SCnorm [3] and194

residuals from variance stabilizing normalization from195

sctransform (vstresiduals) [12]. We compared dis-196

tinct to several PB approaches from muscat, based on197

edgeR [24], limma-voom and limma-trend [23], which198

emerged among the best performing methods for differ-199

ential analyses from scRNA-seq data [7,26]. We further200

considered three methods from muscat based on mixed201

models (MM), namely MM-dream2, MM-vstresiduals202

and MM-nbinom (see Methods). Finally, we included203

scDD [15], which is conceptually similar to our ap-204

proach: scDD implements a non-parametric method to205

detect changes between individual distributions from206

scRNA-seq, based on the Kolmogorov-Smirnov test,207

scDD-KS, and on a permutation approach, scDD-perm.208

For scDD-perm we used 100 permutations to reduce the209

computational burden.210

In all scenarios and on all six input data, distinct shows211

favourable performance: it has good statistical power212

while controlling for the false discovery rate (FDR)213

(Figure 2). In particular, for DE, DP and DM, distinct214

has similar performance to the best performing com-215

petitors (edgeR.linnorm and limma-trend.logcounts),216

while for DB and DV, it achieves significantly higher217

true positive rate (TPR), especially when using log-218

counts. PB methods in general perform well for differ-219

ential patterns involving changes in the mean (DE, DP220

and DM), but struggle to identify DB and DV patterns.221

scDD provides good TPR across all patterns when us-222

ing the KS test on vstresiduals (scDD-KS.vstresiduals),223

while the TPR is significantly reduced when using224

other inputs and with the permutation approach(scDD-225

perm); however, scDD methods (in particular, scDD-226

KS.vstresiduals) also show a significant inflation of the227

FDR. In contrast, MM methods provide good control of228

the FDR but have low statistical power in all differen-229

tial scenarios. We also investigated how normalization230

influences each method’s results (Supplementary Fig-231

ure 2): distinct appears to be the least affected method232

and displays the smallest variation across normaliza-233

tion inputs, possibly due to its non-parametric struc-234

ture, which can more flexibly accommodate various in-235

puts. Given the computational cost of SCnorm, which236

is significantly higher than the other normalizations,237

we only included this approach in the results from the238

main simulations. Furthermore, among the 25 replicate239

datasets in Figure 2, SCnorm ran in a few minutes on240

10 simulations, while it failed to run within a week time241
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Figure 2: distinct identifies various differential patterns and
controls for the FDR. TPR vs. FDR in muscat simulated data;
DE, DP, DM, DB and DV refer to the differential profiles illustrated
in Figure 1. Circles indicate observed FDR for 0.01, 0.05, 0.1 and 0.2
significance thresholds. Results are averages across the five simula-
tion replicates. Each individual replicate consists of 4,000 genes, 3,600
cells, separated into 3 clusters, and two groups of 3 samples each, cor-
responding to an average of 200 cells per sample in each cluster.

(on 10 cores) on the remaining 15 datasets. Therefore,242

we excluded SCnorm from Figure 2 and, in Supple-243

mentary Figures 3 and 4, we report a comparison of244

SCnorm to the remaining normalization methods, on245

the subset of 10 simulations where all normalizations246

successfully ran. For distinct, edgeR and limma, no no-247

ticeable differences are detected between SCnorm and248

scDD−perm.linnorm scDD−perm.vstresiduals
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Figure 3: distinct has uniform null p-values. Density of raw
p-values in muscat null simulated data; each replicate represents a dif-
ferent null simulation. Each individual replicate consists of 4,000 genes,
3,600 cells, separated into 3 clusters, and two groups of 3 samples each,
corresponding to an average of 200 cells per sample in each cluster.

the remaining normalization methods, while for scDD-249

KS SCnorm leads to a higher inflation of the FDR.250

We further simulated five null simulation replicates251

with no differential patterns; again with each simulation252

having 4,000 genes, 3,600 cells, 3 cell clusters and two253

groups of 3 samples each. In the null simulated data,254

only limma-trend.basics and limma-trend.cpm present a255

mild inflation of false positives, while MM and, particu-256

larly, edgeR.basics lead to overly conservative p-values;257

instead, distinct and scDD show approximately uni-258

form p-values for all types of input data (Figure 3).259

We also extended previous simulations to add a cell-260

type specific batch effect (i.e., a batch effect that affects261

differently each cell-type) [7,17]. In particular, we sim-262

ulated 2 batches, that we call b1 and b2, with one group263

of samples having two samples associated to b1 and one264

to b2, and the other group of samples having two sam-265

ples from batch b2 and one from b1. Differential results266
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Figure 4: distinct achieves good performance when varying
the number of available cells. TPR vs. FDR in muscat simulated
data; with 50, 100, 200 and 400 cells per cluster-sample combination,
corresponding to a total of 900, 1,800, 3,600 and 7,200 cells, respec-
tively. Results are aggregated over the five replicate simulations of
each differential type (DE, DP, DM, DB and DV), contributing in
equal fraction. Each individual simulation replicate consists of 4,000
genes, 3 cell clusters and two groups of 3 samples each. Circles indicate
observed FDR for 0.01, 0.05, 0.1 and 0.2 significance thresholds. Note
that scDD-perm and MM were excluded from this analysis due to their
computational cost.

are substantially unchanged (Supplementary Figure 5),267

which shows distinct can effectively remove nuisance268

confounders.269

Furthermore, we performed various sensitivity analyses270

and investigated how results are affected when varying:271

i) the number of cells, ii) the library size, iii) the dis-272

persion parameter, iv) the fraction of significant genes,273

and v) the sample sizes in each group. In particular, we274

simulated 50, 100, 200 (as in the original simulation)275

and 400 cells per sample in each cluster. We further276

modified the library size and dispersion parameters of277

the negative binomial model used by muscat to simu-278

late scRNA-seq data, influencing the mean expression279

and cell-to-cell variability respectively, by considering280

values 1/5, 1/2, 2 and 5 times as big as those used in281

the original simulation. In addition, we varied the per-282
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Figure 5: distinct requires more computational resources
than PB and scDD-KS methods, but significantly less than
MM and scDD-perm models. Average computing time, expressed
in minutes, inmuscat main simulations (Figures 2-3). For each method,
times are averaged across simulation types (DE, DP, DM, DB, DV and
null) and, for each type, across the five replicate simulations; in each
replicate 3,600 cells are available (200, on average, per cluster-sample
combination). distinct, MM and scDD models were run on 3 cores,
while pseudo-bulk methods based on edgeR and limma used a sin-
gle core because they do not allow for parellel computing. Note that
scDD-perm requires much longer on vstresiduals than on the other nor-
malized data, because scDD performs differential testing on non-zero
values: vstresiduals, (unlike linnorm, cpm and basics normalized data)
are not zero-inflated and, therefore, many more cells have to be used
for differential testing.

centage of simulated differential genes as 1, 5, 10 (as in283

the original simulation) and 20%, and considered var-284

ious unbalanced designs by comparing two groups of285

different sample sizes: 3 vs. 2, 4 vs. 3, and 5 vs. 3.286

Overall, increasing the number of cells or the library287

size and decreasing the dispersion have a positive im-288

pact on the performance of all methods, by improving289

their ability to detect differential effects (i.e., true pos-290

itive rate); nonetheless, none of these factors seem to291

affect the relative ranking of methods, which remains292

globally stable (Figure 4 and Supplementary Figures293

6-7). In addition, changing the fraction of significant294

genes and considering unbalanced designs does not ap-295

pear to introduce systematic changes in performance296

(Supplementary Figures 8-9). Note that, in these sen-297

sitivity analyses, we excluded MM models due to the298

high computational cost and low statistical power dis-299

played in the previous analyses.300

From a computational perspective, distinct required301

an average time of 3.2 to 4.5 minutes per simulation,302

which is higher than PB methods (0.1 to 0.2 minutes)303
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and scDD-KS (0.5 to 0.7 minutes), but significantly304

lower than MM approaches (29.4 to 297.3 minutes) and305

scDD-perm (544.7 to 2085.6 minutes) (Figure 5 and306

Supplementary Table 1). All methods were run on 3307

cores, except PB approaches, which used a single core,308

because they do not allow for parellel computing.309

We also considered an alternative popular droplet310

scRNA-seq data simulator, SplatPOP [2], which rep-311

resents a generalization of Splatter [35], that allows312

multi-sample multi-group synthetic data to be gener-313

ated. In particular, we simulated 20,345 genes from314

a human genome with two groups of 4 samples each,315

and 100 cells per sample, belonging to the same clus-316

ter of cells, for a total of 800 cells across all samples.317

We ran 8 differential simulations, with 10% of genes318

truly differential between groups, by varying the lo-319

cation (de.facLoc) and scale (de.facScale) differential320

parameters, mainly affecting the mean and variance,321

respectively (see Methods). We considered the same322

normalization and differential methods as in the mus-323

cat simulation (except MM and scDD-perm, which were324

not considered due to the high computational cost and325

low statistical power displayed above). As expected, for326

all methods, differential patterns are easier to detect as327

the magnitude of the difference increases, with differen-328

tial location patterns having a higher true positive rate329

than differential scale patterns. While all methods con-330

trol the FDR, in all simulations, distinct achieves sub-331

stantially higher TPR than competitors (Figure 6). We332

also repeated the same simulations including a batch333

effect, with two batches, with the same scale and lo-334

cation differential parameters for the batch and group335

differences (i.e., increasing together from 0.2 to 1.5).336

Again, we excluded scDD from these analyses because337

it cannot handle covariates directly. Results agree with338

those from the muscat batch effect simulation study:339

FDR and TPRs are mostly unchanged when introduc-340

ing nuisance covariates, with only a minor decrease in341

the TPR in stronger batch effects, i.e., when de.facLoc342

and de.facScale are 1 and 1.5 (Supplementary Figure343

10), which again indicates that distinct can effectively344

control for nuisance covariates.345

We further considered the semi-simulated mass cytom-346

etry data from Weber et al. [32] (labelled diffcyt sim-347

ulation), where spike-in signals were computationally348

introduced in experimental data [5], hence maintain-349

ing the properties of real biological data while also350

embedding a known ground truth signal. We evalu-351

ated distinct and two methods from diffcyt, based on352

limma [23] and linear mixed models (LMM), which out-353

performed competitors on these same data [32]. In354

particular, we considered three datasets from Weber355
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Figure 6: distinct displays higher TPR than competitors.
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Figure 7: distinct shows high power while controlling for
false positive and false discovery rates. (a-b) TPR vs. FDR in
diffcyt semi-simulated data. ‘main’, ‘less 50’ and ‘less 75’ indicate the
main simulation, and those where differential effects are diluted by 50
and 75%, respectively. Each simulation consists of 88,435 cells and
two groups of 8 samples each. Circles indicate observed FDR for 0.01,
0.05, 0.1 and 0.2 significance thresholds. (a) As in the muscat
simulation study, cells were clustered into 8 populations based on
manually annotated cell types [32]. (b) As in Weber et al. [32], cells
were grouped in 100 high-resolution clusters via unsupervised
clustering. (c) Density of raw p-values in diffcyt null semi-simulated
data; each replicate represents a different null simulation. Each
replicate consists of 88,438 cells and two groups of 8 samples each. As
in Weber et al. [32], cells were clustered in an unsupervised manner.

et al. [32]: the main DS dataset and two more where356

differential effects were diluted by 50 and 75%. Each357

dataset consists of 24 protein markers, 88,435 cells, and358

two groups (with and without spike-in signal) of 8 sam-359

ples each. Measurements were first transformed, and360

then cells were grouped into sub-populations with two361

separate approaches (see Methods): i) similarly to the362

muscat simulation study, cell labels were defined based363

on 8 manually annotated cell types [32] (Figure 7a),364

and ii) as in the original diffcyt study from Weber et365

al. [32], cells were grouped into 100 high-resolution clus-366

ters (based on 10 cell-type markers, see Methods) via367

unsupervised clustering (Figure 7b). In the main simu-368

lation, distinct achieves higher TPR when considering369

cell-type labels (Figure 7a, ‘main’), while all methods370

exhibit substantially overlapping performance when us-371

ing unsupervised clustering (Figure 7b, ‘main’). In both372

clustering approaches, as the magnitude of the differen-373

tial effect decreases, the distance between methods in-374

creases: diffcyt tools show a significant drop in the true375

positive rate whereas distinct maintains a higher TPR376

while effectively controlling for the false discovery rate377

(FDR) (Figures 7a-b and Supplementary Figure 11).378

This indicates that distinct has good statistical power379

to detect even small changes between conditions. We380

also considered the three replicate null datasets from381

Weber et al. [32] (i.e., with no differential effect), con-382

taining 24 protein markers and 88,438 cells across 8383

cell types, and found that all methods display approx-384

imately uniform p-values (Figure 7c).385

Experimental data analyses386

In order to investigate false positive rates (FPRs) in387

real data, we considered two experimental scRNA-seq388

datasets where no differential signals were expected, by389

comparing samples from the same experimental con-390

dition. Given the high computational cost and low391

power of MM, and the high FDR of scDD models, for392

the real data analyses, we only included distinct and393

PB methods. We considered gene-cluster combinations394

with at least 20 non-zero cells across all samples. The395

first dataset (labelled T-cells) consists of a Smart-seq2396

scRNA-seq dataset of 19,875 genes and 11,138 T cells397

isolated from peripheral blood from 12 colorectal can-398

cer patients [36]. We automatically separated cells in399

11 clusters (via igraph [1, 8]), and generated replicate400

datasets, by randomly separating, three times, the 12401

patients to two groups of size 6. The second dataset402

(labelled Kang) contains 10x droplet-based scRNA-seq403

peripheral blood mononuclear cell data from 8 Lupus404

patients, before (controls) and after (stimulated) 6h-405

treatment with interferon-β (INF-β), a cytokine known406

to alter the transcriptional profile of immune cells [13].407

The full dataset contains 35,635 genes and 29,065 cells,408

which are separated (via manual annotation [13]) into 8409

cell types. One of the 8 patients was removed as it ap-410

pears to be a potential outlier (Supplementary Figures411

12-14). Here we only included singlet cells and cells412

assigned to a cell population, and considered control413

samples only, resulting in 11,854 cells and 10,891 genes.414

Again, we artificially created three replicate datasets415

by randomly assigning the 7 retained control samples416

in two groups of size 3 and 4. In both null analyses, we417

found that limma-trend, particularly when using CPMs,418

leads to an increase of FPRs, distinct ’s p-values are only419
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Figure 8: On experimental scRNA-seq data, distinct has
almost-uniform null p-values. Density of raw p-values in the null
T-cells (top) and Kang (bottom) experimental data. Each replicate
represents a random partition of samples in two groups. The T-cells
data consists of 12 samples and 11,138 cells across 11 clusters. For the
Kang dataset, we retained 7 samples and 11,854 cells across 8 clusters.

marginally inflated towards 0, while edgeR and limma-420

voom are the most conservative methods and provide421

the best control of FPRs (Figure 8 and Supplemen-422

tary Tables 2-3). Regarding normalization, linnorm423

and BASiCS lead to the most conservative p-values and424

smallest false positive rates.425

We then considered again the Kang dataset, and per-426

formed a DS analysis between controls and stimulated427

samples. Again, we removed one potential outlier pa-428

tient, and only considered singlet cells and cells as-429

signed to a cell population; we further filtered gene-430

cluster combinations with less than 20 non-zero cells431

across all samples, resulting in 12,045 genes and 23,571432

cells across 8 cell types and 14 samples. We found433

that distinct identifies more differential patterns than434

PB methods, with edgeR and limma-voom being the435

most conservative methods, and that its results are436

very coherent across different input data (Supplemen-437
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Figure 9: distinct discovers non-canonical differential pat-
terns. Density of logcounts for nine examples of differential patterns
identified by distinct on all input data (adjusted p-values < 0.05), and
not by any PB tool (adjusted p-values > 0.05), on the Kang dataset
when comparing controls and stimulated samples. Gene RPL13 was
identified in FCGR3A+ Monocytes (third row) and in NK cells (fourth
row), while all other genes were detected in Dendritic cells. Each line
represents a sample.

tary Figure 15). When visually investigating the gene-438

cluster combinations detected by distinct (adjusted p-439

value < 0.1), on all five input data (CPMs, logcounts,440

linnorm, BASiCS and vstresiduals), and not detected441

by any of the ten PB approaches (adjusted p-value >442

0.1), we found several interesting non-canonical differ-443

ential patterns (Figure 9 and Supplementary Figures444

16-27). In particular, gene MARCKSL1 displays a DB445

pattern, with stimulated samples having higher density446

on the tails and lower in the centre of the distribu-447

tion, gene RPL13 mirrors classical DE, while the other448

genes seem to emulate DP profiles. Interestingly, ten449

out of eleven of these genes are known tumor prog-450

nostic markers: H2AZ2 for cervical and renal cancer,451

SRSF9 for liver cancer and melanoma, RPL24 for re-452

nal and thyroid cancer, HNRNPA0 for renal and pan-453

creatic cancer, MARCKSL1 for liver and renal cancer,454

GTF3C6 for liver cancer, RPL13 for endometrial and455

renal cancer, PGK1 for breast, head and neck, cervical,456

liver, and pancreatic cancer, KDELR2 for renal, head457
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method % of unique results
distinct.logcounts 0.3
distinct.basics 0.8
limma-trend.logcounts 0.9
distinct.cpm 1.0
distinct.vstresiduals 1.1
edgeR.linnorm 1.2
limma-trend.vstresiduals 1.5
limma-trend.basics 1.5
edgeR.counts 1.7
edgeR.basics 3.0
distinct.linnorm 3.6
limma-trend.linnorm 3.7
limma-voom.counts 5.6
edgeR.cpm 10.4
limma-trend.cpm 26.8

Table 1: Percentage of unique gene/cell-type identifications that are
unique to each method. Since methods return significantly different
number of significant results, for each method, we selected the most
significant 1,000 results. For every method, we then compute the frac-
tion of such results that are unique, i.e., not in common with the top
1,000 results returned by any other method.

and neck and glioma cancer, and RPL11 for renal and458

breast cancer [28]. This is an interesting association,459

considering that INF-β stimulation is known to inhibit460

and interfere with tumor progression [9, 22]. Addition-461

ally, Supplementary Figures 16-27 show how distinct462

can identify differences between groups of distributions463

even when only a portion of the ECDF varies between464

conditions. Finally, we computed the fraction of de-465

tected genes that are unique by each method. Given466

that a ground truth is absent, we speculate that gene-467

cluster combinations detected by multiple methods are468

more likely to be truly differential, while those detected469

by a single method are more likely to be false posi-470

tive detections. Since methods return widely different471

number of significant genes, for each method, we con-472

sidered the top (i.e., smallest p-value) 1,000 genes per473

cell-type. We then computed the percentage of results474

that are unique to each method (Table 1), i.e., not in475

common with the top 1,000 results returned by any476

other method. Overall, distinct displays a lower frac-477

tion of unique results (1.4% on average across all input478

data) compared to edgeR (4%) and limma (6.7%). It is479

also interesting to note that scater ’s logcounts normal-480

ization lead to the 2 smallest fractions of unique values481

(i.e., distinct.logcounts and limma-trend.logcounts).482

Discussion483

High-throughput single-cell data can display complex484

differential patterns; nonetheless, most methods for dif-485

ferential expression fail to identify changes where the486

mean is not affected. To overcome the limitations of487

present differential tools, we have developed distinct, a488

novel method to identify differential patterns between489

groups of distributions, which is particularly well suited490

to perform differential analyses on high-throughput491

single-cell data. distinct is based on a flexible hier-492

archical multi-sample full-distribution non-parametric493

approach. In order to compare it to state-of-the-art494

differential methods, we ran extensive benchmarks on495

both simulated and experimental datasets from scRNA-496

seq and mass cytometry data, where our approach ex-497

hibits favourable performance, provides good control of498

the FNR and FDR, and is able to identify more patterns499

of differential expression compared to canonical tools,500

even when the overall mean is unchanged. In particular,501

our approach displays a higher statistical power (i.e.,502

TPR) not only than PB methods, but also compared503

to other non-parametric frameworks from scDD, based504

on the Kolmogorov-Smirnov test statistic (scDD-KS )505

and on permutation tests (scDD-perm). distinct also506

allows for biological replicates, does not rely on asymp-507

totic theory, which could be inaccurate in small sample508

sizes (typical of biological data), and avoids parametric509

assumptions, that may be challenging to meet in single-510

cell data. Additionally, distinct can also effectively ad-511

just for sample-level cell-cluster specific covariates (i.e.,512

whose effect varies across cell clusters), such as batch513

effects (Supplementary Figure 5). Importantly, distinct514

is a very general test that, due to its non-parametric515

nature, can be applied to various types of data, even516

beyond the single-cell applications shown here. Fur-517

thermore, thanks to its flexible form, we have shown in518

our simulations that distinct has the most consistent519

performance across normalization approaches (Supple-520

mentary Figure 2 and 4).521

However, these advantages come at the expense of a522

higher computational burden, particularly when com-523

pared to PB methods or KS approaches (Figure 5).524

Nonetheless, by employing clever computational tech-525

niques (i.e., parallel computing and C++ coding within526

R), the method runs within minutes on a laptop, even527

for large datasets. Overall, we believe that distinct528

represents a valid alternative for differential detections529

from single-cell data, particularly when interest lies be-530

yond canonical differences in means, as it allows to en-531

hance statistical power at the cost of a reasonable in-532

crease in the computational time.533

Finally, although we have focused here on comparing534

two groups of samples, several future extensions are535

possible to allow our framework to be applied to dif-536

ferent scenarios. For instance, by suitably modifying537
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the test statistics in (1), one may ideally extend our ap-538

proach to perform a joint differential test between three539

of more groups of samples. Although, it is worth not-540

ing that, in the presence of three or more experimental541

conditions, at present, it is still possible to run pairwise542

comparisons between pairs of conditions. While a joint543

test across all groups may certainly be of interest in544

some cases, from our experience, comparisons between545

pairs of groups are usually more used among scientists.546

In addition, as we were suggested by a user, distinct547

could be employed to compare cell clusters instead of548

experimental conditions, hence discovering differential549

genes between cell clusters (e.g., cell types), even from550

individual samples.551

Availability552

distinct is freely available as a Bioconductor R pack-553

age at: https://bioconductor.org/packages/distinct.554

The scripts used to run all analyses are avail-555

able on GitHub (https://github.com/SimoneTiberi/556

distinct_manuscript, version v3) and Zenodo (DOI:557

10.5281/zenodo.6397114). The diffcyt simulated data558

is available via FlowRepository (accession ID FR-FCM-559

ZYL8 [32]) and HDCytoData R Bioconductor pack-560

age [33]; the Kang dataset can be accessed via musc-561

Data R Bioconductor package [6]; the T-cells dataset562

is deposited on the European Genome-phenome (acces-563

sion id EGAD00001003910 [36]).564
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Methods586

Permutation test587

In order to test for differences between groups, we em-588

ploy a hierarchical permutation approach: to estimate589

the null distribution of sobs, we permute the individual590

observations (e.g., single-cell measurements) instead of591

the samples. Note that this violates the exchangeability592

assumption of permutation tests and, hence, p-values593

are not guaranteed to be uniformly distributed under594

the null hypothesis; nonetheless, in our simulated and595

experimental analyses, we empirically show that dis-596

tinct provides good control of both false positive and597

false discovery rates. We randomly permute individual598

observations P times across all samples and groups, by599

retaining the original sample sizes. We denote by sp600

the test statistic computed at the p-th permutation,601

p = 1, . . . , P . A p-value, p̃, is obtained as [21]:602

p̃ =

∑P
p=1 1

(
sp ≥ sobs

)
+ 1

P + 1
, (2)

where 1(cond) is 1 if cond is true, and 0 otherwise. In603

order to accurately infer small p-values, when p̃ is below604

some pre-defined thresholds, the number of permuta-605

tions are automatically increased and p̃ is re-computed.606

By default, distinct initially computes 100 permuta-607

tions; when p̃ ≤ 0.1 these are increased to 500; when608

the new p̃ ≤ 0.01 we use 2, 000 permutations, which609

are further increased to 10, 000 if p̃ ≤ 0.001. Note that610

the number of permutations (i.e., 100, 500, 2,000 and611

10,000) can be specified by the user.612

Covariates613

Assume we observe Z nuisance covariates, and that N
samples are available across all groups, where for the
i-th sample we observe Ci values (e.g., single-cell mea-
surements). We fit the following linear mixed effects
model:

y(i)c = β0 +

Z∑
z=1

βzX
(i)
z + αi + ε(i)c , for i = 1, . . . , N,

and c = 1, . . . , Ci, (3)

where y(i)c represents the c-th observation for the i-th614

sample, β0 is the intercept of the model, X(i)
z indicates615

the z-th covariate in the i-th sample, βz denotes the616
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fixed effect coefficient for the z-th covariate, αi rep-617

resents the random effect term for the i-th sample,618

and ε(i)c is the (zero-mean) residual for the c-th obser-619

vation in the i-th sample. We assume that random620

terms are normally distributed as αi ∼ N (0, σ2i ), where621

N (a, b) denotes the normal distribution with mean a622

and variance b. Note that, due to the random effect623

terms, observations from the same sample are posi-624

tively correlated while, observations between different625

samples are independent. We infer model parameters626

via maximum likelihood, with the estimated values for627

the fixed effect terms denoted by β̂0, . . . , β̂Z . We then628

remove the estimated effect of nuisance covariates as629

y
(i)
c −

∑Z
z=1 β̂zX

(i)
z ; differential testing is performed, as630

described above, on these normalized values. In DS631

analyses, model (3) is fit, separately, for every gene-632

cluster combination, hence accommodating for cell-type633

specific effects of covariates.634

Normalization635

In scRNA-seq datasets, CPMs and logcounts were com-636

puted via scater Bioconductor R package [19], vstresid-637

uals were calculated via sctransform R package [12]638

(except for the T-cells data, where, due to a fail-639

ure of sctransform’s variance stabilizing normalization,640

we used DESeq2 ’s vst transformation [16]), while lin-641

norm, BASiCS and SCnorm, normalized data were642

calculated with the respective Bioconductor R pack-643

ages [3, 10, 29, 30, 34]. For SCnorm, following the au-644

thor’s suggestions, we normalized each cell cluster (3 in645

total) separately, using samples as Conditions parame-646

ter.647

In mass cytometry datasets, measurements were trans-648

formed via diffcyt ’s transformData function, which ap-649

plies an arcsinh transformation.650

muscat simulation and Kang data651

In all muscat simulations, we used the control samples652

of the Kang dataset as a anchor data; as in the real653

data analyses, we excluded one sample as it emerged as654

a potential outlier (Supplementary Figures 12-14), and655

only considered singlet cells and cells assigned to a cell656

population. In muscat ’s simulation studies, we con-657

sidered gene-cluster combinations with simulated ex-658

pression mean greater than 0.2; for DB patterns, we659

increased this threshold to 1 because with low expres-660

sion values differences are not visible by eye. In the661

simulation when varying the library size (Supplemen-662

tary Figure 6), we filtered gene-clusters combinations663

with at least 50 non-zero cells. For every simulations,664

five replicates were simulated, and results were aver-665

aged across replicates. In the main simulation (Figure666

2) and the batch effect simulation (Supplementary Fig-667

ure 5), we simulated from a paired design 2 groups of668

3 samples each, with 4,000 genes, and 3,600 cells dis-669

tributed in 3 clusters (corresponding to an average of670

200 cells per sample in each cluster). For the simu-671

lation study when varying the number of cells (Fig-672

ure 4), the total numbers of available cells were 900,673

1,800, 3,600 and 7,200, corresponding to an average of674

50, 100, 200 and 400 cells per sample in every clus-675

ter. For the differential simulations, we used log2-FC676

values of 1 for DE, 1.5 for DP and DM, and 3 for DB677

and DV. For the batch effect simulation study we used a678

modified version of muscat, developed by Almut Luetge679

at the Robinson lab (available at: https://github.com/680

SimoneTiberi/distinct_manuscript), which allows sim-681

ulating cluster-specific batch effects [7, 17]. All mus-682

cat simulation studies, as well as the Kang non-null683

data analysis, were performed by editing the original684

snakemake workflow from Crowell et al. [7]. PB meth-685

ods were applied on aggregated data by summing cell-686

level measurements; for differential testing, we used687

muscat ’s pbDS function [7]. Mixed model methods688

were implemented, via muscat ’s mmDS function, us-689

ing the same approaches as in Crowell et al. [7]: in690

MM-dream2 and MM-vstresiduals linear mixed models691

were applied to log-normalized data with observational692

weights and variance-stabilized data, respectively, while693

in MM-nbinom generalized linear mixed models were694

fitted directly to raw counts. In the muscat simulations695

and in the Kang non-null data analysis, we accounted696

for the paired design by modelling the patient id as a697

covariate in all methods that allow for covariates (i.e.,698

distinct, PB and MM).699

splatPop simulation700

In SplatPOP simulated data, we used a hu-701

man genome, version 19, downloaded from702

https://www.gencodegenes.org/human/release_19.html.703

We ran a total of 16 simulations: 8 with and 8 without704

batch effects as nuisance covariate. In each case, we705

ran 4 differential location (“de.facLoc” parameter)706

and 4 differential scale (“de.facScale” parameter)707

simulations, with differential parameters equals to708

0.2, 0.5, 1 and 1.5. In every simulation, 10% of709

genes were differential between groups, and a total710

of 20,345 genes and 800 cells were simulated (100711

per sample). In the simulation with batch effects,712

the 8 samples were randomly assigned to 2 batches,713

and the differential location and scale parameters714

between batches (“batch.facLoc” and “batch.facScale”,715

respectively) matched those between groups of samples716
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(“de.facLoc” and “de.facScale”). For more details on717

how SplatPOP ’s data is simulated, please refer to the718

original manuscript [2] and vignettes.719

diffcyt simulation720

The diffcyt semi-simulated data originates from a real721

mass cytometry dataset of healthy peripheral blood722

mononuclear cells from two paired groups of 8 samples723

each [5]; one group contains unstimulated cells, while724

the other was stimulated with B cell receptor/Fc recep-725

tor cross-linker. The original dataset contains a total726

of 172,791 cells and 24 protein markers: 10 of these727

are cell-type markers used for cell clustering, while 14728

are cell state markers used for differential state anal-729

yses; the distinction between cell state and cell-type730

markers is based on prior biological knowledge [32].731

In Weber et al. [32], semi-simulated data were gener-732

ated by separating the cells of each unstimulated sam-733

ple in two artificial samples; a differential signal was734

then computationally introduced by replacing, in one735

group, unstimulated B cells with B cells from stimu-736

lated samples. Measurements were transformed and737

cells clustered via diffcyt ’s transformData (which ap-738

plies an arcsinh transformation) and generateClusters739

functions, respectively. For the DS simulation in Fig-740

ure 7b, as in Weber et al. [32], we evaluated methods’741

performance in terms of detecting DS for phosphory-742

lated ribosomal protein S6 (pS6) in B cells, which is743

the strongest differential signal across the cell types in744

this dataset [20, 32]. For the DS simulation in Figure745

7a, we considered previously manually annotated cell746

types [32] and included all 14 cell state markers. dif-747

fcyt ’s limma and LMM methods were applied via dif-748

fcyt ’s testDS_limma and testDS_LMM functions, re-749

spectively [32]. We accounted for the paired design by750

modelling the patient id as a covariate.751

P-values adjustment752

All p-values were adjusted via Benjamini-Hochberg cor-753

rection [4]. In diffcyt simulations we used globally ad-754

justed p-values for all methods, i.e., p-values from all755

clusters are jointly adjusted once. However, since PB756

methods were found to be over-conservative when glob-757

ally adjusting p-values [7], in muscat simulations and758

Kang discovery analyses, we used locally adjusted p-759

values for all methods.760

Software versions761

All analyses were performed via R software version762

4.0.0, with Bioconductor packages from release 3.11.763
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