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Abstract
For modelling superconductors, interpolation and analytical formulas are commonly used to
consider the relationship between the critical current density and other electromagnetic and
physical quantities. However, look-up tables are not available in all modelling and coding
environments, and interpolation methods must be manually implemented. Moreover, analytical
formulas only approximate real physics of superconductors and, in many cases, lack a high level
of accuracy. In this paper, we propose a new approach for addressing this problem involving
artificial intelligence (AI) techniques for reconstructing the critical surface of high temperature
superconducting (HTS) tapes and predicting their index value known as n-value. Different AI
models were proposed and implemented, relying on a public experimental database for
electromagnetic specifications of HTS tapes, including artificial neural networks (ANN),
eXtreme Gradient Boosting (XGBoost), and kernel ridge regressor (KRR). The ANN model
was the most accurate in predicting the critical current of HTS materials, performing goodness
of fit very close to 1 and extremely low root mean squared error. The XGBoost model proved to
be the fastest method, with training computational times under 1 s; whilst KRR could be used as
an alternative solution with intermediate performance.

Keywords: artificial neural network, critical current, HTS tapes, kernel ridge, regression,
superconductors, XGBoost

(Some figures may appear in colour only in the online journal)

1. Introduction

The critical current Ic, as well as the index value known as
n-value, of practical high temperature superconducting (HTS)
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tapes, depends on the magnitude of the magnetic field B act-
ing on tape, field orientation θ with respect to the tape sur-
face, and the operating temperature T. Knowing the Ic(B,θ,T)
and n(B,θ,T) functions, or more commonly the Ic per unit
width of the tape (Icw), is essential for any practical applica-
tions. Moreover, extracting the local Jc(B,θ,T) from the meas-
ured Ic(B,θ,T) curve and incorporating it into finite element
(FE) models is a key feature for the design and optimiza-
tion of HTS devices for large-scale power applications. FE
models are usually computationally costly due to the many
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degrees of freedom needed to cope with their high aspect
ratio and the strong nonlinearity of the E–J characteristic.
The dependence of the critical current density on the mag-
nitude and the orientation of the magnetic field (and on the
temperature if no isothermal assumption is made, and thermal
equations are also included in the model) must be properly
taken into account. In fact, neglecting this dependence would
lead to unacceptable inaccuracy in the final results of practical
interest (e.g. in terms of AC loss). Including this dependence
in the modelling process further complicates the calculation
due to the strong coupling introduced between the magneto-
static and the eddy current problems. The most common way
to include this dependence in numerical models is through ana-
lytical formulas [1–5]. However, analytical approaches rely
on fitting parameters to be preliminarily evaluated and con-
sequently suffer from lack of enough accuracy in complic-
ated problems. Look-up tables are an alternative, but they rely
on the availability of dense experimental data even when the
model they belong to is running. Furthermore, look-up tables
do not effectively account for all interdependencies between
inputs, they do not allow any extrapolation, and are known
to cause dramatic computational slow down when dealing
with large datasets. In this paper, we propose an alternative
method to address the problem using artificial intelligence (AI)
techniques. AI refers to the development of computational
systems able to perform different tasks resembling human
intelligence. Such techniques need to be trained with data in
order to be able to act as an accurate estimator, but once the
model is adequately trained, it becomes available to be used in
other modelling purposes. AI techniques exploit statistical and
optimization algorithms to analyse data, learn from them, and
make decisions based on this process. Moreover, they may use
biologically inspired systems called artificial neural networks
(ANN) to find interdependencies between input and output
data in huge amounts of data or make decisions according
to available information. AI methods are well suited for clus-
tering, optimization, classifications, and regression problems.
The aim of this study is the determination of the Ic(B,θ,T) and
n(B,θ,T) characteristics using AI models.

Although to date, AI methods have been overlooked
in applied superconductivity, ANN methods were success-
fully implemented for some purposes, including AC losses
predictions [6–9], complex design optimization [10], and
speeding up multiphysics simulations [11]. These studies
demonstrate substantial potential for AI in applied super-
conductivity left to be discovered. In [12], a multi-width
no-insulation magnet critical current at different operating
temperatures was estimated using the critical current density
distribution, which in turn was found using a double hidden
layer Bayesian regularised neural network. Another extensive
discussion about the advantages and drawbacks of AI meth-
ods with respect to conventional approaches, such as analyt-
ical formulas and look-up tables, which also investigates and
reports a comparison regarding the different computational
times, can be found in [13].

In this paper, we have applied several AI methods for
developing intelligent models for reconstructing the critical
current and n-value surfaces of HTS tapes in order to provide

a comprehensive reference for the comparison of different AI
methods for different large-scale applications in the future.
Hyperparameters tuning and sensitivity analysis were also
carried out to investigate, improve, and optimise the results
of the understudied AI-based models. Experimental data are
taken from a public database [14]. In this database, the critical
current and n-value characteristics of most commercial HTS
tapes, measured over a wide range of B, θ, and T, are reported.
The test procedure, tape specification, and the apparatus used
to produce the database are comprehensively described in [15].
In this study, different AI-based models were developed such
as ANN, eXtreme Gradient Boosting (XGBoost), and kernel
ridge regressor (KRR). The results of the AI techniques in
addressing the Ic(B,θ,T) and n(B,θ,T) dependencies are dis-
cussed in detail in this paper. We show that AI models offer
fast, accurate, and experimental-based approaches for predict-
ing the critical current density characteristics of HTS tapes that
could be embedded in both existing numerical modelling soft-
ware/techniques and designing routines. Finally, it is worth
mentioning that this study is the result of a collaboration [16],
now in its second year, carried out in the framework and with
the support of the COSTAction CA19108, ‘High-Temperature
SuperConductivity for AcceLerating the Energy Transition’,
funded by EU commission [17].

2. Methodology: an overview of the developed AI
models

Among many challenges related to superconductors, the prob-
lem of critical current dependence on electro-magneto-thermal
quantities (temperature, magnetic field, etc) is well suited to
the typical AI application as a regression task. In fact, it is
well-known that in HTS materials, a certain combination of
temperature, magnetic field magnitude, and orientation that
act as the features of the problem determines one specific
value of critical current density that represents the target of
the problem. Like any other AI task, an adequately large and
representative dataset is required to properly train a model.
Therefore, the publicly open, accessible database of ‘High-
Temperature Superconductor critical current data’ provided by
the Robinson Research Institute (Victoria University of Wel-
lington, New Zealand) [14, 18] played a key role in the invest-
igations of this paper.

In [14], plenty of data relating the critical current and the
n-value to temperature, external magnetic field magnitude and
angle is provided for different HTS tape specimens. The avail-
able data ranges over large intervals of the features involved.
Hence, it is suitable to be applied as a training dataset for AI
models developed in this paper. For this study, the SuperOx
GdBCO 2G HTS database was used because of the relat-
ively large range of values it provides for both the temperat-
ure and the magnetic field magnitude. However, it is worth
pointing out that any other tape specimen could have been
chosen for applying the same approach to the corresponding
data. The complete dataset that we used in this paper is com-
posed of 14 747 combinations of critical current, critical cur-
rent per unit width, n-value, operating temperature (ranging
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from 15 to 90 K), external magnetic field magnitude (ranging
from 0 to 7 T) and external magnetic field angle (ranging from
0◦ to 240◦, where θ = 0◦ corresponds to the field applied
perpendicular to the tape surface). The dataset was randomly
decomposed into two sets, one dedicated to developing the
model (both training and validating the quality of the train-
ing process) and the other for its testing. In this study, 70%
of the complete dataset has been dedicated to training/valid-
ation, whereas the remaining 30% was for testing. Since an
AI method that reaches the best performance for any problem
a priori does not exist, different AI techniques were chosen
and their performances were evaluated. ANN is widely being
acknowledged as one of the most effective tools for regres-
sion and it is biologically inspired, XGBoost is a decision tree
based model, and KRR relies on the minimization of the sum
of the squared residuals. One more reason for this choice was
that all the aforementioned models are among the most suc-
cessful and commonly used for engineering problems solved
by AI techniques.

As performance metrics to report the error and quality of
estimation, we used the the root mean squared error (RMSE),
and the goodness of fit (R2), as they are more practical [6, 19]:

RMSE=

√∑ns
i=1 (yi− xi)

2

ns
(1)

R2 =

ns∑
i=1

(x− xi)
(
y− yi

)
√

ns∑
i=1

(x− xi)
2
ns∑
i=1

(
y− yi

)2 (2)

where, xi is the actual value, yi is the predicted value, x is the
mean of actual (real experimental) values, y is the mean of
predicted values, and ns is the number of data samples.

In order to avoid overfitting and thus achieve fairly good
estimations over the whole range of features, a visual com-
parison of the critical surfaces of the models was included
among the evaluating criteria as well. Great effort has also
been paid to hyperparameters tuning and sensitivity analysis
to optimise the AI models and comprehensively investigate
their performance dependence on their own controlling para-
meters. In fact, the capability of any AI model to extract spe-
cific trends from a dataset is strictly related to certain para-
meters, named hyperparameters. Established hyperparameter
tuning techniques were applied in this study, such as the so-
called grid-searchmethod [20], which generates a user-defined
grid of possible combinations of hyperparameters and trains
the model for each of them and keeps the best case based on
the chosen evaluation criteria. Grid-search was applied to the
training set with a K-fold cross-validation procedure: the train-
ing set is divided into K splits in which, for each split, a differ-
ent training of the model is carried out: the chosen split is used
as a validation set for evaluating the performance of the train-
ing process, for which the remaining K-1 splits are used. This
procedure is performed for each combination of the hyperpara-
meters grid. In particular in this study, we used a five-fold

Figure 1. A simplified structural schematic of a neuron.

cross-validation because it is reported to offer a favourable
bias-variance trade-off [21].

Both Python and MATLAB scripts were used for carrying
out the calculations. The reason for that is to cover both pop-
ular coding environments of m-file and Python for any future
inclusion of these methods into the FE simulation software.

The main features and characteristics of the three mod-
els that were identified are described briefly in the following
subsections.

2.1. ANN

ANN [22] are computational systems that can model and pre-
dict sophisticated characteristics with a high level of non-
linearity. The ANN performance is inspired by how the human
brain works. To make the performance of the ANN models
clearer, figure 1 illustrates the structure of a brain neuron and
how ANN resembles brain behaviour to model physics and
engineering problems. In this system, dendrites serve as inputs
that receive the data from other cells and neurons. Dendrites
inject the data into the nucleus laid at the cell body and are con-
sidered a node of the system. The nucleus activity is modelled
as a function applied to inputs to compute the output. Synapses
are considered as the weights of the neural system that help
the model predict or estimate the characteristic of dendrites.
Finally, the axon provides the output of the process and con-
nects the neuron to other neurons [23]. To create ANNmodels
based on a real neural system, multiple layers are considered.
The very first layer is the input layer which receives the input
data. Then, the data are fed into a series of hidden layers, which
calculate or estimate the characteristics of the input data. Each
hidden layer consists of some neurons, weights vector, bias
factor, and activation function.

At last, there is an output layer that offers the result of the
estimation process. A simple structure of themodel of a neuron
in an ANN is shown in figure 2 [24]. To estimate the output, a
simple neuron uses equation (3) [25]:

ŷ= f(W⃗Tx⃗+ b) (3)

where, ŷ is the output, x⃗ is the input vector, f is the activa-
tion function, W⃗ is the weights vector, and b is the bias factor.
The objective of the training stage is to reduce the error of the
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Figure 2. Structure of the model of a neuron used in an ANN.

Figure 3. The structure of the proposed ANN model for critical
surface predictions.

predicted values and the real ones, known as the loss function.
When the loss function is minimised, the ANNmodel uses the
rest of the data for validation and test phases. It should be men-
tioned that the loss function minimization during the training
phase is usually conducted by an optimization procedure of
weights vector and bias factor based on a method known as
backpropagation (BP). In BP, initially, the training is conduc-
ted by considering weights as some small random numbers;
after that, and for the first stage, the so-called loss function is
calculated. To minimise and update the values of weights, the
gradient descent method is used as an optimizer that can be
handled using the Levenberg–Marquardt method [26].

The proposed structure of theANNmodel used in this paper
consists of four hidden layers, in which hidden layers 1, 2, and
3 consist of 15 neurons each, while the last one, i.e. hidden
layer 4, consists of 5 neurons. The sigmoid activation function
is used as an activation function in this study. In the training
stage, the Levenberg–Marquardt method is used to train the
model based on 70% of the total input data. To minimise the
loss function, a maximum of 1000 epochs is considered for
stopping the training phase.

Figure 3 shows the structure of the proposed ANN for
the modelling purpose. In this figure, the three inputs are
temperature, magnetic field magnitude and orientation angle.

The H1–H4 are hidden layers, and their neurons are shown
with orange circles. Finally, there is the output layer, which
could be Ic, or Ic per cm width, or n-value.

2.2. XGBoost

XGBoost is a decision-tree-based ensemble machine learning
algorithm that uses a gradient boosting framework [27].
Briefly, many decision trees are created in an additive man-
ner as the model is trained with the input data. Since it is not
possible to evaluate all possible tree structures, the algorithm
starts from a single node and iteratively adds branches in the
form of split candidates. The formula used for evaluating
the instance split candidate nodes IL (left) and IR (right) from
the starting node I is reported in equation (4) [28]:

Lsplit =
1
2

(
G2
IL

HIL +λ
+

G2
IR

HIR + λ
− G2

I

HI+λ

)
− γ (4)

where G is the sum of the residuals (namely the difference
between the real value and the effective prediction, which is
set to a default value at the first iteration) that refer to the
corresponding node, H is the number of residuals that refer
to the corresponding node, and λ and γ are regularisation
parameters [28]. The former regularisation parameter is inten-
ded to reduce the prediction sensitivity to individual observa-
tions, thus avoiding overfitting. In contrast, the latter determ-
ines whether a further partition is to be made (the higher γ the
more conservative the model will be by pruning branches). It
is worth mentioning that in this paper, the appropriate para-
meters were searched and optimised by operating hyperpara-
meters tuning. The slip candidate from node I, which returns
the higher value of Lsplit, is chosen, since it is the best one at
splitting the residuals into the cluster of similar values. Once
a tree structure is determined, its outputs for every leaf j are
calculated with equation (5):

ωj =−
Gj

Hj+λ
. (5)

Once the complete decision tree is generated during train-
ing, it can be exploited for predicting the target based on a
given set of features. Details about the algorithm with which
the decision trees are created can be found in [28, 29]. In
order to further clarify the decisional mechanism of the trained
model of this paper, one of the trees is shown in figure 4. It
should be mentioned here that this is only a small part of the
decision tree created during the training stage and actually, can
be considered a small branch of it. Finally, the green blocks in
figure 4 represent the leaves of the tree, namely the possible
values that the model can predict.

2.3. KRR

KRR [30] is a linear transform method that allows work-
ing with too complex data to be directly addressed through
a linear relationship. It uses the kernel trick [31] to transform
the dataset to the image space in which it performs a ridge
regression [32–34]. The particularity of the ridge regression

4



Supercond. Sci. Technol. 35 (2022) 124002 G Russo et al

Figure 4. One decision tree of the XGBoost regressor trained model.

that differentiates it from the simple linear regression is the
l2-norm regularisation [35], namely the addition of a regular-
isation term which is the sum of the squares of the model para-
meters. The objective function that the ridge regression min-
imises is shown in equation (6):

ObjKRR =

ns∑
i=1

(yi− xi)
2

ns
+

m∑
i=1

βi
2 (6)

where βi is the ith model parameter, m is the total number
of parameters, and yi, xi, and ns are the same as explained in
equation (1).

The regularisation term penalises the minimization of the
sum of the squared residuals of the first term but prevents the
model parameter from becoming very large and therefore, lim-
its the model bias. Moreover, the appropriate kernel choice for
the problem is fundamental to make the KRR operate properly.
In this paper, the rational quadratic kernel, kRQ [36], was used,
which is shown as follows:

kRQ (xi,xj) =

(
1+

d(xi,xj)
2

2αl2

)−α

(7)

where α is the scale mixture parameter and determines the
relative weighting of large-scale and small-scale variations, l
is the length scale of the kernel, and d(·,·) is the Euclidean
distance [37]. The best combination of α and l parameters was
exhaustively looked for over a wide range of possible values
using the grid-search technique [20]. More details about the
KRR can be found in [38, 39], whereas another representative
case study for such a method is reported in [40].

Table 1. Performance metrics comparison for the Ic per cm width
prediction of the three AI models.

Model RMSE R2

ANN 0.0076 0.999 98
XGBoost 14.01 0.999 51
KRR 73.77 0.986 43

3. Results and discussion

In the following section, the results obtained with the three AI
techniques are reported. The numerical and visual results are
divided into three subsections to present the performances of
the proposed models for each chosen target (Ic per unit width,
n-value and Ic). It should be noted that, for each of the three
target cases, the quantities B, θ, and T always remain the fea-
tures of themodels, but every target requires dedicated training
to reproduce the corresponding trend.

The evaluation metrics, i.e. RMSE and R2 for ANN,
XGBoost, and KRR obtained for each of the three targets
are reported in tables 1, 2 and 3, respectively. Then, the res-
ults of the models are graphically displayed for the Ic per cm
width and the n-value, but not for the Ic to avoid redundancy
(since the corresponding plots would be highly similar to the
Ic per cmwidth ones). Next, the linear regressions between the
experimental values of the target belonging exclusively to the
testing subset and the predictions of the AI models are shown
for the same combinations of B, θ, and T.

Afterwards, the reconstruction of the critical surfaces of the
targets, obtained by interpolation between the experimental
points of the complete dataset (which are also included in the
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Figure 5. Regression plot for Ic per cm width comparison between experimental values (targets) and predictions made by AI models.

plots for comparison) are reported. This shows the capabil-
ity of the models in accurately estimating the values of Ic, per
width Ic, and n-value for a set of data points that differ from the
ones which were fed into AI models during the training pro-
cess. These critical surfaces are reconstructed at 20 and 65 K,
as they are considered relevant and strategic operating temper-
atures in large-scale power applications in applied supercon-
ductivity. Many large-scale power applications would operate
at subcooled liquid nitrogen, and therefore their operating tem-
peratures would be essentially 65 K. On the other hand, with
the emerging trend of integration of liquid hydrogen (LH2) in
many transportation applications of superconductors, includ-
ing cryo-electric aircraft [41–43], the characterization of HTS
material at boil off temperature of LH2, i.e. 20 K become more
critical.

Next, a comparison between the experimental values of the
target belonging exclusively to the testing subset and the pre-
dictions of the AI models for the same combinations of B, θ,
and T, under given operating conditions are illustrated on 2D
plots. The absolute value of the relative error is also included
in these figures.

Finally, the absolute value of the relative error of the AI
models over the whole B–θ grid at 20 K and 65 K are shown to
quantify and detect the weak regions for the operation of such
models. Similar to previous plots, these only include testing
data.

3.1. Critical current per cm width surfaces

By using ANN, the Icw targets can be estimated with high
accuracy at any combination of features, as table 1 reports
that RMSE is only 0.0076, R2 is extremely close to 1 (i.e.
0.999 98), and figure 5 shows that most of the estimated data
are located on the Y = Target line (where Target stands for the
experimental value of the target and Y for its corresponding
prediction). XGBoost and KRR are less accurate, resulting in
RMSE equal to 14.01 and 73.77, and R2 equal to 0.999 51 and
0.986 43, respectively.

Figure 5 also shows that the KRR performance is negat-
ively impacted by the relatively large error for Icw values over

1000A cm−1, asmany predictions do not lay on the Y =T line.
Nevertheless, this model can effectively reconstruct the critical
surface, as it is shown in figure 6. It is worth mentioning again
that the red points labelled as ‘Model’ are predicted for differ-
ent feature values than the ones of the experimental dataset,
which means they are in positions that the model has never
encountered during training. ANN and XGBoost also produce
critical surfaces in very good agreement with the experimental
data. However, the critical surfaces produced by the XGBoost
are not smoothly reconstructed but are composed of a series
of bushes of predictions nearby the available experimental
data, each separated by a considerable discontinuity from one
another. For instance, at T = 20 K, with low field magnitude
and angle, the prediction of the Ic per cm width changes by
about 500 A cm−1 over a short range of a few tens of mT.
Such a trend should be no surprise since it was explained in
section 2.2 that the XGBoost decision tree and, in turn, its
leaves are derived to reduce a set of residuals between the pre-
diction and the dataset target. It is noted that the nature of the
dataset itself might have therefore played a major role in pro-
ducing such a bias of the model over certain target values. In
fact, the experimental dataset used in this study follows a par-
ticular pattern according to which the B field is kept constant
over a certain number of tests during which the field angle is
iteratively changed from 0◦ and 240◦. After a set of experi-
ments at a constant B field is complete, the B field is changed
and kept constant again until all the whole 0◦–240◦ range of
field angle values are explored. The fact that the XGBoost
is only trained for certain values of B might have biased the
model towards the production of the bushes. A more detailed
analysis of the topology of the data is discussed in section 3.5.
It is also worth mentioning that the experimental dataset does
not provide any data formagnetic fieldmagnitudes below 0.2 T
at 20 K, therefore the three models are extrapolating to recon-
struct the critical surfaces. Figures 7 and 8 show that the abso-
lute value of the relative error of the ANN model is below 1%
for most of the predicted data, and reaches 2%–3% at 2 T and
65 K. The absolute value of the relative error of the KRR is
usually included in a range that varies from some units and a
few tens of per cent. However, figure 9 underlines the limits
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Figure 6. Critical currents per cm width predictions against the experimental data at 20 K and 65 K.

Figure 7. Experimental vs. predicted data and absolute values of the relative error of the Ic/width prediction at 20 K and 0.2 T and 2.0 T
(only testing data is considered).

of this model in predicting the Ic per cm width in the regions
of very large magnetic field magnitudes and field angles close
to 240◦, where it generates relative errors of over 50% at 20 K
and over 150% at 65 K. It must be noted that, in the exper-
imental dataset, Ic and Ic per unit width dramatically drop at
high magnetic fields. For instance, at 65 K the maximum value
of Icw is 743.52 A cm−1 at B = 0.02 T and θ = 90◦, whereas
its minimum value is 34.34 A cm−1 at B = 7 T and θ = 20◦.
Therefore, the lack of accuracy of the model at high fields and
temperatures can be explained by such a substantial drop in
the value of the target; in fact, an absolute error of 30 A cm−1

would result in a relative error of 4% for its maximum value

at 65 K and a relative error of 87% for its minimum value at
the same temperature.

3.2. n-value

Table 2 and figure 10 show that, in terms of R2, the per-
formance of all three AI models in estimating the n-value
is worse than the one achieved for the Icw, showing that
the trend of this target is more challenging to be intelli-
gently reproduced. In fact, R2 is calculated equal to 0.987 54,
0.982 63, and 0.911 00 for ANN, XGBoost, and KRR,
respectively.
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Figure 8. Experimental vs. predicted data and absolute value of the relative error of the Ic/width prediction at 65 K and 0.01 T and 2.0 T
(only testing data is considered).

Figure 9. Absolute value of the relative error between Ic/width experimental and predicted data (only testing data is considered).

Table 2. Performance metrics comparison for the n-value prediction of the three AI models.

Model RMSE R2

ANN 0.1510 0.987 54
XGBoost 0.8707 0.982 63
KRR 1.974 0.911 00
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Figure 10. Regression plot—n-value comparison between experimental values (targets) and predictions made by AI models.

Figure 11. n-value predictions against the experimental data at 20 K and 65 K

Figure 11 shows that ANN predicts relatively large values
at 20 K and very low fields if compared to the other two mod-
els at the same conditions. To explain this, it is reminded that
the experimental data at 20 K temperature is only available
above 0.2 T, which means the surface at this temperature is
reconstructed even slightly outside of the range of the data that
the model was trained with.

Nevertheless, figures 12–14 show that the absolute value
of the relative error of the ANN model is in a range between
only 1% and 6% for the large majority of the predicted
data. Exclusively, for very few outliers at 7 T and field
angle close to 90◦, the relative error reaches a few tens
percentages, that is related to topology of the experimental
data rather than ANN performance. It will be discussed in
detail in section 3.5. On the other hand, the most chal-
lenging region for the KRR in predicting the n-value is at

low magnetic fields, as figure 11 reports relative errors up
to 25%.

Finally, the relative error of the XGBoost model is below
10% for themajority of the predictions, except for a few spread
outliers at 65 K.

3.3. Critical current

Broadly and qualitatively speaking, the performance regarding
the Ic target is very similar to the Icw one for every model, as
it is summarised in table 3.

3.4. Sensitivity analyses

In this section, the results of a series of sensitivity analyses on
controlling parameters of the three proposed AI-based models
are shown.
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Figure 12. Experimental vs. predicted data and absolute value of the relative error of the n-value prediction at 20 K and 0.2 T and 2.0 T
(only testing data is considered).

Figure 13. Experimental vs predicted data and absolute value of the relative error of the n-value prediction at 65 K and 0.01 T and 2.0 T
(only testing data is considered).

3.4.1. ANN. A sensitivity analysis is also conducted to eval-
uate the impact of changes in controlling parameters of ANN,
including the number of neurons and number of hidden layers
on the final estimation results, for Ic at 20 K temperature. In
general, the higher the number of neurons and hidden layers
get, the longer the estimation computation time for testing the
neural network would be. With reference to a specific range
of number of neurons and hidden layers, accuracy would be
increased as well, and RMSE value reduced. Also, it can be
conceived that the increase in the number of hidden layers
makes the simulations more accurate but slower in compar-
ison to the situation that numbers of hidden layers remain con-
stant and only the number of neurons increases. Table 4 shows

the sensitivity analysis results, which are consistent with all
previous statements. The selection of the number of neurons
and hidden layers is more related to the requirements of the
application. For instance, if the ANNmodel is applied to char-
acterise a superconducting device in design stage, the highest
possible accuracy is needed, and so the most complex ANN
model with multiple hidden layers and 15–20 neurons in each
layer could be selected without any concerns about estimation
computation time.

On the other hand, if the ANN model is going to be
used for real-time condition monitoring purposes or real-time
modelling of the HTS device, the ANN with lower numbers
of hidden layer(s) and 10–20 neurons in this layer could be

10
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Figure 14. Absolute value of the relative error between n-value experimental and predicted data (only testing data is considered).

Table 3. Performance metrics comparison for the Ic prediction of the three AI models.

Model RMSE R2

ANN 0.0085 0.999 92
XGBoost 5.884 0.999 46
KRR 29.51 0.986 43

Table 4. Impact of changes in controlling parameters of the ANN model on the results of Ic estimation.

Hidden layers number Neurons R2 RMSE Computation time (s)

1 5 0.988 56 0.1434 4.873
10 0.992 87 0.1267 5.436
15 0.994 15 0.1123 7.012
20 0.995 54 0.0965 7.555

2 5 0.997 38 0.0752 6.559
10 0.999 73 0.0235 8.504
15 0.999 89 0.0152 17.069
20 0.999 88 0.0156 30.778

3 5 0.998 97 0.0464 7.124
10 0.999 89 0.0157 12.837
15 0.999 93 0.0138 31.786
20 0.999 95 0.0115 85.814

4 5 0.9985 0.0532 9.522
10 0.999 82 0.0208 20.122
15 0.999 95 0.0104 64.747
20 0.999 95 0.0113 158.594

5 5 0.999 35 0.0358 9.476
10 0.999 91 0.0141 27.186
15 0.999 94 0.0114 89.734
20 0.999 97 0.0092 287.384
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Table 5. Testing computational time performance of ANN.

Structure Temperature (K) Field (T) Field orientation (degree) Input number Testing time (s)

Ic 20 1 0 [1 1 1] 0.000 496
Icw 20 1 0 [1 1 1] 0.000 326
n-value 20 1 0 [1 1 1] 0.000 298
Ic [20:10:70] −1.5:0.5:1.5 10:5:30 [6 7 5] 0.001 329
Icw [20, 30, 40, 50, 60, 70] [−1.5 −1 −0.5 0 0.5 1 1.5] [10 15 20 25 30] [6 7 5] 0.001 2857
n-value [20, 30, 40, 50, 60, 70] [−1.5 −1 −0.5 0 0.5 1 1.5] [10 15 20 25 30] [6 7 5] 0.001 287
Ic 20:1:70 −2:0.5:2 1:1:360 [51 9 360] 0.002 045
Icw 20:1:70 −2:0.5:2 1:1:360 [51 9 360] 0.002 042
n-value 20:1:70 −2:0.5:2 1:1:360 [51 9 360] 0.002 091

Figure 15. The stability, repeatability, and reproducibility of ANN results after 100 times of repetition of Ic estimation at 20 K temperature.

selected (depends on the nature of the problem) which would
not only give us a high accuracy but also characterise the
superconductor behaviour in a much faster manner.

To show the fast estimation characteristic of the ANN
model, three scenarios are considered in table 5. Firstly, just
one input is fed into ANNmodel during testing phase to estim-
ate Ic, Icw, and n-value of anyHTS tape. By doing this, the test-
ing (estimation) time was about 0.2–0.5 ms to estimate the Ic,
Icw, and index value. Then, the number of inputs was increased
to 6 × 7 × 5 vector, under such circumstances, it takes about
1 ms for ANN model to estimate Ic, Icw, and index value. At
last, 51 × 9 × 360 inputs were fed into ANN model and test-
ing time have increased to about 2 ms. These results prove
the fast computation testing time of the proposed ANN model
to estimate the values, especially in comparison to training
time that was in the range of seconds to tens of seconds for
Ic, Icw, and n-value. It should also be mentioned that the res-
ults for computation time are reported based on running the
ANN model on a personal computer equipped with Core™
i7-3612QM 2.1 GHz CPU and 8.0 GB RAM, DDR 3. Thus,
any improvements in computation resources could reduce the
simulation time to even less than milliseconds without neg-
atively impacting the accuracy of estimation. Moreover, the
stability of estimated results is tested to show that the estim-
ations are reproducible and repeatable. In fact, because of its

stochastic nature, reproducibility of results by ANN cannot be
simply taken for granted and it is therefore investigated. To do
this, the results of Ic estimation at 20 K were studied after 100
runs. Figure 15 shows the distribution of RMSE and R2 values
after 100 repetitions. As seen in these figures, the value of R2

is stable during 100 times of simulation and changes at a max-
imum of around 0.005%. On the other hand, for RMSE, it can
be observed that the values of RMSE remain lower than 0.02,
which is quite acceptable for such an estimation purpose. In
figures 15(a) and (b), mean and standard deviation values are
also reported. After analysing figure 15, stability, reproducib-
ility, and repeatability of the estimations by the ANN model
can be well guaranteed. This is solid proof of the fact that the
reported estimated values of Ic, Ic per width, and n-value could
be achieved by anyone who applies the presented structure of
ANN to a reasonable number of data.

3.4.2. XGBoost and KRR. Tables 6 and 7 report the sensitiv-
ity analysis results for the XGBoost and the KRR, respectively.
In both tables, the results corresponding to the tuned hyper-
parameters are highlighted in bold, i.e. λ = 0.2 and γ = 0.6
for the XGBoost model and α= 0.15 and l= 1.2 for the KRR.

Therefore table 6 shows the impact of the hyperparameters
λ and γ on the Ic per cm width prediction over all available
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Table 6. Impact of λ and γ on the Ic per cm width prediction of the XGBoost model.

γ λ R2 RMSE Computation time (s)

0.5
0.1 0.999 431 15.0568 0.849 808
0.2 0.999 497 14.1565 0.820 797
0.3 0.999 419 15.2112 0.824 097

0.6
0.1 0.999 435 14.9958 0.796 851
0.2 0.999 507 14.01 0.792 583
0.3 0.999 417 15.2351 0.799 748

0.7
0.1 0.999 434 15.0142 0.8126
0.2 0.999 497 14.1492 0.828 052
0.3 0.999 434 15.0067 0.812855

Table 7. Impact of α and l on the Ic per cm width prediction of the KRR model.

α l R2 RMSE Computation time (s)

0.05
0.7 0.981 097 86.7479 27.2499
1.2 0.983 074 82.0868 27.2099
1.7 0.982 716 82.9488 27.8582

0.15
0.7 0.984 281 79.1056 24.7503
1.2 0.986 329 73.7715 26.3436
1.7 0.985 203 76.7509 25.7341

0.6
0.7 0.978 944 91.556 26.0707
1.2 0.982 994 82.2801 26.6068
1.7 0.981 495 85.8296 26.9218

data, whereas table 7 is referred to the impact of the hyperpara-
meters α and l on the Ic per cm width. Both these two sensit-
ivity analyses are carried out with a computer equipped with
Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz 2.40 GHz
(2 CPUs) and 256 GB RAM.

As one can see in the tables, differently from the ANN, for
both of the two models changing hyperparameter values does
not affect the computational time of the two algorithms. This is
related to the fact that these hyperparameters are not respons-
ible for the structure of the algorithm, but only for the final
results of the performance.

Similar to the ANNmodel, for both XGBoost and KRR the
R2 metric is almost stable for all possible combinations of the
hyperparameters, whereas the gap between the best and the
worst RMSE is relatively greater.

3.5. Discussion on the topology of the data

One main reason for the poor estimation of the n-value for the
proposed methods is related to the topology of experimental
data and also the procedure of the n-value calculation. In other
words, we know that there is a potential error for any exper-
imental study when one measures a physical or electromag-
netic value/parameter. However, here the source of input error
is even more complicated, since despite direct measurement of
Ic value, n-value needs to be calculated from measured exper-
imental data, and it involves curve-fitting and mathematical
calculation to find the value of n.

One reason that some of the mentioned AI models face
trouble finding proper regression for the input data is the topo-
logy of the experimental data itself. Here we have an input
subset consisting of temperature, magnitude, and orientation
of the magnetic field. These experimental inputs are changed
in a fixed manner according to pre-set intervals, and output
which can be critical current or n-value is measured. However,
for many fairly similar inputs, therefore, we have very differ-
ent outputs. Now imagine what the AI model will see is a huge
number of similar inputs while their corresponding output is
different. Therefore, for AI models it would be very difficult
to find a proper pattern and an accurate relationship/regression
between inputs and output in such away that the estimated out-
put always closely follows the real experimental output.

One more interesting point to share with readers is that,
for such examples of problems when many similar inputs
have very different outputs, the larger the number of total
data are, the more the chance of lower estimation accuracy
will be. Because it further confuses the AI system with a
large amount of data and makes it a bigger hassle to find the
relationship/regression between inputs and output. In addition,
such topology of experimental input data will be very likely
to cause overfitting. Therefore, the problem investigated in
this paper shows the importance of preparing appropriate data
for an AI-based model. Often, researchers have this miscon-
ception that AI models only need ‘many’ data points, and if
one prepares a huge amount of data, the accuracy of the AI
model will increase. However, what is crucial for establishing
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effective AI models for superconducting applications is the
quality of data beyond the data size.

4. Conclusions

In this paper, we have modelled the Ic(B,θ,T) and n(B,θ,T)
characteristics of HTS tapes using different AI techniques. The
models were trained with experimental data obtained from a
publicly accessible dataset for HTS tapes. The results of the
AI models for reconstructing the aforementioned relations and
trends are reported. Intensive research has also been applied in
optimising these models to maximise the goodness of fit and
minimise the error using controlling and hyperparameters tun-
ing techniques through extensive sensitivity analysis studies.
In order to provide a comprehensive study on these AI models
and facilitate reproducibility, sensitivity analyses were carried
out to investigate the impact of the models’ parameters on their
capability of reconstructing the Ic(B,θ,T) and n(B,θ,T) char-
acteristics from the experimental dataset. It is found that the
ANNmodel is highly accurate in predicting the critical current
of HTS tapes depending on their operating conditions, per-
forming R2 very close to 1 and extremely low RMSE. Despite
its stochastic nature, ANN reproducibility has also been tested
and demonstrated. The XGBoost model has also proved the
capability of tree-based regression models to reconstruct the
critical surface of HTS tapes by performing the second highest
R2 metric in predicting the n-value parameter. Although the
KRR models have shown worse performance when compared
to the two previous models, it has proved to be an effective
alternative for assessing the challenge of predicting the critical
current and the n-value of HTS tapes. The models’ perform-
ances have further been investigated by means of the visual
reconstruction of the critical surfaces of the tape. The absolute
value of the relative error of their predictions is also graph-
ically reported to spot weak regions and analyse the results.
Finally, a discussion about the topology of the experimental
data is also carried out in relation to the models’ results.
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