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A B S T R A C T 

Forthcoming large imaging surveys such as Euclid and the Vera Rubin Observatory Le gac y Surv e y of Space and Time are 
expected to find more than 10 

5 strong gravitational lens systems, including many rare and exotic populations such as compound 

lenses, but these 10 

5 systems will be interspersed among much larger catalogues of ∼10 

9 galaxies. This volume of data is too 

much for visual inspection by volunteers alone to be feasible and gravitational lenses will only appear in a small fraction of these 
data which could cause a large amount of false positives. Machine learning is the ob vious alternativ e but the algorithms’ internal 
workings are not obviously interpretable, so their selection functions are opaque and it is not clear whether they would select 
against important rare populations. We design, build, and train several convolutional neural networks (CNNs) to identify strong 

gravitational lenses using VIS , Y , J , and H bands of simulated data, with F1 scores between 0.83 and 0.91 on 100 000 test set 
images. We demonstrate for the first time that such CNNs do not select against compound lenses, obtaining recall scores as high 

as 76 per cent for compound arcs and 52 per cent for double rings. We verify this performance using Hubble Space Telescope 
and Hyper Suprime-Cam data of all known compound lens systems. Finally, we explore for the first time the interpretability of 
these CNNs using Deep Dream, Guided Grad-CAM, and by exploring the kernels of the convolutional layers, to illuminate why 

CNNs succeed in compound lens selection. 
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1  I N T RO D U C T I O N  

In the near future the Euclid Space Telescope (Laureijs et al. 2011 ) 
and the Vera Rubin Observatory Le gac y Surv e y of Space and Time 
(LSST; Abell et al. 2009 ) will achieve first light. Both Euclid and 
Rubin will be mapping about half the sky in optical/near-infrared 
bands to AB depths of ∼24–24.5 ( Euclid ) and ∼22–25 (LSST). 
Euclid is expected to find more than 10 5 strong gravitational lens 
systems (e.g. Collett 2015 ) and 5000 strongly lensed quasars while 
LSST expects to find 10 5 g alaxy–g alaxy lenses, 10 4 strongly lensed 
quasars and 500 lensed Type Ia supernovae with 100 of these lenses 
being suitable for gathering time-delay data (Zhan & Tyson 2018 ; 
Verma et al. 2019 ). 1 

With this large number of gravitational lenses, several cosmologi- 
cally important quantities can be constrained. These include the dark 
energy equation of state ( w) parameter, the Hubble constant ( H 0 ), 
and dark matter halo substructure. The current tension in H 0 could be 
eased (or at least illuminated) by measuring the time delays caused by 
gravitational lensing. Currently H 0 can only be constrained through 

� E-mail: joshua.wilde@open.ac.uk 
1 The code used in this paper is publicly available at https://github.com/Jos 
hWilde/LensFindery-McLensFinderFace . 

lensing to a precision of 2.4 per cent using this method (including the 
error budget for systematics and assuming a spatially flat cosmology) 
due to the limited number of suitable gravitational lenses that are 
currently known (Wong et al. 2020 ). The problem with using time 
delays from gravitational lenses is that the assumption of the mass 
distribution using methods such as the mass-sheet transformation can 
make all observable strong-lensing parameters invariant apart from 

the time delay (Schneider & Sluse 2014 ). The time delay of a lens 
is roughly �t ∝ H 

−1 
0 (1 − k e ), where k e is the mean convergence. 

The only gravitational lens observable which directly constrains this 
value is the time delay. Properties such as stellar kinematics can 
provide additional constraints on k e . Overconstrained models can 
generate a value for k e that are precise but not accurate resulting in 
uncertainties that are far larger than reported (Kochanek 2020 ). It is 
possible to break this de generac y without assuming a mass profile, 
instead adding spatially resolved kinematics from time delay and 
non-time delay lens systems resulting in a precision of 2.5 per cent 
(Birrer & Treu 2020 ) The amount of data from Euclid and LSST will 
increase the number of suitable gravitational lenses for measuring 
time delays. This is expected to allow for a determination of H 0 with 
an accuracy of less than 1 per cent (Liao 2019 ). 

Such a large sample of strong gravitational lenses should also be an 
excellent source of rare and exotic lens configurations. Compound 
lenses (multiple lens plane systems) are both rare and extremely 
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valuable to cosmology. Over the course of its mission LSST expects 
to find ∼90 compound lens systems (Mandelbaum et al. 2018 ). These 
systems enforce tighter constraints on models allowing for lower 
uncertainties in measurements of parameters such as �M 

and w 

(Collett et al. 2012 ; Collett & Auger 2014 ). From as few as 50 
compound lenses these values can be measured to within a 10 per cent 
accuracy (Gavazzi et al. 2008 ). Other parameters such as w and �m 

can be determined with a high accuracy from the time delays of 100 
lensed quasars (Treu et al. 2013 ). 

Ho we ver, Euclid ’s entire non-lensed catalogue will comprise about 
a billion galaxies, and LSST’s will be even larger. Finding strong 
gravitational lenses, and exotic compound systems in particular, will 
therefore be a ‘needle in a haystack in a field of haystacks’ data 
mining problem. In this paper, we define compound systems to be a 
gravitational lens containing two sets of strongly lensed images. The 
imaging data are too numerous to rely on human inspection alone 
(e.g. Marshall et al. 2016 ; More et al. 2016 ; Sonnenfeld et al. 2020 ), 
but machine learning is a natural approach to attempt to solve this 
problem. 

Machine learning was originally inspired by the processes of 
neurons within the brain and was initially developed as artificial 
neural networks (McCulloch & Pitts 1943 ). These could only perform 

simple tasks such as playing checkers (Samuel 1960 ). These artificial 
neural networks were further impro v ed upon with algorithms such as 
back-propagation (Rumelhart, Hinton & Williams 1986 ) allowing for 
information to be transferred between hidden layers. Taking inspira- 
tion from how the human eye processes information, convolutional 
neural networks (CNNs) were created (LeCun et al. 1989 , 1998 ). 
These included convolutional layers at the start of the network that 
forced the CNNs to learn information about how features were related 
within the image. These layers tend to start off by learning simplistic 
features such as edges, then they progress into patterns and shapes, 
eventually detecting complex features within the data. 

Over the past decade, machine learning and in particular CNNs 
have become more prominent following from advances in GPUs, 
the creation of large accessible data sets (Deng et al. 2009 ), and the 
success of the deep learning CNN Ale xNet (Krizhevsk y, Sutskev er & 

Hinton 2012 ). As it has become popular in the mainstream, machine 
learning has been increasingly used in astronomy, in particular 
to classification problems, such as using CNNs and multiband 
images to classify dwarf galaxies (M ̈uller & Schnider 2021 ); using 
CNNs to assign F anaroff–Rile y classifications to radio galaxies 
(Scaife & Porter 2021 ); using an auto-encoder for morphological 
classification of galaxies (Spindler, Geach & Smith 2021 ); using a 
U-Net to perform source detection, segmentation, and classification 
(Hausen & Robertson 2020 ); using Recurrent Neural Networks 
(RNNs) to correct classifications in maps (Maggiori et al. 2017 ); 
and classifying galaxies using t -distributed stochastic neighbour 
embedding (T-SNE; Zhang et al. 2020 ). Denoising auto-encoders 
have also been used for image deconvolution (Lauritsen et al. 2021 ). 

In recent years machine learning has been applied to search 
for gravitational lenses. Various machine learning techniques have 
been used for this application, which can be broken down into two 
main categories: supervised and unsupervised learning. Supervised 
machine learning approaches require large amounts of data in order 
to sensibly train. Since the number of lenses disco v ered is much 
smaller than the number of lenses need to train machine learning 
approaches, simulated data are often used for this task (e.g. Hezaveh, 
Le v asseur & Marshall 2017 ; Jacobs et al. 2017 ; Huang et al. 2019 ; 
Jacobs et al. 2019 ; Khramtsov et al. 2019 ; Petrillo et al. 2019 ; He 
et al. 2020 ). Other methods can include using data augmentation to 
boost the size of a data set. In preparation for upcoming surv e ys and 

telescopes a great deal of work has been done to create automated 
lens finding tools to make the process of finding gravitational lenses 
in this large amount of data more ef fecti ve. Within the Euclid 
telescope consortium, there have been strong gravitational lens 
challenges, in which participants used various methods to classify 
simulated images as lenses and non-lenses (Metcalf et al. 2019 ). 
Machine learning technologies deployed on lens finding include 
Support Vector Machines (SVMs; Hartley et al. 2017 ), auto-encoders 
(Cheng et al. 2020 ), transfer learning (Hezaveh et al. 2017 ), ResNets 
(Lanusse et al. 2017 ; Huang et al. 2019 ; Petrillo et al. 2019 ), and 
CNNs (Pearson, Pennock & Robinson 2018 ). The most common 
architecture used is CNN. These range from the very simplistic to 
the very complex. 

Nevertheless, this technology still presents the community with 
a fundamental interpretability problem. How exactly are these lens- 
finding algorithms working? What features of the lenses are they 
learning and responding to? What categories of gravitational lens 
will they be good at finding, and are there strong lens categories or 
configurations that would be systematically missed by these machine 
learning algorithms? A naive and traditional approach would be to 
regard machine learning, and CNNs in particular, as black boxes 
whose performance can just be assessed with simulated inputs. Such 
an approach would only be as good as the extent to which simulations 
reproduce real data, and ‘it just works’ is not usually considered 
a suf ficient le vel of insight in the physical sciences. Moreo v er, 
a wareness of inadv ertent algorithmic biases is increasingly seen as a 
core problem in machine learning (e.g. Obermeyer et al. 2019 ), and 
tools are now being developed to shed light on the internal workings 
of these ostensible black box algorithms. 

One does not need to dig very deep to disco v er that interpretabil- 
ity is a non-trivial problem. Deep learning models often rely on 
many millions of trainable parameters that depend on each other 
in very complicated ways. Historically, this complexity has made 
interpreting the operation of deep-learning models very challenging. 
Moreo v er, CNNs can be sensitive to very subtle features of their input 
data, so images which look like noise to humans are able to generate 
high-scoring results in CNNs (Nguyen, Yosinski & Clune 2015 ). 
Similarly, images of objects such as cats can be classified with high 
probability of being elephants by imposing an elephant skin texture 
o v er the image (Geirhos et al. 2018 ). One of the major areas of 
research in machine learning at the current time is the development 
of techniques to interpret the results of machine learning algorithms. 
There are several ways in which machine learning is analysed to 
develop an understanding of how the algorithm is behaving, such as 
tactically changing the input values in a known way and evaluating 
how the output changes (Zeiler & Fergus 2014 ). Other methods 
include using back-propagation to update the input image based on 
a target output value rather than the model weights. This updates 
an image to strongly acti v ate the target class, which can reveal 
information that the model has learnt such as making forearms when 
trying to create an image of a dumbbell (Mordvintsev, Olah & Tyka 
2015 ). 

There are various methods that attempt to highlight areas of 
the image that influence the decision making of the CNN. The 
simplest of these approaches is the generation of saliency maps 
(Simonyan, Vedaldi & Zisserman 2013 ), including occlusion maps 
(see Section 5.1 and Zeiler & Fergus 2014 ) and class acti- 
vation maps (see Section 5.6 and Selvaraju et al. 2017 ) like 
GradCAM and guided GradCAM. Alternative approaches to in- 
terpreting deep networks include deriving class-generated images 
(CGIs) using tools like Google’s Deep Dream (Mordvintsev et al. 
2015 ). 
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Understanding the decision making processes of machine learning 
algorithms is arguably the next important advance in the application 
of machine learning to astronomy. If one can understand the decisions 
the algorithms are making then one might be able to directly infer 
which image features or astrophysical phenomena the algorithms 
may be selecting for or actively selecting against. This will help 
quantify which categories of gravitational lenses that the algorithms 
can find and those they cannot. For example, one of the possible 
categories of gravitational lens that could be missed by machine 
learning are source galaxies that are not blue, particularly if trained 
on existing surveys such as SLACS (Bolton et al. 2008 ) which pre- 
selects early-type foreground galaxies and star-forming emission 
line background systems. The machine learning methods could, for 
example, be focusing on colour more than the general morphology 
of the lens system. CNNs have been shown to perform worse on 
g alaxy–g alaxy lenses that differ from the colour and point spread 
function (PSF) of lenses from their training data (Li et al . 2021 ; 
Jacobs et al. 2022 ). If one does not investigate which rare lens 
configurations the machine learning methods do not detect, there 
is a risk of losing interesting and important gravitational lens 
systems in the seas of data generated by future telescopes, as well 
as drawing spurious conclusions about the populations of sources 
and lenses, and drawing misleading cosmological inferences from 

them. Indeed there is already a precedent for human volunteers 
finding a strong lens with a red background source that would 
be missed by a SLACS-like automated lens finder (Geach et al. 
2015 ). 

In this paper, we present new CNNs trained for finding strong 
gravitational lenses, and assess the networks’ characteristics and 
performance with a wide variety of these interpretability tools. As 
a critical test case, we examine in particular whether the exotic 
subclass of compound lenses is detected by our CNNs, and attempt 
to determine why. In Section 2 , we describe the three different data 
sets we use within this paper. In Section 3 , we describe the network 
architecture and training process for the CNNs used within this work. 
Section 4 describes the results of the CNNs on the three different data 
sets. Section 5 investigates the interpretability of the CNNs and what 
they interpret as a lens and non-lens. Section 6 gives a discussion on 
this paper and Section 7 is the conclusion. A flat Lambda cold dark 
matter cosmology is used throughout with H 0 = 70 km s −1 Mpc −1 

and matter density �m 

= 0.3. 

2  DATA  

2.1 Single lenses 

There is no empirical data set with the image characteristics and 
size of Euclid , so training on simulations is inevitable. The data 
used in this paper are simulated Euclid images from the VIS and 
NISP instruments, produced by the Bologna Lens Factory (Metcalf, 
pri v ate communication). There are 100 000 images in the training 
set and an additional 100 000 images in the test set. The training 
set consists of ∼72 000 lenses and ∼28 000 non-lenses. The test 
set consists of ∼71 000 lenses and ∼29 000 non-lenses. The NISP 

data consists of three bands: Y , J , and H , while the VIS imaging 
is with a very broad-band visual filter (Laureijs et al. 2011 ). These 
images are 66 × 66 pixels with a pixel scale of 0.3 arcsec/pixel. 
The VIS images are 200 × 200 pixels with a pixel scale of 0.1 
arcsec/pix el. An e xample of VIS images from this data set is shown in 
Fig. 1 . 

The gravitational lens can be anywhere within the image. The PSF 

has an approximately three-fold symmetry (Schmitz et al. 2020 ). The 

Figure 1. Log-scale VIS -band images from the training set. Top two rows 
show simulated single lenses. Bottom two rows show simulated non-lenses. 

images are scaled linearly between 0 and 1 before being input to the 
CNNs. 

2.2 Compound lenses 

The simulated systems in Section 2.1 did not contain compound 
lenses, and very few compound lensing systems have been discovered 
to date, so further simulations were required. Simulated images 
containing compound lenses were created using the LENSTRONOMY 
Python package (Birrer & Amara 2018 ) and SKYPY (Amara et al. 
2021 ). Redshifts and magnitudes for the lens and source galaxies 
were randomly sampled in pairs from set of parameter values that 
were used to generate the single-lens training data. The source was 
sampled from source magnitude and source redshift distributions 
and the two-lens galaxies were sampled from lens magnitude and 
lens redshift distributions. From these sampled magnitudes the 
galaxy velocity dispersions were calculated using the Faber–Jackson 
relationship (Faber & Jackson 1976 ) and finally the Einstein radius 
of each lens were calculated using equation ( 1 ): 

θ = 4 π
(σv 

c 

)2 D ls 

D s 
, (1) 

where θ is the Einstein radius, D ls is the lens–source angular diameter 
distance, D s is the observer–source angular diameter distance, and 
σ v is the lensing galaxy velocity dispersion. The other parameters 
of the galaxies were sampled from a distribution of SLACS lens 
data (Bolton et al. 2008 ; Auger et al. 2009 ; Newton et al. 2011 ; 
Shu et al. 2017 ; Denzel, Mukherjee & Saha 2021 ). A uniform 

distribution was used to assign these SLACS variables to the galaxies; 
these parameters are shown in Table 1 . The lower redshift lens is 
more massive than the higher redshift lens two-thirds of the time. 
The NISP bands have a simulated exposure time of 264 s and 
the VIS band have a simulated exposure time of 1800 s to match 
the single-lens data for Euclid -Wide. To approximate the Euclid 
instruments’ imaging characteristics, the simulated images were 
convolved with Gaussian PSFs with full width at half-maximum 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/512/3/3464/6544650 by U
niversità degli Studi di Bologna user on 13 Septem

ber 2023

art/stac562_f1.eps


Detecting gravitational lenses using ML 3467 

MNRAS 512, 3464–3479 (2022) 

Table 1. Parameters used to generate simulated compound lenses. 

Parameter Lower bound Upper bound Units 

R sersic 0.2 7 arcsec 
n sersic 1.5 20 –
X position of source −5 5 arcsec 
Y position of source −5 5 arcsec 
Angle 0 π rad 
Axis ratio 0.3 1 –
X position of compound arc lens galaxy X position of source − 5 X position of source + 5 arcsec 
Y position of compound arc lens galaxy Y position of source − 5 Y position of source + 5 arcsec 
X position of double ring lens galaxy X position of source − 0.25 X position of source + 0.25 arcsec 
Y position of double ring lens galaxy Y position of source − 0.25 Y position of source + 0.25 arcsec 
Gamma −0.5 0.5 –

Figure 2. VIS -band images of compound lenses. Top two rows show 

simulated compound arcs. Bottom two rows show simulated double rings. 

appropriate for the VIS and NISP instruments (Laureijs et al. 
2011 ). 

Two data sets of 10 000 images were created. One used parameters 
that produce a set of compound lenses that are mainly arcs, while the 
other used a parameter set with tighter constraints on the galaxy 
positions generating mostly double Einstein rings (see Table 1 ). 
An example of these simulated compound lenses can be seen in 
Fig. 2 . 

2.3 Known compound lenses 

The CNNs described in this paper were applied to four known 
compound lenses SL2SJ02176 −0513 (Tu et al. 2009 ), J1148 + 1930 
(Schuldt et al. 2019 ), and SDSS J0946 + 1006 (Gavazzi et al. 2008 ) 
from the Hubble Space Telescope (HST) and HSC J142449 −5322 
(Tanaka et al. 2016 ) from Hyper Suprime-Cam (HSC). The archi v al 
F814W -band images for these compound lenses are shown in Fig. 3 . 
A 20 × 20 arcsec postage stamp was extracted with the compound 
lens centred in the image. The pixel scales of these compound lens 
postage stamps were resampled to the same pixel scale as the training 
data, 0.1 arcsec/pixel for the bluest band, and 0.3 arcsec/pixel for 
the rest. These data differ from the data on which the CNNs have 

Figure 3. F814W -band images of the four known compound lenses. 

Table 2. Known compound lenses image bands to expected CNN bands. 

Lens name VIS Y J H 

SL20S J02176 −0513 F606 F606 F814 F814 
HSC J142449 −005322 R I Z Y 
SDSS J1148 + 1930 F475 F606 F606 F814 
SDSS J0946 + 1006 F160 F336 F438 F814 

been trained. These known compound lenses do not necessarily have 
four bands of imaging available. The CNN architectures require 
four bands of input data, so missing bands were populated by 
duplicating data from adjacent bands. The bands used for each 
compound lens are shown in Table 2 . Each image was normalized 
between 0 and 1 prior to being input into the models. Each band 
was resampled to the pixel dimensions of the CNN as described in 
Section 3 . 

3  N E T WO R K  D E S I G N  

This section details the creation, training, and testing of three CNN 

models; OU-66, OU-200, and OU-T-SNE (OU stands for Open 
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Figure 4. The accuracy of the training and validation data o v er the course 
of training. The final recorded weights are shown with a dot. 

Figure 5. The loss of the training and validation data o v er the course of 
training. The final recorded weights are shown with a dot. 

University in this case). The architectures for both of these CNNs 
can be seen in Tables 3 and 4 and graphical representations in Figs 7 
and 8 . 

3.1 OU-66, OU-200, and variants 

These CNNs were created and trained using the Python package 
PYTORCH (Paszke et al. 2019 ). Using these model designs a total 
of seven CNNs were created for this task, each accepting different 
configurations of input data. These CNNs can be se gre gated into 
two architectures depending on the pixel dimensions of the input 
data, if the data was 66 × 66 pixels the OU-66 architecture was 

Figure 6. Receiver Operating Characteristic (ROC) curve for each model on 
the training and testing data. 

Figure 7. The architecture of OU-66. Yellow squares correspond to Conv2D 

layers, teal squares correspond to ReLU layers, orange layers correspond to 
MaxPool2D layers, and red squares correspond to Dropout layers. 

Figure 8. The architecture of OU-200. Yellow squares correspond to 
Conv2D layers, teal squares correspond to ReLU layers, orange layers 
correspond to MaxPool2D layers, and red squares correspond to Dropout 
layers. 
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Table 3. OU-66 architecture. The ReLU acti v ation functions are considered layers in this table and follow all Conv2D layers. 

Layer Type Kernel/pool Kernel/neuron Stride Padding Acti v ation/ Input shape Output shape Parameter 
size count dropout probability count 

0 Conv2D (3,3) 50 (1,1) Valid ReLU (4,66,66) (50,64,64) 1850 
2 MaxPool2D (2,2) – (1,1) – – (50,64,64) (50,32,32) 0 
3 Dropout – – – – 0.2 (50,32,32) (50,32,32) 0 
4 Conv2D (3,3) 50 (1,1) Valid ReLU (50,32,32) (50,30,30) 22 550 
6 Dropout – – – – 0.2 (50,30,30) (50,30,30) 0 
7 Conv2D (3,3) 50 (1,1) Valid ReLU (50,30,30) (50,28,28) 22 550 
9 Dropout – – – – 0.2 (50,28,28) (50,28,28) 0 
10 Conv2D (3,3) 50 (1,1) Valid ReLU (50,28,28) (50,26,26) 22 550 
12 Dropout – – – – 0.2 (50,26,26) (50,26,26) 0 
13 Conv2D (3,3) 40 (1,1) Valid ReLU (50,26,26) (40,24,24) 18 040 
15 MaxPool2D (2,2) - (1,1) – – (40,24,24) (40,12,12) 0 
16 Dropout – – – – 0.2 (40,12,12) (40,12,12) 0 
17 Conv2D (3,3) 40 (1,1) Valid ReLU (40,12,12) (40,10,10) 14 440 
19 Dropout – – – – 0.2 (40,10,10) (40,10,10) 0 
20 Conv2D (3,3) 40 (1,1) Valid ReLU (40,10,10) (40,8,8) 14 440 
22 Dropout – – – – 0.2 (40,8,8) (40,8,8) 0 
23 Conv2D (3,3) 40 (1,1) Valid ReLU (40,8,8) (40,6,6) 14 440 
25 Dropout – – – – 0.2 (40,6,6) (40,6,6) 0 
26 Conv2D (3,3) 30 (1,1) Valid ReLU (40,6,6) (30,4,4) 10 830 
28 MaxPool2D (2,2) – (1,1) – – (30,4,4) (30,2,2) 0 
29 Dropout – – – – 0.2 (30,2,2) (30,2,2) 0 
30 Dense – 500 – – ReLU 120 500 60 500 
32 Dense – 2 – – Softmax 500 2 1002 

Total parameter count 203 192 

Table 4. OU-200 architecture. The ReLU acti v ation functions are considered layers in this table and follow all Conv2D layers. 

Layer Type Kernel/pool Kernel/neuron Stride Padding Acti v ation/ Input shape Output shape Parameter 
size count dropout probability count 

0 Conv2D (5,5) 50 (1,1) Valid ReLU (4,200,200) (50,196,196) 5050 
2 MaxPool2D (2,2) - (1,1) – – (50,196,196 (50,98,98) 0 
3 Dropout – – – – 0.2 (50,98,98) (50,98,98) 0 
4 Conv2D (5,5) 50 (1,1) Valid ReLU (50,98,98) (40,94,94) 50 040 
6 MaxPool2D (2,2) – (1,1) – – (40,94,94) (40,47,47) 0 
7 Dropout – – – – 0.2 (40,47,47) (40,47,47) 0 
8 Conv2D (3,3) 40 (1,1) Valid ReLU (40,47,47 (30,45,45) 10 830 
10 MaxPool2D (2,2) – (1,1) – – (30,45,45) (30,22,22) 0 
11 Dropout – – – – 0.2 (30,22,22) (30,22,22) 0 
12 Conv2D (3,3) 30 (1,1) Valid ReLU (30,22,22) (20,20,20) 5420 
14 MaxPool2D (2,2) – (1,1) – – (20,20,20) (20,10,10) 0 
15 Dropout – – – – 0.2 (20,10,10) (20,10,10) 0 
16 Conv2D (3,3) 20 (1,1) Valid ReLU (20,10,10) (20,8,8) 3620 
18 Dropout – – – – 0.2 (20,8,8) (20,8,8) 0 
19 Conv2D (3,3) 20 (1,1) Valid ReLU (20,8,8) (20,6,6) 3620 
21 Dropout – – – – 0.2 (20,6,6) (20,6,6) 0 
22 Dense - 350 – – ReLU 720 350 252 350 
24 Dense – 2 – – Softmax 350 2 702 

Total parameter count 331 632 

used, if the data was 200 × 200 pixels the OU-200 architecture 
was used. These architectures are outlined in Tables 3 and 4 , and 
are based upon a CNN designed and trained on a similar problem 

by Davies, Serjeant & Bromley ( 2019 ). Changes were made to this 
model including adding regularization with dropout (Sri v astav a et al. 
2014 ), adding another fully connected layer, replacing 15 × 15 
convolutional kernels with two 5 × 5 convolutional kernels, and 
replacing 5 × 5 convolutional kernels with two 3 × 3 convolutional 
kernels. The replacement of single large convolutional kernels 

with two smaller convolutional kernels is designed to reduce the 
computational time required, but the transformations being made 
are equi v alent. The ReLU acti v ation function (Agarap 2018 ) is used 
after each convolutional layer this returns zero if the input is ne gativ e 
otherwise returns the input value. The way that inputs were handled 
was also changed by scaling them to be between 0 and 1, rather than 
normalizing them to the maximum pixel value in each image. 

Seven CNNs OU-J, OU-Y, OU-H, OU-JYH, OU-VIS, OU-66, and 
OU-200 are used to create the classifer OU-T-SNE in Section 3.3 . 
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Figure 9. T-SNE embedding of the seven different model outputs for the 
training set. This is a dimensionality reduction of the 7D array into 2D. The 
position of the image in this 2D reduction is used to classify the image as a 
lens or non-lens. Blue dots represent lenses and red represent non-lenses. 

These CNNs take input from the bands in their names; OU-66 and 
OU-200 take all four bands and resize the input to the corresponding 
size in their name, while the variations take only subsets of the bands. 
CNN variations that use near-infrared data only are based on OU-66, 
while OU-VIS is based on OU-200. The outputs of these models are 
used to generate OU-T-SNE. 

3.2 CNN training 

Each CNN is initialized with He Normalization (He et al. 2015 ). 
Images from each band were combined into a single input tensor 
with dimensions shown in Tables 3 and 4 . The CNNs were trained 
for 250 epochs with a learning rate 2 of 3 × 10 −4 using the Adam 

optimizer (Kingma & Ba 2014 ) and a batch size of 250 for OU-66, 
and 125 for OU-200. They were each trained on the Open University 
GPU cluster 3 for approximately 7 h. 

The Euclid strong-lensing data challenge used two distinct data 
sets. The first of these sets (COMP) contains 60 000 images and 
was provided to participants to allow them to design, train, refine 
and validate their challenge entries. The second data set (EVAL) 
contains 100 000 images that were reserved for final e v aluation of 
the individual challenge entries. While designing the CNNs in this 
paper, the COMP data set was further subdivided into three subsets 
– the ‘training set’, the ‘validation set’, and the ‘COMP test set’. The 
training set contains 45 000 images, the validation set contains 3000 
images and the COMP test set contains 12 000 images. If the CNN 

took input from both the VIS and the NISP bands, the bands were 
resampled to the input size of the CNN using the resize function 
from the Python package SCIKIT-IMAGE (van der Walt et al. 2014 ). 
Attempting to balance the non-lens class by rotating images caused 

2 The learning rate is a dimensionless scale factor that determines the step 
size in the optimization. 
3 Node specification: two INTEL XEON GOLD 5118 processors with 12 cores 
of 24 threads (2.30 GHz); 3D controllers NVIDIA Corporation GP100GL 

(Tesla P100 PCIe 12GB); CPU memory 251 GB. 

the CNN to achieve spurious accuracies greater than 90 per cent by 
learning the orientation of the PSF, despite the asymmetry of the PSF 

being not discernable by eye in the images. To a v oid this problem the 
class imbalance was mitigated by applying a weighting to the loss 
function. Categorical cross-entropy loss is shown in equation ( 2 ) 
where M is the number of classes, y is 1 if the class label ( c ) is the 
correct classification for the image (i), p is the predicted value for 
the image (i) in class ( c ). A categorical cross-entropy loss was used 
instead of a binary classifier to allow the CNN to generate schemata 
for both lenses and non-lens. In contrast, training a binary classifier 
will only yield an internal representation or schema for its target 
class i.e. either for lens or non-lens. The training data was shuffled 
during training. 

loss = −
M ∑ 

c= 1 

y i ,c ln ( p i ,c ) . (2) 

During training the time taken for each epoch, the epoch number, 
the training loss, the training accuracy, the validation loss, and the 
validation accuracy were recorded. The parameters show the learning 
process of the CNN. Eventually the CNNs are expected to have 
memorized the entire training set. This leads to the training accuracy 
increasing o v er time until it memorizes the entire data set. At this 
stage in CNN can often no longer generalize to unseen data. The 
validation data set is not seen whilst the CNN is training this acts 
as a proxy for the CNN’s ability to generalize to unseen data. The 
training and validation loss represent the same concepts in terms of 
categorical cross-entropy loss instead of accuracy. The CNN weights 
for each trained model are for the epoch which has the lowest loss. 
The evolution of the training and validation accuracies during training 
are shown in Fig. 4 , and the corresponding loss evolution is shown in 
Fig. 5 . The model weights were saved whenever the model reached 
a new minimum validation loss. The ROC curves for these models 
are shown in Fig. 6 . 

3.3 OU-T-SNE 

The OU-T-SNE model is a collection of se ven dif ferent models. 
These models have the same architectures as OU-66 and OU-200 but 
with different inputs. There are five variations of OU-66, including 
three where the input is a single NISP band, one with all the NISP 

bands, and finally the original OU-66 configuration. In addition, 
OU-200 and a variation of OU-200, where the input is a single-band 
VIS image, are used. These seven models are trained independently 
and the output of each model for the lens class is combined into a 
sev en-element v ector. 

The 7D combined model outputs were dimensionally reduced to 
2D using a T-SNE (Maaten & Hinton 2008 ). This embedding is 
shown in Fig. 9 where blue dots represent inputs containing simulated 
lenses and red dots represent non-lenses. Inspecting the members 
of the clusters within this embedding revealed that they represent 
different types of lenses and non-lenses. To classify the images within 
this embedding this space was divided into a 100 × 100 grid. Each 
square within the grid was assigned a classification value between 0 
and 1 based upon the fraction of lenses within the square. The test 
data were classified by deriving their locations in the embedded space 
and using the classification value assigned to the grid element at that 
location. In some cases, the embeddings for elements of the test set 
fell in grid elements that contained zero entries from the training 
data, and therefore no corresponding classification value. In such 
cases, the classification value was estimated using the mean of the 
eight surrounding grid values if they are defined. All of the test data 
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Figure 10. Examples of images within the groups shown in Fig. 9 . Row 1: 
Images from group 1. Row 2: Images from group 2. Row 3: Images from 

group 3. Row 4: Images from group 4. 

within a square were assigned the same value for their classification 
strengths. 

The T-SNE algorithm has clustered model predictions into a 2D 

space as shown in Fig. 9 ; here four groups are highlighted. Examples 
of images in these groups are shown in Fig. 10 . Group one consists 
of mainly small centred Einstein rings. Group two mainly consists 
of arcs placed abo v e, below, and to the right of the central galaxy. 
Group three mainly consists of gravitational lenses with multiple 
components. Group four mainly consists of off-centred gravitational 
lenses. 

4  RESULTS  

The real-valued model outputs were converted into binary classifi- 
cations by thresholding. Any output v alue belo w 0.5 is classified as 
a non-lens and output values that are greater than or equal to 0.5 are 
classified as lenses. 

Based on comparisons between the classification results and 
the known ground truths for each of the EVAL set images, the 
performances of the models were e v aluated by maximizing the F β

score. The F β score (Chinchor 1992 ), defined as 

F β = 

(
1 + β2 

) × ( precision × recall ) 

( β2 × precision + recall ) 
(3) 

is a weighted average of precision, defined as 

Precision = 

True Positives 

True Positives + False Positives 
(4) 

recall defined as 

Recall = 

True Positives 

True Positives + False Negatives 
(5) 

and accuracy defined as 

Accuracy = 

True Positives + True Ne gativ es 

True Positives + True Ne gativ es + False Positives + False Negatives 
. (6) 

The ROC curve for the training set and the EVAL set are shown in 
Fig. 6 . When the area under the ROC curve (AUROC) is 1 the model 

Table 5. Metrics used to e v aluate each model used in this paper, when the 
threshold is set to 0.5. 

F β Precision Recall AUROC Accuracy 

OU-66 0.9727 0.9758 0.2180 0.617 0.3308 
OU-200 0.9687 0.9697 0.4423 0.695 0.5143 
OU-T-SNE 0.9423 0.9431 0.4846 0.666 0.5371 

is a perfect classifier, when the AUROC is 0.5 the model is a random 

classifier. 
The goal for this challenge was to try to create a fairly complete 

(albeit slightly contaminated) lens sample, which could be the basis 
of follow-ups. Therefore, we used β = 0.03 in model e v aluation, 
which places greater weight on recall than precision. Other values 
of β could be well justified for other science goals, such as where 
the presence of false positives would represent a critical failure (e.g. 
JWST observations). 

The data sets described in Section 2 were classified by the models 
OU-66, OU-200, and OU-T-SNE. The metrics used to e v aluate these 
models on the EVAL data set are shown in Table 5 and the recalls 
of these models on all the data sets used in this paper are shown 
in Table 6 . The differences in recall between the single lenses and 
the compound lenses could be due to the differences between the 
training data and the compound lens data. The arcs and rings in the 
compound lens data tend to be redder than the training data, there 
are no red rings or arcs in the training data. The colour difference 
could be causing the model to struggle with some lens configu- 
rations. Moreo v er, the compound lens images do not contain any 
additional background galaxies unlike those in the COMP and EVAL 

data sets. 
The model outputs for each of the known compound lenses are 

shown in Table 7 . 

5  I NTERPRETABI LI TY  O F  T H E  

CLASSI FI CATI ONS  

This section describes a set of investigations which were conducted 
in order to help explain how OU-66 and OU-200 make their decisions 
when classifying images. Five main techniques are used in this paper 
to develop an understanding of the model: 

(i) Co v ering parts of the image and recording how the model 
responds (i.e. occlusion mapping; Zeiler & Fergus 2014 ). 

(ii) Visually inspecting the images which highly acti v ate kernels 
within the model (Erhan et al. 2009 ). 

(iii) Generating and inspecting images to highly acti v ate either of 
the target classes (Simonyan et al. 2013 ; Yosinski et al. 2015 ). 

(iv) Applying Deep Dream (Mordvintsev et al. 2015 ) to amplify 
features within simulated images that correspond to ‘lens’ and ‘non- 
lens’ features. 

(v) Applying Grad-CAM (Selvaraju et al. 2017 ) to highlight 
regions of input images that strongly acti v ate for the ‘lens’ class. 

In this section, the NISP bands are combined into an RGB image 
where red is the H band, green is J band, and blue is Y band. Yellow 

is a summation of the H and J bands, cyan is a combination of J 
and Y bands, and magenta is a combination of H and Y bands. The 
majority of the code used to generate the representations shown in 
this section is adapted from (Ozbulak 2019 ). 
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Table 6. Recall of the models when the threshold is set to 0.5. 

OU-H OU-J OU-Y OU-JYH OU-VIS OU-66 OU-200 

Train data 0.4476 0.3636 0.2585 0.3170 0.2597 0.3807 0.4004 
Test data 0.4772 0.3989 0.2752 0.3555 0.2495 0.2180 0.44.23 
Arcs 0.0706 0.5111 0.4083 0.7771 0.1684 0.6291 0.7505 
Double rings 0.0908 0.5393 0.4667 0.7461 0.1618 0.4742 0.5567 

Table 7. Model predictions on known HST and HSC data. 

Lens name OU-66 OU-200 

SL20S J02176 −0513 0.9993 0.9852 
HSC J142449 −005322 0.9302 0.7104 
J1148 + 1930 1.0000 0.9953 
SDSS J0946 + 1006 0.6873 0.8228 

5.1 Occlusion maps 

Occlusion mapping involves recording the change in models’ re- 
sponses to input images as some of their pixels are masked out. If the 
model output for the ‘lens’ class using the masked image decreases 
relative to that when using its unmasked counterpart then it is more 
likely that the occluded pixels are associated with a lensing feature 
(Zeiler & Fergus 2014 ). 

In the case of OU-200 the mask was 4 × 4 pixels for OU-200, 
while for OU-66 it was 1 × 1 pixels. Model outputs were recorded 
with the mask placed at positions on a grid with 4 pixel intervals in 
the horizontal and vertical directions for OU-200 and 1 pixel intervals 
for OU-66. 4 

The blue pixels in Figs 11 , 12 , and 13 indicate areas where 
occlusion reduces the model output for the ‘lens’ class, suggesting 
that the occluded pixels form part of a feature that is associated with 
lensing. Conv ersely, red pix els in Figs 11 , 12 , and 13 indicate areas 
where occlusion increases the model output for the lens, suggesting 
the occluded pixels form part of a feature associated with the ‘non- 
lens’ class. 

5.1.1 Single lenses 

Fig. 11 shows the computed occlusion maps for both models (rescaled 
as necessary) o v erlaid on log-scaled VIS images. The top two rows 
show the maps for OU-66 and the bottom two rows show the maps 
for OU-200. 

For OU-66 and OU-200, the occlusion maps for images for which 
the models strongly predict the ‘lens’ class tend to highlight the arcs 
and rings in the image in blue. This suggests that the model has learnt 
to associate rings and arcs with gravitational lensing. For images for 
which the models strongly predict the ‘non-lens’ class, the main 
patterns seen are a red region in the centre of the image, surrounded 
by a faint disjointed blue ring roughly 10 arcsec in diameter. It is 
possible that these faint blue rings arise because the training data 
contain a large number of ‘lens’ images that have central lenses with 
roughly the same Einstein radius as these blue rings. This could 
result in the model trying to find a lens at this position within the 

4 Different grid sizes were used for the two models because the inputs for OU- 
200 include resampled images from the NISP camera which have a native 
pixel size three times larger than that of VIS. Occluding fewer than four pixels 
in the OU-200 inputs would leave redundant information from the resampled 
NISP images unmasked. 

Figure 11. Occlusion maps of SGLC2 data on OU-66 and OU-200. The first 
and third columns show the occlusion maps for OU-66, the second and fourth 
columns show the occlusion maps for OU-200 for the same images to their 
left. The left number abo v e the image indicates if the image is a lens (1) or 
a non-lens (0) and the right number is the CNN output for that image. The 
occlusion maps are independently scaled to highlight the change in output for 
each image, where the minimum value is blue, the maximum value is red, and 
the value of 0 is white. Blue indicates that the model associates the occulted 
feature with lensing and red indicates that the model associates the occulted 
feature with the non-lensing class. 

noise of the data when a lens is not detected by the model. Spiral 
galaxy examples are also shown; the occlusion maps show arcs within 
the spiral arms, but these are identified as non-lens features by the 
model. This might mean that the model does not blindly associate 
arcs with lensing but also considers the context in which the arcs 
appear. 

5.1.2 Compound lenses 

The occlusion maps for the simulated compound arcs are shown in 
the top two rows and double rings are shown in the bottom two 
rows of Fig. 12 . The compound lens images for which the model 
predicts � 0.3 for the ‘lens’ class tend to have a central red ring 
or filled circle indicating that the model considers the pixels in this 
area to disfa v our a lensing feature. Surrounding this area is a large 
blue region indicating that the model could be looking for rings and 
arcs at this diameter, which is similar to that of the faint blue rings 
shown in the ‘non-lens’ images Fig. 11 . The images in this data for 
which the model predicts � 0.99 are similar to the examples shown 
in Fig. 11 . The occlusion maps highlight lensing areas along the arcs 
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Figure 12. Occlusion maps of simulated compound arcs and simulated 
double rings. The top two rows show the occlusion maps for simulated 
compound arcs and the bottom two rows show the occlusion maps for 
simulated double rings. The number abo v e the image is the model output 
for that image. The occlusion maps are independently scaled to highlight 
the change in output for each image, where the minimum value is blue, the 
maximum value is red, and the value of 0 is white. Blue indicates that the 
model associates the occulted feature with lensing and red indicates that the 
model associates the occulted feature with the non-lensing class. 

Figure 13. Occlusion maps of known compound lenses. The left number 
shows the lens name for the image, and the right number is the model output 
for that image. The occlusion maps are independently scaled to highlight 
the change in output for each image, where the minimum value is blue, the 
maximum value is red, and the value of 0 is white. Blue indicates that the 
model associates the occulted feature with lensing and red indicates that the 
model associates the occulted feature with the non-lensing class. 

and rings, with a strong non-lensing feature on the boundary of these 
arcs. 

The double ring images for which the model predicts � 0.3 for 
the ‘lens’ class in Fig. 12 tend to have strong non-lensing features in 
the centre of the image and there are occasionally lo w-le vel lensing 
features at the same radius as seen in the compound arc images. The 
images in this data for which the model predicts � 0.99 produce 
occlusion maps which are qualitatively different from those shown 
in Fig. 11 ; these maps tend to be relatively robust to the occlusion 
map process. There is a small number of mask locations that have a 
dramatic effect on the occlusion map that are either in the centre of 
the image or along the arcs of the lens. Masking the rest of the image 
induces a roughly equal suppression of the ‘lens’ class output value. 

5.1.3 Known compound lenses 

The occlusion maps for how OU-200 responds to the known 
compound lenses are shown in Fig. 13 . 

The occlusion map for SL2SJ02176-0513 highlights the arc with 
a strong lens response and the boundary of the arc has a strong non- 
lens response. The occlusion map for HSC J142449-005322 appears 
to be highlighting the quadruply lensed quasars in the image. This 
is unexpected behaviour as the training data only contains rings and 
arcs. The occlusion maps suggest that OU-200 may be identifying 
each quasar as an individual Einstein ring in the image, instead of 
identifying the two Einstein rings surrounding the central galaxy. In 
particular a clear ring-like feature is visible in the occlusion map 
close to the bottom quasar image. Another possibility is that no 
single 4 × 4 pixel square significantly affects the output of this 
image because of how large the Einstein rings are. Hence, the model 
can compensate based on areas where the image is not occluded. 

The occlusion map for J1148 + 1930 highlights three main sec- 
tions of the central Einstein ring. This is similar to the occlusion 
maps shown in 11 , where the model seems to detect the arcs in the 
image as lensing features. Again, the boundaries of the arcs seem to 
be detected as non-lens features. 

The occlusion map for SDSS J0946 + 1006 is difficult to diagnose. 
This is probably due to the spatial extension of the lensing features 
being relatively small compared to the size of the occlusion mask. It 
appears that the top arc is considered mainly as a non-lens feature 
and the bottom arc is mainly considered to be a lens feature. The 
fainter arcs of the large Einstein ring do not appear to be making any 
significant changes to the lens classification. 

5.2 Images that acti v ate the kernels 

Convolutional kernels are data structures associated with individual 
layers of a CNN that associate the trainable parameters (weights) of 
that layer with adjacent sets of pixels in its inputs. 

For the first layer in the CNN, the kernel parameters map directly 
to adjacent sets of pixels in the input images. In later layers, each 
parameter maps to a larger region of input image pixels. 

As the CNN trains, kernels in the first layer learn representations 
simple shapes and colour relationships that are directly visible in the 
image pixels. Kernels in subsequent layers learn how to combine 
these into more abstract representations including, for example, 
adjacency and the global context of a simple feature within the 
image. Identifying which features the kernels have learnt o v er the 
course of training could help illuminate what features are important 
to the models’ classification. 
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Figure 14. OU-66, first and third columns: Deep Dream creations that highly 
acti v ate the kernel. Second and fourth columns: The NISP image from the 
single-lens data set that most acti v ates the kernel. The square brackets indicate 
the layer number and kernel number for the kernel. 

One of the ways to do this is to calculate the response of each 
kernel to each image. This is done by taking the mean value of the 
feature map generated by a kernel. 

The mean value of a feature map (before apply ReLU acti v ation) 
generated by a kernel is how the acti v ation of a kernel is e v aluated. 
This is the kernel acti v ation v alue (KAV). This is done to condense 
the output of a kernel into a single value. Images where the KAV is 
high, trigger a significant response in the kernel these are considered 
to highly acti v ate that particular kernel. By comparing the images 
that have a high KAV for a given kernel, it can be inferred what a 
given kernel responds to. As to be expected with a CNN in the early 
layers of these models identify broad features of the image, such as 
the predominant colour of the image or if a large central galaxy is 
present. Looking deeper into the model more complex features start 
to emerge such as the position of a gravitational lens in the image or 
if the lensing feature is an arc or ring. 

Groups that could be identified from this approach include large 
central galaxies, large Einstein rings, arcs, small blue Einstein rings, 
off-centred Einstein rings, the position of large arcs, and the position 
of small blue Einstein rings. The large central galaxies that take up 
the majority of the image tend to be white, they are both spiral and 
elliptical, and the spiral galaxies can be either face or edge on. 

Figs 14 and 15 show in the right column the image which has the 
highest KAV. These figures show a range of the groups described 
abo v e. In Fig. 14 [layer 0 kernel 6] shows an example of the group 
where the majority of galaxies within the image are red. [layer 0 
kernel 44] and [layer 4 kernel 33] show a group where the noise level 
is high in the blue bands. [layer 4 kernel 25] shows the group that 
consists of large spiral galaxies that take up the majority of the image. 
[layer 13 kernel 4] and [layer 20 kernel 29] show the group where 

Figure 15. OU-200, first and third columns: Deep Dream creations that 
highly acti v ate the kernel. Second and fourth columns: The NISP image from 

the single-lens data set that most acti v ates the kernel. The square brackets 
indicate the layer number and kernel number for the kernel. 

the lensing feature is in the right third of the image. [layer 17 kernel 
1] shows the group where the lensing feature is in the left third of the 
image. [layer 17 kernel 11] is the group where the lensing feature is 
in the bottom-right corner of the image. In Fig. 15 , [layer 4 kernel 29] 
shows the group which consists of a white pale blue central elliptical 
galaxy. [layer 8 kernel 1] shows the group where the galaxies in the 
image are red. [layer 12 kernel 18] shows the group which consists 
of central Einstein rings. 

5.3 Class-generated images 

To understand what image features the model may be associating with 
lenses and non-lenses images were generated based upon the target 
class for the model (Simonyan et al. 2013 ; Yosinski et al. 2015 ). The 
model weights were frozen and the output was maximized for the 
target class. Through back-propagation the input image was updated. 
This results in an updated image that acti v ates the target class more 
strongly than the unmodified input image. This process was repeated 
to saturate the acti v ation of the target class. This artificially generated 
new features in the image that cause a strong response for the target 
class. It is likely that these new features emulate those that the model 
has learnt to identify within the target classes. 
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Figure 16. Rows 1 and 2: An example of CGIs generated by both models for 
each target class. Rows 3 and 4: Deep Dream images created by both models 
for each target class starting from an image of a non-lens. Rows 5 and 6: Deep 
Dream images created by both models for each target class starting from an 
image of a lens. The NISP bands for the Deep Dream images have had their 
brightness increased by 150 per cent for clarity of the features generated. 

For OU-66, all four channels of the original input to this model are 
identical 66 × 66 pixel arrays containing random uniform noise on 
[0,1]. This process is repeated for OU-200 and the image is scaled 
up to 200 × 200 pixels. 

Modified images were generated from random noise inputs using 
OU-66 and OU-200 for both classes. A learning rate of 0.1 was 
applied and the input image was updated by back-propagation 
5000 times. The images produced at the end of this process can 
be seen on the top two rows of Fig. 16 . Both models produce similar 
outputs when generating a non-lens, creating a large blue and green 
blob in the centre of the image. This suggests that the model considers 
a non-lens to have large blue features in the centre of the image. The 
models generate different images for a lens. OU-66 creates a large 
blue Einstein ring that appears to be spatially offset in the four image 
bands. The area inside the ring is predominately red indicating that 
the model expects to see a red source galaxy in this region. OU-200 
creates two separate structures, a small blob in the top left of the 
image and another diagonal feature going from bottom left to top 
right. The majority of the generated features are blue, but there are 
strong yellow and red curved features diagonally across the centre 
of the image. This could suggest that OU-66 is creating large central 
Einstein rings and that OU-200 is creating arc features within the 
image. 

5.4 Deep Dream 

Deep Dream is a technique that is similar to CGIs (Mordvintsev 
et al. 2015 ), but instead of the input being random data one of the 
simulated single-lens images is used. 

The learning rate used was 0.001 and this process was allowed to 
run for 1000 iterations. Examples of this technique being applied to 
a lens image and a non-lens image are shown in the bottom four rows 
in Fig. 16 . 

Rows 3 and 4 of Fig. 16 show Deep Dream images that result 
when the input image was a simulated non-lens, and ‘non-lens’ was 
used as the target class. Deep Dream images created using OU-200 
for ‘non-lens’ images and target class differ very little from their 
inputs. In contrast, the corresponding Deep Dream images for OU- 
66 exhibit blue green diagonal features that could be representing 
galaxies. When ‘lens’ is the target class both models created features 
around the central galaxy when using ‘non-lens’ input images. OU- 
66 created a ‘blocky’ arc below the central galaxy, while OU-200 
created a rounder arc to the right of the central galaxy. Both models 
have a colour gradient across these generated features suggesting 
that the model is acti v ated by a change in colour across features. 

Rows 5 and 6 of Fig. 16 show Deep Dream images that were gener- 
ated when the input image was a simulated single lens, and ‘non-lens’ 
was used as the target class. In the OU-200 Deep Dream images the 
Einstein ring becomes red suggesting that this model heavily relies 
on colour for classification. Several round artefacts appear in the 
image, which might indicate that the model has learnt to associate 
multiple flux peaks in an image with the ‘non-lens’ class. The Deep 
Dream image for OU-66 also fragments the Einstein ring into two 
sections and appears to straighten both sections. The resultant image 
begins to resemble edge-on spiral galaxies, indicating that the model 
may have learnt that the presence of such galaxies in images is also 
likely to indicate the ‘non-lens’ class. This is reasonable since the 
majority of gravitational lenses in the simulated training data (and in 
reality) are large elliptical galaxies. Unlike OU-200, the Deep Dream 

image for OU-66 shows little evidence for colour modification which 
indicates that the model places less weight on colour and bases its 
classifications primarily on morphological information. 

When ‘lens’ was the target class both models make the Einstein 
ring brighter and bluer and tend to join previously incomplete arcs 
into complete Einstein rings. OU-66 often creates a red and yellow 

feature inside the Einstein ring. This feature could indicate that the 
model associates red central galaxies with images in the ‘lens’ class. 
Again this is consistent with the pre v alence of gravitational lenses 
that are the haloes of red elliptical galaxies. 

5.5 Generating images to highly acti v ate k ernels 

Although it is often used to produce images that acti v ate a specific 
target class, the Deep Dream technique can also be used to generate 
images that acti v ate a specific kernel within the model (see e.g. 
Simonyan et al. 2013 ; Yosinski et al. 2015 ). This will be referred to 
as generated kernel images (GKI). 

The central columns of Figs 14 and 15 show images that activate 
the kernels illustrated in the left-hand columns of those figures. The 
descriptions below outline some of the features these kernels detect 
and what they could relate to in the input images. 

As can be seen in Fig. 14 , [layer 0 kernel 6] creates a solid red 
block with some other colours along the edge. [layer 0 kernel 44] 
creates a solid blue block with some other colours along the edge. 
[layer 4 kernel 25] creates a mixture of pink and green pixels. [layer 4 
kernel 33] creates a blue noise that appears very similar to the images 
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which are highly acti v ated by this corresponding kernel. [layer 13 
kernel 4], [layer 17 kernel 1], [layer 17 kernel 11], and [layer 20 
kernel 29], all of these Deep Dream images have the same o v erall 
feature, where the majority of the image is red apart from a section of 
the image which is very blue and green. The difference between these 
GKIs is the location and shape of these blue features. The position 
of these blue features corresponds to the location of the lens within 
the highly acti v ating image. 

In Fig. 15 , [layer 4 kernel 29] creates a pale blue feature with a 
lo w le vel of noise. [layer 8 kernel 1] creates an image with a black 
background with a mixture of noise that is red, green, and blue. 
[layer 12 kernel 8] is very similar to [layer 8 kernel 1]; ho we ver, this 
has several horizontal ’sand ripples’ that are green and red which are 
slightly offset vertically from each other. This feature could be trying 
to detect horizontal changes in colour. 

5.6 Guided Grad-CAM 

Guided Grad-CAM (Selvaraju et al. 2017 ) is a common technique 
used for CNN interpretability. It is well known for its association with 
the ImageNet challenge, where it has highlighted areas of images 
that correspond to areas that highly influence the determination 
of an output class in various models. The technique works by 
taking a weighted average of all the feature maps in the last 
convolutional layer with ReLU applied. This creates a Grad-CAM 

image highlighting locations in the image where the CNN detects 
features of interest. This Grad-CAM image only shows features that 
increase the model output value for the target class. Guided back- 
propagation (Springenberg et al. 2014 ) is applied to the image, which 
sets the desired class to 1 and all other outputs to 0. Only the positive 
gradients are back-propagated through the model (ne gativ e gradients 
are clipped at zero) to show areas of the image that have a positive 
effect on the classification. Once both processes are complete the 
results of guided back-propagation and Grad-CAM are multiplied 
together to generate a Guided Grad-CAM image. 

Guided Grad-CAM was applied to a set of images for the OU- 
200 model. In Fig. 17 , the input images are shown in rows 1, 3, 5, 
and 7. Rows 2, 4, 6, and 8 show the pixels from the input image 
when the pixel value in that position in the Guided Grad-CAM 

image is greater than or equal to 0.05. The majority of these Guided 
Grad-CAM images highlight the gravitational lens feature in the 
image. Guided Grad-CAM finds parts of both rings in four of the 
six double ring images in Fig. 17 . For the known compound lenses, 
Guided Grad-CAM selects large sections of the gravitational lensing 
features for SL2S J02176 −0513 and SDSS J1148 + 1930. For SDSS 

J0946 + 1006, Guided Grad-CAM mainly selects the brightest lensing 
arc and for SL2SJ02176 −0513 small sections of the Einstein ring 
are selected. In most of the known compound lens images Guided 
Grad-CAM does not find features from both lenses in the image, 
with the exception of SDSS J0946 + 1006 where a small area of the 
fainter lens is clearly highlighted. 

6  DISCUSSION  

In this paper, several deep learning models have been applied to 
classify simulated single lenses and non-lenses, simulated compound 
lenses, and previously disco v ered compound lenses. Models that 
process multiple bands (in particular those that include the bluer 
VIS band) with higher angular resolution like OU-200 tend to 
impro v e the recall for the gravitational lens class. Providing high- 
resolution multiband input images provides the model with additional 
information during training, which allows it to make more accurate 

Figure 17. Top row: Guided Grad-CAM of single lens. Second row: Guided 
Grad-CAM of compound arcs. Third row: Guided Grad-CAM of double 
rings. Bottom row: Guided Grad-CAM of known compound lenses. 

predictions when determining whether an image contains a lens. 
OU-200 was shown to adapt well to a simulated compound lens 
data set that the model had not been trained on. This indicates that 
training models to accurately identify single-lens systems does not 
necessarily preclude their use for identifying compound lens systems. 
Multiband models (OU-66 and OU-200) are able to classify all the 
previously disco v ered compound lenses shown in this paper as lenses. 
These models can adapt from simulated images to observational 
data including HST and HSC images, suggesting that they will need 
little retraining to perform well on real images in future upcoming 
surv e ys. This has previously been shown by the CNN described in 
(Petrillo et al. 2019 ) which was trained on KiDS data and performed 
second best in the strong gravitational lens challenge (Metcalf et al. 
2019 ) without retraining, demonstrating that these CNNs can find 
gravitational lenses outside of the data they have been trained on. 

In Section 5 , the factors affecting the classifications made by the 
models in this paper were investigated. Features associated with 
lensing such as Einstein rings and arcs, significantly influence the 
output of these models, which implies that the y hav e correctly 
learnt to associate these features with the lens class. Based on 
the Deep Dream images that were generated to acti v ate specific 
kernels (Section 5.5 ), the CGIs (Section 5.3 ), and the Deep Dream 

images (Section 5.4 ) it is clear that colour is important to the models’ 
classifications of the images. Inspecting the GKIs revealed kernels in 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/512/3/3464/6544650 by U
niversità degli Studi di Bologna user on 13 Septem

ber 2023

art/stac562_f17.eps


Detecting gravitational lenses using ML 3477 

MNRAS 512, 3464–3479 (2022) 

the deep layers of the models are strongly acti v ated by blue regions 
on red backgrounds at the location of the gravitational lens. For OU- 
66, the CGIs (Section 5.3 ) exhibit blue ring-like structures enclosing 
a red central region. This indicates that this model has learnt that 
blue ring-like structures surrounding central red features, which are 
typical of many gravitational lensing systems, are more likely to 
indicate the image contains a gravitational lens. Pessimistically, this 
might indicate that this model would struggle to classify images 
with red source galaxies as containing a gravitational lens and more 
generally that the model may have a colour bias. This colour bias 
has also been reported in (Petrillo et al. 2019 ; Jacobs et al. 2022 ). 
This is not necessarily a bad thing for the model to have learnt, since 
the majority of known gravitational lens systems have blue source 
galaxies and red lensing galaxies. Nevertheless, it selects against 
systems that are not typical of currently known lenses. 

The only way to begin to understand the biases within methods 
such as CNNs for gravitational lens detection is to investigate the 
interpretability of these methods. This is possible through a variety of 
means such as investigating the parameters learnt by these models di- 
rectly as shown in this paper or by manipulating the input images via 
a sensitivity probe (Jacobs et al. 2022 ). The use of a sensitivity probe 
has been able to show how susceptible CNNs can be to minor modi- 
fications to the input data. The indications of small decisions signifi- 
cantly affecting the performance of CNNs are present. Features such 
as the PSF can significantly affect the ability of a CNN to learn data 
(as we discuss later on) or the ability of a CNN to adapt to new data. 

Accordingly, OU-200 has learnt rele v ant details about typical 
gra vitational lenses, b ut this also shows that this model may not 
adapt well when presented with a gravitational lens system where 
the source galaxy is not blue. The class-targeted Deep Dream images 
(Section 5.4 ) also exhibit blue, ring-like features surrounding red 
central re gions. Moreo v er, when targeting the ‘lens’ class with a 
lens image as input, the lens is emphasized and becomes bluer. 
When targeting the non-lens class using a lens image as input the 
Einstein ring becomes fragmented in OU-66 and redder in OU-200, 
indicating that the shapes of features are more important to OU-66 
when classifying images, while instead, colour information is more 
strongly weighted by OU-200. OU-200 has been shown in Fig. 16 
to actively associate the ‘non-lens’ class with red Einstein rings. 
Whereas the CGIs of the ‘lens’ class generate blue Einstein rings, 
suggesting that the model may not classify images with red Einstein 
rings as lenses. 

This hints at a fundamental limitation to the current approaches to 
lens finding with missions and surv e ys such as Euclid and LSST: The 
training sets used for the algorithms may inadvertently select against 
non-negligible populations of strong gravitational lenses that exist 
on the sky. There are now several known examples of gravitational 
lensing systems that exhibit red Einstein rings (Geach et al. 2015 ), 
and there are growing numbers of known gravitationally lensed dusty 
star-forming galaxies (e.g. Negrello et al. 2010 , 2017 ; Spilker et al. 
2016 ; Rivera et al. 2019 ; Neri et al. 2020 ; Urquhart et al. 2022 ). The 
surface density of submm-bright gravitational lenses (e.g. 500 μm 

flux densities S 500 ≥ 100 mJy) is relatively low, with only one lens 
per 7.5 de g 2 (e.g. Ne grello et al. 2017 ), compared to e.g. ∼50 lenses 
per square degree in COSMOS (e.g. Faure et al. 2008 ; Jackson 2008 ), 
but these are only the lensed submm galaxies that are easy to identify 
in blank-field surv e ys. At submm flux densities ∼10 × fainter, the 
predicted surface density of strong lenses is expected to be about two 
orders of magnitude higher, e.g. ∼10 strong lenses per deg 2 with S 500 

≥ 10 mJy (e.g. Trombetti et al. 2021 ). This implies ∼150 000 strong 
submm-wav e lenses o v er the entire Euclid surv e y area, comparable 
to the total expected to be found with the Euclid VIS instrument (e.g. 

Collett 2015 ). As one probes fainter submm luminosities and lower 
dust obscurations, it is reasonable to expect the background sources 
to become increasingly detectable at near-infrared wavelengths, 
suggesting the possibility of a non-negligible exotic population of 
lensed red galaxies in wide-field surv e ys such as Euclid . Furthermore, 
extreme ultra-high-redshift-lensed galaxies will be preferentially 
detected only at near-infrared wavelengths, and though very rare 
on the sky (e.g. Marchetti, Serjeant & Vaccari 2017 ; Vikaeus et al. 
2021 ), will be high-priority targets for follow-ups. Our results show 

that it is not yet clear whether such red background-lensed sources 
will be systematically selected against with default lens finders. 

On the other hand, the sensitivity to morphological features has 
pro v en promising for the disco v ery of compound lens systems. The 
Guided Grad-CAM images shown in Fig. 17 highlight the lensing 
features in the images for the majority of the examples shown. This 
indicates that the model has learnt to look for indicative features 
in the image such as rings and arcs. The CNNs presented in this 
paper appear to be sufficiently flexible that they correctly classify 
exotic systems with multiple lensing planes, despite no such systems 
appearing in the data sets on which they were trained. This flexibility 
is encouraging because it suggests that similar exotic systems that 
exist in the real Universe will not be missed when the models are 
applied to real upcoming observational data. Nevertheless, while the 
successes in detecting compound lenses are encouraging, it is likely 
that impro v ements could be made by training the networks explicitly 
to reco v er them. 

When initially training the CNNs in this paper there was a class 
imbalance in the training data. To balance this data set the non- 
lenses were rotated by 90, 180, and 270 deg and flipped along the 
horizontal axis then rotated by 90, 180, and 270 deg . This caused 
the model to classify images which had not been augmented as 
lenses, and any image which had been augmented was classified as 
a non-lens. The model had learnt to classify the images based upon 
their orientation. It was realised that the model could determine the 
orientation image based on the orientation of the simulated Euclid 
PSF, i.e. its three-fold symmetry meant the model could separate 
images based on the augmentations that had been applied to it. This 
highlights the sensitivity of machine learning techniques like CNNs 
to very subtle, and scientifically irrele v ant, image features that would 
be completely imperceptible for human inspectors. We would like 
the network outputs to be invariant with respect to the astrophysical 
orientation on the sky, but the detector orientation imposes rotational 
asymmetry by virtue of the PSF shape. One possible solution could 
be to add the detector orientation on the sky as an auxiliary input 
to the network training and the prediction. This would reintroduce 
the ability to learn rotational invariance from the training data by 
augmenting them using rotation, or allow the application of group- 
equi v ariant CNNs (Scaife & Porter 2021 ). 

The application of machine learning to lens finding in this 
paper has been predicated on the intractability of e xhaustiv e human 
inspection, but even an apparently perfect performance on simulated 
data need not imply that there is no useful contribution to be made 
by human volunteers (e.g. Marshall et al. 2016 ; More et al. 2016 ; 
Sonnenfeld et al. 2020 ). The sample of candidate gravitational lenses 
is likely to be of a tractable size for volunteers or experts to examine 
every one. This may identify underperformance or other problems 
for known rare subpopulations, which may in turn be used to refine or 
retrain automated lens finders, in a virtuous circle between human and 
machine vision. Human inspection is also currently the only widely 
applied method for finding new, unanticipated categories of exotic 
systems. Machine learning approaches are in development to detect 
anomalies in astronomical imaging, such as training a generative 
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adversarial network (GAN) to encode the space of commonly 
occurring features in real astrophysical image (e.g. Storey-Fisher 
et al. 2021 ). Atypical images can then be identified as those for which 
the discriminator of the GAN rejects the image. This has succeeded in 
identifying images affected by instrumental defects and/or artefacts, 
but there are still formidable obstacles in representing the diversity 
of (for example) galaxy morphologies, and ‘interesting’ anomalies 
are still a matter of human judgement. 

7  C O N C L U S I O N S  

One of the main advantages of very large samples of strong gravita- 
tional lenses is the potential for disco v ery of rare lens configurations, 
among which the compound lens systems have the added bonus of 
providing new cosmological parameter constraints (e.g. Gavazzi et al. 
2008 ). This places the detection of these systems at a premium within 
surv e y projects such as Euclid and LSST. Our analysis has shown 
that existing lens finding methodologies should be able to reco v er 
compound lensing systems even without further training, albeit not 
with 100 per cent recall. Ultra-high-redshift-lensed sources will be 
at a similar high premium, but it is less clear that these red-lensed 
systems will be detectable by the lens finder presented in this paper. 
It seems clear that, in order to be able to exploit the advantages 
of a very large strong-lensing sample, attention must be paid to 
training the lens finding algorithms to accommodate the anticipated 
interesting subsets. For the ‘unknown unknowns’, however, the data 
mining problem remains intractable by definition, and there may be 
no option other than a coordinated programme of human inspection 
such as through citizen science (e.g. Marshall et al. 2016 ; More et al. 
2016 ; Sonnenfeld et al. 2020 ). 
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