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A B S T R A C T 

Strong gravitational lensing offers a compelling test of the cold dark matter paradigm, as it allows for subhaloes with masses 
of ∼10 

9 M � and below to be detected. We test commonly used techniques for detecting subhaloes superposed in images of 
strongly lensed galaxies. For the lens we take a simulated galaxy in a ∼10 

13 M � halo grown in a high-resolution cosmological 
hydrodynamical simulation, which we view from two different directions. Though the resolution is high, we note the simulated 

galaxy still has an artificial core which adds additional complexity to the baryon dominated region. To remove particle noise, 
we represent the projected galaxy mass distribution by a series of Gaussian profiles which precisely capture the features of the 
projected galaxy. We first model the lens mass as a (broken) power-law density profile and then search for small haloes. Of the 
two projections, one has a regular elliptical shape, while the other has distinct deviations from an elliptical shape. For the former, 
the broken power-law model gives no false positives and correctly reco v ers the mass of the superposed small halo; ho we ver, for 
the latter we find false positives and the inferred halo mass is o v erestimated by ∼4–5 times. We then use a more complex model 
in which the lens mass is decomposed into stellar and dark matter components. In this case, we show that we can capture the 
simulated galaxy’s complex projected structures and correctly infer the input small halo. 

Key w ords: (cosmolo gy:) dark matter – gravitational lensing: strong. 

1  I N T RO D U C T I O N  

The cold dark matter (CDM) model predicts the existence of a vast 
population of dark matter haloes, from the scale of galaxy clusters 
down to Earth masses and below. Their mass function is characterized 
by a simple power law with an exponential cutoff at the very high 
mass end (Frenk & White 2012 ; Wang et al. 2020 ). For large masses 
these predictions have been verified by large sky surveys (Frenk et al. 
1990 ; Rozo et al. 2010 ). At lower masses, where dark matter haloes 
are too small to host a luminous galaxy (Efstathiou 1992 ; Benson 
et al. 2002 ; Benitez-Llambay & Frenk 2020 ), it remains unclear 
whether the prediction still holds true. Alternative dark matter models 
predict a cutoff of the halo mass function. For example, warm dark 
matter (WDM) with a dark matter particle mass of around a few keV 

predicts a cutoff in the range 10 6 −10 9 M �. Pushing constraints on the 
halo mass function towards this smaller mass range can distinguish 
different dark matter models. 

Strong gravitational lensing serves as a promising tool to probe 
the existence of small invisible dark matter haloes. These ‘dark’ 
haloes perturb the images of lensed galaxies when they fall along 

� E-mail: qiuhan.he@durham.ac.uk 

the path of light from the source to the observer (Koopmans 2005 ; 
Vegetti & Koopmans 2009a , b ). One can statistically study the lensing 
perturbation of ensembles of small dark haloes, and directly put 
constraints on the halo mass function (Gilman et al. 2019 ; He et al. 
2022 ). Gilman et al. ( 2020a ) constrained the ‘half mode mass’ 1 to be 
below 10 7.8 M � by analysing flux ratio anomalies in eight strongly 
lensed quasar systems. 

Individual subhaloes can be detected by analysing luminous strong 
lensing arcs (Vegetti & Koopmans 2009b ). Li et al. ( 2016b ) has 
shown that with ∼50 high-quality strong lensing images, one can 
put stringent constraints on the cutoff mass and rule out CDM if 
no subhalo is detected. More recent work by Li et al. ( 2017 ) shows 
that the existence of line-of-sight haloes can boost the number of 
detection by a factor of several which improves the constraining 
power on the identity of dark matter (see also Despali & Vegetti 
2017 ; Amorisco et al. 2022 ; He et al. 2022 ). 

1 This is a characteristic mass related to the k -mode where the dark matter 
power spectrum has an amplitude half the size expected with CDM. It can be 
considered as a ‘cutof f’ mass, belo w which the halo mass function is strongly 
suppressed with respect to CDM. 
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Three such detections of dark haloes with pseudo-Jaffe 2 masses 
below 10 10 M � have been made so far. The first was made by Vegetti 
et al. ( 2010 ), who detected a 3.51 ± 0.15 × 10 9 M � subhalo using 
Hubble Space Telescope ( HST ) imaging. The second was made by 
Vegetti et al. ( 2012 ) via K eck adapti ve optics, with an inferred mass 
of 1.9 ± 0.1 × 10 8 M �. Finally, Hezaveh et al. ( 2016 ) found 
a 9.1 ± 2.5 × 10 8 M � subhalo using Atacama Large Millime- 
ter/submillimeter Array (ALMA) interferometer observations. 

Attempts to detect dark haloes through gravitational imaging have 
been made in approximately 30 lenses (Vegetti & Vogelsberger 2014 ; 
Ritondale et al. 2019 ); ho we ver, no other clean detections have been 
made. Due to the small number of detections, constraints on the halo 
mass function are somewhat loose, constraining the mass function 
cutoff to be below ∼10 10.9 M � (Enzi et al. 2021 ). This constraint 
is not yet competitive with other probes, owing to the limited data 
quality and sample size. Over the next decade, high-quality strong 
lensing observations from space telescopes such as the James Webb 
Space Telescope , Euclid Space Telescope , and China Space Station 
Telescope will allow these constraints to push to much lower cutoff 
masses on much larger lens samples (Collett 2015 ). 

Substructure detection places stringent requirements on the model 
of the lens galaxy’s mass distribution. The subhalo mass is usually 
less than 0 . 1 per cent that of the lens galaxy, necessitating per cent 
lev el accurac y of the main lens’s mass. Inaccuracies in the lens 
mass model may create ‘false-positive’ detections, where the subhalo 
‘fills-in’ for the mass model’s missing complexity. Previous studies 
have discussed false-positive subhalo detections (Vegetti et al. 2010 ; 
Ritondale et al. 2019 ), where they apply strict criteria to ensure all 
subhalo detections are genuine. This includes requiring a high enough 
increase of Bayesian evidence that tests on mock data demonstrate 
that the signal cannot be due to an inaccurate mass model (Vegetti 
et al. 2012 ) and verifying that a consistent subhalo detection is made 
when pixelized corrections to the gravitational potential are applied 
(Koopmans 2005 ; Vegetti & Koopmans 2009a ; Vegetti et al. 2010 , 
2012 ). In certain lenses these potential corrections clearly account 
for missing complexity in the lens galaxy’s mass, thereby correctly 
flagging a candidate subhalo detection as a false positive. Mass model 
complexity is not the only contributor to false positives (Vegetti & 

Vogelsberger 2014 ). 
This moti v ates the investigation of more complex lens models, 

which could impro v e the subhalo inference by accounting for this 
missing complexity in the lens galaxy’s mass. The subhalo detections 
listed previously assume a simple parametric model for the lens’s 
mass, the elliptical power law (Tessore & Metcalf 2015 ) with 
an external shear [Hezaveh et al. ( 2016 ) also included a fourth- 
order multipole term]. Ho we v er, recent studies hav e highlighted 
deficiencies with this model. In a companion paper of this work, 
Cao et al. ( 2021 ) fitted this model to strong lenses simulated using 
mass models derived from dynamical models of nearby SDSS-IV 

MaNGA (Bundy et al. 2015 ) early-type galaxies and showed this can 
bias the measurement of the local density slopes around the Einstein 
ring by 13 per cent. Gomer & Williams ( 2021 ) and Van de Vyvere 
et al. ( 2022 ) discuss how departures from ellipticity symmetry may 
affect H 0 inference in lensed quasars. Nightingale et al. ( 2019 ) have 
also showed that departures from elliptical symmetry are observed 
in the luminous emission of three strong lenses. 

2 The masses reported are masses of pseudo-Jaffe profiles (Mu ̃ noz, 
Kochanek & Keeton 2001 ). If modelled by an NFW, the virial mass obtained 
is usually 0.5 ∼1.0 dex higher than the pseudo-Jaffe mass (Despali & Vegetti 
2017 ). 

In this work, we therefore use a hydrodynamic simulation to test 
the robustness of different parametric lens mass models, focusing on 
their efficacy for the task of detecting individual subhaloes. By using 
a simulation, we can compare the lens galaxy’s true complex mass 
distribution to the lens model we fit and if it fails understand why. 
We perform two tests: (i) We do not add a subhalo to the lens galaxy 
when generating the mock data and investigate whether a lens model 
with a subhalo produces a false-positive signal and (ii) we include 
a subhalo when creating the mock data and test how accurately its 
mass and position are reco v ered. We first apply an extension of the 
commonly used power-law profile to fit the main lens (O’Riordan, 
Warren & Mortlock 2019 , 2020 , 2021 ), followed by a ‘decomposed’ 
model which models the lens mass as a combination of stars and dark 
matter (Dye & Warren 2005 ; Nightingale et al. 2019 ). Our goal is to 
understand whether modelling the lens mass as a power-law profile 
is sufficient for detecting subhaloes, and if not, whether there is a 
better model that can provide a correct inference. 

Hydrodynamic simulations have previously been used to simulate 
g alaxy-g alaxy strong lensing images (Metcalf & Petkova 2014 ; Xu 
et al. 2017 ; Mukherjee et al. 2018 , 2021 ; Despali et al. 2020 ; 
Enzi et al. 2020 ; Ding et al. 2021 ). Converting particle data into 
a corresponding deflection angle field (necessary for lensing) is non- 
trivial. A common problem is that the mass profiles of galaxies 
found in hydrodynamic simulations have a sub-kpc core in their 
centre. The strong lens imaging then produces a bright central image 
feature, which is not observed in real strong lenses (Bolton et al. 
2012 ; Shu et al. 2016 ). These cores are believed to be due to the 
limited resolution of the simulations, with previous works assuming 
a particle resolution of ∼10 5 M �. Our simulation, which has a particle 
resolution ∼10 times that of Illustris-1, still forms a core and central 
image. We incorporate this feature into our lens modelling such 
that we can still investigate dark matter subhalo detection. We also 
mitigate systematic effects related to particle noise in the simulation 
(Xu et al. 2009 ) and truncation effects which introduce an artificial 
shear (Van de Vyvere et al. 2020 ; Ding et al. 2021 ). 

Testing with galaxies from the Illustris simulation (Vogelsberger 
et al. 2014 ), Xu et al. ( 2017 ) demonstrated that deviations of 
simulated galaxies from a simple elliptical power-law profile affect 
inference on the Hubble constant. More recently, Enzi et al. ( 2020 ) 
used 10 galaxies from the Illustris-1 simulation to test the power-law 

lens assumption for substructure lensing, and showed no de generac y 
between the complexity of the true mass distribution of their mock 
lenses and the inferred substructure abundance. Ho we ver, their work 
focused on the statistical properties of subhaloes’ signals and did not 
test individual subhalo detection. To fully understand how the use 
of simple parametric lens models affects the detection of individual 
substructure, testing with mock lenses extracted from simulations is 
necessary. 

This paper is structured as follows: In Section 2 , we introduce 
our simulation data and the way we simulate strong lensing images 
from particle data. In Section 3 , we introduce how we model the 
lensing images and search for subhaloes. In Section 4 , we show the 
power-law fitting results. In Section 5 , we introduce a more complex 
lens model where we model the lens’ stellar and dark components 
separately and then we show how it behaves for our tests. In Section 6 , 
we discuss our results. Finally, in Section 7 , we summarize our 
results. All the computations, if not specified, are done by the state-of- 
art open-source strong lensing software PYAUTOLENS 3 (Nightingale, 

3 The PyAutoLens software is open source and available from https://gith 
ub.com/Jammy2211/PyAutoLens . 
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Figur e 1. Conver gence of different components of the simulated galaxy. 
Yellow, blue, and red represent the stars, dark matter, and total matter 
respectively, assuming the lens at z = 0.2 and source at z = 2.5. At the 
redshift of the lens z = 0.2, 1 arcsec corresponds to 3.3 kpc in angular size. 

Dye & Massey 2018 ; Nightingale et al. 2021b ). Throughout the 
paper, we adopt the Planck cosmology (Planck Collaboration XIII 
2016 ), of which H 0 = 67 . 7 km s −1 Mpc −1 , �m 

= 0 . 307, and �� 

= 

0 . 693. 

2  M O C K  LEN SIN G  IMAG ES  

2.1 Particle data 

We create our lens galaxy by using data from a cosmological 
hydrodynamical zoom-in simulation of a ∼10 13 M � galaxy group 
(Richings et al. 2021 ). The simulated galaxy is selected from the 
EAGLE 100 Mpc box-size simulation (Schaye et al. 2015 ) and 
was first identified by Despali & Vegetti ( 2017 ) as having similar 
properties to lenses from the Sloan Lens A CS (SLA CS) surv e y 
(Bolton et al. 2006 ). The friends-of-friends ID of the halo is 129. 
To resolve dark matter haloes with masses down to ∼10 6 M �, 
this zoom-in simulation applies a no v el technique whereby there 
are many more dark matter particles than gas particles. Unlike 
the common construction of initial conditions in hydrodynamic 
simulations, where each dark matter particle in a dark-matter-only 
simulation is split into a pair of dark matter and gas particles, the 
simulation we use initializes seven dark matter particles per gas 
particle, resulting in dark matter and gas particle mass of 8.3 × 10 4 

and 10.7 × 10 4 M �, respectively. At z = 0, the dark matter halo of the 
zoom-in simulation’s galaxy group has a mass of m 200 = 10 13.14 M �
and size of r 200 = 506 kpc. 4 The Plummer-equi v alent gravitational 
softening length is 0.05 kpc. 

In Fig. 1 , we show the convergence profile (projected density 
divided by a constant lensing critical density) of different components 
of the simulated galaxy assuming the lens and source galaxy to be 
at z = 0.2 and 2.5, respectively. Inside the central ∼0.7 arcsec, the 
baryonic mass is larger than the dark matter mass, and the central 
density of stellar mass is around 4 times higher than that of the dark 
matter. A constant-density core with a size of ∼0.1 arcsec exists in 
the central region, which is a result of the finite resolution of the 

4 m 200 is the mass enclosed within a radius of r 200 , where r 200 is determined 
as the radius at which the mean enclosed density is 200 times the critical 
density of the universe. 

simulations. This phenomenon has been seen in several other studies 
that simulate strong lens images from simulation data (Mukherjee 
et al. 2018 ; Enzi et al. 2020 ; Ding et al. 2021 ), and it can produce a dim 

central image in simulated strong lensing images that is rarely seen in 
real observations (Winn, Rusin & Kochanek 2004 ; Quinn et al. 2016 ). 
The core feature introduces additional comple xity be yond realistic 
massive ellipticals and thus might lead to an overestimation on the 
baryonic effects in our tests. Fortunately, for the lens configurations 
considered in this work, the central image is sufficiently dim and 
small that one can mask it out without it impacting the lens modelling 
and subhalo inference, an approach also followed by Enzi et al. 
( 2020 ). To do this, we artificially increase the assumed error on the 
flux in the region containing the central image to such high values that 
they are ef fecti vely removed from the goodness-of-fit measurement. 5 

2.2 Simulating strong lensing images 

2.2.1 Mock lenses 

To simulate images that are strongly lensed by the particle distribu- 
tion from a hydrodynamical simulation one needs a method which 
can determine the corresponding deflection angle map. There are two 
common ways of approaching this: (i) Derive the projected density 
distribution of the particle data and solve for its potential via a fast 
Fourier transform (FFT) or (ii) assume analytic profiles representing 
each particle enabling deflection angles to be easily computed, such 
that the o v erall deflection field is the sum o v er all particles. For the 
latter method, the computational cost can be greatly reduced by using 
a k -d tree algorithm (Bentley 1975 ), making it faster than the FFT 

method at comparable resolution (Metcalf & Petkova 2014 ; Petkova, 
Metcalf & Giocoli 2014 ). Ho we ver, none of these methods offers a 
well-posed way of quantifying particle noise in the deflection angles, 
which can closely resemble the deflection angles of a dark matter 
subhalo in a strong lens (Xu et al. 2009 ). Besides the particle noise, 
these abo v e methods also face the boundary truncation effect, which 
is that when truncating the particle data in an improper way (e.g. a 
square boundary applied to an elliptically shaped galaxy), an artificial 
shear component is introduced (Van de Vyvere et al. 2020 ). The shear 
magnitude depends on the galaxy’s profile, the truncation area size, 
and the truncation scheme used, and an improper truncation on the 
particle mass data can induce several per cent bias to H 0 inference 
(Van de Vyvere et al. 2020 ; Ding et al. 2021 ). 

To a v oid particle noise and the boundary truncation effect, we 
therefore instead fit analytic profiles to the simulated galaxy’s particle 
data and use these profiles to compute our lens galaxy’s deflection 
angle field. We approximate the projected mass distribution of the 
simulated galaxy using the multiple Gaussian expansion (MGE) 
method, which is widely used for modelling galaxy surface bright- 
ness profiles in studies of galaxy stellar dynamics (e.g. Cappellari 
2008 ; Li et al. 2016a , 2019 ; He et al. 2020 ). Li et al. ( 2016a ) applied 
the expansion method to both galaxies and dark matter haloes in 
Illustris simulation, showing that it has flexibility to capture irregular 
and asymmetric features in a galaxy’s light or mass distribution. 
The deflection angles (and other lensing quantities) of an elliptical 

5 We previously attempted to remo v e the central image by applying a mask 
that remo v ed the data in the central region altogether. Ho we ver, we found that 
this introduced systematics due to edge effects associated with the source- 
plane pix elization. Pix els at the edge of the mask (which hav e non-ne gligible 
flux due to the central image) were not appropriately regularized because 
their neighbours were not traced to the source plane (see Nightingale et al. 
2018 ). 
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Figure 2. Isodensity contours of the projected stellar mass distribution of 
our simulated galaxy. The contours measured directly from the particle data 
using GLAMER (Metcalf & Petk ova 2014 ; Petk ova et al. 2014 ) are shown 
in black, while those for the best-fitting MGE are in red. The contours are 
evenly log-spaced in projected density. From inside to outside, each contour 
decreases by 0.4 order. Note that only very inner part (within 5 arcsec) of 
this image is observable and the reason we plot it on a much larger region 
is to show that the MGEs represent the lens’ stellar mass well to a very 
large range. For clarity, later plots are all zoomed in to the region around the 
Einstein radius. 

Gaussian profile can be easily computed (Shajib 2019 ), making lens 
simulations convenient and fast. 

We compute the deflection angles of the simulated galaxy sepa- 
rately for its stellar and dark matter components, and then add them 

together to get the total deflection angles. The gas component is 
omitted because its contribution to the total mass in the galaxy’s 
central region is negligible. We will add subhaloes to the deflection 
angle map via an analytic mass profile and therefore must ensure no 
subhaloes in the particle data are included in our simulation process. 
We therefore only use particles belonging to the main halo identified 
by the SUBFIND algorithm (Springel et al. 2001 ). 

We set the lens galaxy to be at redshift z = 0.2, and the 
source galaxy at z = 2.5. We first use GLAMER (Metcalf & 

Petk ova 2014 ; Petk ova et al. 2014 ) to generate convergence maps, 
where each particle is represented by a smoothed b-spline in three- 
dimension (3D). For each star particle the smoothing length is the 
distance to its eighth nearest (stellar) neighbour and for each dark 
matter particles it is the distance to its 64th nearest (dark matter) 
neighbour. We then use the MGE code of Cappellari ( 2002 ) to 
decompose the convergence maps into multiple Gaussian profiles, 
where the Gaussian components share the same centre but are 
free to have different amplitudes, sizes, position angles, and axis 
ratios. As an example, Fig. 2 shows contours tracing the particle 
data input (dark lines) and best-fitting MGE (red lines) of the 
simulation’s projected stellar mass distribution. The MGE-fitting 
code decomposes the stellar component into 13 individual Gaussian 
profiles and Fig. 2 shows asymmetric features such as the twist 
in ellipticity are well captured by the MGEs. The relative errors 
between the input profile and best-fitting MGEs are smaller than 
∼5 per cent . We apply the same routine to the simulation’s dark 
matter particles and then add the best-fitting Gaussian profiles 
together to represent the simulated galaxy’s total projected mass 
distribution. 

In the top-left panel of Fig. 3 , we show the convergence (i.e. the 
projected density divided by the critical surface density for lensing) 
of the MGE representation of the simulated galaxy, where a pointy 
‘American football-like’ shape can be seen. To investigate how lens 
model fits change depending on the shape of the convergence, we 
rotate the same galaxy to view it along a different line of sight, 
intentionally choosing a viewing angle that produces a rounder 
convergence map, which is shown on the bottom-left panel of 
Fig. 3 . Following equation (43) of Shajib ( 2019 ), we compute MGE 

deflection angles for both projections, which are then used to simulate 
strong lensing images. For an accurate computation of each image 
pixel’s flux, we treat every pixel with a 4 × 4 subgrid so that for 
each image pixel 16 light rays are traced to the source plane, with 
the pixel flux set to their mean value. 

2.2.2 Mock sources 

We simulate source galaxies using the cored S ́ersic profile (Trujillo 
et al. 2004 ): 

I ( r) = I 
′ 
exp 

[ 

−b n 

(
r 2 + r 2 c 

r 2 e 

)1 / (2 n ) 
] 

, (1) 

where I 
′ 

is the scale density, r c is the core size, r e is the ef fecti ve 
radius, n is the S ́ersic index, and b n is a dimensionless parameter fully 
determined by n (Graham & Driver 2005 ). Our input sources are a 
single elliptical cored S ́ersic profile (the ellipticity is introduced using 
r = 

√ 

( x/q ) 2 + y 2 ), which is simple compared to observed lenses 
where source galaxies are more complex and show features such 
as multiple star-forming clumps, spiral structures, and extremely 
compact centres. Our choice to assume a simple source profile is 
to make it straight forward to test the effects of using different lens 
mass models. Our lens modelling procedure uses pixelized source 
reconstructions which are able to fit the more complex sources seen 
in real data (Nightingale et al. 2019 ). 

2.2.3 Subhaloes 

Some of our mock lensed images include a dark matter subhalo in 
the lens galaxy near one of the arcs. We represent subhaloes using the 
spherical Navarro–Frenk–White (NFW) profile (Navarro, Frenk & 

White 1996 ): 

ρ( r ) = 

M 0 

4 πr ( r s + r ) 2 
, (2) 

where M 0 is the scale mass and r s is the scale radius. Following 
equation (A.18) of Baltz, Marshall & Oguri ( 2009 ), we analytically 
compute its deflection angles and add it to that inferred via the 
MGE fit to the stellar and dark components. We assume the NFW 

halo follows the mass–concentration relation given by Ludlow et al. 
( 2016 ), allowing us to parametrize it with only its mass, m 200 (and its 
position). Mock lenses are generated with an input subhalo of two 
different masses, m 200 = 5 × 10 8 M � or m 200 = 5 × 10 9 M �. 

2.2.4 Data quality 

We simulate mock images similar to observations of the 
HST /Advanced Camera for Surv e ys Wide Field Camera, with a pixel 
size of 0.05 arcsec and a Gaussian point spread function (PSF) with 
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Figure 3. Input stellar (left-hand column) and dark matter (middle column) convergence maps of our simulated galaxy along two different lines of sight (the 
two rows). The corresponding strong lensing images are shown in the right-hand column. The top row is for the line of sight that produces pointy shaped 
iso-convergence contours, and the bottom row shows the projection with a rounder convergence field. The red crosses on the mock images mark the positions 
where we will later place subhaloes. 

a standard deviation of 0.05 arcsec. 6 We set the normalization of 
the source’s surface brightness to give a signal-to-noise ratio (S/N) 
of ∼80 in the brightest pixel of the lensed source’s image, whilst 
adjusting the background noise level to closely match that expected 
from a few HST orbits. For our mocks, the background sky noise is 
0.1 e − pixel −1 s −1 . This S/N represents observations that are around 
double the highest S/N sources observed currently with Hubble, 
e.g. the SLACS sample. Using such high S/N data is a choice we 
made to ensure our tests of deficiencies in the lens mass model 
are easier to distinguish from noise in the mock data. The right- 
hand column of Fig. 3 shows the two mock images, where a source 
galaxy is lensed by the two different line-of-sight projections (the 
corresponding projected densities are shown on the left hand). For 
mock data sets which include a subhalo, the positions marked by red 
crosses show the locations of the subhalo that we add. In Table 1 , we 
summarize the rele v ant parameters used to simulate these images. 

3  M E T H O D  

3.1 Mass models 

3.1.1 Broken power law 

The simulated lens galaxy has an artificial ∼0.1 kpc constant density 
core, which forms a spurious central, demagnified image. We mask 
this central image by manually decreasing the contribution of central 

6 The actual PSF σ for HST/ Advanced Camera for Surv e ys is ∼0.034 arcsec 
and the pixel size is 0.04 arcsec, so our tests are slightly worse than real HST 
observations in terms of resolution. However, in terms of the PSF modelling, 
we assume we have perfect knowledge of the PSF, which goes in the other 
direction of being optimistic. 

Table 1. Parameters used to simulate the mock lensing images. 

Projection 1 Projection 2 

Input lenses 

Stellar MGE number 13 11 
Dark MGE number 5 5 
Redshift 0.2 

Input sources Cored S ́ersic 

Centre (x, y) [(arcsec, arcsec)] (0.08, −0.03) 
Axial ratio 0.55 
Position angle ( ◦) 30 
I 

′ 
(e − pix −1 s −1 ) 2.0 

r e (arcsec) 0.11 
n 2.0 
r c (arcsec) 0.01 
Redshift 2.5 

Input subhaloes (if added) Spherical NFW profile 

Centre (x, y) [(arcsec, arcsec)] (0.81, 0.12) (0.32, −0.71) 
m 200 (M �) 5 × 10 8 or 5 × 10 9 

Mass-concentration relation Ludlow et al. ( 2016 ) 
Redshift 0.2 

Image settings 
Pixel size (arcsec) 0.05 
PSF σ (arcsec) 0.05 
Background noise level 
(e − pix −1 s −1 ) 

0.1 

Exposure time (s) 8000 
Maximum pixel S/N ∼80 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/1/220/6731654 by Sistem
a Bibliotecario d'Ateneo - U

niversità degli Studi di Bologna user on 12 Septem
ber 2023

art/stac2779_f3.eps


Subhalo strong lensing tests 225 

MNRAS 518, 220–239 (2023) 

image pixels to the likelihood calculation; ho we ver, we must also 
ensure that our mass model parametrization is able to represent 
the cored density, to a v oid biasing our reconstruction of the lensed 
source’s arcs (Enzi et al. 2020 ). We therefore assume the elliptical 
broken power-law (eBPL) profile (O’Riordan et al. 2019 , 2020 , 2021 ) 
with convergence 

κ( r ) = 

{
κb ( r b /r ) 

t 1 , r ≤ r b 
κb ( r b /r ) 

t 2 , r > r b 
, (3) 

where r b is the break radius, κb is the convergence at the break radius, 
t 1 is the inner slope, and t 2 is the outside slope. When r b = 0, the 
eBPL reduces to the standard power-law profile with 3D density 
ρ( r ) ∝ r −γ , as used in many lens studies. We introduce ellipticity by 
setting r = 

√ 

qx 2 + y 2 /q , where q is the axial ratio. In practice, we 
parametrize a model’s axial ratio and position angle, θ , in terms of 
two components of ellipticity: 

e 1 = 

1 − q 

1 + q 
sin 2 θ, e 2 = 

1 − q 

1 + q 
cos 2 θ. (4) 

With the additional two parameters describing the profile’s centre, the 
eBPL model has eight free parameters. Degeneracies between certain 
parameters in the eBPL profile, e.g. the two different slopes, make 
it challenging to fit efficiently and a v oid inferring local maxima. We 
therefore assume priors that lessen these degeneracies and simplify 
parameter space, where we constrain r b ≤ 0.4 arcsec, t 1 ≤ 0.5, and 
t 2 > 0.5. For some cases, we further limit the Einstein radius to be 
larger than 0.5 arcsec. All eBPL models are fitted with an additional 
external shear in the lens model, which provides further flexibility 
in stretching and squeezing of the mass profile that can capture 
asymmetric features in the lens’s convergence (Cao et al. 2021 ). 
Similar to the ellipticity parametrization, the external shear is also 
parametrized with two components γ 1ext and γ 2ext , where the shear’s 
magnitude, γ ext , and position angle, θ ext , can be reco v ered as 

γext = 

√ 

γ 2 
1ext + γ 2 

2ext , tan 2 θext = 

γ2ext 

γ1ext 
. (5) 

For modelling of a subhalo, we take the same NFW form we use to 
simulate the image. 

3.1.2 Sour ce r econstruction 

The final lens model of our analysis – from which all results in 
the main content of this paper are taken – reconstructs the source 
galaxy using a pixelization that adapts to the source’s surface 
brightness distribution (see Nightingale et al. 2018 , for a discussion of 
systematics this approach remo v es compared to other pixelizations). 
Ho we ver, before using this pixelized source, a number of initial fits 
is performed which estimates the parameters of the lens mass model 
efficiently (for details see the next subsection). These fits assume 
either a parametric source which is modelled using the S ́ersic profile 
( r c = 0 in equation 1 ) or a pixelized source where the density of 
pixels adapts to the magnification, leading to smaller pixels in more 
magnified areas of the source plane. In Appendix A , we also show 

that we reproduce our main conclusions assuming a parametric cored 
S ́ersic source model. 

3.2 Fitting pr ocedur e 

We use PyAutoLens (Nightingale et al. 2021b ) to model the 
simulated lens data sets, which is described in Nightingale et al. 
( 2018 , hereafter N18 ) and builds on the works of Warren & 

Dye ( 2003 ), Suyu et al. ( 2006 ), and Nightingale & Dye ( 2015 ). 

PyAutoLens uses a technique called ‘non-linear search chaining’ 
to compose pipelines which break the lens modelling procedure into 
a series of simpler model fits. This allows us to begin modelling 
our data with a simple lens model (e.g. an isothermal mass profile 
and a S ́ersic source) and via a sequence of non-linear searches 
gradually increase the model complexity, so as to eventually fit 
the desired more complex lens model (in this work, mass models 
which include a dark matter subhalo and with a source reconstructed 
on the brightness-based pixelization). Non-linear search chaining is 
implemented in PyAutoLens via the probabilistic programming 
language PyAutoFit 7 (Nightingale, Hayes & Griffiths 2021a ). We 
use the nested sampling algorithm dynesty to perform all model 
fits. 

We employ the Source, Light and Mass (SLaM) pipelines that 
are distributed with PyAutoLens . 8 The SLaM pipelines were used 
in the work of Cao et al. ( 2021 ) and Etherington et al. ( 2022 ) and 
our analysis closely follows theirs, albeit we end with an additional 
pipeline that determines whether including a subhalo in the lens 
model increases the Bayesian e vidence relati ve to the model without 
a subhalo. Like in Cao et al. ( 2021 ), we do not need to model the lens 
light; and therefore, we employ a model fitting procedure consisting 
of four distinct pipelines each one of which focuses on fitting a 
specific aspect of the model. These pipelines are, in order: (i) the 
parametric source pipeline; (ii) the pixelized source pipeline; (iii) 
the lens mass pipeline; and (iv) the subhalo pipeline. Each pipeline 
consists of one or more non-linear searches that fit a unique lens 
model parametrization, which Fig. 4 shows a flow chart of, which 
we will now explain in detail. 

3.2.1 Parametric source pipeline 

The parametric source pipeline aims to initialize a robust model for 
the lens galaxy’s mass by fitting a source galaxy that has a smooth 
analytic form. The primary reason for this pipeline is that a robust 
model for the lens galaxy’s mass is necessary to a v oid pixelized 
source reconstructions inferring the unphysical solutions described 
by Maresca, Dye & Li ( 2021 ), where the reconstruction inferred 
is a demagnified version of the lens data. This pipeline assumes a 
singular isothermal ellipsoid mass model [where in equation ( 3 ), r b 
is set to be 0 and t 2 is fixed to be 1.0] with an external shear and a 
S ́ersic profile for the source surface brightness. 

3.2.2 Pixelized source pipeline 

The pixelized source pipeline is composed of four search phases. 
The first search fits for parameters describing the resolution of the 
magnification based pixelization and the regularization coefficient of 
the constant regularization scheme, with the lens mass model fixed 
to the result of the parametric source pipeline. The second search 
re-fits the lens mass model using the pixelization and regularization 
inferred previously. The third search fits for parameters that derive 
the surface brightness based pixelization and the luminosity weighted 
regularization scheme, where the lens mass model is fixed to the best- 
fitting values inferred in the previous search. The fourth search again 
re-optimizes the lens mass model now using the brightness based 
pix elization and re gularization and we finally re-fit the pixelization 
and regularization parameters again one last time, ensuring that the 

7 ht tps://github.com/rhayes777/PyAut oFit 
8 ht tps://github.com/Jammy2211/aut olens workspace 
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Figure 4. The fitting procedure we use to search for subhaloes. 

source reconstruction is tailored to the properties of the source it is 
fitting. 

3.2.3 Mass pipeline 

This pipeline fits a more complex lens mass, either the eBPL model 
plus an external shear or the decomposed model that separately 
models the stellar and dark components plus an external shear. 
This pipeline consists of two searches. It first fits the new lens 
mass model with fixed source pixelization parameters. The priors of 
the (broken) power-law model’s centres, elliptical components, and 
Einstein radius are updated using information of the previous best- 
fitting models. We set those priors to be Gaussian priors centring on 
corresponding best-fitting values of previous models and their widths 
are set manually using values which balance reducing the size of 
parameter space to ensure an efficient fit whilst being broad enough 
not to remo v e physically plausible solutions. For other parameters 
(like the break radius, inner (outer) slopes, and external shear) we 
assume broad uniform priors that are not informed by the previous 
mass model fits. Having now fitted this more complex mass model, 
we again update the source pixelization and regularization parameters 
using the best-fitting lens mass model of the first step. This is the final 

fit which updates the pixelization and regularization parameters, with 
all remaining fits focusing on the lens (and subhalo) mass models. 

3.2.4 Subhalo pipeline 

This pipeline performs Bayesian model comparison to determine 
if a lens model with a subhalo is preferred o v er a lens model 
without a subhalo. The pipeline begins by fitting the same lens mass 
model (with fixed source pixelization and regularization parameters) 
inferred at the end of the mass pipeline, with all priors inherited from 

this fit. This provides us with an estimate of the Bayesian evidence 
of the lens model without a subhalo. We then fit lens models which 
include an NFW subhalo. For the subhalo’s mass, we assume a 
uniform prior on log 10 ( m 200 /M �) between 6 and 11. 

Due to the complexity of our parameter space (which consists of 
the mass models of both the main lens galaxy and a subhalo) we 
found it was common for the inferred posterior to correspond to a 
local likelihood maximum (as opposed to the global maximum). 
To mitigate this, we scan for subhaloes using a grid of non- 
linear searches, where each search confines the ( x , y ) image-plane 
coordinates of the subhalo to a small 2D square segment of the 
image-plane. We perform 25 independent model fits, corresponding 
to a 5 × 5 grid, which divides the image region between −1.0 and 
1.0 arcsec into subregions with sizes of 0.4 arcsec × 0.4 arcsec. The 
parameters of the main lens are fit for simultaneously along with the 
subhalo parameters in each of these 25 fits. 

To determine whether the lens model with a subhalo is fa v oured 
by the data o v er the model without a subhalo, we must choose a 
statistical quantity with which to compare them. Obvious choices 
are the Bayesian evidence or differences in maximum log likelihood 
values. We use the maximum log likelihood to compare models 
which do and do not include a subhalo. Ho we ver, the Bayesian 
evidence is as an output of dynesty and we have verified that our 
results are unchanged using this quantity. We denote the difference 
between the two maximum log likelihoods as 
 L , such that if 
 L in 
certain cells of the subhalo search is large, it suggests the existence 
of a subhalo within one of those certain grids. Instead, if all log 
likelihood differences are very small, then it indicates no subhaloes 
of a sufficiently high mass to be detected are present in the image. 
For this paper, we take the threshold as follows: If 
 L ≤ 5, we call 
it a non-detection; if 5 < 
 L ≤ 10, we call it a plausible detection; 
and if 
 L > 10, we call it a detection. 

If the subhalo grid search has a plausible detection ( 
 L > 5) 
the subhalo pipeline performs one more fit, which fits for both the 
main lens and subhalo parameters. The subhalo’s ( x , y ) position is no 
longer confined to a square segment of the grid search and we instead 
place a Gaussian prior on the x and y positions. The 2D Gaussian 
prior is centred at the maximum-likelihood subhalo position inferred 
previously using the grid search, with a relatively large standard 
deviation of 0.5 arcsec. For the subhalo’s mass, we retain a prior 
uniform in log 10 M between 10 6 and 10 11 M �. 

4  POWER-LAW  TESTS  

We first use our simulated lenses to test the broken power-law profile, 
which is commonly assumed in strong lensing studies to model the 
mass distribution of the lens galaxy (Collett & Auger 2014 ; Vegetti & 

Vogelsberger 2014 ; Dye et al. 2015 ; Ene et al. 2018 ). Our tests are 
divided into two parts: (i) How do power-law fits behave for the 
case where no subhalo is present in the mock data and (ii) can the 
power-law correctly recover the subhalo’s properties when there is 
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Figure 5. Left-hand column: The mock lensing images. Middle column: The best reco v ered images using an eBPL to model the lens mass. Right-hand column: 
The corresponding normalized residuals (residuals divided by the noises). The top row shows the case of Projection 1 and the bottom row shows the case of 
Projection 2. The colour bar unit for the left two column images is e − pix −1 s −1 . The units of the y and x axes are arcsec. 

one present in the mock data. For convenience, we call the tests 
where no subhalo is added ‘smooth tests’, and tests where there is a 
subhalo added ‘subhalo tests’. 

4.1 Smooth test results 

In Fig. 5 , we show the input and reco v ered images from the best- 
fitting smooth model when fitted to simulated images that do not 
include a subhalo (this corresponds to the first model fit in the subhalo 
pipeline and will act as the model we compare to models including a 
subhalo in a moment). For visual clarity, we have removed the central 
image caused by the core of the simulated galaxy; ho we ver, note that 
this region is included in the model-fit with high error values. For 
both projections, the reconstructed images in the middle panel are 
similar to the input images shown on the left hand. The normalized 
residuals (residuals divided by the noises) shown in the right-hand 
panel confirm the good fit, showing no clear or obvious correlated 
residuals. It is noted that the best-fitting eBPL model’s break radius 
for Projection 1 and 2 are ∼0.2 and 0.1 arcsec, respectively, which 
confirms that the core is able to affect the lensing even though the 
central image has been masked out. Using an eBPL model is therefore 
necessary to account for the core. 

We now consider the results of the subhalo search. The left-hand 
column of Fig. 6 shows the results of the subhalo phase, using the 
quantity 
 L (defined in Section 3.2.4 ) inferred in every cell of the 
subhalo-position grid. The upper and lower panels show the results 
of Projection 1 and 2, respectiv ely. F or Projection 1, where the input 
galaxy has a pointy shaped convergence, grids around the top-left 
luminous arc have 
 L over 10, and the highest 
 L is ∼21.4 for the 
left-most grid cell of the third row from bottom. For the grid cell with 


 L ∼ 21.4, a subhalo with m 200 of 10 9 . 8 
+ 0 . 4 
−0 . 5 M � is inferred around 

that re gion. Giv en that the simulated lens galaxy we fitted here does 
not contain a subhalo, this signal is a false-positi ve. Ho we ver, for 
Projection 2 which has a rounder convergence, no grid has a 
 L 

> 5. Assuming our criteria of requiring 
 L > 5 the inclusion of 
an additional subhalo model using the eBPL is therefore correctly 
not fa v oured by the data and the eBPL gives the correct answer for 
this projection. Ho we ver, it should be noted 
 L v alues of ∼3–4 are 
still visible, indicating that at a very low level the subhalo is still 
improving the fit to the data. 

4.2 Subhalo test results 

Having shown the performance of using an eBPL to fit images 
without a subhalo present, we now test whether the same pipeline can 
correctly reco v er a subhalo’s properties when a subhalo is included 
when generating the mock data. For both projections, we add an 
NFW-like subhalo of m 200 = 5 × 10 8 M � or 5 × 10 9 M � at the 
positions marked by the red crosses in Fig. 3 . 

Similar to our earlier analysis, we first check the 
 L maps. The 
middle column of Fig. 6 shows 
 L maps for the cases where a 
5 × 10 8 M � subhalo is added and the right-hand panels show the 
results for a 5 × 10 9 M � subhalo. The upper and lower panels show 

the results of Projection 1 and 2, respectiv ely. F or Projection 1, grid 
cells near the subhalo’s true input location (marked as white triangles 
in the image) show clear increases in 
 L . For the 5 × 10 8 M � subhalo 
case, the maximum 
 L is ∼24.0 (for the rightmost cell on the fourth 
row from bottom) and for the 5 × 10 9 M � case, the maximum 
 L 

is ∼81.4 (also for the rightmost cell on the fourth row from bottom). 
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Figure 6. When modelling the lens mass distribution with an eBPL, substructures are (too) easily detected. Colours indicate the increase in maximum log 
likelihood, 
 L , when a subhalo is included inside 0.4 arcsec × 0.4 arcsec squares during a fit to a lens that has: no subhaloes (left-hand panel), a subhalo of mass 
5 × 10 8 M � (middle panel), or a subhalo of mass 5 × 10 9 M � (right-hand panel). Top and bottom rows show the results for Projection 1 and 2 (with different 
colour scales). White triangles mark the true locations of the subhaloes. Note the false-positive detections in the left-hand panels; the best-fitting subhalo masses 
in the other panels are also o v erestimated by a factor 4–5. 

Note that the colour bar saturates (for cells with 
 L > 40) in the 
top-right panel. 

Based on the detections shown in the 
 L maps, we continue 
the subhalo pipeline and fit a model where we no longer confine 
the subhalo within a particular square cell, and instead use a 2D 

Gaussian prior on the subhalo position, centred on the best-fitting 
position from the ‘grid-search’ phase, with a standard deviation of 
0.5 arcsec. In Fig. 7 , we show the posterior of the subhalo parameters 
for both the case with a 5 × 10 8 M � subhalo (red) and a 5 × 10 9 M �
subhalo (blue). The true input values are marked by the dashed 
lines. As shown, for both cases, the subhalo’s mass is significantly 
o v erestimated and the true input subhalo masses are excluded by 
99 per cent confidence regions. When the input subhalo has a mass 
of 5 × 10 8 M �, the reco v ered subhalo mass is o v erestimated by 

∼5 times with a value of 10 9 . 4 
+ 0 . 4 
−0 . 4 M � inferred, whereas for the input 

subhalo with 5 × 10 9 M �, the reco v ered mass is o v erestimated by 

around 4 times and has a value of 10 10 . 3 + 0 . 2 −0 . 2 M �. 
For Projection 2, with an input subhalo of 5 × 10 8 M �, the 

maximum 
 L is only 3.4, therefore no subhalo is detected and 
we do not analyse the posterior on the subhalo properties. When 
the input subhalo mass is 5 × 10 9 M �, the maximum 
 L is 9.7 
providing us with a plausible detection. We take this plausible 
detection and refine the fit, with the resulting posterior for the subhalo 
parameters plotted in Fig. 8 . For Projection 2, the subhalo’s mass is 

reco v ered to be 10 10 . 1 + 0 . 5 −1 . 2 M � where the errors mark the 99 per cent 
confidence regions. It is noted that in Fig. 8 , although the subhalo’s 
true parameters are reco v ered within 99 per cent confidence regions 
(the light blue regions), the best-fitting m 200 and y coordinate are 

Figure 7. Posterior probability distribution of the subhalo model parameters, 
after the subhalo refining phase, when modelling the Projection 1 lens mass 
with an eBPL. Red and blue correspond to the cases of a 5 × 10 8 and 
5 × 10 9 M � input subhalo, respectiv ely. The 2D contours co v er the 68 and 
99 per cent credible re gions. F or 1D posteriors, the vertical dashed lines mark 
the true input values. 
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Figure 8. Subhalo parameters’ posteriors of the subhalo refining phase, 
when modelling the Projection 2 lens mass with an eBPL. Only the case of a 
5 × 10 9 M � input subhalo is shown (the case of a 5 × 10 8 M � subhalo does 
not lead to a clear detection). The 2D contours co v er the 68 and 99 per cent 
confidence re gions. F or 1D posteriors, the v ertical dashed lines mark the true 
input values. 

clearly offset from the true input and in a case of smaller errors 
(higher S/N images), the true inputs might be ruled out. 

4.3 Parametric source 

To verify that our conclusions are not a result of a systematic 
associated with our pixelized source model, in Appendix A we re- 
perform all of the abo v e fits assuming a cored S ́ersic profile for the 
source. For Projection 1, we see nearly identical behaviour in terms 
of false positives and the subhalo inference; however, the 
 L values 
are much larger (of order ∼250 compared to the values of ∼25 seen 
for the pixelized source). This is expected, as the greater flexibility of 
the pixelized source reduces our sensitivity to a subhalo and therefore 
also false positives (Gilman, Birrer & Treu 2020b ). For Projection 
2, fits to the smooth data now infer a false positive with 
 L = 18.1. 
This does not contradict the results using a pixelized source above, 
instead the values of 
 L = ∼3–4 shown in Fig. 6 have simply been 
boosted abo v e our threshold value of 
 L = 5 because fitting a cored 
S ́ersic increases our sensitivity to subhaloes (and false positives). 
Thus, the eBPL does still produce false-positive detections when it 
fits Projection 2; ho we ver, to see these using a pixelized source one 
w ould lik ely require much higher S/N data. 

4.4 Summary 

For Projection 1, we saw false-positive detections and an inability to 
reco v er an input subhalo’s mass correctly. In contrast, for Projection 
2, we did not infer a false-positive detection (when assuming a 
pixelized source) and the subhalo’s true mass is covered by the 
posterior. Taking into account the different convergence shapes of 
the two projections (see Fig. 3 ), we speculate that the inaccurate 
inferences on subhaloes for Projection 1 are caused by the clear 

mismatch in the shape of the eBPL and the more elliptical input 
profile. We also speculate that the better performance seen for 
Projection 2 is because its rounder convergence is easier for the 
eBPL to model. Ho we ver, due to the limited number of projections 
available, we cannot generalize these conclusions any further. We 
only saw the eBPL produced false positives in Projection 1 and there 
is a possibility that it is a different property of the lens driving this 
result. When analysing real lens systems we will look to see whether 
departures from ellipticity in the lens galaxy’s light (Nightingale et al. 
2022 ) are correlated with subhalo detections, possibility indicating a 
false-positive signal. 

5  A  DECOMPOSED  M O D E L  

Moti v ated by the inability of the eBPL to provide a robust subhalo 
inference, we now consider the decomposed model, which models 
a galaxy’s stellar and dark matter mass separately. This includes 
sufficient freedom to capture complex features such as a pointy 
convergence profile, or other departures from elliptical symmetry. 

5.1 Model introduction 

In most strong lens images, we observe not only the lensed source’s 
light, but also the light emitted from the lens galaxy, which should ap- 
proximately trace its stellar mass distribution. For example, through 
inspection of the lens galaxy’s light profile, we can estimate the 
position angle and axial ratio of the lens’s stellar mass profile. More 
detailed light profile fits can provide us with a more detailed model 
of the stellar mass distribution. We now explore the potential of 
utilizing this information and if it can allow us to correctly reco v er 
the subhalo information hidden in the source’s lensed images. We 
fit the lens’s mass using a decomposed model which treats the lens 
galaxy’s stellar mass and its dark matter mass separately. This type 
of model has been fitted in many previous studies (Dye & Warren 
2005 ; Suyu et al. 2014 ; Wong et al. 2017 ) and Nightingale et al. 
( 2019 ) showed using HST imaging of three SLACS lenses that such 
models capture variations in ellipticity and position angle within a 
galaxy that are indicative of pointy mass distributions. 

For the stellar mass, we assume it exactly traces the stellar light, 
which allows us to directly transform between the two by multiplying 
by a constant mass-to-light ratio (M/L) parameter, which can be 
described as 

κ( r ) = � · I ( r) , (6) 

where I ( r ) corresponds to the light profile and � is its ‘M/L’. For 
simplicity, we directly take the input stellar mass of the simulation’s 
particle data as our lens light and therefore do not consider a more 
realistic galaxy light simulation process. In that sense, the ‘ I ( r )’ 
is equi v alent to the convergence profile and thus � becomes a 
dimensionless quantity and is set to be 1.0. 

To utilize the ‘lens light’ information, we model the ‘lens light‘ 
with three cored S ́ersic profiles as described by equation ( 1 ). We 
opt for the cored S ́ersic because of the simulated galaxy’s core; for 
real lenses we anticipate that the regular non-cored S ́ersic profile 
will suffice. We impose that the 3 cored S ́ersic profiles share the 
same centre; ho we ver, allo w for them to have different position 
angles and axis ratios. We use three profiles because fits using two 
profiles do not fully capture the features of the ‘lens light’ (e.g. 
clear spatially correlated normalized residuals are seen when the 
best-fitting 2 cored S ́ersic model is subtracted from the true stellar 
mass distribution). In Fig. 9 , we show the input lens light (left-hand 
column), best-fitting 3 cored S ́ersic profiles (middle column), and 
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Figure 9. Left-hand column: The mock lens light images. Middle column: The best reco v ered images using 3 cored S ́ersics to model the lens light. Right 
column: The corresponding normalized residuals. The top ro w sho ws the case of Projection 1 and the bottom row shows the case of Projection 2. The units of 
the y and x axes are arcsec. 

corresponding normalized residuals (right-hand column). For both 
projections (upper row corresponds to the Projection 1 and the lower 
one is for the Projection 2) the light is well fit by 3 cored S ́ersics. Later, 
in our lens mass modelling, we fix the stellar mass distribution to be 
exactly the same as the best-fitting 3 cored S ́ersic profiles obtained 
from fitting the lens light, except for a free � which changes the 
o v erall normalization of the projected stellar mass distribution. 

In addition to the stellar mass, we include an elliptical NFW profile 
into the lens model (to account for the dark matter). This has six free 
parameters: a scale radius, r s , and scale convergence, κNFW 

; two 
ellipticity components; and the 2D coordinates of the halo centre. As 
in the eBPL case, we include an external shear in the decomposed 
lens model. 

Neither cored S ́ersic nor elliptical NFW profiles have analytical 
formulae for their deflection angles. For fast computation, we follow 

Shajib ( 2019 ) and use a sum of 2D Gaussian profiles to approximate 
the cored S ́ersic and elliptical NFW profiles. The resulting deflection 
angles are simply a sum of the deflection angles of the individual 
Gaussian profiles, which can be efficiently computed using analytical 
formulae. To be specific, in our work, in most cases we approximate 
a cored S ́ersic profile by 30 Gaussian profiles with their standard 
deviations uniformly distributed in the log 10 space between 0.01 
and 50 r e , where r e is the ef fecti ve radius of the cored S ́ersic. 
Similarly, for an elliptical NFW profile, we also approximate it with 
30 Gaussians and the standard deviations of those Gaussians are 
uniformly distributed in the log 10 space between 0.0005 and 30 r s . 
We noticed that one of the best-fitting cored S ́ersic components 
to the ‘lens light’ of Projection 2 has a S ́ersic index of 0.51 and 
for that profile the decomposition formula (equation 5 of Shajib 
2019 ) becomes numerically unstable. For that one particular case, we 
instead decompose the S ́ersic profile into a sum of Gaussians using 
Cappellari ( 2002 )’s method, which optimizes the standard deviations 

and amplitudes of those Gaussians at the same time. We have tested 
our choices of the parameters of the Gaussian decomposition method 
across a large variety of cored S ́ersics and elliptical NFW profiles to 
ensure that errors of approximating the deflection angles are much 
smaller than the perturbation of a subhalo of interest. In Table 2 , we 
summarize our lens model parameters. 

The approach we follow cannot be straightforwardly translated 
to real data. For example, we have modelled the lens’s light in the 
absence of the source light and ignored potential complications such 
as a radial gradient in the M/L. The goal of this work is not to present 
a method that can be directly transferred to the fitting of real data, 
but simply to show that when sufficient complexity is added to the 
lens mass model one’s inference on subhalo properties impro v es. 
Nevertheless, Nightingale et al. ( 2019 ) have already sho wn ho w 

PyAutoLens can fit this type of model to real data and we expand 
on this further in Section 6.3 . 

5.2 Results 

We now present results using the decomposed model, following the 
same structure we used for the eBPL results, whereby we begin with 
the smooth test results (where no subhalo is present in the simulated 
data) followed by results where the simulated data include a 
subhalo. 

In Fig. 10 , we compare the input and best-fitting model images 
for smooth cases. As shown by the normalized residuals in the third 
column, no clear correlated residuals exist, which indicates an o v erall 
good fit with the decomposed model. Comparing the results with the 
equi v alent BPL results in Fig. 5 , we see that the BPL results are 
indistinguishable from the decomposed model results in terms of 
the residuals, which confirms again that ‘subhalo-like’ perturbations 
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Table 2. Parameters and priors for the decomposed model. Parameters with 
v alues sho wn in ‘()’ or ‘ {} ’ are fixed during the modelling. Parameters with 
values shown as ‘[a, b]’ are fit for, with a uniform prior between a and b. 

Projection 1 Projection 2 

Stellar mass 3 Core S ́ersics 

Centre (x, y) [(arcsec, arcsec)] (0.008, −0.036) (0.003, 0.022) 
I 

′ { 0.44, 0.60, 0.31 } { 0.32, 0.50, 1.06 } 
r e (arcsec) { 0.65, 0.02, 4.42 } { 0.11, 0.18, 2.39 } 
r c (arcsec) { 0.14, 0.27, 0.25 } { 0.35, 0.13, 0.02 } 
n { 1.44, 4.36, 4.91 } { 2.64, 0.51, 2.31 } 
Position angle ( ◦) { −62, −59, −45 } { −27, 69, −73 } 
Axial ratio { 0.33, 0.82, 0.82 } { 0.90, 0.89, 0.90 } 
� [0.8, 1.2] 
Redshift 0.2 
MGE { n , r min , r max } { 30, 0.01 r e , 50 r e } 

Dark matter mass NFW 

Centre ( x , y ) (arcsec, arcsec) [ −0.1, 0.1] 
log 10 κNFW 

[ −2, 0.3] 
r s (arcsec) [10, 50] 
e 1 [ −1.0, 1.0] 
e 2 [ −1.0, 1.0] 
Redshift 0.2 
MGE { n , r min , r max } { 30, 0.0005 r s , 30 r s } 

External shear 

γ 1ext [ −0.2, 0.2] 
γ 2ext [ −0.2, 0.2] 

Subhalo Spherical NFW 

Centre ( x , y ) [(arcsec, arcsec)] ([ −1.0, 1.0], [ −1.0, 1.0]) 
log 10 m 200 (M �) [6, 11] 
Mass-concentration relation Ludlow et al. ( 2016 ) 

cannot be detected visually from the residual maps and we have 
to rely on careful statistical comparisons to make inferences about 
subhaloes. 

In the left-hand column of Fig. 11 , we first show the maximum 

log likelihood difference maps when modelling the smooth image 
with the decomposed model described abo v e. F or both projections 
the decomposed model fits the image accurately with a maximum 


 L v alue belo w 5, correctly indicating that no subhalo exists in the 
lens galaxy. Unlike the eBPL, the decomposed model does not give 
false-positive signals in our ‘smooth tests’. 

In the middle and right-hand columns of Fig. 11 , we show the 

 L maps when a 5 × 10 8 or 5 × 10 9 M � subhalo is added to 
the lens galaxy at the positions marked by the white triangles. For 
Projection 1 (upper panels), the region where we detect the maximum 


 L is consistent with the position of each input subhalo. For an 
input subhalo of 5 × 10 8 M �, the result shows a plausible detection 
where the maximum 
 L is 9.3, whereas for an input subhalo of 
mass 5 × 10 9 M �, the detection is even clearer with a maximum 


 L of 36.0. Having successfully detected the subhalo in each case, 
we continue on to the subhalo refining fit, with Fig. 12 showing 
the inferred posteriors of the subhalo parameters. For both cases, 
the subhalo parameters are correctly reco v ered within 99 per cent 
credible re gions. F or a 5 × 10 8 M � subhalo, the reco v ered value is 

10 8 . 9 
+ 0 . 8 
−2 . 6 M �, and for a 5 × 10 9 M � subhalo, the reco v ered value is 

10 9 . 5 
+ 0 . 5 
−0 . 4 M �. 

For Projection 2, we only get a detection when the true subhalo 
mass is 5 × 10 9 M �, with a maximum 
 L of 15.8 (in the middle 
cell of the bottom row). With a 5 × 10 8 M � subhalo, all subhalo- 

position cells have 
 L < 5, corresponding to no detection. In Fig. 13 , 
we show the subhalo posteriors obtained from the subhalo refining 
phase for the 5 × 10 9 M � case. We reco v er the input subhalo mass, 

with a 99 per cent credible region on m 200 of 10 9 . 5 
+ 0 . 4 
−0 . 7 M �. For the 

non-detection of the 5 × 10 8 M � subhalo, we do not believe this is a 
failure of the decomposed model, but instead a limitation of the data 
quality. In fact, if we check the inferred subhalo parameters for the 
sub grid cell which contains the input subhalo, the inferred subhalo’s 

mass is 10 8 . 7 
+ 0 . 7 
−2 . 5 M �, which is still consistent with the true input 

mass. Thus, our inference on the subhalo’s parameters is consistent 
with the truth; ho we v er, we hav e insufficient S/N for the model to be 
fa v oured in terms of 
 L . 

We note that in Figs 12 and 13 , the posterior distributions are not 
smooth, and having a ‘patchy’ appearance in the 2D marginalized 
posteriors and ‘wiggles’ in the 1D posteriors. These arise due to 
the pixelized source plane. The source-plane pixelization is created 
from a Voronoi tessellation of generating points, where the generating 
points are first placed in the image plane and then mapped into the 
source plane. Changes to the mass model change the mapping from 

image plane back to the source plane, such that the positions and 
shapes of the source-plane pixels vary as the lens mass model is 
changed. Certain locations for pixel boundaries may be more or 
less able to reproduce the observed data, leading to small changes 
to the mass model parameters capable of macroscopic changes 
to the likelihood. This phenomenon is more significant for more 
complex mass models which have more parameters and freedom to 
allocate those source pixel grids on the source plane. As a result, 
we get unsmooth posteriors for our decomposed model. The work of 
Etherington et al. ( 2022 ) discusses this further and presents a solution 
using a cap on the log likelihood of the model-fit. 

5.3 Parametric source 

In Appendix A , we again verify that our conclusions hold when we 
assume a cored S ́ersic profile for the source. For both projections, the 
decomposed model does not give a false positive; with the highest 
value of 
 L = 2.5. Note that, for a cored S ́ersic source, false positives 
were detected for both projections. Given that fits assuming a cored 
S ́ersic for the source give a much higher sensitivity to subhaloes 
and false positives, this further strengthens our conclusion that by 
adding the right type of complexity to the decomposed mass model 
remo v es the presence of false positives. As a result of this increased 
sensitivity, the 5 × 10 8 M � subhalo is also detected successfully in 
Projection 2, which is not the case for the pixelized source. 

5.4 Offset true positi v e detections 

In the right-hand panels of Fig. 11 , we note increases of 
 L = 

∼10–15 away from the true location of the m 200 = 5 × 10 9 M �
subhalo for both projections. These are solutions where an offset 
dark matter subhalo closely mimics the perturbing effects of the 
actual subhalo in the data. Ho we ver, it is not a perfect representation 
of the actual subhalo, which is why fits at the true location infer 
higher o v erall log likelihood values. We do not consider these as 
false-positive detections because they are caused by the true presence 
of a detectable subhalo in the data. Should this behaviour be seen 
in real data we therefore should not discount the signal as a false 
positive. In fact, a candidate subhalo detection should be made and 
followed up with a second subhalo search which includes the first 
subhalo in the model, so as to validate the detection. 
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Figure 10. Left-hand column: The mock lensing images. Middle column: The best reco v ered images using the decomposed model to fit the lens mass. 
Right-hand column: The corresponding normalized residuals (residuals divided by the noise). The top row shows the case of Projection 1 and the bottom row 

shows the case of Projection 2. The colour bars for the left two columns are in units of e − pix −1 s −1 . 

Figure 11. Modelling the lens with a decomposed stellar + dark matter model remo v es false-positiv e detections, and yields correct subhalo masses. Colours 
indicate the increase in maximum log likelihood, 
 L , when a subhalo is included in the fit to a lens that: has no subhaloes (left-hand panel), has a subhalo of mass 
5 × 10 8 M � (middle panel), or has a subhalo of mass 5 × 10 9 M � (right-hand panel). The position of the subhalo in the fit is free to vary within squares of side 
0.4 arcsec. The top and bottom rows show the results for Projection 1 and 2 (with different colour scales). White triangles mark the true locations of the subhaloes. 
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Figure 12. The posteriors on the subhalo parameters from the subhalo 
refining phase, fitting the decomposed model to mock data generated using 
Projection 1. Red and blue colours show the cases with an input subhalo mass 
of 5 × 10 8 and 5 × 10 9 M �, respectively. The 2D contours co v er the 68 and 
99 per cent confidence re gions. F or 1D posteriors, the v ertical dashed lines 
mark the true input values. 

Figure 13. The same as Fig. 12 , but for Projection 2. Only the case with a 
5 × 10 9 M � subhalo is shown (a 5 × 10 8 M � subhalo is not clearly detected). 

5.5 Summary 

For both projections the decomposed model is a success. When 
we do not include a subhalo in the input lens galaxy, it returns no 
detections. When a subhalo is included in the mock data, it is able 
to correctly infer the existence of the subhalo through an increase in 

 L (at least for three out of the four cases we tried). Furthermore, it 

reco v ers the masses and positions of the subhaloes within 99 per cent 
credible regions. By utilizing (idealized) ‘lens light’ information, the 
decomposed model therefore successfully captures complexity in 
the mass profile (e.g. the non-elliptical shape) that the eBPL could 
not. The success of the decomposed model confirms that for subhalo 
detection, it is vital to model the lens galaxy’s mass accurately. 

6  DI SCUSSI ON  

6.1 Implications for strong lensing subhalo detection 

Our results confirm that if a dark matter subhalo is located near the 
emission of a strongly lensed source galaxy, its perturbing effects 
mean that its presence can be inferred. For gravitational imaging, 9 

our work demonstrates this for first time by simulating the lens 
galaxy using a mass distribution derived from the particle data of a 
cosmological simulation, which therefore does not make idealized 
assumptions like a single axis of ellipticity. Ho we ver, we also showed 
that assuming an o v erly simplistic mass model for the lens galaxy 
which lacks certain complexity compared to the true underlying mass 
distribution has two ne gativ e effects on the subhalo inference: (i) It 
may lead to false-positive detections of a dark matter subhalo even 
though a subhalo is not present in the data and (ii) when a subhalo 
is truly present in the data it may lead to systematic biases on the 
inferred subhalo mass by a factor of 4–5. 

The notion that a mismatch in mass profile shape could lead to 
false-positive subhalo detections supports the analysis of Ritondale 
et al. ( 2019 ), who noted several false-positive signals found in real 
lensing systems in the BELLS-GALLERY sample. For example, 
they noted an increase in log Bayesian evidence of 72 in the lens 
SDSSJ0755 + 3445, but demonstrated – using a potential correction 
technique (Koopmans 2005 ; Vegetti & Koopmans 2009b ) – that the 
mass model could be impro v ed by small corrections o v er a large 
angular scale, as opposed to a localised correction reminiscent of 
a subhalo. This indicates that the subhalo-like signal is probably 
due to the mismatch in the macro models, as we saw in our tests. 
F alse positiv es are also partly the reason why Ve getti & Vogelsberger 
( 2014 ) and Vegetti et al. ( 2018 ) require Bayesian evidence increases 
of 50 and 100 to claim a dark matter detection; values below this 
threshold may be false positives (the authors also require validation 
via potential corrections). Whilst the false positives in this work 
did not create Bayesian evidence increases abo v e 30, the o v erall 
size of the increase depends on the properties of the strong lens 
and sources simulated, the S/N of the data and model used to fit 
the data. In Appendix A , false positives with evidence increases 
abo v e 200 are inferred. Therefore, ‘our results do not indicate that 
previous detections of dark matter subhaloes in strong lenses are false 
positiv es’. Instead, the y show the importance of techniques like the 
potential corrections and we provide insight on why these methods 
are able to distinguish a subhalo detection from missing complexity 
in the mass model. 

6.2 Is our simulated lens galaxy realistic? 

It is important to consider how realistic the simulated galaxy used 
in this work is. As discussed previously, the galaxy was selected 
to be similar to lens galaxies from the SLACS surv e y. It has a 
typical halo mass for a SLACS lens and its stellar mass and size (i.e. 

9 Similar tests on flux ratios have previously been explored by Hsueh et al. 
( 2018 ). 
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the half-light radius) follow recent observations of massive galaxies 
(Huang et al. 2018 ). The central galaxy has a complex shape, with 
isophotes that change shape when viewed from different directions, 
and where the shapes of the isophotes can vary with radius for a fixed 
viewing direction. We speculated that this departure from elliptical 
symmetry dro v e the false positiv es, because the y are only seen for the 
projection where the mass distribution is highly elliptical. A varying 
isophotal shape with radius is commonly seen in observations of 
massive elliptical galaxies with comparable mass to SLACS strong 
lenses. F or e xample, o v er one-third of galaxies with stellar masses 
abo v e 10 11.5 M � taken from the MASSIVE surv e y show isophotal 
position-angle rotations (Goullaud et al. 2018 ), known as ‘isophotal 
twists’ (see Oh, Greene & Lackner 2017 for similar results in lower 
mass early-type galaxies). Similar features are also reported in three 
strong lenses by Nightingale et al. ( 2019 ). We therefore believe this 
aspect of our simulation is representative of real strong lenses and is 
a plausible cause of some of the false positives in the SLACS and 
BELLS-GALLERY lenses discussed previously. 

The simulated galaxy also has a sub-kpc core, which generates a 
central image in our mock lens images. This phenomenon is seen 
in other works which simulate strong lenses from cosmological 
simulations (Mukherjee et al. 2018 ; Despali et al. 2020 ; Ding et al. 
2021 ), with the core due to insufficient simulation resolution. Central 
images of this brightness are not seen in real observations of strong 
lenses, therefore such a large core is unrealistic. To ensure it does not 
impact our tests, the mass model parametrizations fitted in this work 
all included cores. We masked the central image so as to ensure the 
mass models did not utilize additional information that is not present 
in real images of strong lenses. Whilst this aspect of the simulated 
lens is therefore not realistic, the mass modelling performed in this 
work ensures that we can generalize our conclusions to the analysis 
of real data. 

6.3 Application to real data 

Our next step is applying the decomposed model to real data. We 
expect that we will be able to fit mass models which omit parameters 
that account for a core, given that the core feature is a consequence 
of the inadequate simulation resolution. For the decomposed model, 
we will likely fit regular S ́ersic functions instead of the cored S ́ersics 
fitted in this work. 

The decomposed model verified that if a mass model can ac- 
curately capture the lens galaxy’s complexity, it will impro v e the 
subhalo inference. This work used information from the simulation 
that is not available when analysing real data, e.g. we utilized our 
true knowledge of the lens’s stellar mass distribution. Nevertheless, 
we believe these models can be translated to real data, where the 
light emitted from the lens galaxy acts as a tracer for the stellar 
mass, information which is often omitted when modelling a strong 
lens (e.g. by assuming a power-law mass model). This approach 
to lens modelling was explored in Nightingale et al. ( 2019 ), who 
fitted a decomposed stellar plus dark matter to three strong lenses. 
The authors showed that all three lenses showed isophotal twists in 
their stellar emission and that when this was modelled using two 
stellar components with different ellipticities and position angles it 
impro v ed the mass model compared to a model assuming a single 
elliptical geometry. We are now investigating whether these lens 
systems produce subhalo detections, which would be indicative of a 
false positive. 

The decomposed model must also make assumptions in converting 
light to mass. For example, whether the S ́ersic profiles representing 
each stellar component share the same M/L or whether each ratio is 

a free parameter in the model. For each component, one must also 
choose whether the lens model accounts for a radially varying M/L 

(Napolitano et al. 2005 ; Tortora et al. 2011 ; Ge et al. 2021 ). The 
assumption of an elliptical NFW profile to describe the dark matter 
poses another possible mismatch. The main concern on small scales 
is whether the central slope, which in simulations is affected by the 
presence of baryons, is equal to the NFW one. To take this into 
account when modelling real data, we could model the dark matter 
as a profile with a free central slope, e.g. a generalized NFW profile 
(Zhao 1996 ), or explicitly model the way baryons are expected to 
alter the dark matter distribution (Callingham et al. 2020 ; Cautun 
et al. 2020 ). We do not expect this to be a significant issue since 
for g alaxy-g alaxy strong lensing, the dark matter mass is typically 
subdominant in the region of interest (e.g. Li et al. 2016a , 2019 ). 
In future work, we will seek to understand the importance of all 
these different assumptions with a view to improving the dark matter 
subhalo inference. 

6.4 Subhalo sensitivity 

If the decomposed model can be successfully fitted to real data, 
it also has implications for how sensitive strong lensing is to low 

mass dark matter subhaloes. Firstly, if the method is able to reduce 
or remo v e the Bayesian evidence thresholds applied by w orks lik e 
Vegetti & Vogelsberger ( 2014 ) to remo v e false positives, this will 
make us sensitive to lower mass subhaloes (which produce smaller 
evidence increases). Furthermore, because the decomposed model 
uses the stellar light as additional information which constrains the 
mass model, this may further boost one’s sensitivity to subhaloes 
by reducing the de generac y between the lens galaxy’s mass model 
and subhalo. This will require that sensitivity mapping of a strong 
lens, which quantifies what mass subhaloes one will detect if truly 
present in the data (Despali et al. 2020 ; Amorisco et al. 2022 ; He 
et al. 2022 ), is performed using the decomposed model, as opposed 
to the power-law model assumed in previous studies. The same level 
of care will be necessary in understanding how robust assumptions 
associated with the M/L and dark matter are. 

6.5 Other lensing studies 

A mass model mismatch has also been discussed in the analysis of 
strongly lensed quasars. Hsueh et al. ( 2017 ) showed that the flux 
ratio anomalies observed in lens system CLASS B0712 + 472 can be 
largely resolved by additionally adding a disk profile to the lensing 
model. The works of Gomer & Williams ( 2020 , 2021 ), Cao et al. 
( 2021 ), and Van de Vyvere et al. ( 2022 ) show that such mismatches 
can impact on the inference of the Hubble constant via time-delay 
cosmology. 

7  C O N C L U S I O N S  

With a large increase in the number of observed g alaxy-g alaxy 
strong lenses expected within this decade, strong lensing could 
soon push the constraints on the halo mass function to low enough 
masses that it provides evidence in fa v our of or against WDM 

models. Ho we ver, detecting dark matter subhaloes through strong 
lensing is a challenging problem due to the complexity of the lens 
galaxy’s mass distribution. In this work, we use a massive elliptical 
galaxy extracted from a state-of-the-art hydrodynamic simulation to 
create mock strong lens images. We represent the simulated galaxy’s 
projected mass distribution as a sum of elliptical Gaussian profiles, 
which shows departures from the idealized elliptically symmetric 
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mass models typically employed to analyse strong lenses [e.g. the 
power-law profile (Tessore & Metcalf 2015 )]. We project the same 
simulated galaxy along two different line-of-sight directions, with 
one projection producing a pointy ‘American football like’-shape 
and the other one appearing rounder. 

For each projection, we simulate three strong lens imaging data 
sets. The first data set does not include a dark matter subhalo, whereas 
the other two include a m 200 = 5 × 10 8 M � and m 200 = 5 × 10 9 M �
dark matter subhalo near the lensed source’s light. To every data set, 
we fit two lens mass models: (i) an eBPL mass model (O’Riordan 
et al. 2019 ) which represents the o v erall mass distribution of the 
lens galaxy (e.g. stars and dark matter) and (ii) a decomposed model 
that models the stellar and dark matter mass separately (using the 
stellar particle data from the simulation to constrain part of the stellar 
mass model). For both models, we investigate fits which include a 
dark matter subhalo in the lens mass model, and therefore quantify 
whether we can accurately reco v er a dark matter subhalo when it is 
included in the simulation as well as whether we incorrectly infer 
the presence of a subhalo when it is not truly there; a false positive. 

Our main results can be summarized as follows: 

(i) When using an eBPL model to fit the lens mass to the pointy 
projection without a dark matter subhalo, a false-positive detection 
is inferred at o v er 3 σ confidence. F or the same projection, when a 
5 × 10 8 or 5 × 10 9 M � subhalo is added to the mock lens, the fit 
correctly reco v ers the subhalo but o v erestimates its mass by a factor 
of 4–5, with the true input mass outside the inferred 99 per cent 
credible regions. Ho we ver, when modelling data from the projection 
with a rounder convergence, the eBPL model does not give a false 
positive and recovers the input 5 × 10 9 M � subhalo’s mass accurately 
(the 5 × 10 8 M � subhalo is not detected due to insufficient data 
quality). 

(ii) When using the decomposed model to fit the lens mass, for 
both projections, we get no false positives and correctly reco v er the 
properties of an input subhalo when there is sufficient data quality to 
detect it. 

The eBPL total mass model therefore shows undesirable results, 
including false positives and an inaccurate estimate of the subhalo 
mass, which the decomposed mass model does not. We speculate that 
this is because the eBPL parametrization does not capture aspects of 
the simulated lens’s mass distribution. In particular, the eBPL does 
not capture the varying ellipticity and orientation seen in the pointy 
projection’s mass distribution. The decomposed mass model does 
not assume a single elliptical mass distribution and can therefore 
account for this variation in ellipticity and orientation. Its impro v ed 
model of the lens galaxy’s mass therefore offers an impro v ed subhalo 
inference which does not suffer false-positive detections. 

Our results do not imply that previous detections of dark matter 
subhaloes in strong lenses are false positiv es (e.g. Ve getti & Vo- 
gelsberger 2014 ). These studies are fully aware of the false-positive 
phenomena and they require a subhalo detection to pass stringent 
criteria to be considered a genuine dark matter subhalo. This includes 
a pixel-based correction to the gravitational potential (Koopmans 
2005 ) which accounts for the types of deficiencies in the mass model 
discussed in this work. In fact, our work demonstrates that dark matter 
substructures can be successfully detected in images of strong lenses, 
even when the lens galaxy’s mass distribution is more complex than 
the mass model assumed to fit it. 

Our work highlights the benefits of using cosmological simula- 
tions to test strong lens modelling methodology. When the eBPL 

showed inaccurate results, we were able to compare directly to the 
simulation’s particle data in order to understand what complexity the 

model is missing. This is not possible when analysing real images 
of strong lenses. We are now looking to apply what we have learned 
in this study to real data, and fit strong lenses from existing lens 
samples with decomposed mass models which, crucially, relax the 
assumption of a single axis of ellipticity. Applying the models to 
real data has challenges, e.g. instead of relying on the simulation’s 
stellar particle data we will need to use the lens’s light to constrain 
the stellar mass (Nightingale et al. 2019 ). Ho we ver, the payof f could 
be huge, allowing us to more reliably detect lower mass dark matter 
substructures, that could potentially push our sensitivity down to 
pivotal masses of m 200 = 5 × 10 8 M � where many viable alternatives 
to the CDM model begin to make different, testable predictions. 
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(Nightingale & Dye 2015 ; Nightingale et al. 2018 , 2021b ), Pyquad 
(Kelly 2020 ), Python (Van Rossum & Drake 2009 ), Scikit-image 
(Van der Walt et al. 2014 ), Scikit-learn (Pedregosa et al. 2011 ), 
Scipy (Virtanen et al. 2020 ), and SQLite (Hipp 2020 ). 
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APPEN D IX  A :  PARAMETRIC  S O U R C E  

RESU LTS  

This work primarily focuses on the lens mass distribution. The effects 
of source modelling on the subhalo inference are seldom discussed. 
In this section, to give a brief idea on how our results would be 
affected by source modelling, we fit the same mock data with the 
same mass models discussed abo v e but with a parametric source 
model. To be specific, the source model we apply here has the same 
form used to simulate the data, which is an elliptical cored S ́ersic 
profile. When simulating mock data, we hav e fix ed its break radius 
to be 0.01 arcsec; ho we ver, when using it as a source model, we set 
its break radius to be a free parameter. 

The increase in log likelihood for many model-fits including a 
subhalo, 
 L , are higher when we assume that the source is an 
elliptical cored S ́ersic profile as opposed to a pixelized source. This 
is because the pixelized source models have a much higher level of 
freedom in how they fit the data. If a mass model provides a good 
– but not perfect – fit, the pixelization can make small adjustments 
to the source pixel values to fit the data equally well (Gilman et al. 
2020b ). This is appropriately penalized using a Bayesian framework 

Figure A2. Posteriors of detected subhalo parameters of eBPL + cored 
S ́ersic model. The red posteriors show the results for an input of a 5 × 10 9 M �
subhalo in Projection 1. The blue posteriors show the results for an input of 
a 5 × 10 9 M � subhalo in Projection 2. The 2D contours co v er the 68 and 
99 per cent confidence regions. The dashed lines in corresponding colours 
marked the true input values. 

Figure A1. 
 L maps of using eBPL + cored S ́ersic source model. Colours indicate the increase in maximum log likelihood, 
 L , when a subhalo is included 
inside 0.4 arcsec × 0.4 arcsec squares during a fit to a lens that has: no subhaloes (left-hand panel), a subhalo of mass 5 × 10 8 M � (middle panel), or a subhalo 
of mass 5 × 10 9 M � (right-hand panel). Top and bottom ro ws sho w the results for Projection 1 and 2 (with different colour scales). White triangles mark the 
true locations of the subhaloes. 
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Figure A3. 
 L maps of using stellar + dark matter + cored S ́ersic source model. Colours indicate the increase in maximum log likelihood, 
 L , when a subhalo 
is included inside 0.4 arcsec × 0.4 arcsec squares during a fit to a lens that has: no subhaloes (left-hand panel), a subhalo of mass 5 × 10 8 M � (middle panel), 
or a subhalo of mass 5 × 10 9 M � (right-hand panel). Top and bottom rows show the results for Projection 1 and 2 (with different colour scales). White triangles 
mark the true locations of the subhaloes. 

Figure A4. Posteriors of detected subhalo parameters of the stellar + dark 
matter + cored S ́ersic source model. The green, grey, red, and blue posteriors, 
respecti vely, sho w the results for: an input of a 5 × 10 8 M � subhalo in 
Projection 1; an input of a 5 × 10 9 M � subhalo in Projection 1; an input of 
a 5 × 10 8 M � subhalo in Projection 2; an input of a 5 × 10 9 M � subhalo 
in Projection 2. The 2D contours co v er the 68 and 99 per cent confidence 
regions. The dashed lines in corresponding colours marked the true input 
values. 

(see Suyu et al. 2006 and N18 ), but nevertheless produces smaller 
likelihood contrasts than fitting a parametric source model like the 
cored S ́ersic profile, which has a lot less freedom in adjusting its 
parameters in order to account for an inaccurate mass model. This is 
also dependent on the fact that the elliptical cored S ́ersic profile was 
used to both simulate and fit the mock strong lenses; had there been 
a mismatch here parametric fits would likely not give such large 
 L 

values. 
In Fig. A1 , we show 
 L when fitting the data with an eBPL 

profile. For Projection 1, for both the smooth case and a 5 × 10 8 M �
subhalo input case, the eBPL plus cored S ́ersic source model returns 
similar results, with a highest 
 L giving ∼250 at the middle-left 

region indicating the existence of a 10 10 . 1 + 0 . 2 −0 . 1 M � subhalo, which is 
not consistent with our input (e.g. it is a false positiv e). F or the case 
of a 5 × 10 9 M � input subhalo, the highest 
 L is ∼600 around the 
middle-right region, which is consistent with our input. For this case, 
we further model the subhalo by freeing its position and the posterior 
we get is shown in colour red in Fig. A2 . We see that although the 
position is estimated around the true input, the subhalo’s mass is 
o v erestimated by around 4 times, which is similar to our previous 
findings for a pixelized source. 

For projection 2, we see that for the smooth test case, false- 
positi ve signals sho w up in upper right regions with the highest 

 L to be ∼18. Read from the grid of highest 
 L , the best-fitting 

subhalo’s mass is 10 9 . 3 
+ 0 . 4 
−0 . 5 M �. False positives were not detected for 

this projection using a pix elized source. F or the case of an input 
subhalo of 5 × 10 8 M �, there are some plausible signals around the 
middle-right regions with the highest 
 L to be ∼8. The mass of the 

plausible subhalo obtained in this case is 10 9 . 6 
+ 0 . 2 
−0 . 5 M �. For the third 

case where a 5 × 10 9 M � subhalo added, the 
 L map returns the 
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correct answer with the highest 
 L to be 120 at the place where 
we input the subhalo. For this one, similarly, we further model the 
subhalo by freeing its position. The posterior is shown in colour blue 
in Fig. A2 . We see that the input subhalo can be well reco v ered in 
this case. 

In Fig. A3 , we show 
 L maps of modelling the data with the 
decomposed model plus a cored S ́ersic source. We see that the 
results are similar to the pixelization results: For smooth tests, no 
clear false-positive signals show up. For subhalo tests, the highest 

 L is consistent with the region of an input subhalo. In Fig. A4 , 

we further plot the posteriors obtained for the detected subhaloes. 
Overall, input subhaloes can be recovered to a good level although 
for the 5 × 10 9 M � subhalo cases, the reco v ered masses are slightly 
offset to the true value, albeit this is close enough that it could simply 
be due to noise in the mock observation. 
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