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A B S T R A C T 

Strong lensing is a powerful probe of the matter distribution in galaxies and clusters and a rele v ant tool for cosmography. 
Analyses of strong gravitational lenses with deep learning have become a popular approach due to these astronomical objects’ 
rarity and image comple xity. Ne xt-generation surv e ys will pro vide more opportunities to deriv e science from these objects 
and an increasing data volume to be analysed. Ho we ver, finding strong lenses is challenging, as their number densities are 
orders of magnitude below those of galaxies. Therefore, specific strong lensing search algorithms are required to disco v er the 
highest number of systems possible with high purity and low false alarm rate. The need for better algorithms has prompted 

the development of an open community data science competition named strong gravitational lensing challenge (SGLC). This 
work presents the deep learning strategies and methodology used to design the highest scoring algorithm in the second SGLC 

(II SGLC). We discuss the approach used for this data set, the choice of a suitable architecture, particularly the use of a network 

with two branches to work with images in different resolutions, and its optimization. We also discuss the detectability limit, the 
lessons learned, and prospects for defining a tailor-made architecture in a surv e y in contrast to a general one. Finally, we release 
the models and discuss the best choice to easily adapt the model to a data set representing a surv e y with a different instrument. 
This work helps to take a step towards efficient, adaptable, and accurate analyses of strong lenses with deep learning frameworks. 

Key words: gravitational lensing: strong – methods: numerical – techniques: image processing. 

1  I N T RO D U C T I O N  

The strong gravitational lensing (SL) effect is a phenomenon pro- 
duced by massive objects along the line of sight, typically matter 
haloes in cluster or galaxy scales, that deflect light from sources 
f arther aw ay. As a result, those systems commonly present magnified 
and multiple images of sources, which can be highly distorted in the 
form of rings or arcs. 

Gravitationally lensed systems can be used as unique probes 
in many astrophysical and cosmological studies. For instance, the 
light deflection produces magnified images acting as a ‘gravitational 
telescope’, enabling the assessment of distant source objects or 
features that would be beyond the magnitude limit or resolution 
of a given survey if not lensed (e.g. Marshall et al. 2007 ; Poindexter, 
Morgan & Kochanek 2008 ; Jones et al. 2010 ; Richard et al. 2011 ; 
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† In memoriam. 
‡ Present address: Electrical and Computer Engineering Department, Mc- 
Cormick School, Northwestern University, 633 Clark St, Evanston, IL 60208, 
USA. 

Ebeling et al. 2018 ; Akhshik et al. 2020 ; Man et al. 2021 ). Lensing 
systems can also be used as non-dynamical probes of the mass 
distribution of galaxies (e.g. Treu & Koopmans 2002a , b ; Koopmans 
et al. 2006 ), and galaxy clusters (e.g. Kovner 1989 ; Abdelsalam, 
Saha & Williams 1998 ; Natarajan, De Lucia & Springel 2007 ; 
Carrasco et al. 2010 ; Coe et al. 2010 ; Zackrisson & Riehm 2010 ), 
providing a rele v ant observ ational probe to dark matter (see e.g. 
Meneghetti et al. 2004 ). 

Because of the cosmological distances involved, strong lensing 
has also been used to derive cosmological constraints on the cosmic 
expansion, dark energy, and dark matter (see e.g. Bartelmann et al. 
1998 ; Cooray 1999 ; Yamamoto et al. 2001 ; Treu & Koopmans 
2002b ; Meneghetti et al. 2004 ; Jullo et al. 2010 ; Schwab, Bolton & 

Rappaport 2010 ; Enander & M ̈ortsell 2013 ; Pizzuti et al. 2017 ). In 
particular, accurate time-delay distance measurements of multiply 
imaged lensed quasi-stellar objects (QSO) systems have enabled 
precise measurements of the Universe’s cosmic expansion (Oguri 
2007 ; Suyu et al. 2010 ; Wong et al. 2020 ). More recently, time-delay 
cosmography was also obtained with the strongly lensed supernova 
‘Refsdal’ (Grillo et al. 2020 ). Furthermore, strong lensing can be 
used to constrain dark matter models (Vegetti et al. 2012 ; Hezaveh 
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et al. 2016 ; Bayer et al. 2018 ; Gilman et al. 2018 ), as well as to 
assess dark matter substructures along the line of sight (McCully 
et al. 2017 ; Despali et al. 2018 ). 

Those systems’ many applications and studies moti v ated an 
increasing number of searches for strong lensing systems. Earlier 
searches have been carried out on high-quality space-based data from 

the Hubble Space Telescope ( HST ), for instance, the Hubble Deep 
Field (HDF; Hogg et al. 1996 ), the Great Observatories Origins Deep 
Surv e y (GOODS; Fassnacht et al. 2004 ), the HST Medium Deep 
Surv e y (Ratnatunga, Griffiths & Ostrander 1999 ), the HST Archive 
Galaxy-scale Gravitational Lens Surv e y (P a wase et al. 2014 ) just to 
name a few. 

Ho we ver, the abundance of data in ground-based experiments, in 
particular wide-field surv e ys, fomented the e xploration and identifi- 
cation (by visual inspection or automated search on images) of most 
of the known high-quality strong lensing candidates and, therefore, 
the majority of confirmed ones. Many candidates were identified in 
the Red-Sequence Cluster Surv e y (RCS; Gladders et al. 2003 ), in 
the Sloan Digital Sk y Surv e y (SDSS; Estrada et al. 2007 ; Belokurov 
et al. 2009 ; Kubo et al. 2010 ; Wen, Han & Jiang 2011 ; Bayliss 2012 ), 
the Canada–France–Hawaii Telescope Legacy Survey (CFHTLS; 
Cabanac et al. 2007 ; More et al. 2012 , 2016 ; Gavazzi et al. 2014 ; 
Maturi, Mizera & Seidel 2014 ; Paraficz et al. 2016 ), the Deep Lens 
Surv e y (DLS; K ubo & Dell’Antonio 2008 ), the Dark Energy Surv e y 
(DES; e.g. Nord et al. 2016 ; Diehl et al. 2017 ), and the Kilo-Degree 
Surv e y (KiDS; Petrillo et al. 2017 ). The future 2020s and 2030s 
observatories, like the Vera C. Rubin (Ivezi ́c et al. 2019 ), Euclid 
(Laureijs et al. 2011 ), and Nancy Grace Roman (Green et al. 2012 ) 
telescopes, are expected to increase the number of strong lensing 
candidates by a few orders of magnitude than what is currently 
known (see e.g. Collett 2015 ). 

Many of the earlier catalogues of strong lensing systems were 
found through visual searches only. Nevertheless, the current large 
data sets from wide-field surv e ys triggered the development of fully 
or human-assisted automated search methods to find and classify 
(Gavazzi et al. 2014 ; Joseph et al. 2014 ; de Bom et al. 2015 ; Avestruz 
et al. 2019 ; Cheng et al. 2020a ), and more recently inferring the 
properties (Hezaveh, Le v asseur & Marshall 2017 ; Bom et al. 2019 ; 
Legin et al. 2021 ; Pearson et al. 2021 ; Schuldt et al. 2021 ) of lens 
candidates. 

Most of those techniques are based on image processing and/or 
neural networks. In particular, several works have established that 
both traditional neural networks (Estrada et al. 2007 ; Bom et al. 
2017 ) and deep neural networks (Glazebrook et al. 2017 ; Lanusse 
et al. 2018 ; Jacobs et al. 2019 ; Metcalf et al. 2019 ; Petrillo et al. 
2019a , b ; Morgan et al. 2022 ) can be used to identify lenses from 

non-lenses, with minimal human intervention. Although there is a 
certain intuition on how those techniques work, except when the 
methods explicitly take morphological features or colours rather than 
the raw image, it is not completely clear which features are used by 
deep learning algorithms in strong lensing identification. Even so, 
several searches with deep learning techniques have successfully 
found a large number of candidates (see e.g. Glazebrook et al. 2017 ; 
Jacobs et al. 2019 ; Petrillo et al. 2019b ). The interest in the field 
led to a community effort to develop the best solutions in the two 
strong gravitational lensing challenges (henceforth SGLC; Metcalf 
et al. 2019 ; Metcalf et al., in preparation). Both were data challenges 
where the participants developed different methods to find strong 
lensing from different sets. The first challenge was performed in 
100 000 simulated images mimicking KiDS-quality surv e y data, with 
a 48-h time limit. The second challenge used 100 000 images with 
Euclid -like conditions, including four bands, one of them with a 

different resolution in terms of pixel scale. The participants used this 
set of images, the tagged set, to search for the best possible model 
since their respective labels were also pro vided. F or methods that 
require a training phase, this tagged set was split into three groups: 
training/validation/test sets. The final results of the challenges used 
a different blind set of 100 000 images. In this work, we present the 
path that ultimately led our team to develop the winning solution 
of the second SGLC (II SGLC). We discuss the lessons learned and 
how to work on the data. Most of our pipeline is generic enough and 
thus valuable for other potential applications in deep learning image 
processing problems in astronomy. We present how to pre-process the 
data, and what is the deep learning architecture choice, including how 

to combine images with different resolutions in the same network. 
Additionally, we use a technique to identify what region on the 
image the algorithm is using to make a classification, and therefore, 
we may assess the decision-making process. We further discuss the 
adaptability of our model to other data sets and the detection limits in 
terms of lensed pixels above the background. We make our pipeline 
and model weights publicly available. 1 

This paper is organized as follows. In Section 2 , we briefly describe 
the data and present the initial processing and data exploration. Later, 
in Section 3 , we introduce the deep learning models, the architecture 
definition, and the choice of parameters used in this work. Then, 
in Section 4.1 , we describe the training process, convergence, and 
o v erfitting. F ollowing that, in Section 4.2 , we describe the model’s 
performance in the test set. In Section 4.3 , we use a technique to 
infer which features are rele v ant to the deep learning classification. In 
Section 5 , we e v aluate the sensiti vity of the current method and define 
the detection limits. Later, in Section 6 , we present a prescription on 
how to adapt the method for a different data set. Finally, in Section 7 , 
we make a discussion and present the conclusions of this work and 
an outlook for the future. 

2  DA  TA  EXPLORA  T I O N  

2.1 Catalogue and available data 

The data for the II SGLC are composed of 100 000 simulated objects 
in four different bands: VIS (visible) and H , J , and Y (infrared), for 
a total of 400 000 images (the training set mentioned in Section 1 ). 
The VIS images have a 200 × 200 pixels resolution with a pixel scale 
of 0.1 arcsec, while the other bands have ∼3 times lower resolution, 
with 66 × 66 pixels images with 0.3 arcsec of pixel scale. The images 
are an update from the first SGLC (I SGLC; for a detailed description 
of the data sets, see Metcalf et al. 2019 ; Metcalf et al., in preparation). 

The simulation of the lenses started with catalogues derived from 

the Millennium Observatory project (Overzier et al. 2013 ) that 
describes both the galaxies and dark matter haloes within a simulated 
light-cone. The galaxies were matched to dark matter haloes using 
the semi-analytic model (SAM) of Guo et al. ( 2011 ). The halo cat- 
alogue lists the mass, half-mass radius, maximum circular velocity, 
redshift, and angular position of each halo, including subhaloes. The 
galaxy catalogue includes parameters for both a disc and spheroidal 
component for each galaxy. The ef fecti ve radius, position angle, and 
photometry in 10 bands along with other information are given. 

A mass model is constructed for each dark matter halo consisting of 
a spherically symmetric Navarro–Frenk–White (NFW) profile with 
an external shear to account for some asymmetry. In addition, for each 
galaxy a truncated elliptical singular isothermal sphere (TESIS) is 

1 https:// github.com/cdebom/ cast lensfinder
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Figure 1. H , J , Y , VIS, and HJY band images combined from two objects on data set, a lensed and a non-lensed one, with and without any pre-processing. No 
features can be seen without pre-processing, and the emission from the galaxy itself is hardly visible. The images were normalized individually. 

constructed that matches the velocity dispersion of the galaxy from 

the catalogue. The mass in these TESISs is subtracted from the host 
dark matter halo. 

The image of each lens galaxy consists of a disc and spheroidal 
component. The disc has an inclined exponential profile and the 
spheroidal component has a S ́ersic profile with an index near 4 with 
a random 10 per cent fluctuation. The discs have analytic spiral 
surface brightness fluctuations to mock spiral arms. The position 
angle of the mass matches that of the lens light. 

The sources that are placed behind the lenses were taken from 

the Hubble Ultra Deep Field (UDF). Their UDF images were 
decomposed into shapelet functions to remo v e noise by Mene ghetti 
et al. ( 2010 ). These images have more realistic shapes than simple 
analytic profiles. The redshifts and colours are taken from the UDF 

catalogue. The sources redshifts in the II SGLC were between 1.27 
and 11.08, with a mean of 2.76. 

The mass modelling and the subsequent ray shooting are done 
within the GLAMER lensing code (Metcalf & Petkova 2014 ; Petkova, 
Metcalf & Giocoli 2014 ). A particular lens was constructed by 
picking a galaxy at random from among the bright galaxies and 
a source from the source catalogue. A grid of rays with twice the 
resolution and the same range as the final image was shot backward in 
time to the redshift of the sources and critical curves and associated 
caustic curves were found. If the critical curve was within pre-set 
bounds, the field was accepted. Then it was randomly decided if 
a source should be added. The fraction of cases without sources 
were low because a large fraction of the cases with sources still did 
not meet the observational criterion for being a lens because of low 

source magnification or brightness. 

If a source was added, it was placed within a circle with a radius 
that is 1.5 times greater than a circle that would circumscribe the 
larges tangential caustic in the field. The neighbouring objects within 
0.5 arcmin are included. Some randomization of the position angle, 
inclination, neighbour positions, and other parameters are done so 
that the same object could be used multiple times without producing 
very similar images. 

Properties of the lens and lensed images were calculated and 
logged. The image was then blurred, reduced in resolution, and noise 
was added according to what is expected for the Euclid observations. 
The objects had the same surface brightness profiles in the different 
bands although their relative brightness was changed according to 
the input colours. The spherical and disc components of galaxies 
generally had different colours. 

During the competition’s duration, the organizers provided no 
details on how the simulations were generated. 

Together with the images, a catalogue of properties was also 
provided, instead of a simple truth table. The catalogue contains, 
among others, the coordinates of the centre of the critical curves, the 
redshifts of source and lens objects, source ef fecti ve magnification, 
and the number of source pixels with intensity 1 σ above the 
background level. Thus, we may have simulated images where just 
1 pixel from the lensed source was visible. For the challenge, a 
detectable strong lens system was defined by the following criteria: 

(i) number of separated groups of source pixels larger than zero; 
(ii) source’s ef fecti ve magnification in all bands larger than 1.6; 
(iii) number of source pixels with intensity above 1 σ of the 

background level larger than 20. 
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Figure 2. Pixel histogram from H , J , Y , and VIS image bands. The pixel 
v alues are of fset by a fixed amount to remo v e ne gativ e values and allow the 
use of a logarithmic scale. 

49 213 images in the data set followed these criteria and were there- 
fore classified as a lens, making it reasonably balanced. Unlike a sim- 
ple truth table, a catalogue like this allows us to explore how changing 
the detectable strong lens definition (e.g. the number of source pixels 
abo v e the background level) can affect the classification. 

Fig. 1 shows two example objects from the catalogue, one a lens 
(top two rows) and a non-lens object (bottom two rows), in each 
of the four bands, and joining H , J , and Y together. For the sake of 
comparison, we show also the same images after applying our pre- 
processing scheme (discussed in Section 2.2 ). The images without 
any pre-processing show almost no visible features and the galaxy 
itself is hard to see. After the pre-processing, not only the central 
galaxy appears (together with some background galaxies) but also 
the lens’ arc is now visible. 

The pixel intensity distributions for all four bands of all images 
are shown in Fig. 2 . They are all extremely skewed towards higher 
values, with the minimum and the median pixel values comparable. 
At the same time, the maximum is three to four orders of magnitude 
(depending on the band) larger than the median. Hence, to present 
the distribution, we use a logarithmic scale so that features are 
more easily seen. We also apply a constant offset to make all pixel 
v alues positi v e. These e xtremely skewed distributions help e xplain 
the lack of visual features when displaying the images: the brightest 
pixels are orders of magnitude brighter than the other ones, almost 
completely dominating the entire image and making the lensing 
features difficult to identify by visual inspection without any image 
processing. Furthermore, this extreme difference could make a neural 
network look only at the high-intensity pixels, almost completely 
disregarding the rest. 

2.2 Pr e-pr ocessing 

The deep learning methods are sensitive to visual features by con- 
struction, so we pre-process the data to enhance the visualization. For 
completeness, we also e v aluate the performance of our deep learning 
pipeline without any pre-processing. A simple normalization would 
not change the skewness of the pixel intensity distribution. Therefore, 
we first make a contrast adjustment by clipping the image histograms, 
i.e. we choose a lower and an upper bound and set ev ery pix el abo v e 
or below those values to be equal to the nearest bound. We define two 
sets of contrast adjustments. The first one was used for the II SGLC: 
since the images present ne gativ e pix el v alues, we chose the lo wer 

Figure 3. Pixel intensity histogram for VIS, H , J , and Y image bands with 
clipped images. 

bound by first inverting the image, taking the 99.9 percentile, and 
multiplying it by −1; the upper bound was set as the 98 percentile, 
both using the full-pixel intensity distribution of each band. Ho we ver, 
upon further visual inspection, we found that the H , J , and Y images 
were saturated in several cases, making the small features of objects 
or lenses disappear. After a search around the bounds used in the 
II SGLC and a visual inspection of some example images after each 
clipping, we chose a second contrast adjustment to the 0.1 and 99 per- 
centile as the lower and upper bound, respectively. Fig. 3 shows the 
pixel intensity distribution after this clipping; the extremeness of the 
original distribution can now be appreciated: the 99 percentile for all 
bands is three to four orders of magnitude lower than the maximum. 
With the clipping, now the median the maximum are comparable. 

The effect in the images can be seen in Fig. 4 , which shows five 
examples of clipped lensed images in the VIS band and combined 
HJY band. Several features are now visible, such as the lenses 
and other galaxies in the background. Ho we ver, while some of 
the lenses are easily noticeable in both VIS and infrared bands, 
some can only be readily seen in the VIS band, namely the ones 
in the second and last columns. This suggests that, at least in some 
cases, resolution might be more important than colour when visually 
searching for gravitational lenses. While this new pre-processing 
helped the lensing features visualization and thus moti v ates its usage, 
there is no guarantee that it will impro v e the results before the final 
deep learning performance e v aluation. 

3  DEEP  L E A R N I N G  M O D E L S  

3.1 EfficientNets 

We made use of a family of convolutional neural network (CNN) 
models known as EfficientNet (Tan & Le 2019 ), which were built to 
be high performing, i.e. state of the art, in benchmarking image classi- 
fication data sets such as ImageNet, while also being easily scalable. 
In order to impro v e a CNN’s performance, one can scale up the net 
in three ways: increasing the number of layers (depth), the number of 
channels (width), or the input image resolution. Increasing the depth 
could make the network learn more of the complex features but also 
makes it more prone to suffer from the vanishing gradients problem, 
where the deri v ati ve of the loss with respect to the weights approaches 
zero, and the learning stalls (Goodfellow, Bengio & Courville 2016 ). 
Furthermore, deeper networks tend to saturate on accuracy (He et al. 
2016 ). On the other hand, while wide and shallow networks would 
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Figure 4. VIS and HJY band images combined from five lensed objects after pre-processing. The galaxies and lenses are now visible, and the difference in 
resolution can be appreciated: the lens cannot be seen in some of the HJY images, but it is visible in all VIS images. 

a v oid this problem, they w ould f ail to learn more complex features. 
Therefore, Tan & Le ( 2019 ) introduced the idea of compound scaling, 
where depth, width, and image resolution are scaled up at the same 
time while maintaining a balance between them: 

depth: d = αφ, 

width: w = βφ, 

resolution: r = γ φ, 

(1) 

where φ is an integer named compound coefficient and α, β, and 
γ are constants. floating-point operations per second (FLOPS) on 
a convolutional operation scale as d w 

2 r 2 ; thus, for it to scale as 2 φ

for any new compound coefficient, α, β, and γ are subject to the 
following constraints: 

α β2 γ 2 ≈ 2 , 

α ≥ 1 , β ≥ 1 , γ ≥ 1 . (2) 

Before scaling up, a good base model is needed; Tan & Le ( 2019 ) 
use a multi-objective architecture search, optimizing for accuracy 
and FLOPS, using the same parameter space as Tan et al. ( 2019 , 
MnasNet). The resulting network is similar to MnasNet but with 
more parameters, called EfficientNet-B0, having a mobile inverted 
bottleneck with a squeeze and excitation connections as its building 
block (see Fig. 5 b). A small grid search is done to obtain the best 
values for α, β, and γ for B0, which are then left constant. A family 
of EfficientNets (B1–B7 originally) can be then built by increasing 
the compound coef ficient φ. Ef ficientNet-B7 achie ved the best 
results for top-1 accuracy in ImageNet, outperforming more complex 
architectures in terms of the number of parameters. Ho we ver, among 
the EfficientNet model family, many of them already have a high 
performance, around 80 per cent , in top-1 accuracy, i.e. the accuracy 
in multiclass problems considering as a correct prediction only the 
highest probability class. 

3.2 Pr oposed ar chitectur e 

EfficientNet models defined by Tan & Le ( 2019 ) are built to have 
as inputs three channels. Since H , J , and Y images have the same 
resolution, it is natural to combine them. Ho we ver, the same cannot 
be done for the VIS band. Therefore, we define a second EfficientNet 
model to operate with the VIS images. We use two simple methods 
to create two extra channels in the VIS model: 

(i) propagate the images to the other channels, ef fecti vely creating 
three equal ones, which we call VIS (repeated); 

(ii) fill the other channels with null arrays, which we call VIS 

(zeros). 

While this approach is suitable if we want to train either the 
HJY or VIS bands alone, it does not help if we want to use them 

together. In order not to scale up or down the images, keeping them 

in their original form, we chose to create a net with two EfficientNet 
branches, one for each input. The final model has the last two 
dense layers of the original architecture remo v ed and concatenates 
both outputs before passing them through a fully connected layer 
with softmax acti v ation (see Fig. 5 a). We made an initial test of 
performance with the EficientNet models and did not find any 
significant impro v ement in performance be yond the B2 model, 
considering cross-validation uncertainties, while the more complex 
B3–B7 models have more parameters and can take considerably 
longer to train. Thus, we use in our branches the EfficientNet-B2 
architecture for our main results, which ended up being the model that 
achieved the highest score on the II SGLC. Furthermore, it is worth 
noticing that EfficientNet-B2 was also successfully implemented in 
image classifications of astrophysical sources for galaxy morphology 
catalogues as described in Bom et al. ( 2021 ). Walmsley et al. ( 2022 ) 
used an EfficientNet-B0 model for the same kind of problem. 

Hence, we test the follo wing architectures: one-branched Ef ficient- 
Net, using either VIS or HJY , and two-branched with all bands. We 
tested the two versions for all cases with VIS band, VIS (repeated) or 
VIS (zeros). After some visual assessment in the near-infrared bands 
we found that many of the objects were visually very similar, so we 
also added a simpler model where we chose one of the near-infrared 
bands, Y , and VIS, filling the other two channels with null arrays. 
Therefore, we e v aluate a total of six models presented in Table 1 , 
each of them with the two pre-processing schemes described in the 
previous sections and without any pre-processing. 

4  RESULTS  

4.1 Training 

The previously described models were trained using one of the state- 
of-the-art optimizers: the Rectified Adam (RADAM; Liu et al. 2020 ), 
with a binary cross-entropy loss. We initialize the networks with pre- 
trained weights from the ImageNet data set in order to impro v e the 
computing time needed for convergence, the overall performance, 
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(a)

(b) (c)

Figure 5. The deep learning architecture used in this work. The model was based on the EfficientNet-B2 model. Panel (a): our two-branched model used to 
train both images with HJY and VIS bands at the same time. Panel (b): mobile inverted bottleneck block, with squeeze and excitation phases. Panel (c): full 
architecture of the EfficientNet-B2 model. MBConv blocks are the Mobile Inverted Bottleneck mentioned previously. 
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Table 1. Area under curve (AUC) for receiver operating characteristic (ROC) and precision–recall ( PR ) curves, and the F β

score for different bands and different pre-processing, on a reduced sample (20 000 images), using a cross-validation procedure. 
The scores are calculated on a blind test sample comprising 10 per cent of this reduced sample. As per the challenge, we use 
β2 = 0.001. The combination submitted to the challenge is highlighted in red, and the best one in blue. 

No pre-processing II SGLC pre-processing Alternative pre-processing 

HJY ROC 0.4994 ± 0.00135 0.5389 ± 0.01891 0.5350 ± 0.02414 
PR 0.4950 ± 0.0155 0.5535 ± 0.0210 0.5342 ± 0.0303 
F β 0.620002 ± 0.102507 0.918411 ± 0.069823 0.800559 ± 0.098771 

VIS ROC 0.5040 ± 0.0108 0.6589 ± 0.0423 0.6266 ± 0.0445 
(repeated) PR 0.5129 ± 0.0779 0.6936 ± 0.0366 0.6634 ± 0.0434 

F β 0.526797 ± 0.066389 0.982306 ± 0.007477 0.979158 ± 0.011016 
VIS ROC 0.5001 ± 0.0101 0.7002 ± 0.0306 0.6534 ± 0.0414 
(zeros) PR 0.4884 ± 0.0384 0.7326 ± 0.0256 0.6864 ± 0.0387 

F β 0.548153 ± 0.066831 0.986763 ± 0.005173 0.979588 ± 0.010142 
HJY + VIS ROC 0.5017 ± 0.0069 0.8018 ± 0.0173 0.8147 ± 0.0161 
(zeros) PR 0.4916 ± 0.0074 0.8239 ± 0.0128 0.8359 ± 0.0132 

F β 0.613814 ± 0.094273 0.990140 ± 0.003437 0.991610 ± 0.003873 
HJY + VIS ROC 0.4932 ± 0.0102 0.8016 ± 0.0186 0.8295 ± 0.0088 
(repeated) PR 0.4921 ± 0.0175 0.8230 ± 0.0149 0.8469 ± 0.0081 

F β 0.619433 ± 0.106441 0.990402 ± 0.004087 0.992070 ± 0.003427 
Y + VIS ROC 0.5011 ± 0.0174 0.8015 ± 0.0186 0.8149 ± 0.0144 
(zeros) PR 0.4939 ± 0.0124 0.8243 ± 0.0135 0.8369 ± 0.0120 

F β 0.613662 ± 0.125263 0.989978 ± 0.004941 0.990235 ± 0.004237 

and to make the training more stable as in Bom et al. ( 2021 ). All 
images were normalized in the [0, 1] range before being fed to the 
net. A 10-fold cross-validation was performed: the sample is divided 
in 10 parts; at each iteration, one of these parts is used as a validation 
sample, while the rest is used for training. This helps to a v oid biases 
that could arise from the selection of specific training/validation sets. 
For each fold, we trained the net for 50 epochs with a batch size of 64. 

Furthermore, we employ data augmentation strategies consisting 
of random rotations, mirroring in both axes, and zooming in or out the 
images between 0.8 and 1.2 times. We trained the models in a multi- 
GPU server with 8 RTX 3090 with 24 GB of GPU memory each. 
Since cross-validation is a high resource-consuming procedure, we 
selected a random sample of 20 000 images (four bands each) from 

the full data set for training/validation. The models and training were 
implemented in TensorFlow 2 (Abadi et al. 2015 ). The remaining 
80 000 images are used as an independent test set for network 
performance assessment. 

The training curves with no pre-processing show no or a negligible 
decrease in the training and validation losses, with the latter having 
large oscillations in some epochs indicating an underfit. The one- 
branched models containing HJY or VIS have the training loss de- 
crease rapidly in the first few epochs, and more slowly later on; how- 
ever, there is a strong overfit (validation loss much larger than training 
loss) already in the first 3–4 epochs, with the validation loss increas- 
ing and having again large oscillations. Training a two-branched 
network with HJY + VIS or Y + VIS simultaneously remo v es this 
large oscillation, and both losses decrease at approximately the same 
pace for 15–20 epochs when we start to see some o v erfitting. 

To a v oid being contaminated by o v erfitting at each fold, we use 
the model with the lowest validation loss to make our predictions on 
the test set. In Fig. 6 , we present the difference between the initial 
and the lowest validation loss for each combination of bands and 
pre-processing. The error bars are standard deviations, as measured 
in all 10 trainings for each configuration. This quantity is related to 
how well the model learned the problem and its ability to generalize. 
Smaller values mean that the network did not learn a more general 
solution, as the validation loss did not decrease. This happens in 
all models with no pre-processing, and in models with only one 

Figure 6. Mean validation loss difference between the initial and the best 
epoch colour coded for the different pre-processing methods used. Blue: 
no pre-processing; black: pre-processing as submitted to the challenge; 
and orange: new pre-processing. Larger differences indicate that the model 
learned more. Here R stands for repeated and Z for zeros. 

branch ( HJY or VIS). Furthermore, the II SGLC pre-processing 
and the current alternative one present similar results considering 
the errors. 

Overfitting occurs when the difference between training and 
validation loss starts to diverge. In Fig. 7 , we present the difference 
between the mean validation loss and the mean training loss at 
the last epoch and at the epoch with the lowest validation loss 
for every combination of bands and pre-processing. Smaller values 
suggest that o v erfitting did not occur or it is ne gligible. Nev ertheless, 
the o v erfitting results should also consider the underfitting results 
from Fig. 6 . In a situation of underfitting, one might also expect 
that the losses stay nearly constant for all epochs and thus small 
differences between training and validation loss. Confirming what 
was seen before, the models with no pre-processing did not learn, as 
the training and validation loss changed negligibly during training. 
Furthermore, one-branched models have a volatile training phase, 
with high variance in the loss at the last epoch and a little o v erfitting 
even in the best epoch. Training a two-branched network presents, as 
before, the best results, with almost no variance between the losses at 
each fold and little to no o v erfitting when considering the best epoch. 
Ho we ver, it can be seen that for most models, there is a tendency 
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Figure 7. Difference between training and validation mean losses at the last 
and best epoch, colour coded for the different pre-processing methods used. 
Blue: no pre-processing; black: pre-processing as submitted to the challenge; 
and orange: new pre-processing. Triangles show the difference in the last 
epoch, while circles show it at epoch with the lowest validation loss. Lower 
differences indicate less o v erfitting or no learning at all. Here R stands for 
repeated and Z for zeros. 

to o v erfit at later epochs. Again, the II SGLC and the alternativ e 
pre-processing are compatible within the errors except in the case 
of HJY and VIS (repeated), where training with the alternative pre- 
processing shows negligible overfit at all even in the last epoch. 

4.2 Performance evaluation 

To assess the models’ performance we consider several metrics, such 
as precision, recall, and the false alarm rate. The precision can be 
defined as 

P = 

|{ SL } ∩ { Systems classified as SL }| 
|{ Systems classified as SL }| . (3) 

The recall can be defined as 

R = 

|{ SL } ∩ { Systems classified as SL }| 
|{ SL }| . (4) 

The false alarm rate is 

F = 

|{ Not SL } ∩ { Systems classified as SL }| 
|{ Not SL }| . (5) 

The precision is a measurement of how pure the sample is, i.e. the 
percentage of the elements classified as a given class that are correct. 
The recall represents how complete is the classified sample or how 

many elements of a class were correctly identified. The false alarm 

rate is the percentage of f ak e detections. The output of the neural 
network pipeline is a number associated with the probability of a 
given object being a strong lensing system. Therefore, to obtain 
the aforementioned metrics is then necessary to define a probability 
threshold t : varying this threshold in the range [0, 1], one can obtain 
a curve of P and R and other for R and F , with the latter known 
as receiver operating characteristic (ROC) curve. This is a typical 
process to assess the quality of a given classification algorithm (see 
e.g. Metcalf et al. 2019 ; Cheng et al. 2020a ; Bom et al. 2021 ; Fraga 
et al. 2021 ; Magro et al. 2021 ), and can also be used to define the 
best threshold balancing the precision, recall, or false alarm rate. 
Additionally, the area under curve (AUC) of the ROC is also an 
intuitive quantity to evaluate the classification performance: a perfect 
classifier would have AUC = 1. In contrast, for a random choice 
classifier, we would expect AUC = 0.5. Analogously, the area under 
the P and R curve can also be used as a quality metric. 

We summarize our results in Table 1 , obtained in a validation 
sample at each iteration of the cross-validation. There we show the 
mean AUC for the ROC and precision–recall ( PR ) curves with the 
error corresponding to one standard deviation when considering all 

trainings. We also show the mean and error for the F β score, defined 
as 

F β = 

(
1 + β2 

) P × R 

β2 P + R 

. (6) 

A lower β, ∼0 will fa v our the precision P , while recall R dominates 
higher values > 1, and β = 1 represents the harmonic mean between 
precision and recall. For ranking purposes in the II SGLC, β2 = 

0.001. Since they both depend on the probability threshold t chosen 
to separate between the classes, we take the maximum value of F β

at each fold, 

F β = max 
t 

F β ( t) . (7) 

The results in Table 1 confirm that the net is unable to learn 
from inputs without any pre-processing, and it is only slightly better 
using the HJY bands alone. The results impro v e when using only 
the VIS band, with some slightly numerical advantage for VIS with 
zeros. The comparison between HJY and VIS alone suggests that 
increasing the resolution of the images might give better results than 
using colours in the current configuration of the II SGLC data set, 
as was previously seen in Fig. 4 . The best performance was using 
all bands as the input, combining the higher resolution VIS images 
and colour information from the infrared bands. Interestingly, the 
results using only the Y band are similar to the ones using H , J , 
and Y together. Although visually more appealing, the alternative 
pre-processing did not al w ays translate into better results. 

Moreo v er, both ways of inputting the VIS band also give similar 
results when using it alone or when combining it with other bands. 
In fact, all results using a two-branched EfficientNet are compatible 
considering the errors, except for HJY + VIS (repeated) with the 
alternative pre-processing, which is only marginally better than 
the two-band configuration with the II SGLC pre-processing when 
considering 1 σ errors. We highlight in red the configuration used in 
the submission to the II SGLC, and in blue the one with the best 
nominal F β score. 

We also present the results for the independent test set with the 
resulting 80 000 images neither used in training nor validation in 
Fig. 8 . We used the models with the lowest and fifth lowest validation 
loss from the 10 multiple trainings for inference in this sample. The 
results agree with the ones reported in the table, apart from for the 
fold with best model using only VIS. Interestingly, we found that the 
best model in VIS with zeros has a better performance considering 
one standard deviation in the blind test set compared to the validation 
set results. Ho we ver, the fifth best model is in agreement with Table 1 , 
and the AUCs for all folds confirm that the best model using VIS 

alone is an outlier. 

4.3 Strong lensing classification interpretation 

Deep learning predictions are often hard to interpret and obtain 
intuition. Moreo v er, there is no straightforward standard procedure 
to justify the algorithm choices. One of the reasons for that is the 
complexity of those models, including the number of free parameters 
and sparsity. Therefore, several techniques were proposed to infer 
and interpret the outputs from a given network; among them, we 
chose a popular approach named local interpretable model-agnostic 
explanations (LIME; Ribeiro, Singh & Guestrin 2016 ). This is a 
framework that can be applied to several machine learning methods 
and has been applied in several machine learning pipelines (see e.g. 
Mishra, Sturm & Dixon 2017 ; Haunschmid, Manilow & Widmer 
2020 ; Hassan et al. 2022 ). The method makes perturbations in small 
parts of the input and e v aluates ho w the predictions change. It treats 
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(a) (b)

Figure 8. Results of our models on the independent test group with 80 000 objects. The best performing fold (lowest validation loss) is shown as a black solid 
line, and the fifth best one as a blue dashed one. 
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Figure 9. LIME analysis for three images in the data set. Highlighted regions correspond to the two most important superpixels when determining the 
classification: green for lenses and yellow for non-lenses. The predictions of the network and the ground truth are also shown. 

the model as a complete black box (hence the name model agnostic ), 
approximating it locally by a linear model, which is simpler to 
analyse compared to the global model. 

For image classification, LIME does this by running the model 
several times, perturbing different image regions, and checking the 
predictions. The superpixels (group of adjacent pixels) defined by 
the LIME technique are then classified according to their importance 
to the classification. 

We applied LIME to our sample images and made a visual 
assessment of what are the superpixels rele v ant for its classification. 
In Fig. 9 , we present three example images from our data set with their 
respective predictions and ground truth, with the two most important 
superpixels highlighted. In the left-hand and middle panels, the 
probabilities are fairly high for one of the classes, so we show only the 
superpixels important to that class, while on the right-hand panel, we 
show the regions important for both classes since the probabilities 
are close. It is worth noticing that the model searched around the 
central galaxy for the lens and gave high probabilities for being a lens 
or not based on finding it, which agrees with the intuition of how a 
human classifier would analyse the image. Ho we ver, when the field is 
crowded with bright objects, it searches around background galaxies 
for lenses, finding none. This suggests that deep learning algorithms 
might be misguided in crowded fields. Nevertheless, since it also 
searched around the central galaxy for the lens, both probabilities 
are comparable. 

5  DETECTION  LIMITS  

Conceptually, a strong lensing system is defined when the light of 
a given source is strongly deflected by the lens. Ho we ver, the strict 
definition of whether the system is detectable or not is not clearly de- 
fined, depending on the surv e y definitions, observational conditions, 
and instrument configurations. For instance, the simulated images 
can have just a few source pixels above the background level so 
that even if there is a signal, it might be undetectable. The II SGLC 

org anizers g ave their own definition of detectable strong lensing, 
which we reproduce in order to obtain a truth table of lenses and 
non-lenses, as presented in Section 2.1 . The experience from I SGLC 

showed that human visual inspection is less sensitive than automated 
deep learning algorithms in simulations. Thus, we investigate the 

Figure 10. Distribution of number of source pixels above the background 
for images satisfying both other criteria for being considered a lens (ef fecti ve 
magnification and number of groups of sources). 

detection limits of our method, in particular, how the number of 
source pix els abo v e 1 σ of the background lev el, N pix , which was 
used as a criterion to define lenses in the II SGLC, can affect our 
deep learning model’s performance. Fig. 10 shows the distribution 
of N pix for images that fulfil the other two criteria for lenses, all 
with N pix > 0 (since, in principle, any image with at least one source 
pix el abo v e the background lev el could be considered a strong lensing 
system). Even though the challenge set a minimum of 20, the median 
of the distribution is approximately 50, with still a rele v ant number 
of objects with N pix > 100. 

In order to assess the performance of our model in more adverse 
conditions, we test our trained HJY + VIS (repeated) models in test 
sets composed of lensed systems in a given N pix range, fulfilling the 
other criteria mentioned in Section 2 . This set is complemented with 
the non-lenses category defined, for the purposes of this test only, by 
an equal number of objects with N pix less than the minimum value for 
that given range. All these objects are taken from the 80 000 objects 
that we used as an independent test set (see Section 4.2 ). We start 
with N pix = 10 and go to 150 in steps of 10; for example, in the 
first range the lensed systems have 10 ≤ N pix < 20 and non-lensed 
have N pix < 10. We use the results of our 10 trained models (one for 
each fold in the cross-validation scheme) for each range to obtain the 
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Figure 11. Metrics for different minimum values of N pix . The points correspond to the mean, and the error bars to one standard deviation considering all 
models. 

error bars. Fig. 11 shows the mean and one standard deviation ROC 

AUC, precision–recall AUC, and F β considering the results from all 
10 models. For N pix < 30, the net is not much better from random 

guessing, while for N pix ≥ 70 we start seeing results comparable to 
the inference on the full sample. 

6  ADAPTA BILITY  

Most of the deep learning algorithms are tailor-made for a specific 
data set. This scenario is reasonable in a context of a data competition. 
Ho we ver, the pursuance of an adaptable algorithm can save lots of 
de velopment in ne w data sets making the efforts to analyse new 

data more efficient and accessible, not requiring a great amount 
of time from deep learning experts, increasing the model usage 
capability, and rele v ance to the community. Deep learning models 
are usually data hungry, relying upon massive simulated data sets 
in specific surv e ys, which are not al w ays available or convenient, 
as simulations will focus on a range of parameters and models. 
Additionally, adapting the method for a different scenario also 
validates the methodology. 

The data set suitable to e v aluate whether the deep learning is 
adaptable should be considered uniform in a giv en surv e y condition 
that is different from the data set used in the initial training. It 
also needs to be abundant enough to determine the algorithm’s 
performance and how many training samples are required to make 
a fine-tuning. Therefore, we e v aluate the use of a different data set, 
namely, the one used in I SGLC in the current trained algorithm. 
Differently from the II SGLC data, based in Euclid , space-based 
conditions, the main multiband I SGLC data set was built to represent 
ground-based images using the ESO’s Very Large Telescope (VLT) 
Surv e y Telescope in KiDS-like data. This included the observational 
conditions of the KiDS surv e y, the lev el of noise, and the bands. 
This data set, the same used as training in I SGLC, presents a 
total of 20 000 systems with a truth table among lenses and non- 
lenses in four bands u , g , r , and i . Because of the nature of the 
I SGLC simulations, the data set is rele v ant to highlight performance 
in different surv e ys/observational conditions. Howev er, the y are 
simulated with the same kind of strong lensing algorithms, making 
it not suitable to determine the limitations of specific strong lensing 
modelling methods. 

We start our investigation by applying the trained model in 
II SGLC data using HJY + VIS bands in the new KiDS-like data. 
After some initial tests, we found that the best way to split the four 
bands of this data to fit our 3 + 1 scheme was to leave the r band 
alone, combining u , g , and i . The images were pre-processed and 

adjusted using the same kind of procedure employed in the II SGLC. 
Ho we ver, the images had a different size in pixels to the Euclid -like 
data set used to train the models, so we resize them using a standard 
routine from the OpenCV library (Bradski 2000 ). The performance of 
the model when trying to make inference directly in this new data set 
was consistent with a random guess, i.e. AUC of ROC ∼ 0.5. In order 
to impro v e this result, we select a small number of samples in the 
new data and use them for training the model, leaving every weight 
in the net free. The cross-validation procedure was the following: 
first, we split the initial 20 000 systems into 10 groups of 2000. Each 
group will be used as an independent test. For each test group, we 
select a given number of images ( N img ) from the 18 000 remaining 
ones for training and the same number for validation. 

In Fig. 12 , we present our metrics for this test using different 
numbers of training images. In black, we report the results using 
the trained model in the II SGLC; for comparison, we also show in 
blue the same metrics in the same number of images, now using a 
network trained from scratch, i.e. initialized with random weights. 
We see that the trained model already has an AUC of ROC abo v e the 
randomness level with 40 images even though the model trained from 

scratch is still guessing. With 200 images, we see that the results are 
comparable to the ones obtained with the II SGLC data set. It can 
also be seen that in all cases, retraining the model gives better and 
more consistent results. 

7  DI SCUSSI ON  A N D  C O N C L U D I N G  R E M A R K S  

7.1 Summary 

In this contribution, we present a pipeline and the strategy employed 
to obtain the highest performance result in terms of F β score of the 
II SGLC. We discuss the choices in the code, architecture definition, 
how to work with images with different resolutions, the importance 
of a pre-processing e v aluating it by the code performance, and visual 
assessment. We use the LIME technique to infer the rele v ant features 
used in the classification. We also present a prescription on how to 
adapt the pipeline for a different data set and the detectability limit 
in terms of lensed pixels. Finally, we made a public release of the 
code, including neural network weights. In the next paragraphs, we 
summarize the lessons learned. 

7.2 Data visualization, pr e-pr ocessing, and normalization 

The sample’s visual inspection shows that just normalizing the 
images without a proper contrast adjustment, for instance, clipping 
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Figure 12. Metrics for our model tested on I SGLC data, retraining one of our models (transfer learning, black circles) and using random weights (from scratch, 
blue crosses). We use an increasing number of images for training, and report one standard deviation errors for the cross-validation. See text for details. 

the histogram, makes us see no lensing feature at all. This was later 
confirmed also by the deep learning pipeline. Ho we ver, by comparing 
the two pre-processing we use, even if we perceive a visual gain, this 
does not necessarily reflect into better performance, considering the 
1 σ errors. Therefore, we conclude that pre-processing the images in 
order to make them visually convincing as lenses is an important step. 
Ho we ver, fine-tuning might be more critical to visual assessments 
than to deep learning algorithms. 

7.3 Multiple bands and resolution relevance 

There are multiple sources of spurious detections in strong lensing 
analysis, and some of them are just image artefacts. None the less, 
others are images that might look like a lens, as in the case of edge-on 
galaxies and some spiral galaxies. One popular approach to reduce 
this issue is to use colours and look for red galaxies with a blue object 
close. The colour information is considered an important feature to 
find lenses (see e.g. Ostrovski et al. 2018 ; Spiniello et al. 2018 ). 
The use of colour queries is considered at least an interesting way 
to make a pre-selection and impro v e the final deep learning result 
purity. In fact, even in the I SGLC results the single-band scenario 
found lower performance in terms of the considered metric, the AUC 

of ROC. The II SGLC in a Euclid -like scenario allowed to make 
deep learning classifications using images with colour information 
in multiple bands but also higher resolution images. Interestingly 
the networks using only HJY bands did not find a competitive fit. 
On the other hand, using the VIS band only with a higher resolution 
found better results than HJY , which is close to a random guess. Still, 
the VIS band only has inferior results if compared to the runs using 
all information. This result suggests that the use of high-resolution 
images might play an important role and was in fact, more rele v ant 
than the multiple bands in the cases tested in this contribution. It is 
worth mentioning that the threshold defined by the maximum F β , 
with β = 0.001, privileged a pure sample instead of a complete 
one, obtaining in our best network, HJY + VIS with alternative 
pre-processing, around ∼99 per cent purity with completeness of 
around 45 per cent . This choice is justified for the same reason a 
pre-selection of targets is implemented by colour queries and other 
methods to reduce the number of non-lenses in a surv e y where we 
have billions of non-lenses for thousands of lenses. 

7.4 Underfitting and o v erfitting 

During the network definition and training process, we found, on 
several occasions, underfitting results, i.e. training losses were not 

minimized, and also o v erfitting, where the discrepanc y between train- 
ing and validation losses increases with the epochs. The underfitting 
was found mainly when using no pre-processing, just a simple data 
normalization; this result is presented in Fig. 7 . It also agrees with the 
fact, already mentioned, that without the pre-processing no features 
were visible to human eyes. 

None the less, we also find o v erfitting in many of our tests. Even 
the best configurations presented a tendency to overfit if we just 
let the training proceed unbounded. Rather than choose an early 
stopping method that might miss a big picture of training by quickly 
interrupting it to a v oid o v erfitting, we deal with that by just choosing 
the epoch where the validation loss was the lowest to perform our 
e v aluation of the model. This was an important strategy to the 
competition, enabling us to choose the network weights that could 
better generalize to the validation sample. Interestingly, when we 
delivered our submission to the II SGLC, the higher performance 
netw ork w as not the one that best performed in terms of F β in the 
testing sample, but precisely the ones that generalized better in the 
validation sample. This suggests that, in order to adapt for this blind 
sample, the best strategy was to choose the one with the lowest 
validation loss. A more detailed discussion on the network entries is 
a topic to be presented in the II SGLC results paper. 

Additionally to the observed tendency to overfitting, we also found 
une xpected o v erfitting in the very early epochs, i.e. from epoch 2 by 
using the TensorFlow native implementation of EfficientNets. This 
was an o v erfitting so early that happened before the validation loss 
dropped a level where we could find a classification better than 
random guess. After some investigation, we find that there are some 
differences between the TensorFlow implementation and ours, based 
on the original EfficientNet GitHub, 2 where the former incorporates 
into the architecture some pre-processing layers. Since our data were 
already fully prepared, these extra steps caused the issues mentioned. 

7.5 Neural network complexity 

From the computer vision challenges (Russako vsk y et al. 2015 ) 
experience, the use of deeper networks with similar architectures 
in terms of layers and structure are usually high performing if we are 
able to train successfully, with no strong o v erfitting. This scenario 
changes when some innovation on the architecture is presented, like 
the ResNet (He et al. 2016 ). This effect was also presented in the 
EfficientNet paper. The scaled networks, with a bigger number of pa- 
rameters, presented a better performance compared to the ones with 

2 https:// github.com/qubvel/ efficientnet
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lower parameters, this effect was more evident with the initial B0–
B4 than the laters up to B7 where the performance gain was smaller 
(for further details, see fig. 1 of Tan & Le 2019 ). Nevertheless, these 
deeper networks require more computation time, high-performing 
hardware and the gain in performance is not al w ays sufficient to 
justify this choice depending on the specific problem, particularly 
in a cross-validation scheme where we evaluate the variability of 
the results for a gi ven train/v alidation sets. In our experiments with 
strong lensing we found this scenario with the EfficientNets with a 
great number of free parameters, and we choose the B2 architecture 
as a trade-off between computation time efficiency and performance. 

7.6 Deep learning strong lensing finding decision making 

There is not a general interpretation theory for deep learning decision 
making. In fact this is an active research topic (see e.g. Cheng et al. 
2020b ). Thus, we made use of LIME technique to infer what is more 
important to the deep learning decision-making process. This is not 
the only possible choice, for instance, in a recent paper by Wilde et al. 
( 2022 ), the authors used a different set of techniques to perform as- 
sessment of a strong lensing finder and found that in high confidence 
lenses their CNN model highlights the arc or ring shapes. Our results 
reveal that the important regions for classification are the edges of the 
central galaxy, which agrees with the visual inspection intuition. We 
noticed that crowded regions were influenced by the neighbouring 
objects. This might be an important issue for lenses with multiple 
images but no pronounced arcs and regions close to the centre of 
clusters. One possibility is to work with smaller images. In principle, 
it is worth noticing that one could work with the same trained network 
but using some stamps with smaller sizes by resizing the images 
and with a fine-tuning. This approach was implemented successfully 
when we adapted the network for the I SGLC sample, where the 
original images had 101 × 101 pixels and the r band was resized to 
fit the VIS network branch where we had 200 × 200 pixels images. 

7.7 Generic strong lensing finders based on deep learning 
models are possible? 

The deep learning algorithms are usually tailor-made for a specific 
surv e y. Commonly this means enormous efforts to define a suitable 
high-performing architecture and relies in massive simulations to 
train the models, which are ideally made to represent the expected 
population of strong lenses. Here, we presented a simple prescription 
to adapt the pipeline to different surv e y conditions, where one can 
use a small amount of data. This could be used to fine-tuning by 
training in real data, which is usually very limited and a v oid the 
need to produce new strong lensing finders from scratch. Depending 
on the specific goal of the strong lensing search, this approach has 
to be used carefully, as the known sample of real lenses is highly 
inhomogeneous and subject to complex selection functions (see e.g. 
Guy et al. 2022 ). Ho we ver, this might be of particular interest to 
specialize the algorithm to a specific population of rare systems. 
The two-branched architecture presented here to deal with images of 
different resolutions also offers a possible path to integrate multiple 
data from current and future multiband surv e ys. 
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