
07 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Giuseppe De Giacomo, P.F. (2022). Situation Calculus for Controller Synthesis in Manufacturing Systems
with First-Order State Representation. ARTIFICIAL INTELLIGENCE, 302, 1-30
[10.1016/j.artint.2021.103598].

Published Version:

Situation Calculus for Controller Synthesis in Manufacturing Systems with First-Order State Representation

Published:
DOI: http://doi.org/10.1016/j.artint.2021.103598

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/906694 since: 2024-07-16

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1016/j.artint.2021.103598
https://hdl.handle.net/11585/906694

Situation Calculus for Controller Synthesis in

Manufacturing Systems with First-Order State

Representation

Giuseppe De Giacomoa, Paolo Fellib,∗, Brian Loganc, Fabio Patrizia, Sebastian
Sardiñad

aSapienza University of Rome, Italy
bFree University of Bozen-Bolzano, Italy

cUtrecht University, Netherlands
dRMIT University, Australia

Abstract

Manufacturing is transitioning from a mass production model to a service model in
which facilities ‘bid’ to produce products. To decide whether to bid for a complex, pre-
viously unseen product, a facility must be able to synthesize, on the fly, a process plan
controller that delegates abstract manufacturing tasks in a supplied process recipe to
the available manufacturing resources. Often manufacturing processes depend on the
data and objects (parts) they produce and consume. To formalise this aspect we need to
adopt a first-order representation of the state of the processes. First-order representa-
tions of the state are commonly considered in reasoning about action in AI, and here we
show that we can leverage the wide literature on the Situation Calculus and ConGolog
programs to formalise this kind of manufacturing. With such a formalization avail-
able, we investigate how to synthesize process plan controllers in this first-order state
setting. We also identify two important decidable cases—finite domains and bounded
action theories—for which we provide techniques to actually synthesize the controller.

Keywords: reasoning about actions, situation calculus, automated synthesis, smart
manufacturing

1. Introduction

To be able to remain competitive in a global marketplace characterized by faster
market response and demand for customization, modern manufacturing companies are
transitioning from a traditional mass production model to more agile and cost-effective

∗
Corresponding author

Email addresses: degiacomo@diag.uniroma1.it (Giuseppe De Giacomo),

pfelli@unibz.it (Paolo Felli), b.s.logan@uu.nl (Brian Logan),

patrizi@diag.uniroma1.it (Fabio Patrizi), sebastian.sardina@rmit.edu.au (Sebastian

Sardiña)

Preprint submitted to Elsevier. https://doi.org/10.1016/j.artint.2021.103598

manufacturing networks and supply chains. Based on service-oriented principles, in
the manufacturing as a service (MaaS) paradigm, the manufacturing infrastructure is
shared on-demand by potentially large numbers of different manufacturing processes,
so that the products to be manufactured are not known in advance, batch sizes are often
small, and a facility may produce items belonging to heterogeneous product families
for several customers at the same time [1, 2]. The cost of managing and maintaining
the manufacturing infrastructure is thus distributed across all customers, enhancing re-
source utilization and reducing unit production costs, the lead-time is decreased and
the sharing of knowledge and production processes makes better products. Different
manufacturing models have been proposed in the literature to achieve the MaaS vision,
with a recurring emphasis on flexibility, scalability, adaptability and customization, and
on an increase in collaboration, automation, data and knowledge sharing through the
entire supply chain. Examples include, among others, Agile Manufacturing, Virtual
Manufacturing, Application Service Providers, Manufacturing Grid, and Cloud Manu-
facturing.

Among these, Cloud Manufacturing [3, 4, 5] is currently seeing the most advanced
trends in MaaS. Enabled by an increasing development in information technology,
IoT, embedded systems and cloud computing technologies, Cloud Manufacturing is
proposing an advanced MaaS paradigm and business model in which manufacturing
resources, such as Computer Numerical Control (CNC) machines and robots, are pack-
aged as abstract descriptions of manufacturing capabilities, then advertised and made
available to customers through a cloud platform. Likewise, the transformations that
are required to manufacture a product are assumed to be specified as abstract, system-
independent processes that need to be matched against the abstract capability descrip-
tions that are offered by the facilities participating in the manufacturing cloud. By doing
so, the MaaS paradigm, as envisioned by Cloud Manufacturing, allows the creation of
dynamic production lines on-demand, by composing the pool of configurable manu-
facturing capabilities according to a pay-as-you-go business model. The objective is to
connect customers to those providers who can best meet their product and process spec-
ifications and requirements, while limiting unit production cost and time. This model
is also regarded as a more environmentally sustainable future for the manufacturing
industry as a whole [6].

Critically, automation is key to achieve the MaaS vision: only minimal manage-
ment effort or explicit customer-provider interaction can be assumed, so the funda-
mental requirement for MaaS is the ability of a facility participating in the cloud to
autonomously assess, in real time, whether a given product can be manufactured in
that facility. If the product can be manufactured, the facility may bid for the product,
taking into account the overheads in terms of logistics. In mass production, the process
planning phase, which transforms a process specification in concrete and practical pro-
duction schedules for the resources on the shop floor, i.e., the process plan, is carried
out by manufacturing engineers, and is largely a manual activity. In a MaaS approach,
however, manual creation of process plans is clearly uneconomic for small batch sizes,
and the time required to produce a plan is too great to allow facilities to bid for products
in real time. Instead, manufacturing facilities must be able to automatically synthesize
process plans for novel products ‘on the fly’. To automatically establish that a facility
can manufacture a product, the abstract manufacturing tasks in the process recipe—the

3

specification of how the product is to be manufactured—must be ‘matched’ against the
available manufacturing resources in the facility. The resulting process plan details the
low-level tasks to be executed and their order, the manufacturing resources to be used,
and how materials and parts move between resources [7]. The process plan controller,
namely, the control software that delegates each operation in the plan to the appropri-
ate manufacturing resources, is then synthesized. In doing so, no sensitive information
about the resources and internal processes of the selected facilities should be exposed
to customers or competitors on the cloud platform.

Research in Artificial Intelligence and Computer Science can be exploited to pro-
vide a mathematical foundation for these domain concepts, and to solve the core chal-
lenges implicit in the MaaS vision. This is confirmed by recent efforts in basing MaaS
on fundamental ideas coming from the literature on service composition in CS and
behavior composition [8] in AI, so as to formalize the requirements and techniques
for the automated synthesis of process plan controllers in the context of manufactur-
ing [9, 10, 11, 12, 13]. These approaches have proven fruitful for developing prelimi-
nary and ‘proof-of-concept’ approaches for MaaS beyond the disciplines in which they
were developed [14, 15].

However these approaches are based on a propositional description of the states
of the devices, workpieces and processes, which is too idealized and insufficient to
achieve a fully-fledged solution in practice. Indeed, manufacturing processes depend,
in general, on the objects and data they produce and consume, including the cases
where an unbounded number of product items (e.g., each with a unique serial num-
ber) or basic parts (e.g., each with a unique bar code, RFID tag or MAC address) must
be produced. The approaches above do not explicitly account for this dependency, as
they employ a finite state representation which hides important relationships between
processes and data and, more importantly, cannot deal with a potentially unbounded
number of objects. While in some cases this limitation can be circumvented, the result-
ing discretization is unwieldy and unnatural. For instance, one needs to directly encode
into the process itself all the relevant dynamic knowledge, such as the current state of
a part (e.g., painted, defective, etc.) or the state of a shared resource (e.g., a conveyor
belt).

Instead, a concrete and realistic approach for MaaS necessarily requires a rich, re-
lational description of states, an information model, as well as advanced computational
techniques that are able to manipulate such relational representations. Although some
previous work exists which can be used as the basis of an unambiguous description of
the manufacturing concepts [16], the scientific literature has been lacking until now.

Our work here addresses exactly this point, by offering a “data-aware” process for-
malization in which data and objects are treated as first-class citizens. More specifically,
we propose a relational representation of the states by relying on the research on reason-
ing about actions in AI. We see the operations in manufacturing processes as described
by an action theory in logic, and the processes as high-level programs over such ac-
tion theories. In this way, we can leverage the first-order state representations of action
formalisms and the second-order/fixpoint characterization of state-change as provided
by programs. Critically, we do not rely on ad-hoc representations, but we choose to
adopt one of the most well developed formalisms for representing and reasoning about

4

dynamic systems in AI, namely the Situation Calculus, to encode information models
and how they change as the result of actions. In fact, we deal with multiple Situation
Calculus theories simultaneously, so as to model process recipes working over both an
abstract information model and a concrete, facility-level information model. Process
recipes and manufacturing resources, in turn, are modeled as high-level ConGolog pro-
grams [17] (over the action theories). All together, this yields a principled, formal and
declarative representation of the MaaS setting.

By exploiting this rich representation, we formally define what it means to realize
a process recipe in a manufacturing facility and present techniques to automatically
synthesize controllers that implement those realizations. We show that these techniques
are actually effective, that is, that they correspond to algorithms for extracting the actual
controllers, when the resulting Situation Calculus action theories are state-bounded
[18].

In our context, state-boundedness means that, while the facility may process an
infinite number of objects overall, an unbounded number of them is never “accumu-
lated”: in any given state the number of objects being processed does not exceed a
given bound. Notice that this case is the natural one in practice: the number of objects
handled at a given time by the facility is naturally bounded by the size and structure of
the shop-floor.

We stress that, technically and independently of the particular manufacturing set-
ting in which we are interested, we provide here the first decidability result for con-
troller synthesis in a setting with a relational/first-order state representation. We also
observe that while our specific technical development is based on the Situation Calcu-
lus, our results and constructions can also be applied in other frameworks for reason-
ing about actions in AI as well as data-aware/artifact-centric processes frameworks in
databases [19, 20, 21].

2. Situation Calculus and ConGolog

The Situation Calculus [22, 23] is a sorted predicate logical language for represent-
ing and reasoning about dynamically changing worlds. Changes in the world are the
result of actions, which are terms in the language, and world histories are represented
by situation terms. In addition to actions and situations, the language also includes an
object sort, used to model the other entities. We assume a unique countably infinite set
∆ of objects as the object sort. For all objects in ∆ we have constants denoting them,
called standard names, together with unique name assumption and domain closure
[24, 25]. This will allow us to fix a single interpretation domain for models of situation
calculus formulas and blur the distinction between such standard names and objects of
the domain. This way of proceeding is common in databases [26] and is convenient in
our case because it makes it possible to denote each object and piece of information
that is relevant for the manufacturing application.

We assume a finite number of (simple) action types, each of which takes a tuple
of objects as arguments. For example, DRILL(part, dmtr, speed, x, y, z) represents the
action of drilling a hole of a certain diameter, at a certain spindle speed, in a specific po-
sition of a given part. In the manufacturing domain, we are concerned with operations

5

that may occur simultaneously [23, 27, 28, 29], hence we adopt the concurrent, non-
temporal variant of the Situation Calculus, where a concurrent or compound action
a is a possibly infinite set of simple actions, like the one above, that execute simul-
taneously [23, Chapter 7]. For example, {ROTATE(part, speed), SPRAY(part, subst)}
represents the joint execution of rotating a part at a given speed while spraying it with
some substance. As shorthand, we denote by A(x) the compound action of type A
with a vector x of arguments (of the right size, and assuming a standard ordering of
simple actions so that their order can be ignored here). In the concurrent, non-temporal
variant, situations denote histories that stem from performing sequences of compound
actions. We denote by S0 the initial situation, i.e., the situation where no action has
been performed yet, and assume that we have complete information about S0. The
situation resulting from executing a compound action a in s is represented by the situ-
ation term do(a, s). Predicates whose value varies from situation to situation are called
fluents and take arguments of sort object plus a situation term as their last argument.
For example, we may write painted(part,s) to denote that a part is painted in situation
s. These are the only fluents we consider, that is we deal with relational fluents only.

A basic action theory (BAT) [30, 23] is a collection of axioms D describing the ini-
tial situation, preconditions and effects (and non-effects) of actions on fluents, as well
as axioms for unique name assumptions and domain closure (for the object sort), which
we denote, respectively, as Duna and Ddc. We denote by D

0 the (complete) initial sit-
uation description, i.e., the set of axioms of D that describe the initial configuration
of the world (which is unique, under complete information). Such a configuration cor-
responds to the extension of all the fluents of the theory in the initial situation S0. A
special predicate Poss(a, s) is used to express that the simple action a is executable in
situation s, and a precondition axiom specifies when the action can be legally per-
formed. Formally precondition axioms have the form: Poss(a, s) ≡ ϕ(a, s) where
ϕ(a, s) is a uniform Situation Calculus formula, that is a formula referring to only
one situation s (the current one). Predicate Poss is extended to compound actions by
writing Poss(a, s). Typically we can assume that each a ∈ a also needs to be possible
by itself in the situation s (i.e., that Poss(a, s) and hence Poss({a}, s) ≡ Poss(a, s)),
although Poss can be arbitrarily restricted further (as we will do in our running exam-
ple). We say that a situation s is executable, denoted by Executable(s), if every (simple
or compound) action performed in reaching s is possible in the situation in which it
occurs [23].

Finally, a successor state axiom is used to encode causal laws specifying how
each fluent changes as the result of executing (simple or) compound actions in the do-
main, encoding causal laws. Successor state axioms have the form: f(x, do(a, s)) ≡
ϕ(x,a, s) where ϕ(x,a, s) is again a uniform Situation Calculus formula over the
current situation, which determines the value of the fluent f(x, s′) in the next situation
s′ = do(a, s) resulting from executing a. Examples of BATs are provided in Section 5.

Note that, having assumed complete information on S0, BATs are categorical, i.e.,
they essentially admit a single model [23, 25]. The adoption of standard names allows
for using, in a BAT D, object names as constants. We call active object constants
all the object names explicitly mentioned in the initial situation description D

0 or in
some precondition or successor-state axiom. In other words, these are all the constants
mentioned in D but not in Duna or Ddc. Obviously, being standard names, active object

6

constants are always interpreted as themselves. The set of active object constants in a
BAT D is denoted as ACD , possibly without subscript if no ambiguity may arise.

Complex manufacturing processes are specified using high-level programs. They
are “high-level” in that they comprise actions and tests that belong to the domain of
concern (rather than based on classical variables and assignment), and they are meant
to be executed against a theory of actions. In the Situation Calculus, several such lan-
guages have been developed, such as Golog [17], which includes the usual program-
ming constructs as well as constructs for nondeterministic choices, ConGolog [31],
which extends Golog to accommodate concurrency, and IndiGolog [25], which provides
means for interleaving planning and execution.

We specify programs in a variant of ConGolog without recursive procedures [31]
and where the test construct yields no transition and is final when satisfied [32, 33]. This
results in a synchronous test construct that does not allow interleaving (every transition
involves the execution of an action). These are the ConGolog constructs we consider:

a simple or compound action
φ? test for a condition
δ1; δ2 sequence
δ1 | δ2 nondeterministic branch
πx.δ nondeterministic choice of argument
δ∗ nondeterministic iteration
if φ then δ1 else δ2 endIf conditional
while φ do δ endWhile while loop
δ1#δ2 interleaved concurrency

where a can be a simple action (as in [31]), but also a compound action (these are
the atomic instructions we use most in our setting) and φ is a situation-suppressed
(uniform) Situation Calculus formula, i.e., a formula in the language with all situation
arguments in fluents suppressed. We denote by φ[s] the (uniform) Situation Calculus
formula obtained from φ by restoring the situation argument s into all fluents in φ. We
require that the variable x in programs of the form πx.δ ranges over objects, and occurs
in some action term in δ, i.e., πx.δ acts as a construct for the nondeterministic choice
of action parameters.

Programs are executed over a BAT D (or Situation Calculus action theory, in gen-
eral). This means that the fluents mentioned in tests and conditions must be those in
the BAT D. Similarly, all constants mentioned in a program δ come from the set ACD
of D’s active object constants.

The semantics of ConGolog is specified in terms of single-steps, using the follow-
ing two predicates [31]: Final(δ, s), specifying that the program δ may terminate in
situation s, and Trans(δ, s, δ′, s′), specifying that one step of program δ in situation s
may lead to situation s′ with δ′ remaining to be executed. The definitions of Trans and

7

Final for the standard ConGolog constructs are given by:

Final(a, s) ≡ False

Final(φ?, s) ≡ φ[s]
Final(δ1; δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)
Final(δ1|δ2, s) ≡ Final(δ1, s) ∨ Final(δ2, s)
Final(πx.δ, s) ≡ ∃x.Final(δ, s)
Final(δ∗, s) ≡ True

Final(δ1#δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Trans(a, s, δ′, s′) ≡ s′ = do(a, s) ∧ Poss(a, s) ∧ δ′ = %
Trans(φ?, s, δ′, s′) ≡ False

Trans(δ1; δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′1, s
′) ∧ δ′ = δ′1; δ2 ∨

Final(δ1, s) ∧ Trans(δ2, s, δ′, s′)
Trans(δ1 | δ2, s, δ

′, s′) ≡ Trans(δ1, s, δ′, s′) ∨ Trans(δ2, s, δ′, s′)
Trans(πx.δ, s, δ′, s′) ≡ ∃x.Trans(δ, s, δ′, s′)
Trans(δ∗, s, δ′, s′) ≡ Trans(δ, s, δ′′, s′) ∧ δ′ = δ′′; δ∗

Trans(δ1#δ2, s, δ′, s′) ≡ Trans(δ1, s, δ′1, s
′) ∧ δ′ = δ′1#δ2 ∨

Trans(δ2, s, δ′2, s
′) ∧ δ′ = δ1#δ′2

Above, we use % to denote the empty program. In fact % is simply an abbre-
viation for True?. Note that the conditional and while-loop constructs are defin-
able: if φ then δ1 else δ2 endIf = φ?; δ1|¬φ?; δ2 and while φ do δ endWhile =
(φ?; δ)∗;¬φ?. Also, for convenience we denote by loop : δ the program δ∗ to make the
nondeterministic iteration more evident.

A configuration is a pair 〈δ, s〉 with program δ and situation s, hence Trans denotes
one-step transitions between configurations and Final denotes when a configuration is
final. We use Trans∗ to denote the transitive closure of Trans, i.e., Trans∗(δ, s, δ′, s′)
means that there exists a sequence of one-step transitions evolving the configuration
〈δ, s〉 into the configuration 〈δ′, s′〉. By using Trans∗ we can define Do(δ, s, s′) as an
abbreviation for ∃δ′. Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′) stating that the complete execu-
tion of the program δ from s results in the new situation s′ [17, 31]. Both Trans∗ and
Do can be easily defined in second-order logic by using Trans and Final.

It is important to notice that when we have complete information on the initial
situation in a BAT, Trans, Final, Trans∗ and Do are unequivocally defined by the model
of the BAT. That is, the BAT, together with the definition of Trans, Final, Trans∗ and Do
is, again, categorical [31]. Moreover, since in our case the object domain consists of the
standard names ∆, we have a syntactic denotation of each object, situation and program
(and thus configuration). This allows us to blur the distinction between the semantic and
syntactic objects of our formalization and switch back and forth seamlessly between
the semantic and syntactic notions of configurations. Observe that, although unique, the
BAT model has an infinite object domain, as well as infinite situations and programs.
This makes working with such models nontrivial and substantially different from the
way they are dealt with in model checking [34, 18, 35].

8

3. A Variant of ConGolog for Manufacturing

The standard constructs of ConGolog are not sufficient to express ‘simultaneous’
execution of processes in manufacturing. For this reason, we extend ConGolog with
a new construct to model the simultaneous operation of two (or more) manufacturing
resources: the synchronized concurrency operator δ1|||δ2 is used to represent the syn-
chronized concurrent execution of programs δ1 and δ2—their next actions take place
in the same transition step.

Moreover, we want our theories to be able to allow the synchronous execution of a
set of actions even if they are not executable by themselves. The underlying assump-
tion here is that a number of sub-systems (in our domain, manufacturing resources) can
legally perform a joint step only if this is explicitly deemed possible by a “global” BAT
for compound actions. This gives us complete control when modeling manufacturing
facilities, and allows to capture arbitrary constraints on the usage of the resources avail-
able. For instance, to lift a heavy object we may necessarily need two robots to perform
a lifting action at the same time on the same object, while the individual action of lift-
ing an object may not be allowed by the individual theories of these robots when they
are considered in isolation.

To capture this, the semantics of ||| is defined as follows:

Final(δ1|||δ2, s) ≡ Final(δ1, s) ∧ Final(δ2, s);

Trans(δ1|||δ2, s, δ′, s′) ≡ Trans′(δ1, s, δ′1, s
′
1) ∧ s′1 = do(a1, s) ∧

Trans′(δ2, s, δ′2, s
′
2) ∧ s′2 = do(a2, s) ∧

Poss(a1 ∪ a2, s) ∧ δ′ = (δ′1|||δ
′
2) ∧ s′ = do(a1 ∪ a2, s),

where Trans′ has analogous axioms as Trans except for two modifications:

1. For simple and compound actions, Trans′(a, s, δ′, s′) ≡ s′ = do(a, s) ∧ δ′ = %.

2. Trans′(δ1|||δ2, s, δ′, s′) does not require that Poss(a1 ∪ a2, s) be true.

This allows us to capture executability of compound actions without necessarily re-
quiring the executability of (subsets of) their component simple actions: in the above,
we impose Poss(a1 ∪ a2, s) without requiring also Poss(a1, s) and Poss(a2, s), al-
though this can be explicitly required in the BAT (above, we implicitly extended the
union operator to simple actions).

Observe that δ1|||δ2 requires both δ1 and δ2 to execute one (possibly compound)
action at each step. In case one program requires more steps than the other to reach
a final configuration, they cannot be executed in a synchronized, concurrent fashion.
However, a program may include “no-op” actions to explicitly model when the resource
can remain idle.

Finally, note that synchronized concurrency is distinguished from interleaved con-
currency. For example, in the program δ1#δ2, it is legal to execute either δ1 or δ2 com-
pletely before even starting the other, and it also legal to switch back and forth after
each of their primitive actions. This is not possible with the synchronized concurrency
program δ1|||δ2, under which both δ1 and δ2 must execute an action at each step.

9

4. Manufacturing as a Service

In this section we describe, in abstract terms, the MaaS model which we will for-
mally capture through the logical framework illustrated in the next section. Specifi-
cally, we consider a type of MaaS setting as those recently envisioned by Cloud Man-
ufacturing approaches, as discussed in Section 1. In this model, we consider a set of
manufacturing facilities, each consisting of a set of configurable manufacturing re-
sources that can be rapidly provisioned and released with minimal management effort
or provider interaction. Examples of resources are CNC machines, robots and tools in
flexible production lines. Facilities can join a manufacturing cloud to offer their produc-
tion capabilities to cloud users (i.e., product designers) who wish to have their products
manufactured. In turn, a user can submit to the cloud system a product model, i.e., the
(process) recipe, that is a representation of the activities that are to be executed in order
to complete an instance of the product. For simplicity, we assume that a product is en-
tirely described by a single process recipe, although one could consider a hierarchical
subdivision in multiple sub-assemblies and, thus, process recipes.

The main objective is to assess whether the product is manufacturable, that is, it
can be manufactured through the cloud and, if so, to compute exactly how. The product
can be manufactured if the recipe can be manufactured in a facility, that is, if an im-
plementation of all the possible sequences of resource-independent operations, therein
prescribed, can be delegated at each step to the resources in the facility, also taking care
of all the low-level additional operations that may be required (which, being dependent
on the facility and its resources, are not included in the recipe). Indeed, a process recipe
is a resource-independent process, designed by the product designer without any spe-
cific knowledge or assumption on the manufacturing system that will be selected for its
implementation, and it thus assumes an information model that is common throughout
the cloud. A MaaS model must then be able to bridge the gap between such abstract
representation and the description of the physical manufacturing processes that each
facility can execute, according to the resources that are available in the facility.

When the product is manufacturable in a facility, the module responsible for del-
egating actions in the recipe to resources (we refer to such delegation as either real-
ization or orchestration) is called a process plan controller, or simply a controller. In
contrast to mass production, where process planning is carried out by manufacturing
engineers and is largely a manual activity, this setting requires facilities to be able to
bid for products in real time, that is, to be able to automatically check whether a novel
product is manufacturable and, if so, synthesize a controller ‘on the fly’ prior to sub-
mitting a bid.

Following these observations, we can provide a specific MaaS framework whose
basic components match the core elements of a MaaS paradigm. This is illustrated in
Figure 1, where two distinct sorts are considered:

1. An information model D describes the data and the physical objects manipulated
by processes, as well as the operations used to manipulate them.

2. A process δ describes the sequencing of the operations and captures the specific
capabilities and the dynamic behavior of a component.

10

DR

cloud level

facility level

DF

Dn. . .D1

δ0R

δ0F := δ1||| · · · |||δn

δ1, . . . , δn

recipe

resource processes

facility process

processes:information models:

mappings controller

Figure 1: Framework for MaaS, divided into a cloud level and a facility level (only one facility is shown). A

facility is constituted of a facility information model DF, a facility process δ0F , the mappings (and thus the

cloud information model DR as well).

The various components that form our MaaS framework can be described as fol-
lows. An example will be given in the next section, where these concepts are presented
in detail. For now, we focus on highlighting the role that each of these components has,
their internal structure, and their relationship. For simplicity, as reflected in Figure 1,
we restrict ourselves to describe a single facility within the manufacturing cloud:

1. Resources: these are the physical manufacturing resources on the shop floor of
a facility. Each resource is a couple 〈Di, δi〉, with i ∈ {1, . . . , n}, that has its
own information model Di and its own resource process δi, as these resources
are typically sold by different companies. The actions and possible data in each
Di typically include low-level details.

2. Facility information model: it is the information model DF for the facility, ob-
tained by combining the information models Di of each resource on the shop
floor. It is the responsibility of the system integrator of the facility to suitably
combine the information models of the resources.

3. Facility process: it is the process δ0
F

resulting from the synchronous, concurrent
execution of the process δi of each resource. Synchronous concurrency is needed
to capture the fact that resources can (and may be required to) execute actions at
the same time and on the same objects.

4. Cloud information model: it is the information model DR, common throughout
the cloud, that is assumed by any recipe that can be designed. It is the core
component of the framework whose existence precedes any other component. It
represents a resource-independent information model of the data and objects that
the recipes manipulate, and through which they are modeled. DR is developed by
the manager of the cloud infrastructure.

5. Mappings: a set of mappings Maps represents the mechanism for relating the
cloud information model DR, which is resource-independent, to the facility infor-
mation model DF, that is resource-dependent. Maps relates the possible abstract

11

executions described by the process recipe δ0
R

(see below) with the concrete exe-
cutions of the facility process δ0

F
. In fact we need two forms of mappings: the first

relates the data and objects in DR to those in DF; the second relates operations in
DR to possibly complex sub-processes that are required to implement them in the
facility, according to DF. Operationally, these mappings are specified only once,
namely when a facility joins the manufacturing cloud: the system integrator of
the facility, who has access to both DF and DR, is responsible for engineering
them, although automation is also possible. These mappings are essential for the
MaaS framework to be able to check the manufacturability of the product in a
facility (and compute the controller) without exposing any internal detail, such
as the number and type of resources or their processes. As depicted in Figure 1,
the controller component is not at the cloud level but at the level of the facility:
privacy is a critical requirement in MaaS.

6. Facility: by putting together some of the components above, a manufacturing
facility is captured as a tuple Fac = 〈DR,DF, δ

0
F
,Maps〉, where DR is the cloud

information model (which is fixed), DF is the facility information model, δ0
F

is
the facility program and Maps is the set of mappings as above.

7. Recipes: a recipe is a resource-independent process δ0
R

designed by a product
designer without any specific knowledge or assumption on the manufacturing
facility that will be selected for its realization. The information model describing
the operations that compose the recipe is the cloud information model DR. The
product designer can access DR to design the recipe but cannot alter it.

8. Controller: when a controller exists for a given recipe and facility, i.e. when the
product is manufacturable, this component is responsible for realizing the recipe
by orchestrating the resources in the facility. It can be informally understood as
a function relating each possible execution of the recipe δ0

R
to one execution of

the process δ0
F

of the facility. It is not a cloud-level entity, and it is never exposed
outside of the organization that owns the facility.

Given a facility Fac = 〈DR,DF, δ
0
F
,Maps〉 and a recipe δ0

R
, the manufacturability

problem amounts to establishing whether there exists a controller to orchestrate the re-
sources in the facility Fac to realize the recipe δ0

R
. The synthesis task is to automatically

build the controller responsible for implementing the orchestration.

5. Manufacturing as a Service in the Situation Calculus

In this section we detail how the framework above is formally captured in our ap-
proach. We see the actions in manufacturing processes as described by an action the-
ory in logic, and processes as high-level programs over such action theories. In this
way, we can leverage the first-order state representations of action formalisms and the
second-order/fixpoint characterization of state-change as provided by programs. We
now formalize each framework component and provide examples.

12

5.1. Resources
As shown in Figure 1, a facility is composed of n manufacturing resources 〈Di, δi〉,

each identified by an index i ∈ {1, . . . , n}. We formalize the information model Di of
each resource i as a BAT Di (we overload symbols used in the MaaS framework itself),
which specifies the resource’s initial configuration and the actions it can execute (as
a specification of fluent’s dynamics through precondition and successor-state axioms).
For convenience, we include the resource index i (a constant) as the last argument of all
actions, as this will be useful when combining all these theories together. The resource
process δi is formalized as a CongGolog program δi over the BAT Di.

Example 1 (Resources – based on the cell described in [36]). Consider a manufac-
turing cell consisting of five resources. Resource 〈D1, δ1〉 is a robot that is able to per-
form different operations on parts by (autonomously) equipping the appropriate end
effector ee, from a nearby rack, using the action EQUIP(ee, 1). An end effector is a de-
vice or tool connected to the end of a robot arm, the nature of which depends on the
intended task: by equipping a driller it can drill parts; by equipping a rivet gun it can
apply rivets. The BAT D1 specifies when this simple action is possible for this resource:

Poss(EQUIP(ee, 1), s) ≡ has effector(ee, 1, s) ∧ ¬∃e. equipd(e, 1, s)

that is, when the end effector is available on the rack and there is no end effector already
equipped by the arm.

The Poss predicates for other actions are specified in the same way. The drilling op-
eration is modeled as the action ROBOT DRILL with arguments part, bit, dmtr, speed,
feed, x, y, z for the ID of the part (i.e. the workpiece), the drilling bit ID, the diam-
eter, the spindle speed, the feed rate, and hole position. For instance, a fully specified
action is ROBOT DRILL(p, bit1, .7, 215, .2, 123, 87, 12, 1). The riveting action is anal-
ogous, and we represent it as RIVET(part, rivet type, x, y, z, 1). Additional operations
are START COMPRESSOR(1) for charging the compressor of the rivet gun (always possi-
ble); UNEQUIP(1) for unequipping the current end effector and place it back on the rack;
SET BIT(bit, bit type, dmtr, 1) for changing the drilling bit (for simplicity, we assume a
rack of drill bit holders which can be changed autonomously, but it is also possible to
use this action to model the fact that the robot returns to a default position to allow an
operator to perform the tool change). For instance, we consider:

Poss(ROBOT DRILL(part, bit, dmtr, speed, feed, x, y, z, 1), s) ≡
equipd(driller, 1, s) ∧ material(part,m) ∧ suitable(bit, dmtr,m) ∧
(at(part, 1, s) ∨ within reach(part, 1, s)) ∧ part(part, s) ∧ safe(1, s)

Poss(RIVET(part, rivet type, x, y, z, 1), s) ≡ equipd(rivet gun, 1, s) ∧
drilled(part, hole(x, y, z), s) ∧ charged(compressor, 1, s) ∧
(at(part, 1, s) ∨ within reach(part, 1, s)) ∧ part(part, s) ∧ safe(1, s)

Poss(SET BIT(bit, bit type, dmtr, 1), s) ≡ tool bits(bit, bit type, dmtr)

where at(part, i, s) is a fluent used to specify that a part is currently allocated to the
resource i, and which we assume to be included in the BAT of every resource. Similarly,
within reach(part, i, s) specifies that the work piece part is within the envelope of
the resource, so that it can either be moved on the working area, or operations can
be performed on part from a distance. Static relation tool bits(bit, bit type, dmtr)

13

represents the catalogue of tool bits available in this facility. We also use situation
dependent or independent fluents, which for simplicity we assume to be available in
each BAT of each resource i, to denote that a part exists in the cell, that a hole has been
drilled in a part by a resource, that a part has a certain material, that it is safe for the
robot to move the arm, etc. We will give examples of their successor-state axioms later.

Moreover, parts are moved between resources by a part-handling system, which
is typically a collection of conveyor belts or similar pieces of equipment, although it
is also possible that parts are explicitly exchanged by the resources themselves (e.g.,
robots). We model this by using special actions IN(part, i) and OUT(part, i) for each
resource i, denoting that a part is moved into or out of the work area of the resource,
respectively. This allows us to model either the physical movement of the part from/to
the part-handling system or the acquisition/release of the exclusive access lock to the
part. This approach makes sure that at most one resource is allocated a part (although
other resources may be required to assist in complex machining or assembly operations,
as we will show later). For the IN and OUT actions, we assume the following axioms
to impose that each resource can hold at most one part at a time (larger bounds can be
modeled in a similar way):

Poss(IN(part, i), s) ≡ part(part, s) ∧ within reach(part, i, s) ∧ ¬∃p. at(p, i, s)
Poss(OUT(part, i), s) ≡ part(part, s) ∧ at(part, i, s)

Finally, a special action NOP, also common to all resources, can be used to keep the
resource idle. The ConGolog program δ1 (capturing the resource process) is shown in
Figure 2. Note that all free parameters are implicitly existential (i.e., in the scope of a
choice π).

loop :
IN(part, 1)
| if ¬equipd(driller, 1) then EQUIP(driller, 1) endIf ;

NOP∗ ;
if ¬has bit(bit type, dmtr, driller, 1) then SET BIT(bit, bit type, dmtr, 1) endIf ;
ROBOT DRILL(part, bit, dmtr, speed, feed, x, y, z, 1)

| if ¬equipd(rivet gun, 1) then EQUIP(rivet gun, 1) endIf ;
NOP∗ ; RIVET(part, rivet type, x, y, z, 1) ;
if ¬charged(compressor, 1) then START COMPRESSOR(1) endIf

| OUT(part, 1)
| UNEQUIP(1)
| NOP

Figure 2: The resource program δ1, representing a robot arm with two end effectors. The resource cannot

equip an end effector and then not use it, nor attempt to equip it if already mounted on the arm. Similarly,

the robot cannot release the part if in the process of drilling or riveting it. Note that these constraints are not

aimed at capturing preconditions of actions, which are instead specified in the BAT Di via Poss, but rather

the control logic governing the robot, which is dictated by the resource’s own design. The actual executions

that are possible will depend on the interplay of the program, the BAT and the current situation, at each step.

We model the other resources in a similar way. 〈D2, δ2〉 is a fixture that can per-
form an action HOLD IN PLACE(part, force, 2), with a given clamping force. Resource

14

〈D3, δ3〉 is a robot that can move parts into and out of the cell from an external
conveyor or pallet, position a part at a given location relative to another part (cre-
ating a single composite part as output), and, by equipping either a flat or hollow
end effector, apply pressure to a part that is being worked on by another resource
(hollow for drilling or milling, flat for riveting). These operations correspond to the
actions IN CELL(part, weight,material, dimx, dimy, dimz, 3), OUT CELL(part, code, 3),
POSITION(part1, part2, part, x, y, z, 3), PRESSURE(part, force, 3). These actions for
〈D2, δ2〉 and 〈D3, δ3〉 have the following preconditions:

Poss(HOLD IN PLACE(part, force, 2), s) ≡ part(part, s) ∧ at(part, 2, s)

Poss(IN CELL(part, weight,material, dimx, dimy, dimz, 3), s) ≡
part(part, s) ∧ on site(part, s) ∧ safe(3, s)

Poss(OUT CELL(part, code, 3), s) ≡
part(part, s) ∧ at(part, 3, s) ∧ status(part, code, s) ∧ safe(3, s)

Poss(POSITION(part1, part2, part, x, y, z, 3), s) ≡ ¬∃p. holding(p, 3, s) ∧ ¬part(part, s) ∧
part(part1, s) ∧ part(part2, s) ∧ at(part1, 3, s) ∧ within reach(part2, 3, s) ∧ safe(3, s)

Poss(PRESSURE(part, force, type, 3), s) ≡ part(part, s)∧
(at(part, 3, s) ∨ within reach(part, 3, s)) ∧ ((equipd(pressure flat, 3, s) ∧ type=flat)
∨ (equipd(pressure hollow, 3, s) ∧ type=hollow)) ∧ safe(3, s)

For instance, the first specifies that 〈D2, δ2〉 can hold in place parts that are phys-
ically brought to the fixture. The fourth one specifies that 〈D3, δ3〉 can position a part
part1 onto a part part2 to create a composite part part if the resource is not hold-
ing anything (with its arm), part is not yet a physical part, part1 is allocated to the
resource whereas part2 is within reach (e.g., held by another resource), and finally
that the resource is in a safe condition to operate. The last one specifies that 〈D3, δ3〉
can apply pressure to a part part that is either allocated to the resource or is within
reach, provided that the right type of pressure applicator is already equipped and that
the resource is in a safe condition to operate.

loop :
NOP | (IN(part, 2) ; (NOP | HOLD IN PLACE(part, force, 2))∗ ; OUT(part, 2))

loop :
IN(part, 3)

| (EQUIP(pressure hollow, 3) | EQUIP(pressure flat, 3)) ;
NOP∗ ; PRESSURE(part, force, type, 3)∗ ; UNEQUIP(3)

| EQUIP(gripper, 3) ; POSITION(part1, part2, part, x, y, z, 3)
| IN CELL(part, weight,material, dimx, dimy, dimz, 3)
| OUT CELL(part, code, 3)
| NOP

Figure 3: Resources programs δ2 and δ3.

Note that the information about the weight, material and size of parts loaded into
the cell is made available by the arguments of IN CELL, so that new fluents are added

15

to the extension to represent information about fresh workpieces (see successor-state
axioms, further below). As a restriction, one is not allowed to use operators that are
not axiomatized in the theories themselves (e.g., to write dimx(part, x)∧ ≥ (x, 30) to
check that a part is wider than 30 inches), but we can assume discretized intervals for
each numeric parameter, and consider fluents such as dimx(part, wide).

Resource 〈D4, δ4〉 is an upright drilling machine for drilling parts with high pre-
cision. Finally, 〈D5, δ5〉 is a human operator, who can operate the drilling machine
by executing the action OPERATE MACHINE(4, 5), can physically enter/exit the cell with
ENTER(5) and EXIT(5), can bring small parts into the cell with IN CELL(part, · · · , 5),
and can apply glue to parts with SPRAY GLUE(part, glue type, 5). Hence, in D4 (drilling
machine) we have the precondition axiom:

Poss(MACHINE DRILL(part, bit, dmtr, speed, feed, x, y, z, 4), s) ≡
material(part,m) ∧ suitable(bit, dmtr,m) ∧ at(part, 4, s)

and in D5 (human operator):

Poss(IN CELL(part, weight,material, · · · , 5), s) ≡ on site(part, s) ∧ size(part, small)
Poss(SPRAY GLUE(part, glue type, 5), s) ≡ within reach(part, 5, s) ∧ avail(glue type)
Poss(SAFETY SWITCH(5), s) ≡ true

while the processes for these resources are represented by the ConGolog programs δ4
and δ5 in Figure 4.

loop :
IN(part, 4) | MACHINE DRILL(part, bit, dmtr, speed, feed, x, y, z, 4) | OUT(part, 4) | NOP

loop :
if entered(5) then

IN(part, 5) | SPRAY GLUE(part, glue type, 5) | OPERATE MACHINE(j, 5) |
IN CELL(part, · · · , 5) | OUT(part, 5) | (EXIT(5) ; SAFETY SWITCH(off, 5)) | NOP

else (SAFETY SWITCH(on, 5) ; ENTER(5)) | NOP endIf

Figure 4: The remaining resource programs δ4 and δ5.

According to δ5, the human operator essentially has two distinct sets of available
operations when they are inside and outside the cell (the fluent entered(5) is of course
affected by the execution of ENTER(5) and EXIT(5)). Note how the operator is required
(by safety regulations) to always operate a safety switch immediately before and after
entering or exiting the cell. Nonetheless, the BATs for the robots are “unaware” of the
existence of such an action: the Poss axioms for the robots mention a fluent safe(i, s)
that must be tested for machining or assembly actions (as the robot arm may need to
move within its spatial envelope), but there is still no relation between the value of this
fluent and the execution of SAFETY SWITCH, as these belong to different BATs. An anal-
ogous consideration applies to the fluent within reach(part, i, s), as this would require
to talk about other resources nearby. This will be covered in the next section, when we

16

will show how the BATs for individual resources are merged in a semi-automated fash-
ion into a single DF, namely the facility information model, as depicted in Figure 1.
For now, we can assume:

safe(i, s) ≡ true
within reach(part, i, s) ≡ at(part, i, s)

Finally, examples of successor-state axioms for (some of) the fluents mentioned in
the BATs above are listed below (they are assumed to be the same in each BAT). For
conciseness, and whenever needed, we denote by x, y and z the parameters that appear
as dots in the fluents within the scope of quantifiers.

equipd(e, i, do(a, s)) ≡ a = EQUIP(e, i) ∨ (equipd(e, i, s) ∧ a ∕= UNEQUIP(i))
part(part, do(a, s)) ≡ ∃y. (a = IN CELL(part, · · ·) ∨ a = POSITION(·, ·, part, · · ·)) ∨

(part(part, s) ∧ ¬∃x. a = OUT CELL(part, · · ·)
at(part, i, do(a, s)) ≡ a = IN(part, i) ∨ (∃y. a = POSITION(·, part2, part, · · ·) ∧

at(part2, i, s)) ∨ ∃x. a = IN CELL(part, · · · , i) ∨ (at(part, i, s) ∧ a ∕= OUT(part, i) ∧
¬∃z. a = OUT CELL(part, · · ·))

material(part,material, do(a, s)) ≡ ∃y. a = IN CELL(part, · · · ,material, · · ·) ∨
(material(part,material, s) ∧ ¬∃x. a = OUT CELL(part, · · ·))

drilled(hole(part, x, y, z), do(a, s)) ≡ ∃y. (a = ROBOT DRILL(part, · · · , x, y, z, ·) ∨
a = MACHINE DRILL(part, · · · , x, y, z, ·)) ∨
(drilled(hole(part, x, y, z), s) ∧ ¬∃x. a = OUT CELL(part, · · ·))

For instance, the first states that an end effector e is equipped by a resource i either
if the resource executes action EQUIP(e, i) or e was already equipped by i and it is not
removed. Similarly, a part exists after it is loaded into the cell if it is a composite part
resulting from a positioning action or if already in the cell and not moved out of the
cell. Analogously, the third one states that a part is allocated to resource i if it was
moved to i or it is a composite part obtained by positioning another part on one that is
in i.

The remaining predicates are situation-independent (such as tool bits/3, avail/1 or
suitable/3), that is, their extensions are included in the theories, but are not affected
by actions as they capture instead domain knowledge (on materials, manufacturing
transformations, etc). □

5.2. Facility information model

The facility information model DF for the manufacturing facility is also formalized
as a Situation Calculus BAT. It is in this model that a system integrator will combine,
in a semi-automated manner, all information models D1, . . . ,Dn of the resources, e.g.,
by taking into account knowledge about which resources are connected by the part-
handling system, which subsets of resources can work on the same parts, which com-
pound actions are meaningful, etc.

To formalize the facility information model as a Situation Calculus BAT DF from
the BATs D1, . . . ,Dn of the resources we need to follow several steps:

1. Define the initial situation description for situation S0
F

in the BAT DF as the
union of the descriptions D0

i of the BAT of the resources, D0
F
= D

0
1 ∪ · · · ∪D

0
n.

17

2. Define the successor-state axioms of fluents for compound actions. This is done
by trivially extending the successor-state axioms for simple actions that are in
the BATs D1, . . . ,Dn.

3. Define the Poss predicate for all and only the exact compound actions that
are deemed meaningful, and establish whether each of these compound actions
also requires the executability of its constituent simple actions as defined in
D1, . . . ,Dn. Recall that Poss(a, s) does not imply, in general, Poss(a, s) for ev-
ery a ∈ a (see Section 3, including the definition of Trans(δ1|||δ2, s, δ′, s′)).

4. In doing the above, possibly introduce situation-independent fluents (with their
definitions) that may be needed to relate the value of fluents in the various re-
sources and to facilitate the writing of the axioms in the theory.

Note that the set of fluents in DF is FF =
!

i FDi
, since we do not need to include

the situation-independent fluents mentioned above (which can be seen as abbrevia-
tions). The set of active object constants mentioned in DF is ACDF =

!
i ACDi . Also,

we denote by AF the set of action types in DF.
The resulting BAT DF allows for capturing any possible execution of the facility

that is composed of meaningful compound actions. Note however that this does not
capture any knowledge about the manufacturing transformations yet, i.e., the designed
(sub)programs which lead to an increase of value of workpieces (such as a set of pos-
sibly complex sequences of actions that collectively implement the drilling, polishing,
painting, etc. of a workpiece, and which typically include various steps and also auxil-
iary compound actions and tests). This notion will be modeled in Section 5.5.

Example 2 (Facility information model). Consider the manufacturing cell from the
previous example. To be able to integrate all resources together, one needs to address
various aspects, of which we consider only a few. First, successor state axioms have to
consider compound actions. For instance, the first successor state axiom listed at the
end of Example 1, in the previous section, trivially becomes:

equipd(e, i, do(a, s)) ≡ EQUIP(e, i) ∈ a ∨ (equipd(e, i, s) ∧ UNEQUIP(i) ∕∈ a)

Second, we have to take into account the layout of the shop floor, i.e., specify which
resources can collaborate together for executing a compound action (the rest will need
to remain idle). We do so by a special situation-independent predicate coopMatrix(i, j)
specifying that resource 〈Di, δi〉 can cooperate with resource 〈Dj , δj〉, that is, it can
perform an action on a part that is currently allocated to the other (i.e. such that
at(part, j, s) holds). Hence we axiomatize in DF the within reach fluent (so far as-
sumed to be such that within reach(part, i, s) ≡ at(part, i, s) – see Example 1 in the
previous section) as follows:

within reach(part, i, s) ≡ ∃j. j ∕= i ∧ at(part, j, s) ∧ coopMatrix(i, j)

We also connect the action SAFETY SWITCH of the operator with the two robots in
the cell by the successor-state axiom:

safe(i, do(a, s)) ≡ (safe(i, s) ∧ ¬∃j. SAFETY SWITCH(off, j) ∈ a) ∨
∃j. SAFETY SWITCH(on, j) ∈ a)

18

Third, once this step is completed (for all predicates, as needed), one needs to define
the Poss predicate of compound actions. DF includes arbitrary axioms for this purpose,
however the following two are typically needed:

Poss(a ∪ NOP, s) ≡ Poss(a, s)
Poss({IN(part, i), OUT(part, j)}, s) ≡

Poss(IN(part, i), s) ∧ Poss(OUT(part, j), s) ∧ partHandling(j, i)

The first establishes that if an action a is executable, so is any compound action
that is equal to a but to which NOP actions are added (note that NOP actions can be
executed by resources only when their program allows it). The second specifies the
possible passing of parts between resources, as allowed by the part-handling system. It
assumes a situation independent predicate partHandling/2 so that partHandling(j, i)
specifies that, according to the layout of the shop floor, it is possible to move a part
from resource i to resource j (typically by using fixed conveyors). This predicate can
be easily replaced with a situation-dependent fluent.

Further, it remains to explicitly specify the Poss for the remaining compound ac-
tions that are meaningful in the facility although, in principle, it is also possible to
automatically determine the preconditions for any compound action resulting from any
possible combination of simple actions. For instance, in the running example we want
to allow the compound action in which resource 1 (the first robot arm) performs a
drilling operation on a part that is currently positioned on the fixture (resource 2), while
resource 3 (the second robot arm) applies opposing pressure on the part (with a hollow
pressure applicator). In this case we do not impose additional constraints, but we re-
quire the executability of these actions individually, according to the Poss of individual
theories:

Poss({ROBOT DRILL(part, · · · , 1), HOLD IN PLACE(part, · · · , 2), PRESSURE(part, · · · , 3)}, s) ≡
Poss(ROBOT DRILL(part, · · · , 1), s) ∧ Poss(HOLD IN PLACE(part, · · · , 2), s) ∧
Poss(PRESSURE(part, · · · , 3))

In turn, according to D1-D3, this requires that the part is held on the fixture, that it
is within the envelope of both robots, that the right drilling bit is in the end effector, etc
(see the Poss of these simple actions in Example 1).

According to the specification of Trans, by denoting the compound action above
as {a1, a2, a3} for short (the order is irrelevant), in our example with five re-
sources we have that if Trans(a1|||a2|||a3|||NOP|||NOP, s, δ′, s′) then it must be that
Poss({a1, a2, a3, NOP, NOP}, s) and therefore Poss({a1, a2, a3}, s), as a result of
Poss(a ∪ NOP, s) ≡ Poss(a, s). Given the axiom above, this also implies Poss(ai)
for i ∈ {1, 2, 3}, but this is not true in general (it is not required by Trans) and it
can be determined case-by-case when generating DF. Also, it is not always the case
that Poss({a1, a2, a3, NOP, NOP}, s) implies Poss({a1, a2, a3, a4, a5}, s) for any ac-
tion a4, a5.

This gives the system integrator great freedom and flexibility, and it allows to en-
code arbitrary knowledge about the possible meaningful executions of a set of resources
on the shop floor. □

19

5.3. Facility process

Given a set of n processes of manufacturing resources, each modeled as a ConGolog
program δi over Di, i ∈ {1, . . . , n}, the resulting facility process δ0

F
is defined as the

ConGolog program δ0
F
:= δ1||| · · · |||δn over the BAT DF, which models the facility

information model. Observe the use of the new synchronized concurrency operator in-
troduced in Section 3. This operator executes all programs δi synchronously, generating
a compound action from the actions in the various resources. In doing so, as explained
in the previous section, it requires the executability of compound actions as defined
in DF, without necessarily relying on the executability of their component actions as
defined in the resources’ BATs D1, . . .Dn.

5.4. Cloud information model

As explained in Section 4, the cloud information model DR is the information
model common throughout the cloud to be used by every recipe. It is the core com-
ponent of our MaaS framework whose existence precedes any other component. It
represents a resource-independent information model of data and objects the recipes
manipulate, and on which they are expressed. The information model is specified by
the manager of the cloud infrastructure.

We formalize DR as an action theory DR, which is a variant of a Situation Calculus
BAT. Importantly, DR is specified without knowing the possible facilities in the cloud
nor the resources available in each facility. For this reason, fluents in DR are abstract,
and they are typically affected by the resource-independent actions used in recipes. The
evolution of such fluents can be specified through the initial situation description D

0
R

of an initial situation S0
R

of DR, and successor-state axioms in DR.
However, when specifying a recipe, we also want to use additional fluents whose

interpretation is determined at runtime during the execution on an actual facility, i.e.,
during production. For instance, in a recipe we may need to prescribe a runtime test
in order to determine how the manufacturing process should continue. We call such
fluents observations and denote the set of observations by Obs. Note that the fluents
in Obs are not determined by the initial situation description D

0
R and they do not have

successor-state axioms. Their evolution depends on how the cloud information model
is coupled with the facility information model through the mappings, as described in
the next section.

From the Situation Calculus point of view, the resulting action theory DR is a variant
of a BAT (free-fluent BATs [37]), which omits successor-state axioms for the fluents
in Obs. We denote such variants BAT− to stress this distinction. Observe that, even
under complete information about the initial situation, a BAT− admits, in general, many
models: without mappings relating observations to the actual facility, these fluents are
free to take any extension at each situation. Nonetheless, as we formalize next, as we
are capable of inspecting the facility to determine the extension of the fluent in Obs
through the mappings, the resulting theory still admits a unique model. We will provide
an example in the next section.

We denote by FR the set of fluents in DR, with Obs ⊆ FR, and by ACDR the set of
active object constants of DR. Finally, we denote by AR the set of action types in DR.

20

5.5. Mappings
In order to establish the manufacturability of a product by a given facility, we need

to define formal mappings between the abstract, resource-independent BAT−
DR and

the BAT DF. These mappings are computed for each facility when it joins the manu-
facturing cloud, either automatically or by hand [36]. Following the ideas in [38], we
define such mappings as follows:

• For each action type A ∈ AR with parameters x, the action A(x) is mapped
to a (arbitrarily complex) program δA(x) in DF composed of physical (com-
pound) actions of the available resources, augmented with, e.g., the passing of
parts through the part-handling system, the equipping of end effectors, etc.

• For each fluent f ∈ FR with parameters x, the atomic formula f (x, sR) in the cur-
rent situation sR is mapped to a (uniform) Situation Calculus formula ϕf (x, sF)
over the fluents in FF of the facility information model. The mapping establishes
that f (x, sR) in the current situation sR of the BAT DR on the recipe has the same
extension as ϕf (x, sF) in the current situation sF on the BAT DF of the facility.

If f is an observation in Obs (i.e., without successor-state axiom, such as preci-
sion in Example 4) the mapping gives the extension to the observation f (x, sR).
If instead f is not an observation in Obs, then the mapping imposes a consistency
requirement between the two theories as the fluent f is constrained by the initial
situation description and its successor-state axiom in DR.

Summarizing, the mappings consist of a set Maps of mapping rules of two forms:

• Mapping rules for DR’s actions of the form :

A(x) ↔ δA(x) (for each A ∈ AR)

where A(x) is an action type in AR with parameters x, and δA(x) is a program
over DF with parameters x;

• Mapping rules for DR’s fluents of the form:

f (x) ↔ ϕf (x) (for each f ∈ FR)

where f (x) is a fluent of DR with the situation argument suppressed and ϕf (x)
is a situation-suppressed (uniform) Situation Calculus formula over DF.

We impose two requirements on ϕf (x) as well as on formulas occurring in tests of
δA(x). First of all, the active object constants mentioned in some mapping come from
ACDF ∪ACDR . Second, these formulas must be domain-independent [26]. In our con-
text a (uniform) Situation Calculus formula ϕ is domain-independent if its evaluation
depends only on the objects appearing in the extension of DF’s fluents in the current sit-
uation, i.e., the active domain of the current situation, and not by other standard names
in the domain ∆. One way to obtain domain-independence is to disallow negation ¬β
and instead use logical difference α∧¬β. Note that domain-independence is a standard
requirement in databases that allows focusing on the active domain only, without loss
of generality [26].

21

Example 3 (Mappings). To map the resource-independent DRILL action to a program
specifying the possible ways in which a drilling operation can be performed in the
facility of the running example, we specify:

{DRILL(part, dmtr, speed, x, y, z)} ↔ (A1||| · · · |||An)∗ ;
if size(part, large) then δ1D else δ1D | δ2D

δ1D=π bit, feed, force, i, j, k.(PRESSURE(part, force, hollow, i)|||
HOLD IN PLACE(part, 3k, j) |||
ROBOT DRILL(part, bit, dmtr, speed, feed, x, y, z, k))

δ2D=π bit, feed, i, j.(OPERATE MACHINE(i, j)|||
MACHINE DRILL(p, bit, dmtr, speed, feed, x, y, z, j))

where each Ai stands for πx. ai,1(x) | · · · | ai,qi(x): i.e., each resource may perform
preparatory sequences of actions before the specified compound actions. Intuitively,
the rule states that, in this facility, large parts can only be drilled by using three actions
for clamping (with a fixed force), drilling and applying pressure with a hollow pressure
applicator (for counterbalancing the drilling pressure), whereas small parts may also
be drilled by manually operating a drilling machine.

Note that these rules do not specify which resources should be used for a particular
operation, hence in a large facility with many pieces of equipment this allows a high
degree of flexibility in the allocation of resources to these tasks. In our simple example,
with only five resources, such allocation is obvious (δ1

D
can be executed by selecting

i=3, j=2, k=1, and δ2
D

by selecting i=5 and j=4).
We can write similar mapping rules for the fluent precision ∈ Obs, e.g., specifying

how to observe the precision of a hole that was drilled:

precision(hole(part, x, y, z), precision) ↔
part(part) ∧ drilled(hole(part, x, y, z), i) ∧ prec rating(precision, i)

This mapping captures the fact that the precision of drilled holes depends on the
resource that was used for the drilling (in particular, on its precision rating), which is
known only at runtime, i.e., during production. □

The mappings in Maps combined with the two theories DR and DF form a new the-
ory, defined below. This is not a traditional Situation Calculus theory since it includes
two situation sorts (instead of one), which are completely independent from each other,
namely: SF for the facility information model DF, with initial situation S0

F
∈ SF, and

SR for the cloud information system DR, with initial situation S0
R
∈ SR.

For sort SF we have that the value of fluents at each situation sF ∈ SF is completely
determined by DF. Defining SR, instead, needs an additional effort, since the value of
the fluents in Obs, after an action has been performed, depends only on the mappings
in Maps . To handle this, we extend all action types A ∈ AR with an extra parame-
ter sF ranging over situations from SF. Thus, every action a(x) with parameters x is
turned into a corresponding action a(x, sF) with parameters x and sF. We then make
the following changes to DR:

• Every DR’s precondition axiom Poss(A(x), sR) ≡ Φ(x, sR) is changed into

Poss(A(x, sF), sR) ≡ Φ(x, sR)

22

that is, we ignore the newly introduced extra parameter.

• Every DR’s successor state axiom f (x, do(A(y), sR)) ≡ Φ(x,y, sR), for fluent
f ∕∈ Obs instantiated on the action A(y), is changed into

f (x, do(A(y, sF), sR)) ≡ Φ(x,y, sR)

that is, as before, we ignore the extra parameter.

• For each fluent f ∈ Obs with mapping f (x) ↔ ϕf (x), the following successor
state axiom is defined:

f (x, do(A(y, sF), sR)) ≡ ϕf (x, sF)

where the formula ϕf (x, sF) is situation-invariant w.r.t. sR, i.e., its value depends
only on the extra parameter sF added to action A.

• Finally, the initial situation description D
0
R

is changed by adding f (x, S0
R
) ≡

ϕf (x, S
0
F
) for each f ∈ Obs, using, again, the mapping f (x) ↔ ϕf (x).

We denote the resulting theory as D
Maps
R

. Note that since the initial situation de-
scription of DF is complete, so is that of D

Maps
R

; hence, by distinguishing the two
situation sorts SR and SF for the situations, it follows that DMaps

R
is categorical, i.e.,

admits essentially a unique model.
Among the situations of DMaps

R
in SR, we are interested only in those that corre-

spond to actual executions in DF, according to the mappings Maps . In other words,
we need to single out the situations sR ∈ SR and sF ∈ SF that correspond to each
other, i.e., which are synchronized. These can be defined by induction as the smallest
predicate Syn such that:

• (Base case) Syn(S0
R
, S0

F
);

• (Inductive case)
Syn(sR, sF) ∧

"
A∈AR

∀x, s′
F
.Do(δA(x), sF, s

′
F
) ∧"

f ∕∈Obs
f (x, do(A(x, s′

F
), sR)) ≡ ϕf (x, s

′
F
) ⊃

Syn(do(A(x, s′
F
), sR), s

′
F
).

Intuitively, this definition says that S0
R

and S0
F

are synchronized, and that if sR and
sF are synchronized and we do action A(x) in sR and, correspondingly, we execute
δA(x) in sF, then the resulting situations do(A(x, s′

F
), sR) and s′

F
are synchronized,

as long as the successor-state axioms for non-observation fluents are satisfied. We are
indeed interested in those situations sR ∈ SR such that there exists a sF such that
Syn(sR, sF), i.e., {sR ∈ SR | ∃sF.Syn(sR, sF)}.

5.6. Facility
Given the cloud information model, a facility information model, a facility process

and a set of mappings that are represented, respectively, as BAT−
DR, a BAT DF,

a ConGolog program δ0
F

and mappings Maps , a facility is formalized by the tuple
Fac = 〈DR,DF, δ

0
F
,Maps〉. We denote by ACFac the set of active object constants

of Fac, that is either in DR or in DF, i.e., ACFac = ACDR ∪ACDF .

23

5.7. Recipes
A recipe specifies the possible way(s) in which a product can be manufactured and

is captured by a ConGolog program δ0
R

for the action theory DR, i.e., the cloud infor-
mation model. As such, δ0

R
can mention only constants from ACDR . This is compliant

with the MaaS paradigm, where recipes are resource independent [39], i.e., specified
using actions AR and fluents FR common throughout the manufacturing cloud rather
than by adopting the action theory of a specific facility.

Example 4 (Recipe). A simple example of a process recipe is given below. This
recipe makes use of the observation precision already discussed and the actions
LOAD(part, weight,material, dimx, dimy, dimz), DRILL(part, dmtr, speed, x, y, z),
APPLY GLUE(part, glue type), RIVET(part, x, y, z), PLACE(part1, part2, part, x, y, z),
REAMING(part, dmtr, x, y, z) and STORE(part, code), all in AR. As expected, these are
not the same actions available in the facility (although the names and arguments are
similar, for simplicity). We have commented in Example 3 on the mapping for DRILL.

According to this recipe, two steel parts denoted by b and f are loaded, a hole is
drilled in f, then glue is applied to b. This is then placed on f, resulting in a composite
part fb. The loading of b and the drilling of f can occur in any order, but glue must be
applied to f before b is placed. If the resource used for drilling is not high-precision
(which is an observation – see Example 3), a reaming operation is performed on the
hole. Finally a rivet is applied to the hole and fb is stored away, with a ok code.

LOAD(f, 4, steel, 810, 756, 29) ;
(LOAD(b, 2, steel, 312, 23, 20)) DRILL(f, .3, 200, 123, 89, 21)) ;
APPLY GLUE(b, str adh) ; PLACE(b, f, fb, 7, 201, 29) ;
if ¬precision(hole(f, 123, 89, 21), high) do

REAMING(fb, .3, 123, 89, 21)
RIVET(fb, 123, 89, 21) ;
STORE(fb, ok) □

A recipe does not specify how the manufacturing operations should be executed
because it is resource-independent. The specific implementation of these actions on a
facility needs to be automatically synthesized.

6. Realizability

In this section we formally characterize the conditions under which we can say that
a recipe is realizable by a facility. Intuitively, this requires that each abstract action ex-
ecutable by the recipe can be mapped to a (sequence of) executable compound actions
of the facility. In other words, no matter how the recipe may be progressed, the facility
always has a way of replicating it. Moreover, whenever the recipe may be completed,
the facility is in a final (i.e., safe) state.

We denote by 〈δ, s〉 the configuration of an arbitrary program δ in situation s. We
use 〈δF, sF〉 to denote the current program δF and situation sF ∈ SF to which the
facility process δ0

F
evolved from situation S0

F
. Similarly we use 〈δR, sR〉 to denote the

current program δR and situation sR ∈ SR to which the recipe δ0
R

evolved from situation
S0

R
. Observe that SR is the set of situations of DMaps

R
, not of DR; indeed we need to

24

use the theory D
Maps
R

to evolve situations of the facility, so as to take into account the
evolution of fluents f ∈ Obs. Initially, these configurations are 〈δ0

F
, S0

F
〉 and 〈δ0

R
, S0

R
〉.

Now we are ready to formally capture what it means for a facility to always be able
to replicate the actions of a recipe, i.e., when the recipe can be realized by the facility.
Formally, a recipe δR in situation sR can be realized by a facility δF in sF if:

r0 for every non-observation fluent f ∕∈ Obs in DR the value in situation sR of
〈δR, sR〉 is compatible through the mapping f (x) ↔ ϕf (x) with the value of
ϕf (x) in situation sF of 〈δF, sF〉; note that for f ∈ Obs this is already guaranteed
by the definition of DMaps

R
;

r1 Final(δR, sR) implies Final(δF, sF): if the recipe can be legally terminated, then
all the resources can (safely) terminate their execution; and

r2 for every possible executable abstract action A(x) from 〈δR, sR〉 in the recipe,
there exists a (arbitrarily complex) program δA(x), determined through the map-
ping A(x) ↔ δA(x), that is executable from 〈δF, sF〉 to some 〈δ′

F
, s′

F
〉 and which

represents the implementation of the action A(x) in the facility. Crucially, for at
least one such 〈δ′

F
, s′

F
〉, 〈δ′

R
, do(A(x, s′

F
), sR)〉 is realized by 〈δ′

F
, s′

F
〉.

Note that in r2, the recipe situation do(A(x, s′
F
), sR), resulting from the execution

of the abstract action A(x) in situation sR, depends on the situation s′
F

reached by the
facility after the execution of δA(x). This captures the synchronization of the recipe
and the facility situations.

Formally, we define the notion of realizability by co-induction as the largest predi-
cate R between recipe and facility configurations such that:

〈δR, sR〉R〈δF, sF〉 ⊃
r0

"
f ∕∈Obs

∀x.f (x, sR) ≡ ϕf (x, sF) ∧
r1 Final(δR, sR) ⊃ Final(δF, sF) ∧
r2

"
A∈AR

∀δ′
R
,x. Trans(δR, sR, δ

′
R
, do(A(x, S0

F
), sR)) ⊃

∃δ′
F
, s′

F
. Trans∗(δF, sF, δ

′
F
, s′

F
) ∧ Do(δA(x), sF, s

′
F
) ∧

〈δ′
R
, do(A(x, s′

F
), sR)〉R〈δ′

F
, s′

F
〉

where A(x) ↔ δA(x) and f (x) ↔ ϕf (x) are the mappings in Maps . A relation R sat-
isfying the conditions above is called realizability relation. We say that a facility con-
figuration 〈δF, sF〉 realizes a recipe configuration 〈δR, sR〉, written 〈δR, sR〉 ≼ 〈δF, sF〉,
if there exists a realizability relation R such that 〈δR, sR〉R〈δF, sF〉. It is easy to see that
≼ is itself a realizability relation and, in fact, the largest one.

We observe that this definition bears some similarities with the definition of simu-
lation in [40], however it takes into account that the value of some fluents in the cloud
information model come from the facility and that these values are not controllable by
the recipe itself.

To understand the above formula, observe that from the precondition ax-
ioms in D

Maps
R

, which ignore the facility situation arguments, we have that if
Poss(A(x, s′

F
), sR) for some s′

F
then Poss(A(x, s′′

F
), sR) for all s′′

F
. Now considering

25

that Trans(A(x, s′
F
), sR, δ

′, s′
R
) ≡ s′

R
= do(A(x, s′

F
), sR)∧Poss(A(x, s′

F
), sR)∧δ′ = %

we can suppress the situation argument from A(x, s′
F
) in programs δR and use simply

A(x) as action term in Trans, by defining:

Trans(A(x), sR, δ
′, s′

R
) ≡

∃s′
F
∈ SF.s

′
R
= do(A(x, s′

F
), sR) ∧ Poss(A(x)[s′

F
], sR) ∧ δ′ = %

Moreover if for some s′
F

we have that Trans(δR, sR, δ
′
R
, do(A(x, s′

F
), sR)) then for every

s′′
F

we have Trans(δR, sR, δ
′
R
, do(A(x, s′′

F
), sR)).

Based on these considerations, in D
Maps
R

we are allowed to use any situation term
of DF (in particular, the situation constant S0

F
) as a placeholder for the situation of

DF, since such situation term does not affect the executability of A(x) at sR nor the
program δ′

R
resulting after its execution.

Definition 1 (Realizability). We say that a recipe δ0
R

is realizable by a facility Fac =
〈DR,DF, δ

0
F
,Maps〉 iff 〈δ0

R
, S0

R
〉 ≼ 〈δ0

F
, S0

F
〉. "

When δ0
R

is realized by δ0
F

then, at every step, given a ground abstract action A(x)
selected by δ0

R
, an execution of the corresponding program δA(x) exists that preserves

the realizability relation ≼, and at the end of which control is returned to the recipe for
the selection of the next action. Notice that δA(x) is nondeterministic in general, as
ConGolog programs may include choices of arguments and nondeterministic branch-
ing. Nonetheless, the existence of the realizability relation guarantees that this is pos-
sible (similarly to [40], we assume that nondeterminism in δ0

F
is “angelic”).

Note that once we have that 〈δ0
R
, S0

R
〉 ≼ 〈δ0

F
, S0

F
〉 we can evolve (in all possible

ways) the two configurations 〈δ0
R
, S0

R
〉 and 〈δ0

F
, S0

F
〉 in a synchronized way so as to

maintain them in the relation ≼. Formally, we can define by induction the smallest
predicate SynC, such that:

• (Base case) SynC(δ0
R
, S0

R
, δ0

F
, S0

F
);

• (Inductive case)

SynC(δR, sR, δF, sF) ∧
Trans(δR, sR, δ

′
R
, s′

R
) ∧ s′

R
= do(A(x, s′

F
), sR) ∧

Trans∗(δF, sF, δ
′
F
, s′

F
) ∧ 〈δ′

R
, s′

R
〉 ≼ 〈δ′

F
, s′

F
〉 ⊃

SynC(δ′
R
, s′

R
, δ′

F
, s′

F
).

This predicate SynC can be seen as a refinement of the predicate Syn introduced
above, in the precise sense given by the next proposition.

Proposition 1 (Synchronization). Let Fac = 〈DR,DF, δ
0
F
,Maps〉 be a facility and δ0

R

a recipe realized by the facility, i.e., such that 〈δ0
R
, S0

R
〉 ≼ 〈δ0

F
, S0

F
〉. Then for all pairs of

configurations 〈〈δR, sR〉, 〈δF, sF〉〉 we have that SynC(δR, sR, δF, sF) ⊃ Syn(sR, sF).

Proof. By induction, immediate by the definitions. □

This proposition guarantees that in the execution of recipe δ0
R

(from S0
R

), as long as
we follow the relation ≼, we only generate values for the fluents in f ∈ Obs that come
from corresponding concrete executions in the facility.

26

We define a controller as follows. Given the current configuration 〈δR, sR〉 of the
recipe, the current facility configuration 〈δF, sF〉, and a new configuration 〈δ′

R
, s′

R
〉

specifying the next recipe configuration that may result from the one-step execution
of δR through some action A(x), a controller returns a sequence of configurations
〈δ0

F
, s0

F
〉 . . . 〈δm

F
, sm

F
〉 of length m ≥ 0 representing the steps that the facility must exe-

cute in order to complete δA(x). We require that the recipe and facility configurations
are in the realizability relation before and after executing A(x) and δA(x).

Definition 2 (Controller). Given a facility Fac = 〈DR,DF, δ
0
F
,Maps〉 and a recipe

δ0
R

realizable by Fac, a controller for δ0
F

that realizes δ0
R

is a function ρ that, given
two configurations 〈δR, sR〉 and 〈δF, sF〉 such that 〈δR, sR〉 ≼ 〈δF, sF〉, an action A(x),
and a program δ′

R
such that Trans(δR, sR, δ

′
R
, do(A(x, S0

F
), sR)) (recall that S0

F
is used

as a placeholder, and does not affect δ′
R
), returns a sequence of facility configurations

〈δ0
F
, s0

F
〉 . . . 〈δm

F
, sm

F
〉, such that:

• Trans(δi
F
, si

F
, δi+1

F
, si+1

F
) for i ∈ [0,m−1], and δ0

F
= δF and s0

F
= sF, that is, the

sequence is executable in the facility;

• Do(δA(x), sF, s
m
F
), that is, the situation sm

F
is the result of executing the concrete

program δA(x) corresponding to A(x) from sF;

• 〈δ′
R
, do(A(x, sm

F
), sR)〉 ≼ 〈δm

F
, sm

F
〉, that is, realizability between the resulting

programs is preserved. "

In other words a controller is a function that, given a recipe and a facility con-
figuration such that 〈δR, sR〉 ≼ 〈δF, δF〉, an action A(x) and the remaining program
δ′

R
after action execution, returns the witnesses for the realizability, i.e., a sequence

of steps to progress to next recipe and facility configurations in such a way that
〈δ′

R
, do(A(x, sm

F
), sR)〉 ≼ 〈δm

F
, sm

F
〉. As a result, given the initial recipe and facility

configurations 〈δ0
R
, S0

R
〉 and 〈δ0

F
, S0

F
〉, for every possible evolution of 〈δ0

R
, S0

R
〉 as de-

termined by the choice of actions A(x) at each point, a controller ρ produces a cor-
responding evolution of 〈δ0

F
, S0

F
〉 that fulfills the realizability requirements, and hence

determines the sequence of concrete configurations that the facility must traverse in
order to realize the recipe. Finally, observe that any evolution determined by any con-
troller ρ defined as above is such that SynC (and hence Syn) holds.

7. Controller Synthesis

To check whether a realizability relation exists and, if so, build a controller, we
resort to model checking for a variant of the (modal) µ-calculus in [41, 35], which we
call µLc, interpreted over game arenas (GA), which are special (labelled) transition
systems (TSs) capturing the rules of a turn-based game between two players, ENVI-
RONMENT and CONTROLLER.

A (first-order) vocabulary is a pair σ = 〈F, AC〉, where F and AC are sets of,
respectively, fluents and active (object) constants. Given an interpretation domain ∆
with standard names, such that AC ⊆ ∆, we denote by I

σ
∆ the set of all possible

interpretations of F and AC over ∆ that interpret all constants from AC as themselves.

27

Definition 3 (Game arena). Given a vocabulary σ = 〈F, AC〉, let:

• turnCtrl and turnEnv be special 0-ary fluents (i.e., propositions) not in F;

• FT = F ∪ {turnCtrl, turnEnv};

• σT = 〈FT , AC〉.

A game arena over σ is a tuple T = 〈∆T , Q, q0,→, I〉, where:

• ∆T is the GA object domain, with standard names, such that AC ⊆ ∆T ;

• Q is the set of GA states;

• q0 ∈ Q is the GA initial state;

• →⊆ Q×Q is the GA transition relation;

• I : Q 4→ I
σT
∆T

is a labeling function associating each state q ∈ Q with an
interpretation I(q) = 〈∆T , ·

I(q)〉 ∈ I
σT
∆T

, such that exactly one among turnCtrl
and turnEnv is true (and all constants in AC are interpreted as themselves). "

We observe that the definition of game arena is consistent with the definition of
labelled transition system in [35], thus all related results in [35] are applicable here
(provided the respective hypotheses hold).

Given a facility Fac = 〈DR,DF, δ
0
F
,Maps〉 and a recipe δ0

R
, we next define the GA

T induced by Fac and δ0
R
. This GA essentially captures those asynchronous executions

of δ0
F

over DF and δ0
R

over DMaps
R

such that the fluents of DMaps
R

are correctly synchro-
nized with those of DF, as per the mappings (over fluents, not actions) in Maps.

In defining T , it will be convenient to use a different, yet equivalent, representa-
tion of programs, to separate the assignments of “pick variables” to domain objects
(resulting from the nondeterministic choice of arguments), i.e., the data, from the con-
trol flow, i.e., the program counter [42]. This will simplify proving our results. The new
representation, which we call split representation, has the advantage of making explicit
the structure of programs and, in particular, of isolating the data as the only source of
infiniteness of a program’s closure. Indeed, since the ConGolog programs we consider
here are not recursive, they yield, when executed, only finitely many program coun-
ters; on the other hand, for the finitely many program variables, there exist, in general,
infinitely many possible assignments to distinct domain objects. Since programs are
obtained by combining program counters with assignments, they are infinitely many
only as a consequence of the infinite number of possible assignments to pick variables.

We represent a program δ0 as the pair 〈δ,x〉, where δ denotes its current program
counter (defined below) and x = 〈x1, . . . , xk〉 is a tuple of object terms such that each
xi is the domain object currently assigned to the i-th pick variable of δ0 (we assume
an ordering of simple actions and parameters). We call x the (current) environment.
Note that the new representation is merely a syntactic variant: as shown in [42], we
can reconstruct the original program δ0 by replacing the free pick variables of δ by the
object terms assigned to the variables x. This is denoted by writing δ[x]. Indeed, while

28

the set of possible environments remains infinite along a computation, at each state the
environment term, consisting of a single tuple of arity k, maintains only a bounded
number of values (smaller than the size of the programs).

The set of possible program counters for a program is formalized as the program’s
syntactic closure, defined by extending the definition in [42] to the new operator |||.

Definition 4 (Syntactic closure of a program). The syntactic closure of a program
δ0 is the set Γδ0 inductively defined as follows:

1. δ0, % ∈ Γδ0 ;

2. if δ1; δ2 ∈ Γδ0 and δ′1 ∈ Γδ1 then δ′1; δ2 ∈ Γδ0 and Γδ2 ⊆ Γδ0 ;

3. if δ1 | δ2 ∈ Γδ0 then Γδ1 ,Γδ2 ⊆ Γδ0 ;

4. if πz.δ ∈ Γδ0 then Γδ ⊆ Γδ0 ;

5. if δ∗ ∈ Γδ0 then δ; δ∗ ∈ Γδ0 ;

6. if δ1#δ2 ∈ Γδ0 and δ′1 ∈ Γδ1 and δ′2 ∈ Γδ2 then δ′1#δ′2 ∈ Γδ0 ;

7. if δ1|||δ2 ∈ Γδ0 and δ′1 ∈ Γδ1 and δ′2 ∈ Γδ2 then δ′1|||δ
′
2 ∈ Γδ0 . "

Observe that since the environment is separated from the program counter, the syn-
tactic closure Γδ0 of a program δ0 is always a finite set. We stress that the split represen-
tation is just a syntactic variant of program representation, equivalent to the standard
one, so we can freely switch between them without affecting the results.

The GA is a turn-based game between two players, called CONTROLLER (CTRL) and
ENVIRONMENT (ENV, not to be confused with the variable environment used above for
programs), who take care of progressing, respectively, the recipe and the factory. Turns
are not strictly alternating. The components of the GA T = 〈∆T , Q, q0,→, I〉 induced
by Fac and δ0

R
are detailed below.

Vocabulary. For the vocabulary σ = 〈F, AC〉, we define:

• F = FR ∪ FF ∪ {pcR, envR,Act, xAct, pcF, envF, pcA, envA, finalEnv, finalCtrl,
finalA}, where fluents in FR and FF have the situation argument suppressed,
while the remaining fluents are added for book-keeping (their role will be be-
come clear when we consider the labeling function for states). Specifically, pcR,
Act, pcF, and pcA are unary; the arity of envF and envR matches the number of
pick variables in δ0

F
and δ0

R
, respectively, the arity of xAct is the maximum number

Nv of variables x among all actions A ∈ AR, and the arity of envA is Nv +Np,
with Np the maximum number of pick variables among all programs δA(x) ∈ P ,
with P the set of programs δA(x) such that A(x) ↔ δA(x) ∈ Maps , for some
A; finalEnv, finalCtrl, and finalA are propositions;

• AC = ACDF ∪ACDR ∪AR ∪ Γδ0R
∪ Γδ0F

∪ (
!

δ∈P Γδ), for P as above.

Observe that actions from DR and program counters act as active constants (as well
as objects). We require that pcR, Act, pcF, and pcA are sorted predicates that can take
only objects from, respectively, Γδ0R

, AR, Γδ0F
, and

!
δ∈P Γδ , which, thus, act as sorts.

No other predicate can take objects from these sorts.

29

Object domain. The GA object domain is ∆T = ∆ ∪ Γδ0R
∪AR ∪ Γδ0F

∪ (
!

δ∈P Γδ).
Recall that ∆T has standard names, thus, in particular, program counters and actions
act as both (active) constants and objects.

Set of states. Let Cδ,s be the set of configurations to which an arbitrary program δ
can evolve, starting from situation s. We let Cδ0R

= Cδ0R ,S
0
R
, Cδ0F

= Cδ0F ,S
0
F
, and

CP =
!

δ∈P,sF∈SF
Cδ,sF , for P as above (recall that these sets are defined over sit-

uations of DMaps
R

). Notice that programs in configurations are actual programs, with
actual parameters assigned to variables, i.e., they are not split into program counter and
variable environment; consequently, the configuration spaces defined above are, in gen-
eral, infinite. The set of states Q ⊆ {ENV, CTRL}× Cδ0R

× Cδ0F
× (

!
δ∈P,s∈SF

CDF,δ,s)
is defined by mutual induction with the transition relation → (see transition relation
below). Each state q = 〈ϑ, 〈δR, sR〉, 〈δF, sF〉, 〈δ, s〉〉 is such that s = sF. For notational
convenience, we omit s and avoid tuple nesting, using the following equivalent rep-
resentation: q = 〈ϑ, δR, sR, δF, sF, δ〉. Each state captures a configuration of the GA,
where: ϑ represents which player is next to move; 〈δR, sR〉 stands for the current recipe
configuration; 〈δF, sF〉 is the current facility configuration; and 〈δ, s〉 is the current con-
figuration of the program δA(x) ∈ P associated by Maps with the (most recent) action
A executed by δR. The definition of the transition relation specifies how these compo-
nents evolve as the game proceeds. Notice that Q is in general infinite, as so are the
configuration spaces over which it is defined.

Initial state. For the initial state, we let q0 = 〈ENV, δ0
R
, S0

R
, δ0

F
, S0

F
, %〉. This captures

the situation where: ENVIRONMENT is to move next; the recipe has not started yet (thus
no action was executed); the factory program has not started yet; and no program from
P has been selected (as no action has been executed).

Transition relation. The transition relation →⊆ Q×Q is defined by mutual induction
with the set of states Q, as follows:

• q0 ∈ Q;

• for q = 〈ϑ, δR, sR, δF, sF, δ〉 and q′ = 〈ϑ′, δ′
R
, s′

R
, δ′

F
, s′

F
, δ′〉, if

– ϑ = ENV ∧ Trans(δR, sR, δ
′
R
, s′

R
) ∧ ∃A,x. s′

R
= do(A(x, S0

F
), sR) ∧ δ′ =

δA(x) ∧ δ′
F
= δF ∧ s′

F
= sF ∧ ϑ′ = CTRL, or

– ϑ = CTRL ∧ δ′
R
= δR ∧ ∃A,x, s′′

F
, s′′

R
. sR = do(A(x, s′′

F
), s′′

R
) ∧ s′

R
=

do(A(x, s′
F
), s′′

R
) ∧ Trans(δF, sF, δ

′
F
, s′

F
) ∧ Trans(δ, sF, δ

′, s′
F
) ∧ (ϑ′ =

ENV → Final(δ′, s′
F
)),

then q′ ∈ Q and q → q′.

Transitions differ based on which player moves. ENVIRONMENT selects an action
A(x), together with the corresponding program δA(x), from those made available by
the recipe δR (initially δ0

R
) in the current configuration; ENVIRONMENT then advances the

recipe configuration and the cloud situation sR of DMaps
R

, consistently with the chosen
action, and finally passes the turn to CONTROLLER. Notice that sR is advanced according

30

to the initial facility situation, i.e., s′
R
= do(A(x, S0

F
), sR). Recall that DF’s situation

argument of A does not affect the interpretation of DR’s non-observation fluents.
CONTROLLER chooses one among the actions that are currently legal for both δF

(initially δ0
F
) and δ in their current configuration. Observe that δ is assigned to δA(x)

by ENVIRONMENT at its turn. After selecting the action, CONTROLLER advances δ, δF,
and sF, consistently with the chosen action. This step corresponds to one execution step
of δ, i.e., one step of the implementation of action A(x, ·) previously selected by ENVI-
RONMENT, which is actually realized by the factory. In addition, CONTROLLER aligns the
current cloud situation sR with the resulting factory situation s′

F
(recall that the inter-

pretation of DR’s non-observation fluents is not affected by the DF’s situation argument
in A). The situation s′′

R
where ENVIRONMENT chose the action A(x, ·) currently under

execution is retrieved, and the cloud situation is assigned to s′
R
= do(A(x, s′

F
), s′′

R
).

Notice that s′
R

is the situation resulting from the execution of A(x) at s′′
R

, given the
factory situation s′

F
. CONTROLLER can (but does not have to) return the turn to ENVI-

RONMENT only when δ has reached a final configuration.

Labeling function. Let q = 〈ϑ, δR, sR, δF, sF, δ〉 ∈ Q be a generic state of T :

• for every f ∈ FF, f I(q)(x) iff DMaps
R

|= f (x, sF);

• for every f ∈ Obs, f I(q)(x) iff DMaps
R

|= ϕf (x, sF);

• for every f ∈ FR \ Obs, f I(q)(x) iff DMaps
R

|= f (x, sR);

• pcRI(q) = δ̃R, envRI(q) = {x̃}, where 〈δ̃R,x〉 is the split representation of δR

into program counter and environment: x̃ is as x, possibly extended with trailing
null values to match the arity of envR. For notational convenience we omit the
˜ symbol in the following, implicitly assuming that x is suitably extended when
needed; notice that both pcR and envR are interpreted as singletons;

• for pcF and envF, and for pcA and envA, we proceed as above but considering,
respectively, δF and δ; the resulting interpretations are, again, singletons;

• ActI(q) = {A} and xActI(q) = {x} if ∃s′
R
, s′

F
.sR = do(A(x, s′

F
), s′

R
), and

ActI(q) = ∅, xActI(q) = ∅ otherwise;

• finally, we have that finalEnv ≡ Final(δR, sR), finalCtrl ≡ Final(δF, sF), and
finalA ≡ Final(δ, sF).

The labeling function provides the interpretation of the fluents in F, plus additional
information about game turn, recipe action under execution, and configuration of the
involved programs, associated with the current state of the game. This information is
used to interpret µLc formulas on T (labelings retain all the relevant information).

Observe that T captures the moves available to ENVIRONMENT and CONTROLLER,
but not the goal of the game. Such moves essentially correspond to: (i) execution steps
(action executions) of the recipe process δ0

R
for ENVIRONMENT; (ii) execution steps of

the factory process δ0
F

for CONTROLLER. ENVIRONMENT moves first, and when CON-
TROLLER returns the turn to ENVIRONMENT, a complete execution of the program asso-
ciated with the last action selected by ENVIRONMENT has been correctly completed.

31

7.1. Controller Synthesis from GAs

µLc model checking can be used both to compute a realizability relation between
the recipe and the facility, and to synthesize the corresponding controller. Formulas of
µLc have the following syntax:

Φ := φ | ¬Φ | Φ1 ∧ Φ2 | 〈−〉Φ | Z | µZ.Φ | νZ.Φ,

where: φ is a FO sentence with predicates and (active) constants from a given vocabu-
lary σ = 〈F, AC〉; the modal operator 〈−〉Φ denotes the existence of a transition from
the current state to a state where Φ holds; we use the abbreviation [−]Φ for ¬〈−〉¬Φ;
Z is a second-order (SO) predicate variable over sets of states, and µZ.Φ and νZ.Φ
denote the least and greatest fixpoints, respectively, with Φ seen as a predicate trans-
former with respect to Z. By the semantics below, one can see that the only interesting
formulas are those closed w.r.t. to SO (in addition to FO) variables. In fact, SO variables
are needed only for technical reasons, to make the fixpoint constructs available.

Note that µLc is a (strict) sub-language of the language µLp defined in [35]. Specif-
ically, µLc disallows quantification across-states, i.e., the possibility of relating objects
occurring in different states. As a consequence, all the results obtained for µLp are di-
rectly applicable to µLc.

Given a GA T = 〈∆T , Q, q0,→, I〉 over a vocabulary σ = 〈F, AC〉, µLc for-
mulas over T are defined over the vocabulary σT (which, by Definition 3, is obtained
from σ by extending F with turnCtrl and turnEnv). The semantics of a µLc formula Φ
over T is inductively defined as follows, where v is an assignment from SO variables
to sets of states:

(φ)T = {q | q ∈ Q and I(q) |= φ}
(¬Φ)Tv = Q \ (Φ)Tv
(Φ1 ∧ Φ2)

T
v = (Φ1)

T
v ∩ (Φ2)

T
v

(〈−〉Φ)Tv = {q | ∃q′, q → q′, q′ ∈ (Φ)Tv }
(Z)Tv = v(Z)

(µZ.Φ)Tv =
#
{E ⊆ Q | (Φ)Tv[Z/E] ⊆ E}

(νZ.Φ)Tv =
!
{E ⊆ Q | E ⊆ (Φ)Tv[Z/E]}

A state q ∈ Q is said to satisfy a µLc formula Φ (under a SO assignment v), if q ∈
(Φ)Tv . We say that T satisfies Φ if q0 ∈ (Φ)Tv . Observe that when Φ is closed w.r.t. SO
variables, as are formulas of practical interest, v becomes irrelevant. When not needed,
we omit v from (·)Tv , thus using (·)T .

As we will show below, the satisfaction of the following µLc formula by T implies
the existence of a realizability relation between δ0

R
and δ0

F
:

ΦReal = νX.µY.((φOK ∧ [−]X) ∨ (turnCtrl ∧ 〈−〉Y)),

where φOK =
"

f∈FR\Obs
∀x.f (x) ≡ ϕf (x) ∧ turnEnv ∧ (finalEnv ⊃ finalCtrl), with

ϕf (x) being the situation-suppressed version of ϕf (x, sF). Notice that fluents in the la-
beling preserve the same names as in DF and DR, thus the situation-suppressed version
of ϕf is defined over T ’s vocabulary σ. Intuitively, φOK holds in those states q of T
where: (i) the interpretation of every fluent f ∈ FR \ Obs in the labeling of q matches

32

the interpretation of the corresponding formula ϕf over the same labeling; (ii) it is EN-
VIRONMENT’s turn; and (iii) if the recipe may terminate so can the facility. The formula
ΦReal is true in all those states from which CONTROLLER can force the game to visit
infinitely many times a state where φOK holds, no matter how ENVIRONMENT moves in
its turns. ΦReal also requires that CONTROLLER does not pass the turn until φOK holds.
The set Win(ΦReal) of winning states is the set of states where ΦReal holds.

Theorem 1. Given a facility Fac = 〈DR,DF, δ
0
F
,Maps〉, a recipe δ0

R
over DR is real-

izable by the facility process δ0
F

iff q0 ∈ Win(ΦReal).

Proof. For the If-part, assume that q0 = 〈ENV, δ0
R
, S0

R
, δ0

F
, S0

F
, %〉 ∈ Win(ΦReal). We

prove that there exists a realizability relation R such that 〈δ0
R
, S0

R
〉R〈δ0

F
, S0

F
〉. Since

q0 ∈ Win(ΦReal), for each possible ENVIRONMENT move q0 → q1, CONTROLLER has a
sequence of (legal) moves that take the GA T from q1 to a state q such that q |= φOK,
and from which, for all possible ENVIRONMENT moves, CONTROLLER has a sequence
of moves that take T to a state q′ such that q′ |= φOK, and so on forever. In other
words, whenever ENVIRONMENT moves, CONTROLLER can force the game to achieve a
state where φOK holds. Notice that φOK implies that ENVIRONMENT is to move. By con-
sidering all possible ENVIRONMENT moves at each such state and, for each of them, a
suitable CONTROLLER response sequence, we obtain a tree whose root is q0, and where
branches occur only at states where φOK holds, each corresponding to a possible EN-
VIRONMENT move. These infinite paths q0q1 · · · correspond to plays of T and contain
infinitely many states q = 〈ENV, δR, sR, δF, sF, δ〉 such that q |= φOK. For each path and
each such state, we let 〈δR, sR〉R〈δF, sF〉. Obviously, 〈δ0

R
, S0

R
〉R〈δ0

F
, S0

F
〉.

To see that R is a realizability relation, consider an arbitrary pair of configurations
from R, 〈δR, sR〉 and 〈δF, sF〉. By the definition of R, there exists a path q0 · · · qi · · ·
containing a state qi = 〈ENV, δi

R
, si

R
, δi

F
, si

F
, δi〉, such that qi |= φOK, and δi

R
= δR,

si
R
= sR, δi

F
= δF, si

F
= sF.

It is easy to see that the definition of R above satisfies requirements r0 and r1 of the
realizability relation (p. 25). Indeed, these are consequences of the fact that qi |= φOK,
which, in particular, requires that the interpretation of each non-observation fluent f of
DR matches that of ϕf and that finalEnv implies finalCtrl.

For requirement r2, consider an action A(x) legal in 〈δR, sR〉. By the def-
inition of T , and in particular the transition relation, ENVIRONMENT has a
move qi → qi+1, with qi+1 = 〈CTRL, δi+1

R
, si+1

R
, δi+1

F
, si+1

F
, δi+1〉, where:

Trans(δi
R
, si

R
, δi+1

R
, si+1

R
); si+1

R
= do(A(x, S0

F
), si

R
); δi+1

F
= δi

F
; si+1

F
= si

F
;

and δi+1 = δA(x). Thus, the sequence of states q0 · · · qiqi+1 is a path of the
game and, since q0 ∈ Win(ΦReal), CONTROLLER has a sequence of moves that
extends the path with states qi+2 · · · qi+ℓ, where qi+ℓ |= φOK. Let qi+j =

〈ϑi+j , δi+j
R

, si+j
R

, δi+j
F

, si+j
F

, δi+j〉 (j = 2, . . . , ℓ). By the definition of T , we have
that: δi+j

R
= δi+1

R
; si+j

R
= do(A(x, si+j

F
), si

R
); Trans(δi+j−1

F
, si+j−1

F
, δi+j

F
, si+j

F
); and

Trans(δi+j−1, si+j−1
F

, δi+j , si+j
F

). Moreover, for j = 2, . . . , ℓ − 1, ϑi+j = CTRL,
and ϑi+ℓ = ENV. Thus, since the transition relation of T implies that ϑi+ℓ =
ENV only if Final(δi+ℓ, si+ℓ

F
), we have that Final(δi+ℓ, si+ℓ

F
). By the above, it fol-

lows that: (i) Trans(δR, sR, δ
i+1
R

, do(A(x, S0
F
), sR)); (ii) Trans∗(δF, sF, δ

i+ℓ
F

, si+ℓ
F

); (iii)

33

Do(δA(x), sF, s
i+ℓ
F

); and (iv) 〈δi+ℓ
R

, si+ℓ
R

〉R〈δi+ℓ
F

, si+ℓ
F

〉, since qi+ℓ
|= φOK and by the

definition of R. Since A(x) is generic, requirement r2 easily follows.
For the OnlyIf-part assume a realizability relation R such that 〈δ0

R
, S0

R
〉R〈δ0

F
, S0

F
〉.

Let q0 = 〈ENV, δ0
R
, S0

R
, δ0

F
, S0

F
, δ0〉, with δ0 = %, and consider a legal action A(x)

from 〈δ0
R
, S0

R
〉, together with the mapped program δA(x). Such an action defines

an ENVIRONMENT move q0 → q1 in T , with q1 = 〈CTRL, δ1
R
, s1

R
, δ1

F
, s1

F
, δ1〉, such

that: (i) Trans(δ0
R
, S0

R
, δ1

R
, s1

R
); (ii) s1

R
= do(A(x, S0

F
), S0

R
); (iii) δ1

F
= δ0

F
; (iv) s1

F
=

S0
F

; and (v) δ1 = δA(x). By requirement r2 of R, for each A(x), there exists
a sequence of execution steps for the factory process δF that realizes the mapped
program δA(x). More formally, there exist two sequences 〈δ1

F
, s1

F
〉 · · · 〈δℓ

F
, sℓ

F
〉 and

〈δ1, s1
F
〉 · · · 〈δℓ, sℓ

F
〉 such that: (i) Trans(δi

F
, si

F
, δi+1

F
, si+1

F
) (i = 1, . . . , ℓ − 1); (ii)

Trans(δi, si
F
, δi+1, si+1

F
) (i = 1, . . . , ℓ− 1); and (iii) 〈δ1

R
, do(A(x, sℓ

F
), S0

R
)〉R〈δℓ

F
, sℓ

F
〉.

Using such sequences, we can extend q0q1 to a sequence q0q1 · · · qℓ such that: (i)
for i = 2, . . . , ℓ − 1, qi = 〈CTRL, δ1

R
, do(A(x, si

F
), S0

R
), δi

F
, si

F
, δi〉; and (ii) qℓ =

〈ENV, δ1
R
, do(A(x, sℓ

F
), S0

R
), δℓ

F
, sℓ

F
, δℓ〉. It is easy to check that the path so defined is

indeed a path of T , as it starts in the initial state q0 and is consistent, at every step, with
T ’s transition relation. The labeling of the states in the path can be obtained through
the labeling function previously defined. With respect to this, by requirements r0 and
r1 of R, it follows that qℓ |= φOK.

We have thus shown that for every move ENVIRONMENT can make in the ini-
tial state q0, CONTROLLER has a way to force the game to reach a new state qℓ
such that qℓ |= φOK. In proving this, we have used only the assumption that,
for q0 = 〈ENV, δ0

R
, S0

R
, δ0

F
, S0

F
, δ0〉, 〈δ0

R
, S0

R
〉R〈δ0

F
, S0

F
〉. But then, since for qℓ =

〈ENV, δℓ
R
, sℓ

R
, δℓ

F
, sℓ

F
, δℓ〉 we have that 〈δℓ

R
, sℓ

R
〉R〈δℓ

F
, sℓ

F
〉, we can generalize the argu-

ment above and prove that for every ENVIRONMENT move qℓ → qℓ+1, another state
qℓ+m such that qℓ+m |= φOK exists that can be reached after a suitable sequence of
CONTROLLER moves, and so on forever. This ultimately proves that q0 ∈ Win(ΦReal).□

Although a (possibly transfinite) fixpoint computation based on approximates pro-
vides a way to obtain Win(ΦReal), the number of approximates that we need to com-
pute is bounded (by the size of the GA) only if T is finite. Since, in our case, T can be
infinite, the fixpoint cannot be computed in general. Nonetheless, we show how a con-
troller can be computed when the CONTROLLER player can win the game represented
by T , that is, when it has a winning strategy.

Let T = 〈∆T , Q, q0,→, I〉 be a GA (over a vocabulary σ). A history of T is a
sequence τ = q0 · · · qℓ ∈ Q+ such that, for i ∈ [0, ℓ − 1], qi → qi+1. H denotes the
set of histories of a GA. A CONTROLLER strategy is a function ς : H 4→ Q such that if
ς(q0 · · · qℓ) = q then qℓ |= turnCtrl and qℓ → q. A history τ = q0 · · · qℓ is induced by
a strategy ς if, for every i ∈ [0, ℓ − 1], whenever qi |= turnCtrl, qi+1 = ς(q0 · · · qi).
The strategies of interest are those, called winning, which enforce ΦReal.

Definition 5 (Winning strategy). A strategy ς for player CONTROLLER is said to be
winning for ΦReal if, for every history τ = q0 · · · qℓ induced by ς: qℓ |= turnEnv
implies qℓ |= φOK; and qℓ |= turnCtrl implies that τ can be extended to a history τ ′ =
q0 · · · qℓ · · · qm induced by ς s.t. qm |= φOK and qi |= turnCtrl, for i = ℓ, . . . ,m− 1.

34

Intuitively, a strategy for CONTROLLER is winning for ΦReal if CONTROLLER has
a way to play in its turns such that, no matter how ENVIRONMENT moves in its turns,
the game will end up to a state qm where φOK holds, and from which this property is
preserved.

While, in general, a strategy can prescribe different sequences of moves on his-
tories that end in a same state, when a winning strategy exists, then there exists one
that prescribes the same sequence on such histories. This is because we are essentially
playing a model checking game over GA for a µ-calculus objective, and as a result the
set of winning states does not depend on the history [41]. In what follows, we therefore
focus only on memoryless strategies, i.e., strategies that depend only on the last state of
the history. For this reason, a memoryless strategy ς : H 4→ Q can be represented as a
function ςm : Q 4→ Q, with ς(τ) = ςm(last(τ)), where last(τ) denotes τ ’s last state.

Theorem 2. A controller ρ for δ0
F

that realizes δ0
R

can be obtained from a (memoryless)
winning strategy ς for ΦReal and T .

The controller ρ can be obtained as follows. For every history τ = q0 · · · qℓ−1qℓ
induced by ς , such that qℓ−1 |= φOK (hence, by T ’s transition relation, qℓ |=
turnCtrl, δℓ

F
= δℓ−1

F
, and sℓ

F
= sℓ−1

F
), consider the sequence of states qℓ+1, . . . , qm

obtained by iteratively applying ς , starting from τ , i.e., qℓ+1 = ς(q0 · · · qℓ),
qℓ+2 = ς(q0 · · · qℓqℓ+1), and so on, until a state qm such that qm |= φOK is ob-
tained. Let qi = 〈ϑi, δi

R
, si

R
, δi

F
, si

F
, δi〉 and consider the action A(x) associated

with the concrete program δℓ. We then define ρ(〈δℓ−1
R

, sℓ−1
R

〉, 〈δℓ
F
, sℓ

F
〉,A(x), δℓ

R
) :=

〈δℓ+1
F

, sℓ+1
F

〉 · · · 〈δm
F
, sm

F
〉.

It remains to establish how, and when, a memoryless winning strategy can be com-
puted. Note that, as Q may be infinite, this may not be possible in general.

8. Bounded Case: Decidable Synthesis

ad, showing that a controller that realizes δ0
R

can be effectively computed.
As a preliminary step, we study the problem of computing the winning set

Win(ΦReal) and a corresponding strategy for CONTROLLER on a generic GA defined
over the same vocabulary σ as that of the induced GA, but with a finite set of states Q.
This is a crucial step as we will reduce the problem of computing a controller for δ0

F

that realizes δ0
R

to that of computing Win(ΦReal) and a strategy for CONTROLLER on a
particular finite-state GA over σ. Observe that, in general, the induced GA itself cannot
be finite-state, even if the object domain ∆ is finite: the transition relation essentially
embeds, through D

Maps
R

, the infinitely many situations of DR and DF, thus yielding an
infinite set of states.

On a finite-state GA T , it is well known that µ-calculus fixpoints can be computed
by iterative approximations (e.g., [41]). For a formula Φ = νX.Ψ(X), one starts with
the initial approximate X0 = Q and then iteratively computes Xi = (Φ)Tv[X/Xi+1]

, un-
til the fixpoint is reached, i.e., Xn = Xn−1. This is the desired fixpoint, i.e., (Φ)T = Xn

(the SO assignment v is omitted as irrelevant). For formulas Φ = µX.Ψ(X), the
same procedure can be used, but starting with the approximate X0 = ∅. The winning
set Win(ΦReal) can thus be obtained by applying such procedures to the formula

35

ΦReal = νX.µY.((φOK ∧ [−]X) ∨ (turnCtrl ∧ 〈−〉Y)). During the computation, the
following approximates are produced, which can be used to build the controller:

Xi = Y(i−1)n(i−1)
(initially, X0 = Q)

Yi0 = ∅
· · ·

Yij = ((φOK ∧ [−]X) ∨ (turnCtrl ∧ 〈−〉Y))Tv[X/Xi,Y/Yi(j−1)]

· · ·

Xi+1 = Yini (for ni the smallest index such that Yini = Yi(ni+1))
· · ·

Xk = Yknk
(for k the smallest index such that Xk = Xk+1)

The greatest fixpoint Win(ΦReal) = Xk = Yknk
is reached after computing a finite

number k of approximates Xi, each requiring, in turn, to compute a finite number ni

of approximates Yij . Intuitively, Yij contains all those states q ∈ Q such that either:

1. q |= φOK and no matter how ENVIRONMENT moves from q (remember φOK implies
turnEnv), a state q′ ∈ Xi is reached after the move (first disjunct of ΦReal); or

2. q |= turnCtrl and CONTROLLER can force the game to reach, in m < j consecu-
tive moves (and keeping the turn), a state q′ ∈ Q that satisfies property 1 (second
disjunct of ΦReal); in general, q may belong to many approximates Ykj′ , even
with j′ < j.

(Recall that turnCtrl and turnEnv are mutually exclusive in T , thus so are the
above properties.) Notice that, since Win(ΦReal) = Xk = Yknk

, every state of
Win(ΦReal) fulfills either 1 or 2, for i = k and j = nk. In other words, for every
state q ∈ Win(ΦReal), if it is ENVIRONMENT’s turn, no matter how ENVIRONMENT

moves, CONTROLLER can force the game to reach, in a number m < nk of consec-
utive moves, a state q′ ∈ Win(ΦReal) such that φOK holds and from which a new state
q′′ ∈ Win(ΦReal) where the same holds can be forced again, and so on and so forth.
It is then easy to see that if q0 ∈ Win(ΦReal), CONTROLLER has a winning strategy for
ΦReal on T . We now discuss how one such strategy can be obtained.

Given a state q ∈ Win(ΦReal), we define ςm(q). By construction of Win(ΦReal),
either 1 or 2 holds, for i = k and j = nk. In the former case, we leave ςm(q) undefined,
as q |= turnEnv. In the latter case, instead, q |= turnCtrl, thus ςm(q) must be defined.
Since q ∈ Win(ΦReal) = Yknk

, CONTROLLER can force the game, in m < nk moves,
to a state where 1 holds. Then, there must exist a transition q → q′ such that q′ ∈ Ykm

(i.e., from q′, CONTROLLER can force property 1 in m − 1 moves). In other words, q′

is one step “closer” to property 1. Thus, by defining ςm(q) = q′ for one such q′, we
guarantee progressing towards, and eventually achieve, property 1.

It remains to show how the desired q′ can be selected. Indeed, from q, many possible
CONTROLLER moves, i.e., successor states q′ of q, are available, but only some of them
progress towards 1. The question is then how to select one of them. To address this,
during the fixpoint computation, we label each state q ∈ Win(ΦReal) with its “distance
from property 1”, i.e., with the minimum number of moves CONTROLLER requires to
force 1. To do this, we proceed as follows:

36

• when a new approximate Yi0 is initialized, all labels are removed;

• when an unlabelled state q enters an approximate Yij with j > 0, then we label
q with j − 1.

Obviously, when the fixpoint is obtained, all states are left with the labeling de-
fined during the last approximate computation. Property 1 and 2 guarantee that the
so-obtained labeling corresponds to the distance of each state from property 1. Thus,
given q, we can define ςm(q) = q′, for q′ any state with minimal labeling among those
such that q → q′. Thus, for a finite-state GA, we have a technique to actually build a
winning controller strategy. This will be useful later on.

Now, we relax the state-finiteness assumption and consider an induced, infinite-
state, GA T . In this case, constructing a controller is not possible in general. We show,
however, how this can be done when the information kept in each state of the GA is
“bounded” ([42]). Informally, a GA is state-bounded if all of its states are labelled
by interpretations containing only a bounded number of objects (or, equivalently, a
bounded number of distinct tuples). That is, in every state, the number of objects in the
interpretation of all fluents is bounded by a given bound. We recall the corresponding
formal definition below. Given a FO interpretation I, the active domain of I is the set
adom(I) of all the objects that occur in the interpretation of some fluent in I.

Definition 6 (State-boundedness). A GA T = 〈∆T , Q, q0,→, I〉 is said to be state-
bounded by b ∈ N if |adom(I(q))| ≤ b, for every q ∈ Q. T is said to be state-bounded
if it is state-bounded by b, for some b. "

We can show that the induced GA T is state-bounded whenever DF and DR are
“bounded”, in the sense of the following definitions.

Following [18], for b ∈ N and a fluent f , we can write a FO formula Boundedf ,b(s),
to express that fluent f contains fewer than b distinct tuples at situation s. We then say
that f is bounded by b in situation s (of a BAT D), if D |= Boundedf ,b(s).

Definition 7 (Bounded BAT [18]). Let Boundedb(s)
.
=

"
f∈F Boundedf ,b(s). An

action theory D is bounded if there exists b ∈ N such that:

D |= ∀s.Executable(s) ⊃ Boundedb(s). "

Intuitively, the definition requires that the number of objects contained in the inter-
pretation of the fluents at situation s be less than some b ∈ N.

We generalize the notion of boundedness to BAT−s. In order to do this, we need
to specifically handle observations, which are not constrained in any way in BAT−s.
The actual property of interest is whether a BAT− is bounded “provided its observa-
tions are”. This assumption can be captured by the FO formula BoundedObs

b (s)
.
="

f∈Obs
Boundedf ,b(s), which expresses that, at situation s, the interpretations of all

observations contain fewer than b distinct objects.

Definition 8 (Bounded BAT− modulo observations). A BAT−
D is bounded mod-

ulo observations if there exist b, b′ ∈ N such that:

D |= ∀s.(Executable(s) ∧BoundedObs

b′ (s)) ⊃ Boundedb(s). "

37

Observe that Definition 8 generalizes 7: if D contains no observations, the former triv-
ially reduces to the latter. For simplicity, when no ambiguity arises, we refer to BAT−s
which are bounded modulo observations simply as “bounded”.

We can now prove state-boundedness for every GA induced by a facility that in-
cludes a bounded DF and a bounded DR.

Theorem 3. If a facility Fac = 〈DR,DF, δ
0
F
,Maps〉 is such that DR is bounded (mod-

ulo observations) and DF is bounded, then for any recipe δ0
R

the induced GA T is
state-bounded.

Proof. First observe that, by the definition of T ’s transition relation, all DR and DF

situations, respectively sR and sF, occurring in each state q of T are executable. Thus,
because DF is bounded by hypothesis, so are all of its fluents at every such sF. Consider
a fluent f ∈ FF. By the labeling function, we have that f I(q)(x) iff DMaps

R
|= f (x, sF),

thus, by DF’s boundedness, it follows that f I(q) contains a bounded number of distinct
tuples; to express this, we simply say that f I(q) is bounded. Similarly, for fluents f ∈
Obs, since f I(q)(x) iff DMaps

R
|= ϕf (x, sF), because ϕf (x, sF) is domain-independent,

DF bounded, and sF executable, f I(q) is bounded.
For fluents f ∈ FR \ Obs, by the labeling function, we have that

f I(q)(x) iff DMaps
R

|= f (x, sR). Boundedness of f I(q) follows from boundedness mod-
ulo observations of the BAT−

DR and executability of sF and sR. Indeed, by state-
boundedness of DF and executability of sF, all observation fluents in D

Maps
R

are
bounded at situation sF (regardless of sR). But then, for such sF, by boundedness mod-
ulo observations of DR and executability of sR, it follows that all non-observation flu-
ents of DMaps

R
are bounded at situations sF and sR.

Finally, it is immediate to see that all other fluents in the labeling are bounded, as
being either propositions or singletons. □

Infinite, state-bounded GAs are the norm when BATs are used to model manufac-
turing facilities. Typically, fresh parts arrive continuously in a facility for processing.
This yields, in general, an infinite number of distinct states (if we consider the parts
currently processed as part of the state). However, when resources have bounded ca-
pacity, a recipe operates on finitely many parts at a time, and requires only finitely
many operations, thus the number of objects processed at any point in time does not
exceed the capacity bound. As an example of state-bounded BAT, consider the running
example of previous sections. Note that fluents such as part(part, s), at(part, i, s), or
material(part,m, s), disappear from the extension as soon as the part in question is
stored away, i.e., it exits the cell through an action OUT CELL. This reflects the fact that,
once processed, a part is no longer involved in the process and all the corresponding
information can be safely forgotten. In other words, the fluents carrying information
about a given part eventually disappear and do not “accumulate”. Thus, since only a
bounded number of parts are processed at a time and since the information about each
of these is bounded, it follows that, at any situation, the corresponding interpretation
contains only a bounded number of facts, i.e., a bounded number of objects. This im-
plies a state-bounded induced GA.

Later, we will prove that the induced GA T is also “generic”, a notion which in-
tuitively captures that T ’s transitions do not depend on the actual objects contained in

38

the labeling of the relevant states (apart from finitely many active constants) but only
on the mutual relationships among objects. This notion is formally stated as follows.

Given two FO interpretations I, I ′ ∈ I
F,K
∆ , an isomorphism h between I and I

′ is
a function h : ∆ 4→ ∆ such that (i) for every fluent f ∈ F, h(y) ∈ f I if and only if
y ∈ f I

′
and (ii) for every active constant k ∈ K, kI = h(kI

′
) = k. We say that I and

I
′ are isomorphic (under h), written I ∼h I

′, if there exists an isomorphism h between
I and I

′. Intuitively, I and I
′ are isomorphic if they are the same interpretation modulo

an object renaming that preserves the identity of active constants.

Definition 9 (Genericity). A GA T = 〈∆T , Q, q0,→, I〉 is said to be generic if: for
every q1, q

′
1, q2 ∈ Q and every function h : ∆T 4→ ∆T such that I(q1) ∼h I(q2), if

q1 → q′1, then there exists q′2 ∈ Q such that q2 → q′2 and I(q′1) ∼h I(q′2).

Intuitively, this says that a GA T is generic if, whenever two states are isomorphic
under h, they yield the same transitions modulo the same object renaming prescribed
by h. Differently put, a GA is generic if states that are identical modulo object renaming
are involved in exactly the same transitions (still modulo object renaming).

We thus have that T is generic (proven later), and that if DR and DF are bounded,
then T is state-bounded. This allows the application of the results in [42, 35] which, in
turn, allow us to prove the following central result:

Theorem 4. Given a facility Fac = 〈DR,DF, δ
0
F
,Maps〉 such that DR and DF are

bounded, and a recipe δ0
R

that is realizable by Fac, there exists a controller for δ0
F

that
realizes δ0

R
and is effectively computable.

In the next two sections we prove this theorem and show how to actually build and
execute a controller.

9. Verifying Realizability for the Bounded Case

In [35] (see Theorems 5 and 6 therein), the problem of checking whether a Transi-
tion System that is state-bounded and generic satisfies a formula Φ was proven decid-
able for Φ belonging to µLp. In the context of this paper, a corresponding result can be
formally stated as follows (recall that µLc is a sub-language of µLp):

Theorem 5. Given a generic, state-bounded GA T , there exists a finite-state GA T̄

such that, for every µLc formula Φ, T |= Φ iff T̄ |= Φ.

When it exists, we call such a T̄ a faithful abstraction of T . The theorem says that if
state-boundedness and genericity hold for T then one can check whether it satisfies Φ
by simply checking whether (one of) its faithful abstraction(s) T̄ satisfies it.

In this section we prove Theorem 4. To this end, we first prove in Section 9.1 that
the induced GA T is generic. This, together with Theorem 3, enables the application
of Theorem 5 to T (under the assumption that DF is bounded), which, in turn, implies
the existence of a faithful abstraction T̄ . Then, in Section 9.2 we prove that:

Theorem 6. There exists a strategy ς on T for player CONTROLLER if and only if a
winning strategy ς̄ exists on a faithful abstraction T̄ of T .

39

Finally, in Section 10 we show how a controller for T can be extracted from ς̄ .
Together, these results guarantee that (i) there exists a finite GA T̄ that is a faithful

abstraction of T and that (ii) a controller for T can be effectively extracted from T̄ .
From these, Theorem 4 follows (as the results hold also for memoryless strategies).

9.1. Faithful abstraction
We start by proving the following result.

Lemma 1. The GA T induced by a facility Fac = 〈DR,DF, δ
0
F
,Maps〉 and a recipe

δ0
R

is generic.

Proof. Consider three states q1, q
′
1, q2 ∈ Q of T such that q1 → q′1 and I(q1) ∼h

I(q2), for some isomorphism h : ∆T 4→ ∆T . Let qi = 〈ϑi, δi
R
, si

R
, δi

F
, si

F
, δi〉 (possibly

primed). Since I(q1) ∼h I(q2), the interpretations of pcR at q1 and q2 match, i.e.,
pcRI(q1) = pcRI(q2) (recall that program counters act as active constants, thus h is the
identity on them) and the interpretations of envR at the same states are the same modulo
the object renaming defined by h (modulo h-renaming, for short). Thus, by considering
the relationship established by the labeling function between state components and
state labeling, we have that δ1

R
and δ2

R
have the same program counter but environments

that are isomorphic under h. By the same argument, the above also holds for pcF,
envF, pcA, and envA. Thus, δ1

F
and δ2

F
are the same program modulo h-renaming of

their respective environments, and δ1 and δ2 are the same program modulo h-renaming
of their respective environments. For the same reason, we have that: Final(δ1

R
, s1

R
) iff

Final(δ2
R
, s2

R
), Final(δ1

F
, s1

F
) iff Final(δ2

F
, s2

F
), and Final(δ1, s1

F
) iff Final(δ2, s2

F
). In a

similar way, we can prove that ϑ1 = ϑ2, i.e., the same player is to move at q1 and q2.
Now, observe that, by the definition of T ’s labeling function, the interpretation of

the fluents associated with a game state qi is essentially that given by D
Maps
R

at its
(combined) situations si

F
and si

R
. Therefore, an action A(x, sF) is legal for 〈δ1

R
, s1

R
〉

iff action A(h(x), sF) is legal for 〈δ2
R
, s2

R
〉, and, similarly, an action A(x) is legal for

〈δ1
F
, s1

F
〉 and 〈δ1, s1

F
〉 iff A(h(x)) is such for 〈δ2

F
, s2

F
〉 and 〈δ2, s2

F
〉. Consequently, by

the definition of T ’s transition relation, since q1 → q′1, there must exist a state q′2
such that q2 → q′2. The fact that I(q′1) ∼h I(q′2) is a consequence of the fact that:
(i) I(q1) ∼h I(q2), i.e., q1 and q2 have the same labeling modulo h-renaming; (ii)
the moves q1 → q′1 and q2 → q′2 are defined by the same action, modulo h-renaming,
respectively A(x, sF) and A(h(x), sF), if ϑ1 = ϑ2 = ENV, and A(x) and A(h(x)),
if ϑ1 = ϑ2 = CTRL; (iii) Successor-state axioms are FO formulas, which are invariant
to isomorphisms, modulo the object renaming defined by the isomorphism itself. Thus
move q2 → q′2 is the same as q1 → q′1, modulo h-renaming, by which it follows that
I(q′1) ∼h I(q′2). □

We now address the issue of computing a finite, faithful abstraction of T .

Lemma 2. If a GA T is generic and state-bounded, then a finite, faithful abstraction
T̄ of T is effectively computable.

Proof. Existence of T̄ is an immediate application to T of Theorem 17 in [35]. Effec-
tive computability and finiteness follow from the proof of the same theorem, once we

40

observe that: (i) since T is state-bounded, the successor state q′ of a generic state q is
computable, hence we do not need to construct T explicitly to build its finite abstrac-
tion; (ii) state-boundedness of T implies that checking whether two interpretations are
isomorphic is decidable; and (iii) there exist only finitely many equivalence classes of
isomorphic interpretations, thus only finitely many equivalent states. Based on these
observations the definitions used by the proof to build the abstraction are operational,
thus enabling effective construction of T̄ . □

Intuitively, T̄ is a GA obtained from T by collapsing the classes of states hav-
ing isomorphic interpretations into one representative state, and by adding a transition
from one class q to another class q′ iff there exists one transition between the chosen
representatives in T (this, by generality, implies that all states in q have a transition
to some state in q′). In this paper we do not describe how to obtain this abstraction,
but refer the reader to the procedure illustrated in [35]. The procedure is applicable to
generic transition systems with first-order state representations, of which induced GAs
are instances. In our setting, the procedure requires that the transition function of T
is computable and that the existence of an isomorphism between states is decidable,
which is indeed the case, as discussed in the proof of Lemma 2. Theorem 5 comes as a
direct consequence of Lemma 2.

The resulting GA is T̄ = 〈∆̄T , Q̄, q0, →̄, Ī〉, where ∆̄, Q̄, and →̄ are finite subsets
of their counterparts in T , and Ī is the projection of I over Q̄, with ∆T replaced by
∆̄T . Notice that T and T̄ share the same set F of fluents.

We conclude this section by characterizing the relationship between T and T̄ ,
which will be needed when computing executable strategies for T from those for
T̄ . This result relies on a variant of the well-known notion of bisimulation, called
persistence-preserving bisimulation, or p-bisimulation for short, defined in [35].

We adapt p-bisimulation to GAs. The notion is defined co-inductively over triples
〈q1, h, q2〉, where q1 and q2 are states of two GAs and h ∈ H is an isomorphism be-
tween their interpretations which, differently from the case of bisimulation, is restricted
to the active domains [18].

Definition 10 (p-bisimulation). A relation β ⊆ Q1 × H × Q2 is a p-bisimulation
between two GAs T1 and T2 if 〈q1, h, q2〉 ∈ β implies that:

(i) q1 and q2 have isomorphic fluent extensions, according to h : adom(I1(q1)) 4→
adom(I2(q2)) (objects not occurring in fluent extensions are neglected). We de-
note this by writing Ĩ1(q1) ∼h Ĩ2(q2);

(ii) for every successor q′1 of q1 there exists a successor q′2 of q2 and a bijection
b : adom(I1(q1)) ∪ adom(I1(q

′
1)) 4→ adom(I2(q2)) ∪ adom(I2(q

′
2)) that ex-

tends h to adom(I1(q
′
1)) such that, for the restriction h′ of b to adom(I2(q

′
2)),

〈q′1, h′, q′2〉 is in β;

(iii) the analogue of (ii) holds for every successor q′2 of q2. "

This property intuitively captures the fact that two states of two GAs T1 and T2 are
persistence-preserving bisimilar if there is an isomorphism between them that can be

41

extended in successor states, while preserving bisimulation. In other words, the identity
of objects is preserved as long as they persist in the active domain or if they have just
disappeared from it. Two GAs are p-bisimilar if their respective initial states are in some
p-bisimulation. Since from [35] we have that every transition system is p-bisimilar to
its faithful abstractions, then we directly have that:

Lemma 3. T is p-bisimilar to T̄ .

The notion of p-bisimilarity will be essential to relate (winning) strategies for T̄ to
those of the infinite-state T . This will allow us to prove Theorem 6, in the next section.

9.2. Strategy existence
In this section we address Theorem 6, namely showing that there exists a strategy

ς on T for player CONTROLLER iff a winning strategy ς̄ exists on T̄ , relying on the
notion of p-bisimilarity introduced above. First, we need a way to relate the strategies
of two different GAs, and in particular two that are p-bisimilar. This is done through
the following definition, which we will then apply to T and T̄ .

Definition 11 (p-bisimilar strategy transformation). Consider two GAs T and T
′

that are p-bisimilar, and let ς be a CONTROLLER strategy for T . A strategy ς ′ for T ′

is said to be a p-bisimilar transformation of ς to T , if there exists a p-bisimulation
β such that for every history τ = q0 · · · qℓ of T induced by ς , there exists a history
τ ′ = q′0 · · · q

′
ℓ of T ′ induced by ς ′ and a sequence of bijections hi : adom(I(qi)) →

adom(I(q′i)), with i ∈ [0, ℓ], such that for every i:

• 〈qi, hi, q
′
i〉 ∈ β and

• if I(qi) ∼hi I
′(q′i) and I(qi+1) ∼hi+1 I

′(q′i+1) then there exists a bijection
b : adom(I(qi)) ∪ adom(I(qi+1)) → adom(I(q′i)) ∪ adom(I(q′i+1)) so that
hi = b |adom(I(qi)) and hi+1 = b |adom(I(qi+1)).

1 We call the isomorphism hi+1

the update of hi with respect to qi+1 and q′i+1.

For p-bisimilar GAs, the following result holds.

Theorem 7. If two GAs T and T
′ are p-bisimilar then there exists a CONTROLLER

strategy ς on T iff there exists a CONTROLLER strategy ς ′ on T
′ that is a p-bisimilar

transformation of ς .

Proof. By p-bisimilarity, there exists a bisimulation β such that for every history τ =
q0 · · · qℓ of T induced by ς , there exists a history τ ′ = q′0 · · · q

′
ℓ of T ′ that fulfills the

requirement of τ ′ in Definition 11. For the if-part, we define ς ′ as ς ′(q′0 · · · q
′
ℓ−1) = q′ℓ,

for every history q0 · · · qℓ−1qℓ of T induced by ς , such that qℓ−1 |= turnCtrl. The
only-if part is analogous. □

In particular, the result holds for memoryless, winning strategies as well (as re-
quired by Theorem 2). Hence, by Lemma 3, Theorem 6 follows by applying the theo-
rem above with T

′ replaced by T̄ .

1
The symbol | denotes projection.

42

10. Computing and Executing the Controller for the Bounded Case

Theorem 6 and Theorem 2 provide with a constructive way of transforming a mem-
oryless winning strategy ς̄m for ΦReal (cf. Section 7.1) and T̄ into an actual controller
for δ0

R
that realizes δ0

F
.

Specifically, we follow the construction of Definition 11, thanks to Theorem 7. To
do so, we need to relate the states of a history τ̄ of T̄ to those of a history τ of T ,
by applying the isomorphisms that preserve the identity of the objects that persist and
of those that have just disappeared from the active domain. While the existence of a
p-bisimulation β between T and T̄ is guaranteed by Lemma 3, we cannot represent it
explicitly (T is infinite): the sequence of isomorphisms must be computed on the fly.

T̄ q̄0 q̄1 q̄2 q̄3 · · ·

T q0

ENV

q1

CTRL

q2

CTRL

q3

ENV

· · ·

h0 h1 h2 h3

A(x) B(y) C(z)

ς̄m(q̄1) = q̄2 ς̄m(q̄2) = q̄3

Figure 5: Executing a winning strategy ς̄m for the faithful abstraction T̄ on the original GA T . Crucially,

this approach does not require one to explicitly compute T .

The procedure works as depicted in Figure 5. Initially, both T and T̄ are in their
initial state (q0 = q̄0) and h0 is the identity function. Then, since q0 |= turnEnv and it
is the turn of ENVIRONMENT, for any state q1 in T such that q0 → q1 (for some action
A(x) in the recipe), we select an isomorphic state q̄1 in T̄ such that q1 ∼h1 q̄1, where
h1 is the update of h0 with respect to q1 and q̄1 as in Definition 11. After this (it is now
the turn of CONTROLLER), assume q̄2 = ς̄m(q̄1) is the state selected by the strategy on
the abstraction T̄ . We then select a state q2 such that q2 ∼h2 q̄2, which gives us the
move q2 = ςm(q1) on T . In the inductive step, assume that τ̄ = q̄0 . . . q̄ℓ−1, with τ =
q0 . . . qℓ−1, is the bisimilar history on T computed so far, with last(τ) |= turnCtrl. Let
q̄ℓ = ς̄m(q̄ℓ−1). We proceed in the same way and obtain the move qℓ = ςm(qℓ−1) on T ,
with qℓ ∼hℓ

q̄ℓ, and so on. In Figure 5, B(y) and C(z) are the two compound actions
which constitute a possible, complete execution of the program δA(x) to which the
action A(x) is mapped. In q3 the turn is given back to ENVIRONMENT since q3 |= φOK.

Following the same reasoning, we can define this as a procedure which construc-
tively computes and executes on-the-fly a controller returning the sequence of moves in
T which correspond to the implementation of the last move of ENVIRONMENT, given a
winning CONTROLLER strategy ς̄ for T̄ . The procedure is given as Algorithm 1, which is
initially called for q̄ = q = q0 and with h initialized as the identity function. Note that
the procedure computes the next compound action to execute on the fly, by restricting
only to the execution of the GA T that is being determined at runtime.

For simplicity, differently from the formal definition of controller (but consistent
with the notion of memoryless strategies), the procedure returns, at each step, a sin-
gle compound action to be executed in the facility rather than returning a complete

43

Algorithm 1 execute controller(T̄ , ς̄m, q̄, q, h)

1: let q = 〈·, δR, sR, δF, sF, ·〉 – we use · for don’t care elements
2: if q |= φOK then
3: let q′ = 〈turnCtrl, δ′

R
, s′

R
, δ′

F
, s′

F
, ·〉 be the state of T selected by the

ENVIRONMENT, with q → q′. This corresponds to some recipe action
A(x, S0

F
) such that s′

R
= do(A(x, S0

F
), sR)

4: let q̄′ be a state of T̄ , with q̄ → q̄′, that is isomorphic to q′, i.e.,
such that q′ ∼h′ q̄′, for h′ the update of h w.r.t. q′ and q̄′.

5: else
6: let q̄′ = ς̄m(q̄) be the state of T̄ selected by the winning strategy;
7: let q′ = 〈·, δ′

R
, s′

R
, δ′

F
, s′

F
, ·〉 in T be such that q → q′ and q′ ∼h′ q̄′,

for h′ the update of h w.r.t. q′ and q̄′;
8: execute the action B(y) on T , so that s′

F
= do(B(y), sF);

9: end if
10: if q′ ∕|= φOK ∧ finalEnv then
11: execute controller(T̄ , ς̄m, q̄′, q′, h′)
12: end if

sequence of actions. Indeed, according to Definition 2, a controller for δ0
F

that realizes
δ0

R
is a function ρ : Cδ0R

× Cδ0F
× Cδ0R

4→ C∗
δ0F

which, given the current configurations
of the recipe and facility together with a new selected configuration for the recipe, re-
turns a sequence of new configurations for the facility. This sequence, in turn, identifies
the sequence of compound actions to execute. It is however possible to reconstruct the
function ρ from the execution of Algorithm 1: given q at line 1, which specifies the
current configuration 〈δR, sR〉 of the recipe and the current configuration 〈δF, sF〉 the
facility process, given then a new configuration 〈δ′

R
, s′

R
〉 for the recipe as in line 3, then

ρ(〈δR, sR〉, 〈δF, sF〉, 〈δ′R, s′R〉) is defined as the sequence of configurations 〈δ′
F
, s′

F
〉 of

the facility process as in line 7, computed by the iterative execution of the procedure,
until a new state q such that q |= φOK is reached (i.e., then the turn is given back to the
ENVIRONMENT player in the GA T).

Example 5 (A controller for the running example). The controller for the facility
process δ0

F
described in Section 5 that realizes the recipe δ0

R
in Example 4, corre-

sponding to a possible winning strategy for player CONTROLLER, is depicted graph-
ically in Figure 6. For brevity, let us refer to 〈Di, δi〉, with i ∈ {1, . . . , n}, by
Ri. We now show how to execute this controller: at the beginning, the recipe
can only execute action LOAD(f, 4, steel, 810, 756, 29). In response, the controller
prescribes the execution of two compound actions. With the first, resource R3

equips an end effector in order to prepare the loading of the part b into the
cell (recall that b denotes a partID), while all other resources remain idle. The
compound action is {NOP, NOP, EQUIP(gripper, 3), NOP, NOP}. With the second,
R3 loads the part while other resources remain idle: the compound action is
{NOP, NOP, IN CELL(f, 4, steel, 810, 756, 29, 3), NOP, NOP}. At this point, two alterna-
tives are possible for the recipe: the next instruction is LOAD(b, 2, steel, 312, 23, 20) #
DRILL(f, .3, 200, 123, 89, 21), that is, the recipe can either first load part b or first drill a

44

· · ·

LOAD(f, 4, steel, 810, 756, 29) {EQUIP(gripper, 3)} {IN CELL(f, 4, steel, 810, 756, 29, 3)}

LOAD(b, 2, steel, 312, 23, 20){IN(f, 2), OUT(f, 3)}{EQUIP(driller, 1), UNEQUIP(3)}

{IN CELL(b, 2, steel, 312, 23, 20, 5)}

DRILL(f, .3, 200, 123, 89, 21)

{SET BIT(bit #7, drill, .3, 1), EQUIP(pressure hollow, 3)}

{ROBOT DRILL(f, bit #7, .3, 200, 12, 123, 89, 21, 1),
HOLD IN PLACE(fb, 3k, 2), PRESSURE(fb, 2k, flat, 3)}

DRILL(f, .3, 200, 123, 89, 21)

{IN(f, 2), OUT(f, 3)}

{EQUIP(driller, 1), UNEQUIP(3)}

{SET BIT(bit #7, drill, .3, 1), EQUIP(pressure hollow, 3)}

{ROBOT DRILL(f, bit #7, .3, 200, 12, 123, 89, 21, 1),
HOLD IN PLACE(fb, 3k, 2), PRESSURE(fb, 2k, hollow, 3)}

LOAD(b, 2, steel, 312, 23, 20){IN CELL(b, 2, steel, 312, 23, 20, 5)}
APPLY GLUE(b, str adh)

{SAFETY SWITCH(on, 5)} {ENTER(5)} {SPRAY GLUE(f, glue #36, 5)}

Figure 6: A fragment of a possible controller for δ0F that realizes δ0R as in the running example, represented as

a control structure in which double-circled control states correspond to states q of T such that q |= φOK , i.e.,

it is the turn of player ENVIRONMENT. Dashed transitions from these control states are labelled with the

next action of the recipe, and the rest with compound actions for the facility process (we do not include NOP
actions for brevity). Each control state is associated to configurations of δ0F and δ0R , indicating their current

program and situation, but these are not shown for brevity.

hole in f. As shown in Figure 6, in the former case this controller first makes it so that
f is moved from R3 to R2, then R3 detaches the gripper while R1 equips a drilling
end effector to prepare for the next recipe request, and finally R5 (the human operator)
is instructed to fetch part b (without entering the cell). In the latter case, after the same
preparatory steps, R1 sets the correct drill bit in the driller while R3 equips a hollow
pressure applicator; then R1 is instructed to perform the drilling of the part f which is
now currently held on R2 (the fixture), while R3 is applying pressure to balance the
drilling force. Note that there are some arguments of these actions that were determined
by the procedure given as Algorithm 1: for instance, the drill bit (bit #7), the feed rate
(12), the glue (glue #36). These arguments corresponded to pick variables (i.e., non-
deterministic choice of arguments) in the programs determined by the mappings Maps .
Thanks to the genericity of the GA, any alternative value which is equivalent modulo
isomorphism could have been selected.

The interaction between the recipe, the controller and the facility program contin-
ues in the same way until the recipe is completed. A possible resulting execution of
this controller, for a possible evolution of recipe δ0

R
, is the following (NOP actions are

omitted):

45

1 : {EQUIP(gripper, 3)}
2 : {IN CELL(f, 4, steel, 810, 756, 29, 3)}
3 : {IN(f, 2), OUT(f, 3)}
4 : {EQUIP(driller, 1), UNEQUIP(3)}
5 : {IN CELL(b, 2, steel, 312, 23, 20, 5)}
6 : {SET BIT(bit #7, drill, .3, 1), EQUIP(pressure hollow, 3)}
7 : {ROBOT DRILL(f, bit #7, .3, 200, 12, 123, 89, 21, 1), HOLD IN PLACE(f, 3k, 2),

PRESSURE(f, 2k, hollow, 3)}
8 : {SAFETY SWITCH(on, 5)}
9 : {ENTER(5)}
10 : {SPRAY GLUE(f, glue #36, 5)}
11 : {POSITION(f, b, fb, 7, 201, 29, 5)}
12 : {EXIT(5)}
13 : {SAFETY SWITCH(off, 5)}
14 : {SET BIT(bit #22, cntr reaming, .3, 1)}
15 : {ROBOT DRILL(fb, bit #22, .3, 123, 89, 21, 1), HOLD IN PLACE(fb, 3k, 2),

PRESSURE(fb, 2k, hollow, 3)}
16 : {UNEQUIP(1), UNEQUIP(3)}
17 : {EQUIP(rivet gun, 1), EQUIP(pressure flat, 3)}
18 : {RIVET(fb, alu rvt .3, 123, 89, 21, 1), HOLD IN PLACE(fb, 2k, 2), PRESSURE(fb, 1k, flat, 3)}
19 : {START COMPRESSOR(1), UNEQUIP(3)}
20 : {UNEQUIP(1), OUT(fb, 2), IN(fb, 3)}
21 : {EQUIP(gripper, 3)}
22 : {OUT CELL(fb, ok, 3)}

This sequence exemplifies a specific execution of the facility in which the second LOAD

operation is executed before DRILL and the test on the observation represented by the
fluent precision is false, i.e., R3 does not have high drilling precision. Counter-reaming
is thus necessary: the situation-independent fluent prec rating(high, 3) is not in DF.

Specifically, the compound actions at lines 1-2 implement the action
LOAD(f, 4, steel, 810, 756, 29) in the recipe; the compound actions in lines 3-
5 implement the action LOAD(b, 2, steel, 312, 23, 20); the compound actions
in lines 6-7 implement DRILL(f, .3, 200, 123, 89, 21); the compound actions
in lines 8-10 implement APPLY GLUE(b, str adh); the compound action in
line 11 implements PLACE(b, f, fb, 7, 201, 29); those in lines 12-15 implement
REAMING(fb, .3, 123, 89, 21); those in lines 16-18 implement RIVET(fb, 123, 89, 21) and
finally the remaining lines implement STORE(fb, ok).

Notice, however, that each of these segments does not exactly correspond to the
mapped program for each action in the recipe: additional low-level operations are added
to take care of movements of parts and other preparatory steps. These are automatically
computed by our procedure. □

11. Conclusions

The ability of manufacturing providers to automatically assess the manufactura-
bility of products and synthesize process plan controllers is essential to realize any
real-world MaaS application. Research in Artificial Intelligence and Computer Science
can be exploited to provide mathematical foundations for the manufacturing concepts

46

and to solve the core challenges of MaaS, as shown by recent efforts in basing MaaS
on fundamental ideas from CS and advancements in AI.

On the one hand, this has allowed previous approaches to formalize the require-
ments and techniques for the automated synthesis of process plan controllers [9, 11,
12, 13, 43, 44] and offer a formal foundation to practical manufacturing approaches
[14, 15, 45]. On the other hand, however, these previous approaches are based on
a propositional description of the states of the devices, workpieces, and processes,
and such representations are too idealized for implementing fully-fledged applications.
While in some simpler scenarios a propositional approach may be sufficient, the result-
ing discretization is unwieldy and unnatural and, more importantly, cannot deal with
potentially unbounded objects. Concrete and realistic approaches for MaaS necessar-
ily require a rich, relational description of states, as well as advanced computational
techniques that are able to manipulate this relational representation: real manufactur-
ing processes depend on the objects and data they produce and consume, which are in
general unbounded.

In this paper, we have addressed these shortcomings and proposed a formal logical
framework that explicitly accounts for this dependency. Our approach offers a “data-
aware” process formalization where data and objects are treated as first-class citizens,
addressing relational representations of the states by relying on the research on rea-
soning about actions in AI. Critically, we did not rely on ad-hoc representations. Our
framework uses Situation Calculus action theories for capturing actions in manufactur-
ing processes, and high-level ConGolog programs over such action theories for captur-
ing the processes defined over these actions. This makes a whole body of related work
readily available to address a number of problems arising in the context of manufactur-
ing systems [46, 47, 48, 49, 50, 51]. In addition, we can leverage the first-order state
representations of action formalisms and the second-order/fixpoint characterization of
state-change provided by programs, giving a formal and declarative representation of
the MaaS manufacturing setting. We have also shown that these techniques are actually
effective, in that they correspond to actual algorithms that allow the extraction of actual
controllers when the objects and data in the resulting Situation Calculus action theories
are never “accumulated” (i.e., state-bounded theories [18]). This is the first decidabil-
ity result for controller synthesis in a relational/first-order state reasoning about actions
settings such as the Situation Calculus.

We have only scratched the surface of what KR formalisms like the Situation Cal-
culus can bring to this new manufacturing paradigm. Our results and constructions
can be applied in other frameworks for reasoning about actions in AI as well as data-
aware/artifact-centric processes frameworks in databases [19, 20, 21]. Furthermore, it
would be interesting to equip resources with autonomous deliberation capabilities [52],
e.g., to react to exogenous events during execution, or to monitor streaming production
data [53], to include an explicit treatment of time and other continuous value quanti-
ties [54], or to consider non-Markovian action theories [55] for manufacturing recipes.
We plan to address these directions as future work. With the theory and framework in
place, a next step is to devise actual tools for the synthesis of manufacturing processes,
that are based on a ConGolog formalization. In this respect, possible approaches to start
from are, e.g., those of [56], based on predicate abstraction, or [57, 58], where verifica-
tion is addressed by resorting to First-Order BDDs, and [59], where (LTL) realizability

47

is addressed by compilation into safety and reachability games.

Acknowledgements

This work was supported by the Unibz CRC project “Data-aware controllers for
Manufacturing” (DACoMan), by the Unibz ID project “Automated Process Planning
in Cyber Physical Production Systems of Smart Factories” (SMART-APP), by the
Unibz RTD project SYNCED, by the EPSRC grants “Evolvable Assembly Systems”
(EP/K018205/1) and “Cloud Manufacturing” (EP/K014161/1), by the Sapienza project
“Data-awaRe Automatic Process Execution” (DRAPE), by the ERC Advanced Grant
WhiteMech (No. 834228) and by the EU ICT-48 2020 project TAILOR (No. 952215).

References

[1] UK Technology Strategy Board, A landscape for the future of high value manu-
facturing in the UK, Tech. rep. (2012).

[2] C. Rhodes, Manufacturing: Statistics and Policy. Briefing Paper, House of Com-
mons Library, 2015.

[3] X. Xu, From cloud computing to cloud manufacturing, Robotics and Computer-
Integrated Manufacturing 28 (1) (2012) 75 – 86.

[4] Y. Lu, X. Xu, J. Xu, Development of a hybrid manufacturing cloud, Journal of
Manufacturing Systems 33 (4) (2014) 551–566.

[5] R. Henzel, G. Herzwurm, Cloud manufacturing: A state-of-the-art survey of cur-
rent issues, Procedia CIRP 72 (2018) 947 – 952, 51st CIRP Conference on Man-
ufacturing Systems.

[6] O. Fisher, N. Watson, L. Porcu, D. Bacon, M. Rigley, R. L. Gomes, Cloud manu-
facturing as a sustainable process manufacturing route, Journal of Manufacturing
Systems 47 (2018) 53 – 68.

[7] M. P. Groover, Automation, production systems, and computer-integrated manu-
facturing, Prentice Hall Press, 2007.

[8] G. De Giacomo, F. Patrizi, S. Sardiña, Automatic behavior composition synthesis,
Artificial Intelligence 196 (2013) 106–142.

[9] L. de Silva, P. Felli, J. C. Chaplin, B. Logan, D. Sanderson, S. Ratchev, Realis-
ability of production recipes, in: Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI-2016), ECCAI, IOS Press, The Hague, The Nether-
lands, 2016, pp. 1449–1457.

[10] P. Felli, B. Logan, S. Sardina, Parallel behavior composition for manufacturing,
in: S. Kambhampati (Ed.), Proceedings of the 25th International Joint Conference
on Artificial Intelligence (IJCAI 2016), 2016, pp. 271–278.

48

[11] P. Felli, L. de Silva, B. Logan, S. M. Ratchev, Process plan controllers for non-
deterministic manufacturing systems, in: Proceedings of the Twenty-Sixth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pp. 1023–1030.

[12] G. De Giacomo, M. Vardi, P. Felli, N. Alechina, B. Logan, Synthesis of orches-
trations of transducers for manufacturing, in: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence (AAAI-18), AAAI Press, New Or-
leans, USA, 2018, pp. 6161–6168.

[13] G. De Giacomo, N. Alechina, T. Brazdil, P. Felli, B. Logan, M. Vardi, Unbounded
orchestrations of transducers for manufacturing, in: Proceedings of the Thirty-
Third AAAI Conference on Artificial Intelligence (AAAI-19), AAAI Press, Hon-
olulu, USA, 2019.

[14] O. J. Bakker, J. C. Chaplin, L. de Silva, P. Felli, D. Sanderson, B. Logan,
S. Ratchev, Toward process control from formal models of transformable man-
ufacturing systems, Procedia CIRP 63 (2017) 521 – 526, manufacturing Systems
4.0 – Proceedings of the 50th CIRP Conference on Manufacturing Systems.

[15] L. de Silva, P. Felli, D. Sanderson, J. C. Chaplin, B. Logan, S. Ratchev, Synthesis-
ing process controllers from formal models of transformable assembly systems,
Robotics and Computer-Integrated Manufacturing 58 (2019) 130 – 144.

[16] M. Grüninger, C. Menzel, The process specification language (PSL) theory and
applications, AI Magazine 24 (2003) 63–74.

[17] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, R. B. Scherl, GOLOG: A logic
programming language for dynamic domains, Journal of Logic Programming 31
(1997) 59–84.

[18] G. De Giacomo, Y. Lespérance, F. Patrizi, Bounded situation calculus action the-
ories, Artif. Intell. 237 (2016) 172–203.

[19] B. B. Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, M. Montali, Veri-
fication of relational data-centric dynamic systems with external services, in:
Proc. of PODS, 2013, pp. 163–174.

[20] F. Belardinelli, A. Lomuscio, F. Patrizi, Verification of agent-based artifact sys-
tems, J. Artif. Intell. Res. 51 (2014) 333–376.

[21] A. Deutsch, R. Hull, Y. Li, V. Vianu, Automatic verification of database-centric
systems, SIGLOG News 5 (2) (2018) 37–56.

[22] J. McCarthy, P. J. Hayes, Some philosophical problems from the standpoint of
artificial intelligence, Machine Intelligence 4 (1969) 463–502.

[23] R. Reiter, Knowledge in Action. Logical Foundations for Specifying and Imple-
menting Dynamical Systems, The MIT Press, 2001.

49

[24] H. J. Levesque, G. Lakemeyer, The Logic of Knowledge Bases, The MIT Press,
2001.

[25] S. Sardina, G. De Giacomo, Y. Lespérance, H. J. Levesque, On the semantics of
deliberation in IndiGolog – From theory to implementation, Annals of Mathemat-
ics and Artificial Intelligence 41 (2–4) (2004) 259–299.

[26] S. Abiteboul, R. Hull, V. Vianu, Foundations of databases, Addison-Wesley Read-
ing, 1995.

[27] S.-E. Bornscheuer, M. Thielscher, Representing concurrent action and solving
conflicts, Journal of the IGPL 3 (4) (1996) 355–368.

[28] C. Baral, M. Gelfond, Representing concurrent actions in extended logic pro-
gramming, in: Proceedings of the 13th International Joint Conference on Artifical
Intelligence - Volume 2, IJCAI’93, Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1993, pp. 866–871.

[29] E. Erdem, V. Patoglu, Applications of action languages in cognitive robotics, in:
E. Erdem, J. Lee, Y. Lierler, D. Pearce (Eds.), Correct Reasoning: Essays on
Logic-Based AI in Honour of Vladimir Lifschitz, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 229–246.

[30] F. Pirri, R. Reiter, Some contributions to the metatheory of the situation calculus,
Journal of the ACM 46 (3) (1999) 261–325.

[31] G. De Giacomo, Y. Lespérance, H. J. Levesque, ConGolog, a concurrent program-
ming language based on the situation calculus, Artificial Intelligence 121 (1–2)
(2000) 109–169.

[32] J. Claßen, G. Lakemeyer, A logic for non-terminating Golog programs, in: Pro-
ceedings of the International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), 2008, pp. 589–599.

[33] G. De Giacomo, Y. Lespérance, A. R. Pearce, Situation calculus based programs
for representing and reasoning about game structures, in: Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Twelfth International
Conference, KR 2010, Toronto, Ontario, Canada, May 9-13, 2010.

[34] E. M. Clarke, O. Grumberg, D. A. Peled, Model checking, The MIT Press, Cam-
bridge, MA, USA, 1999.

[35] D. Calvanese, G. De Giacomo, M. Montali, F. Patrizi, First-order µ-calculus over
generic transition systems and applications to the situation calculus, Inf. Comput.
259 (3) (2018) 328–347.

[36] P. Felli, L. de Silva, B. Logan, S. M. Ratchev, Composite capabilities for cloud
manufacturing, in: Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden,
July 10-15, 2018, IFAAMAS, 2018, pp. 1809–1811.

50

[37] M. Arenas, J. Baier, J. Navarro, S. Sardina, Incomplete causal laws in the situation
calculus using free fluents, in: Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), New York, USA, 2016, pp. 907–914.

[38] B. Banihashemi, G. De Giacomo, Y. Lespérance, Abstraction in situation calculus
action theories, in: Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, February 4-9, 2017, San Francisco, California, USA., 2017, pp.
1048–1055.

[39] ANSI/ISA, Enterprise-control system integration – Part 1: Models and terminol-
ogy, ANSI/ISA standard 95.01-2000 (IEC 62264-1 Mod) (2010).

[40] S. Sardiña, G. De Giacomo, Composition of ConGolog programs, in: IJCAI 2009,
Proceedings of the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009, pp. 904–910.

[41] J. C. Bradfield, I. Walukiewicz, The mu-calculus and model checking, in: Hand-
book of Model Checking., 2018, pp. 871–919.

[42] G. De Giacomo, Y. Lespérance, F. Patrizi, S. Sardiña, Verifying ConGolog pro-
grams on bounded situation calculus theories, in: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Ari-
zona, USA., 2016, pp. 950–956.

[43] S. Borgo, A. Cesta, A. Orlandini, A. Umbrico, A planning-based architecture for
a reconfigurable manufacturing system, in: ICAPS, AAAI Press, 2016, pp. 358–
366.

[44] Z. G. Saribatur, V. Patoglu, E. Erdem, Finding optimal feasible global plans for
multiple teams of heterogeneous robots using hybrid reasoning: an application to
cognitive factories, Auton. Robots 43 (1) (2019) 213–238.

[45] A. Ciortea, S. Mayer, F. Michahelles, Repurposing manufacturing lines on the
fly with multi-agent systems for the web of things, in: AAMAS, International
Foundation for Autonomous Agents and Multiagent Systems Richland, SC, USA
/ ACM, 2018, pp. 813–822.

[46] R. F. Kelly, A. R. Pearce, Property persistence in the situation calculus, Artificial
Intelligence 174 (12-13) (2010) 865–888.

[47] T. Hofmann, T. Niemueller, J. Claßen, G. Lakemeyer, Continual planning in
Golog, in: AAAI, AAAI Press, 2016, pp. 3346–3353.

[48] L. Xiong, Y. Liu, Strategy representation and reasoning in the situation calculus,
in: ECAI, Vol. 285 of Frontiers in Artificial Intelligence and Applications, IOS
Press, 2016, pp. 982–990.

[49] C. Schwering, G. Lakemeyer, M. Pagnucco, Belief revision and projection in the
epistemic situation calculus, Artif. Intell. 251 (2017) 62–97.

51

[50] M. Arenas, J. A. Baier, J. S. Navarro, S. Sardiña, On the progression of situation
calculus universal theories with constants, in: KR, AAAI Press, 2018, pp. 484–
493.

[51] A. M. MacNally, N. Lipovetzky, M. Ramı́rez, A. R. Pearce, Action selection
for transparent planning, in: AAMAS, International Foundation for Autonomous
Agents and Multiagent Systems Richland, SC, USA / ACM, 2018, pp. 1327–
1335.

[52] K. E. Baldwin, Autonomous manufacturing systems, in: Proceedings of the IEEE
International Symposium on Intelligent Control, 1989, pp. 214–220.

[53] J. Lee, H. D. Ardakani, S. Yang, B. Bagheri, Industrial big data analytics and
cyber-physical systems for future maintenance & service innovation, Proce-
dia CIRP 38 (2015) 3–7, proceedings of the 4th International Conference on
Through-life Engineering Services.

[54] M. Behandish, S. Nelaturi, J. de Kleer, Automated process planning for hybrid
manufacturing, Computer-Aided Design 102 (2018) 115–127.

[55] A. Gabaldon, Non-markovian control in the situation calculus, Artif. Intell.
175 (1) (2011) 25–48.

[56] P. Mo, N. Li, Y. Liu, Automatic verification of Golog programs via predicate
abstraction, in: ECAI, Vol. 285 of Frontiers in Artificial Intelligence and Appli-
cations, IOS Press, 2016, pp. 760–768.

[57] J. Claßen, M. Liebenberg, G. Lakemeyer, B. Zarrieß, Exploring the boundaries of
decidable verification of non-terminating Golog programs, in: Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014,
Québec City, Québec, Canada., 2014, pp. 1012–1019.

[58] J. Claßen, Symbolic verification of Golog programs with First-Order BDDs, in:
KR, AAAI Press, 2018, pp. 524–529.

[59] A. Camacho, C. J. Muise, J. A. Baier, S. A. McIlraith, LTL realizability via safety
and reachability games, in: Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI 2018), 2018, pp. 4683–4691.

52

