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1 Introduction

Within the Standard Model (SM) of particle physics, the existence of gauge bosons with
nonzero masses is one of the defining characteristics that distinguishes the electroweak
(EW) sector from perturbative quantum chromodynamics (pQCD). However, at momentum
transfers scales (Q) far above the EW breaking scale, v =

√
2〈Φ〉 ≈ 246 GeV, weak bosons

are effectively massless, thereby softening this distinction. More precisely, at Q2 � M2
V ,

where MV = MW , MZ are the W and Z boson masses, process-dependent, power-law
terms that scale as δσ ∼ (M2k

V /Q2k+2), with k > 1, become negligible in 2→ n scattering
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Figure 1. Diagrammatic representation of µ→ Vλ` splitting and V V ′ scattering in µ+µ− collisions.

processes and analogously 1→ n′ decay processes. Consequentially, at sufficiently energetic
collider experiments, collinear, t-channel emissions of weak bosons from initial-state partons,
as shown schematically in figure 1, can be factorized into a type of weak boson parton
distribution function1 (PDF), and be modeled as almost massless, on-shell, initial-state
constituents of high-energy lepton and hadron beams [5–7].

Known as the Effective W/Z Approximation (EWA) [5, 6], the partitioning of collinear,
initial-state W/Z boson emissions out of matrix elements (MEs) and into PDFs has several
benefits. Like heavy quark factorization [8–15] and the factorization of inelastic photons,
i.e., the Weizsäcker-Williams Approximation [16, 17], the EWA significantly simplifies ME
computations and phase space integration, particularly in the infrared limits of phase space.
Even in the absence of singularities, such factorization may be necessary to avoid numerical
instabilities in real calculations when scale hierarchies are present, e.g., to avoid a large
collinear logarithm when Q2 �M2

V . Since its inception, the approximation has been used
to model numerous scenarios, including weak vector boson fusion/scattering (VBF) [18–22],
heavy quark production from Wg-scattering [23, 24], and heavy lepton production [24].

The EWA, however, also comes at a cost. Like other instances of collinear factorization,
invoking the EWA means losing knowledge about: (i) the recoil kinematics/transverse
momentum (pT ) of partons associated with the emission of initial-state weak bosons,
and which scale as O(M2

V /Q
2) and as O(p2

T /Q
2); (ii) the interference between initial-

state weak boson polarizations, which scale as O(M2
V /Q

2) [5]; and (iii) the interference
between different EW mass eigenstates, i.e., γT /ZT mixing, which can have large, O(1)
effects [1, 4, 25, 26]. However, in principle, extending highly successful matching and
merging techniques pioneered for QCD and QED [27–30] offer a starting path to resolve
some of these drawbacks.

Notably, momentum transfers needed to neglect power corrections of the form (p2
T /Q

2)k
and (M2

V /Q
2)k, where k > 0, are already obtainable with VBF at the LHC [31–34].

Such scales will also be commonplace at energy-frontier colliders proposed to succeed the
LHC [35–41]. This rings particularly true for multi-TeV µ+µ− colliders. There, the VBF

1Similarly, s-channel splittings of massive weak bosons from final-state partons can be factorized into a
type of weak boson fragmentation function. For details, see refs. [1–4] and references therein.
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rate is so dominant the collider acts effectively as a “high-luminosity EW boson collider” [42]
and shows promising sensitivity to SM and beyond the SM (BSM) physics [26, 42–61].

By virtue of the EW sector obeying a local SU(2)L⊗U(1)Y symmetry in the unbroken
phase, some aspect of collinear factorization must survive at these colliders in the limit that
(p2
T /Q

2)k → 0 and (M2
V /Q

2)k → 0. This is evident from the formulations of factorization
theorems and Sudakov exponentiation in QED and pQCD, which at times rely more on the
presence of multiple, well-separated (hierarchical) mass scales than on being unbroken gauge
theories [62–70]. Clearly, being an Abelian/non-Abelian or weakly/strongly coupled theory
is less crucial for sufficiently inclusive processes. At the same time, differences between
collinear factorization in pQCD and the EW theory must exist since lepton and hadron
beams are not composed of weak isospin-averaged states.

More specifically, the fact that muons carry EW quantum numbers implies that their
collisions do not represent an inclusive summation over all initial-state weak isospin charges.
(This would require µ− νµ and νµ − νµ beams.) As a result, infrared logarithms beyond
lowest order in perturbation theory do not fully cancel, leading to violations of the Block-
Nordsieck Theorem [4, 71–76]. The analogy in pQCD is the violation of the Collinear
Factorization Theorem at three-loops when applied to exclusive hadronic final states, e.g.,
dijet production [70, 77, 78]. However, despite this violation, application of the Collinear
Factorization Theorem, which is presently only proved for a handful of processes [64, 65, 70],
to arbitrary processes remains a quantitatively successful paradigm. Motivated by this
success, we consider whether such a paradigm can also work for high-energy lepton collisions.

As a step to better understanding collinear factorization in the EW sector and to
further explore the ability of the EWA to predict total and differential cross sections, we
consider a framework that combines the EWA for helicity-polarized W and Z bosons with
the Weizsäcker-Williams Approximation for helicity-polarized photons. We collectively
label this the Effective Vector Boson Approximation (EVA).2 In this framework and in
the context of a multi-TeV µ+µ− collider, we investigate the impact of and validity of
(helicity-polarized) γ/W/Z PDFs in 2 → n process. To focus on the role of partonic
kinematics, we restrict ourselves to leading order (LO) matrix elements and bare, i.e.,
unrenormalized γ/W/Z PDFs, which are finite at LO. Processes that we consider include:
associated and many-Higgs production, many-boson production, as well as associated
and multi-top production. We extend recent studies [22, 26, 42, 79, 80] by investigating
universal and quasi-universal corrections to weak boson PDFs that appear naturally in their
derivations. Specifically, we study universal power corrections of the form (p2

T /Q
2), which

spoil the accuracy of collinear factorization, and quasi-universal power corrections of the
form (M2

V /Q
2), which spoil the accuracy of the Goldstone Equivalence Theorem [81, 82].

Importantly, we also consider the role of universal and quasi-universal logarithmic corrections
of the form δσ/σ ∼ O[log(µ2

f/M
2
V )], by exploring scale variation and when the evolution

variable in weak boson PDFs is defined in terms of transverse momentum (pT ) or virtuality
(q). This is in addition to studying the role of helicity in both total and differential cross

2Throughout this text, we use the term “EVA” when speaking generically about unpolarized or polarized
EW boson PDFs, but use “EWA” when speaking exclusively about (un)polarized W/Z PDFs.
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sections. We note that this study is complementary to extensive studies on uncertainties of
the EWA [79, 80, 83].

We find strong sensitivity to power corrections when hard-scattering scales Q are below
Q ∼ 1TeV; for larger Q, we report agreement between full and approximated MEs when
scale uncertainty bands, which can be large, are taken into account. More explicitly: we
find that computations with the EWA can reproduce total and differential results within
(large) scale uncertainties, so long as factorization-breaking power corrections are sufficiently
suppressed. Even for asymptotically large energies, we find scale uncertainties remain
large, demonstrating a need for renormalization group (RG) evolution in our factorization
theorem for high-energy muon collisions. To strengthen the parallels with pQCD, we give a
proof-of-principle demonstration of matrix element matching with transverse weak boson
PDFs and full MEs. Given these criteria, we go on to survey nearly two dozen 2→ n VBF
processes with the EVA in µ+µ− collisions at

√
s = 2–30TeV. Cross sections and their scale

uncertainties are presented for both helicity-polarized and unpolarized initial states. To
conduct this study, we report an implementation of the EVA into the general-purpose Monte
Carlo event generator MadGraph5_aMC@NLO (mg5amc). Notably, this public implementation
lays the groundwork for developing QCD-like matching prescriptions with initial/final state
EW boson radiation as well as (polarized and unpolarized) PDFs that are RG evolved via
the EW theory and pQCD. To further with this agenda, we also give some recommendations
on using weak boson PDFs in high-energy lepton collisions.

The remainder of this work continues in the following order: in section 2, we summarize
the EVA formalism used throughout this work and present a formula for EW boson scattering
in high-energy µ+µ− collisions. In section 3 we document our computational setup and
numerical values for SM inputs. Section 4 is the first of two principle sections and where
we revisit the validity of the EWA. Section 5 is the second of two principle sections and
where we give a survey of 2 → n VBF processes in the EVA. We conclude in section 6.
There, we give an extended discussion of our findings, reflecting particularly on the parallels
we find with more subtle aspects of PDFs in QCD, e.g., the phenomenon of “precocious
scaling.” Finally, we provide some recommendations on using weak PDFs in high-energy
lepton collisions in section 6.1. Appendix A provides some instructions for reproducing our
results and using (un)polarized EW boson PDFs in mg5amc.

2 The Effective Vector Boson Approximation for µ+µ− collisions

In this section, we summarize the EVA, i.e., the framework in which we work, and its use in
evaluating scattering cross sections in many-TeV µ+µ− collisions. While we focus on muons,
the EVA is, in principle, applicable to any lepton-lepton, lepton-hadron, and hadron-hadron
collider configuration. Extension to other colliders, however, may require substitutions of
gauge coupling charges and/or convolutions with additional PDFs [5]. In section 2.1, we
state a scattering formula that will be the basis for all our numerical results and validation
checks. In section 2.2, we list the q2 and p2

T -evolved collinear PDFs that describe the density
of EW bosons in muons at LO. Finally, we document for the completeness in section 2.3
the PDFs for SM neutrinos from muons.
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2.1 A scattering formula for µ+µ− collisions

To described the fully differential production of an n-body, final state F with momenta {pf}
via the high-energy VBF process VλAV ′λB → F , where VλA and V ′λB are helicity-polarized
EW gauge bosons, in µ+µ− collisions at a center-of-mass (c.m.) energy of

√
s, we invoke

the EVA. In practice, this means working from a scattering formula given by

σ(µ+µ− → F +X) = f̃ ⊗ f̃ ⊗ σ̂ + Power and Logarithmic Corrections (2.1)

=
∑

VλA ,V
′
λB

∫ 1

τ0
dξ1

∫ 1

τ0/ξ1
dξ2

∫
dPSn

× f̃VλA/µ+(ξ1, µf )f̃V ′
λB

/µ−(ξ2, µf )

×
dσ̂(VλAV ′λB → F)

dPSn

+O
(
p2
T,lk

M2
V V ′

)
+O

(
M2
Vk

M2
V V ′

)
+O

(
log

µ2
f

M2
Vk

)
. (2.2)

Here, σ is the muon-level (beam-level) inclusive cross section for the production of
F in association with an arbitrary state X. Explicitly, X consists of at least two leptons
l, where l = µ±, νµ, or νµ, in addition to particles originating from radiative corrections.
The summation runs over all polarized EW boson Vλ ∈ {W±λ , Zλ, γλ}, with λ ∈ {0,±1}.
Formally speaking, when the collection of states {Vλ} is extended to left-handed (LH) and
right-handed (RH) states νµL and (νµ)R, the beam remnant X includes weak bosons.

For beams k =1,2, the quantities f̃Vλ/µ±(ξk, µf ) are the bare PDFs that describe
the likelihood that an unpolarized muon µ± with energy Eµ =

√
s/2 and momentum

pµ = Eµ(1, 0, 0,±1) contains a “parton” V with helicity λ, mass MV , energy EV = ξkEµ,
and no transverse momentum pT,Vλ . Following ref. [84], we adopt the f̃ notation to stress
that the PDFs in eq. (2.2) are not resummed. The f̃ are related to resummed PDFs f by

fVλ(ξ, µf ) = f̃Vλ(ξ, µf ) +O ((αW (µf )) . (2.3)

Generally, EV 6= EV ′ in the frame of the (V V ′)-system since generallyMV 6= M ′V . In f̃Vλ/µ± ,
the quantity µf is the collinear factorization scale and acts as the ultraviolet regulator of
the bare PDF. Physically, µf is the phase space upper bound on the norm of the space-like
momentum transfer q = (pµ − pl) carried by Vλ(q); alternatively, µf can be interpreted as
the upper bound on the pT of lepton l in µ± → Vλ + l splitting. The (phase space) integrals
over the momentum fractions ξk are bounded by the (dimensionless) kinematic threshold
variable τ0 = min(M2

V V ′/s) = min(M(F)/s). For MV V ′ <
√
τ0s, the (V V ′)-system has

insufficient energy to produce the n-body state F . The separately Lorentz-invariant phase
space measure dPSn is given by the usual expression

dPSn(pA + pB; {pf}) = (2π)4δ4

pA + pB −
n∑

pj∈{pf}
pj

 n∏
pj∈{pf}

d3pj
(2π)32Ej

. (2.4)
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In eq. (2.2), dσ̂/dPSn is the totally differential, “parton-level” cross section for the
hard-scattering process VλA(pA) V ′λB (pB)→ F({pf}), which occurs at a hard scale

Q ≡MV V ′ =
√

(pA + pB)2 =
√
ξ1ξ2s ≥

√
τ0s�MV . (2.5)

Due to this equality, we use the terms “hard-scattering system” and “(V V ′)-system” inter-
changeably. The helicity-polarized cross sections can be computed from the formula [85]

dσ̂(VλAV ′λB → F)
dPSn

= 1
2λ1/2(Q2,M2

V ,M
2
V ′)

∑
dof
|M(VλAV ′λB → F)|2. (2.6)

Here, λ(x, y, z) = (x− y − z)2 − 4yz, is the usual Källen kinematic function that accounts
for the masses of initial-state particles. Unlike traditional leading-twist approximations
that neglect masses of initial-state partons, the ME M(VλAV ′λB → F) is evaluated with
nonzero MV ,MV ′ . (In none of our results are weak boson masses set to zero.) Moreover,
unlike the scattering of unpolarized partons in unpolarized beams, no spin-averaging factor
for initial-states VλAV ′λB is needed for helicity-polarized cross sections that are paired with
PDFs for helicity-polarized partons. The summation in eq. (2.6) runs over all discrete
degrees of freedom (dof) related to F , e.g., electric charge and color helicity multiplicities.
Importantly, if the summations ∑VλA ,V

′
λB

and∑dof do not run over all helicity polarizations
for V V ′ and F , respectively, then the square ofM is not Lorentz invariant. In such cases,
an infrared-safe reference frame must be specified to define the helicities. For further details
on evaluating helicity-polarized cross sections, particularly in relation to PDFs for polarized
partons and polarized parton showers, see ref. [85].

Implicit in eq. (2.2) is a restriction on the phase space integration measure dPSn. The
purpose of this restriction is regulateM and render it meaningful. For example: the ME
for the process γγ → qq, where q is a massless quark, diverges without phase space cuts
on t-channel momenta. Cuts should also ensure that s-, t-, and u-channel invariants in
the VλAV ′λB → F hard process are comparable to one another and to the hard scale MV V ′ .
In principle, this means that logarithms (L) of ratios of these invariants, which appear
in hard-scattering cross sections, are never numerically large. In practice, we vary phase
space cuts to explore the growth of these logarithms in initial-state µ± → Vλl splitting (see
section 4.5). While the MEs for all the processes that we investigate are regulated, we
set looser phase space cuts on final-state kinematics to balance computational demands.
For some processes, logarithm can grow as large as O(5–10), and therefore remain within
perturbative limits in the sense αW ×L� 1. We have checked (see section 4.5) that tighter
phase space cuts do not qualitatively change our findings.

When deriving eq. (2.2), a number of assumptions are made. Two important ones are
both related to enforcing large separations of scales in VλAV ′λB scattering. The first is that
weak bosons are massive but that the invariant mass of the (VλAV ′λB )-system is much larger,
i.e., MV �MV V ′ . Nonzero MV for V = W,Z ensure that their longitudinal polarization
vectors, which scale as εµ(pV , λ = 0) ∼ pµV /MV +O(MV /EV ), remain non-vanishing when
contracted with µ→ l currents. We reiterate that including initial-state parton masses here
differs from typical treatments of QCD partons in hadron collisions, which are assumed

– 6 –
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massless in the absence of specialized schemes [12–15]. Outside this limit, eq. (2.2) receives
quasi-universal power corrections of the form δσ ∼ (M2k

V /M2k+2
V V ′ )k for k > 1, the size of

which are quantified in section 4.3. The qualifier “quasi-universal” refers to the fact that
such corrections originate from the derivation of f̃V ±0 PDFs, and therefore appear for any
VλAV

′
λV

scattering process with at least one longitudinally polarized W±0 or Z0. (Specifically,
they come from expanding the ME for µ→ l + V0 splitting.) It is worth noting that the
Goldstone Equivalence Theorem requires that these terms be small [81, 82]; for further
insights on relationship, see refs. [4, 80, 86, 87].

The second important assumption is the stipulation that EW bosons are emitted at
shallow angles in µ → l + Vλ splittings, i.e., pT,l ∼ pT,Vλ � MV V ′ . This is a standard
but necessary condition for collinear factorization in gauge theories [70, 88]. As in QCD
computations, universal power corrections of the form δσ ∼ (p2k

T,l/M
2k+2
V V ′ ) for k > 1 can be

incorporated by higher-order perturbative computations, e.g., next-to-leading order (NLO)
in αW or α, parton showers, or ME matching to higher leg multiplicities (see section 4.6).
To be explicit, “universal” here refers to the fact that such corrections originate from the
derivation of both f̃V ±0 and f̃V ±T , meaning that they are present for any VλAV ′λV scattering
process. (Specifically, they come from expanding the ME for µ→ l + Vλ splitting.)

In its present form, eq. (2.2) is subject to universal and quasi-universal logarithmic
corrections of the form δσ/σ ∼ O[log(µ2

f/M
2
Vk

)], where gW =
√

4παW ≈ 0.65 is the SM
weak coupling constant and µf has the physical interpretation as described above eq. (2.4).
Naïvely, one may argue that these corrections are sub-leading since they are coupling
suppressed. However, gW is not a small number and collinear logarithms can compensate for
this. For instance: taking µf = 1–10 TeV implies corrections of δσ ∼ (g2

W /4π) log(µ2
f/M

2
W )

that are O(20%–30%). While we ultimately report in section 4 a prescription for obtaining
agreement between full and EWA-based calculations, the uncertainties associated with
choosing µf reported there and in section 5 undercut our findings.

Since eq. (2.2) is only a LO expression, and therefore does not resum any logarithms,
the only (quasi-)universal logarithms that we study are those coming from the µ± →
VT l splittings themselves. For precision computations, an RG-improved version EVA
with renormalized PDFs fV ±

λ
, running couplings, and an EW Sudakov form factor are

necessary. Equation (2.2) is written such that renormalized PDFs can be incorporated
by the replacement: f̃V ±

λ
(ξ, µf )→ fV ±

λ
(ξ, µ′f ). (Implicit in this replacement is that µ′f in

f(ξ, µ′f ) is acting as a phase space cutoff and the RGE scale.) Were we to replace f̃V ±
λ

with their renormalized versions, then the absence of a Sudakov factor still implies that
the scattering formula is not scale invariant in an RG evolution sense. That is to say,
the anomalous dimensions associated with fVλA/µ± and fVλB /µ∓ do not necessarily cancel
those associated with a renormalized partonic cross section σ̂R(VλAVλB → F). Sudakov
factors can be incorporated following the classic treatment of ref. [69] or modern treatments
like ref. [89]. However, investigating and quantifying the impact of these improvements as
well as those related to γT /ZT mixing [4, 26, 56, 90–93], which we also neglect, is left to
future work.

– 7 –
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Vertex
Coupling

gfR gfL gfV gfAstrength

V − f − f ′ g̃ (gfV + gfA) (gfV − g
f
A) (gR+gL)

2
(gR−gL)

2

γ − f − f eQf 1 1 1 0
Z − f − f g

cos θW −Qf sin2 θW (T f3 )L −Qf sin2 θW
1
2(T f3 )L −Qf sin2 θW −1

2(T f3 )L
W − f − f ′ g√

2 0 1 1
2 −1

2

Table 1. EW chiral couplings and coupling strength normalizations used in the EVA for fermions
f, f ′ with weak isospin charge (T f3 )L = ±1/2 and electric charge Qf , with normalization Q` = −1.

2.2 q2 and p2
T -evolved collinear EW PDFs

The expressions for EW boson PDFs f̃VλA/µ± depend strongly on their precise formulation;
compare for example refs. [5–7, 20, 94–96]. As discussed in section 4.5, seemingly innocuous
conceptual differences can lead to substantial numerical differences in real computations.
Therefore, we now summarize the PDFs used in this study.

In PDFs for Wλ, Zλ, γλ bosons from high-energy muons, one has the freedom to
parameterize the momentum transfer in µ(pµ)→ l(pl)+Vλ(q) splittings either by the squared
virtuality q2 = (pµ−pl)2 < 0 propagated by Vλ, or by the squared transverse momentum p2

T

carried away by l. While the two quantities are related by q2(1−ξ) = −p2
T , where ξ = EV /Eµ

is the fraction of µ’s energy held by Vλ, the resulting PDF sets for transversely polarized Vλ
differ analytically. Consequentially, for fixed z, λ, and µf , one can obtain large differences
due a relative contribution that scale as δf̃VT /µ± ∼ log(1− ξ). This logarithm diverges in
the large-ξ limit and corresponds to a nonzero q2 but a vanishing p2

T . Such differences have
been sporadically discussed throughout the literature [18–20, 23, 24, 79, 95, 97] but not
systematically compared. In light of this, we investigate both sets of PDFs.

For the couplings in table 1, and assuming q2 evolution, the LO PDFs for polarized
Vλ ∈ {W±λ , Zλ} from LH (f̃L) and RH (f̃R) fermions in the hard scattering frame are

f̃V+/fL(ξ, µ2
f ) = g2

V

4π2
g2
L(1− ξ)2

2ξ log
[
µ2
f

M2
V

]
, (2.7a)

f̃V−/fL(ξ, µ2
f ) = g2

V

4π2
g2
L

2ξ log
[
µ2
f

M2
V

]
, (2.7b)

f̃V0/fL(ξ, µ2
f ) = g2

V

4π2
g2
L(1− ξ)
ξ

, (2.7c)

f̃V+/fR(ξ, µ2
f ) =

(
gR
gL

)2
× f̃V−/fL(ξ, µ2

f ), (2.7d)

f̃V−/fR(ξ, µ2
f ) =

(
gR
gL

)2
× f̃V+/fL(ξ, µ2

f ), (2.7e)

f̃V0/fR(ξ, µ2
f ) =

(
gR
gL

)2
× f̃V0/fL(ξ, µ2

f ). (2.7f)
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Choosing instead to integrate over p2
T leads analogously to the following PDFs for Vλ:

h̃V+/fL(ξ, µ2
f ) = g2

V

4π2
g2
L(1− ξ)2

2ξ log
[

µ2
f

(1− ξ)M2
V

]
, (2.8a)

h̃V−/fL(ξ, µ2
f ) = g2

V

4π2
g2
L

2ξ log
[

µ2
f

(1− ξ)M2
V

]
, (2.8b)

h̃V0/fL(ξ, µ2
f ) = g2

V

4π2
g2
L(1− ξ)
ξ

, (2.8c)

h̃V+/fR(ξ, µ2
f ) =

(
gR
gL

)2
× h̃V−/fL(ξ, µ2

f ), (2.8d)

h̃V−/fR(ξ, µ2
f ) =

(
gR
gL

)2
× h̃V+/fL(ξ, µ2

f ), (2.8e)

h̃V0/fR(ξ, µ2
f ) =

(
gR
gL

)2
× h̃V0/fL(ξ, µ2

f ). (2.8f)

To obtain the LO PDF for γλ from polarized muons in either evolution scheme, one must
make the replacement MV → mµ in the f̃VT PDFs and neglect the f̃V0 PDF. Given a
scheme, we construct polarized EW boson PDFs for unpolarized muon beams, denoted by
f̃Vλ/µ± , from those PDFs for polarized muons, denote by f̃Vλ/µ±λ , through the relation

f̃Vλ/µ±(ξ, µf ) =
f̃Vλ/µ±L

(ξ, µf ) + f̃Vλ/µ±R
(ξ, µf )

2 . (2.9)

As a technical note, both schemes are available in mg5amc (see appendix A for details) but
stress that RG evolution of EW boson PDFs from leptons is not yet supported.

Differences between the two sets of PDFs appear only in the collinear logarithms for
transversely polarized Vλ. In this sense, the impact of log(1 − ξ) corrections is process
dependent and thus is labeled “quasi-universal.” The absence of scale evolution in PDFs for
longitudinally polarized Vλ is well-known and implies that traditional means of estimating
scale uncertainty in pQCD, e.g., three-point scale variation, are not applicable to longitudi-
nally polarized weak boson PDFs. In principal, one can obtain f̃VT /fL/R from h̃VT /fL/R , or
vice versa, with appropriately chosen µf . To further highlight the parallels with pQCD,
we note that absorbing factors of (1 − ξ) into factorization scales is common practice in
Soft-Collinear Effective Field Theory (SCET) [98, 99]. We reiterate that the PDFs here
are only accurate to LO. This means that charge-flipping splittings such as µ− → γ∗ → µ+

and µ− → γ∗ →W+, which appear first at NLO, are neglected.

2.3 Collinear PDFs for SM neutrinos

We briefly note that the derivation of W±λ PDFs in µ→ l + Vλ splitting also implies the
existence of neutrino PDFs. As we are working in the SM, only massless, LH neutrinos
(and RH antineutrinos) exist. Therefore, by probability conservation, the µ−L → νµL PDF
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at leading order accuracy when evolved by q2 and p2
T are

f̃νµL/µ−L
(ξ, µ2

f ) = f̃W−
λ=+/µ

−
L

(
(1− ξ), µ2

f

)
+ f̃W−

λ=−/µ
−
L

(
(1− ξ), µ2

f

)
(2.10)

= g2

16π2

(
1 + ξ2

1− ξ

)
log

[
µ2
f

M2
V

]
, (2.11)

h̃νµL/µ−L
(ξ, µ2

f ) = h̃W−
λ=+/µ

−
L

(
(1− ξ), µ2

f

)
+ h̃W−

λ=−/µ
−
L

(
(1− ξ), µ2

f

)
(2.12)

= g2

16π2

(
1 + ξ2

1− ξ

)
log

[
µ2
f

ξM2
V

]
. (2.13)

As we are interested in VBF at µ+µ− colliders, we do consider further the role of neutrino
PDFs from muon beams; for recent discussion on these PDFs, see ref. [26]. Moreover,
while we have also implemented these PDFs into the public release of mg5amc, access to
them is temporarily restricted due to the unregulated divergence at ξ → 1. Likewise,
throughout this study, we neglect the importance of µ→ µ PDFs due to the complication
of soft/collinear photon emissions, which necessitates resummation [100]; we refer readers
to studies by refs. [56, 100–104].

3 Computational setup

In this section we summarize the computational framework used in this study. Here, we
only document the Monte Carlo (MC) tool chain and its tuning. Details on the EVA itself
and usage in mg5amc are documented in section 2 and appendix A.

To simulate high-pT muon collisions, we employ a development release of version 3.3.0 of
MadGraph5_aMC@NLO [105, 106]. In this software suite, fully differential events are obtained
from tree-level ME that are constructed [107] and evaluated [108] using helicity amplitudes
defined in the HELAS basis [109], with QCD color algebra decomposed according to color
flow [110]. Helicity-polarized ME are obtained by truncating spin-averaging over initial-state
states and/or spin-summing over final-state states [85]. Analysis of parton-level events is
handled by MadAnalysis5 [111, 112].

Standard model inputs. For all ME and PDFs, we take the following EW inputs and
masses [113]

MW = 80.419 GeV, MZ = 91.188 GeV, GF = 1.16639× 10−5 GeV2, (3.1)
mH = 125 GeV, mt = 173 GeV, mb = 4.7 GeV. (3.2)

This implies a QED coupling of α−1
QED(µr = MZ) ≈ 132.507. While we consistently modify

EW couplings EW inputs are varied but we do not RG-evolve them. Importantly, we have
structured mg5amc such that EW couplings and masses present in EW boson PDFs are set
to those values stipulated in the param_card.dat configuration file. Changes to EW inputs
in this file are automatically propagated into EW boson PDFs. We reiterate that all ME
and PDFs assume non-zero W and Z boson masses. We use the light lepton masses

me = 510.9989461× 10−6 GeV and mµ = 105.6583745× 10−3 GeV (3.3)
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for the collinear logarithms contained in the γλ PDFs. These masses are hard-coded into
the γλ PDFs and are independent of param_card.dat. While it is technically possible use
massless e±/µ± in MEs, in this paper we choose to use massive leptons.

4 EVA at high energies

A chief goal of factorization is to simplify in a systematic manner complicated, multi-
scale MEs that describe many-body processes into a set of simpler, 1-to-2-scale MEs. In
practice, this divide-and-conquer approach improves the efficiency and stability of numerical
computations. Importantly, the formal perturbative accuracy of factorized calculations can
also be improved through quasi-universal RGE methods, e.g., Sudakov resummation and
DGLAP evolution. For the specific case of VBF in multi-TeV µ+µ− collisions, factorizing
collinear µ→ Vλl splittings into weak boson PDFs enables one to reorganize computations
of an inherent 3-scale, 2→ (n+ 2) scattering process (the three scales being MV , plT and
MV V ′) into the product of two 2-scale computations (MV with µf ∼ plT , and MV with
MV V ′) involving process-independent PDFs and process-dependent 2→ n MEs.

As described in section 2.1, the EWA is accurate up to universal and quasi-universal
power corrections of the order O(pl2T /M2

V V ′) and O(M2
V /M

2
V V ′), which originate from

expanding the ME for transversely and longitudinally polarized weak bosons in µ→ Vλl

splittings, as well as universal and quasi-universal logarithmic corrections of the order
O[log(µ2

f/M
2
V )], which stem from working at LO in the EW theory. In principle, both

classes of corrections can be reduced via standard techniques, e.g., higher-order perturbative
calculations and Sudakov resummation. In the absence of such improvements, however,
there exist theoretical uncertainties in the formulation of weak PDFs that we now explore. In
section 4.1 we describe our common setup to study power-law and logarithmic corrections. In
section 4.2 we describe how we quantify uncertainties associated with the cutoff scale µf . We
then study O(M2

V /M
2
V V ′) corrections in section 4.3, and the dependence on collider energy

in section 4.4. A subclass of O[log(µ2
f/M

2
V )] corrections are then investigated in section 4.5.

Finally, in section 4.6, we give a proof-of-principle demonstration of matrix element matching
with transversely polarized weak boson PDFs and explore O(pl2T /M2

V V ′) corrections.

4.1 Process choice and polarization decomposition

To quantify uncertainties that stem from factorizing polarized EW bosons from initial-state
µ± → Vλl emissions into PDFs, we chose the two benchmark processes

e+µ− → HH ν̄eνµ and e+µ− → γγγ ν̄eνµ . (4.1)

Following ref. [42], we work with e+µ− collisions in order to remove s-channel, µ+µ− anni-
hilation diagrams in a gauge-invariant manner. As such channels have sizable contributions
to inclusive cross sections, their removal helps isolate the VBF sub-processes. Under the
EWA, these beam-level processes correspond to the partonic processes∑

λA,λB∈{0,±1}
W+
λA
W−λB → HH and

∑
λA,λB∈{0,±1}

W+
λA
W−λB → γγγ . (4.2)
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In practice, we restrict ourselves throughout this section to the EWA helicity configurations

W+
0 W

−
0 → HH and

∑
λA,λB∈{±1}

W+
λA
W−λB → γγγ . (4.3)

We consider these specific processes and configurations due to the high purity of
helicity polarizations that drive them. For polarizations λA and λB defined in the (W+W−)
frame, we find by explicit calculation [85] that 97%–99% of HH production in the EWA
is dominated by longitudinally polarized W+W− scattering, i.e., (λA, λB) = (0, 0), for√
s = 4–30 TeV. In contrast, γγγ production is driven at the 97%–99% level, albeit with a

large scale uncertainty, by transversely polarized W+W− scattering, i.e., (λA, λB) = (T, T ′),
where T, T ′ = ±1, when assuming the following fiducial phase space cuts on photons

pγT > 50 GeV, |ηγ | < 3, and ∆R(γ, γ) > 0.4. (4.4)

In making this distinction between (0, 0) and (T, T ′) configurations, we can showcase
possible differences of the EWA as applied to longitudinal and transverse polarizations.
Many other processes, such as heavy Higgs production and top quark pair production,
receive comparable contributions from multiple polarization configurations, which we believe
can lead to ambiguities in interpreting the following comparisons.

4.2 Defining scale uncertainties for unrenormalized WT/ZT PDFs

A key difference between the bare, LO PDFs in section 2.2 and their renormalized variants
is the definition of µf . For renormalized PDFs, µf is the RGE scale generated through
dimensional regularization; varying µf is a standard procedure for quantifying perturbative
uncertainties in QCD predictions. In the present case of µ → Vλl splitting at LO, µf is
literally a boundary on a phase space integral over either the virtuality

√
|q2| of Vλ, if one

uses eq. (2.7), or the transverse momentum plT of l, if one uses eq. (2.8).
For the PDFs of section 2.2, setting µf proportional to the (V V ′) scattering scale

MV V ′ is a natural choice as this attempts to captures the whole phase space in V V ′

scattering [5, 94]. However, much smaller choices are also favored. Integrating up to
plT ∼ µf ∝MV V ′ suggests a potential breakdown of the collinear approximation since one
assumes plT = pVT �MV V ′ . As discussed in section 4.6, it is the wide-angle contribution of
µ→ Vλl splitting that coincides with the regime plT = pVT ∼MV V ′ . Therefore, there is an
ambiguity, or uncertainty, in the choice of µf , and increasing or lowering µf corresponds
to conjecturing how much phase space is actually captured by collinear kinematics. It is
not guaranteed that arguments used in hadron collisions to fix µf , e.g., refs. [114, 115], are
applicable here. Furthermore, this uncertainty is only one part of the possible uncertainties
of the EWA, as illustrated in the factorization formula of eq. (2.2). Exploring how such
ambiguities relate to disagreements between the EWA and full matrix element computations
is a reason for this study.

For the γγγ process, we focus on PDF evolution by virtuality (q2) and set the baseline
collinear factorization scale to be half the partonic c.m. energy, given by

µf = ζ

√
ŝ

2 = ζ
MV V ′

2 , with ζ = 1. (4.5)
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σEWA [fb] (Polarization Fraction)
√
s= 4TeV

√
s= 14TeV

√
s= 30TeV∑

λA,λB
W+
λA
W−λB→HH 2.08 +4%

−2% (−) 6.01 +2%
−1% (−) 9.48 +2%

−1% (−)

W+
0 W

−
0 →HH 2.03 (97%) 5.91 (98%) 9.16 (97%)

W±0 W
∓
T →HH 560×10−6 +75%

−73% (< 0.5%) 1.10×10−3 +72%
−70% (< 0.5%) 1.44×10−3 +71%

−70% (< 0.5%)

W+
T W

−
T →HH 51.5×10−3 +140%

−75% (2%) 113×10−3 +130%
−72% (2%) 156×10−3 +130%

−769% (2%)∑
λA,λB

W+
λA
W−λB→ γγγ 146×10−3 +93%

−60% (−) 396×10−3 +76%
−52% (−) 519×10−3 +71%

−50% (−)

W+
0 W

−
0 → γγγ 894×10−6 (0.6%) 1.50×10−3 (< 0.5%) 1.70×10−3 (< 0.5%)

W±0 W
∓
T → γγγ 3.56×10−3 +72%

−63% (2%) 5.88×10−3 +64%
−58% (2%) 6.55×10−3 +63%

−57% (1%)

WTWT → γγγ 141×10−3 +94%
−60% (97%) 389×10−3 +76%

−52% (98%) 510×10−3 +71%
−50% (98%)

σFull [fb]
e+µ−→HH ν̄eνµ 1.26 4.43 9.60
e+µ−→ γγγ ν̄eνµ 248·10−3 558·10−3 4.04·10−1

Table 2. Upper: unpolarized and polarized, EWA-level cross sections [fb] for the processW+
λA
W−λB

→
HH, with scale uncertainties [%] and polarization fractions [%], in e+µ− collisions at

√
s= 4, 14,

and 30TeV. Middle: the same but for the process W+
λA
W−λB

→ γγγ, assuming the phase space cuts
of eq. (4.4). Lower: the cross sections for the analogous processes using the full 2→ 4 or 2→ 5 ME.
No restrictions are applied to the invariant masses M(HH) and M(γγγ).

Three-point scale uncertainties for W±T PDFs are obtained by varying ζ discretely over the
range ζ ∈ {0.5, 1.0, 2.0}. While our inspiration to use this procedure draws from common
practices in QCD, we reiterate that the physical interpretation is not the same as for
renormalized PDFs in QCD. There are also alternative ways to quantify uncertainties in
the EWA [79, 80, 83]. For representative collider energies

√
s = 4, 14, and 30TeV, the

beam-level cross sections under the EWA (σEWA), scale uncertainties [%], and polarization
fractions [%] for W+

λA
W−λB → HH and γγγ are summarized in the top two panels of table 2.

For comparison, we show in the lower panel of table 2 the corresponding cross sections
(σFull) using the full MEs, i.e., without the EWA. The sizable differences between σEVA and
σFull, as well as the large scale uncertainties of the EWA result, will now be discussed.

4.3 Dependence on hard-scattering scale

We start our presentation on EWA uncertainties with what we find to be the most telling:
that the accuracy of EWA cross sections for VBF depends crucially on the size of (M2

V /M
2
V V ′)

power corrections. To show this, we plot in figure 2(a) the invariant mass distributions
at
√
s = 4 TeV of the (HH)-system using the full 2 → 4 ME (solid) and the EVA 2 → 2

ME (dashed). We assume two scenarios: one where the SM Higgs vev is its usual value√
2〈Φ〉 = vSM ≈ 246 GeV (dark, lower curves), and a hypothetical situation where the vev

is reduced by a factor 10 (light, upper curves), i.e., where
√

2〈Φ〉 = vSM/10 ≈ 24.6 GeV. In
the small-vev scenario, we keep MH and all EW gauge couplings to be their SM values in
the Thomson limit. This implies MW ≈ 8.04 GeV and MZ ≈ 9.14 GeV.
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(a) (b)

Figure 2. (a) The invariant mass distribution M(HH) of the process W+W− → HH , as predicted
by the full 2→ 4 ME (solid) and the EWA W+

0 W
−
0 → HH ME (dash) at

√
s = 4 TeV, assuming

the SM vev
√

2〈Φ〉 = vSM ≈ 246 GeV (darker, lower curves) and a scenario where
√

2〈Φ〉 = vSM/10
(lighter, upper curves). (b) Same but for the M(γγγ) distribution of the process W+W− → γγγ,
assuming the fiducial cuts in eq. (4.4), and for theW+

T W
−
T → γγγ ME in the EWA with µf = M(γγγ)

(dash) and µf = M(γγγ)/4 (dots).

Focusing first on the SM case, we clearly see that the EWA and the full ME com-
putations are in agreement for M(HH) & 1 TeV. Below this threshold, the EWA curve
significantly overestimate the full ME. In the lowest bins, the differences between the curves
reach approximately factors of 3–5. This excess in the EVA prediction accounts for the
differences in cross sections reported in table 2. Differences between the full ME and fW±0
PDFs consist of corrections associated with expanding in powers of (M2

W /M
2(HH)) and

(pν2
T /M

2(HH)) ∼ (M2
W /M

2(HH)). Importantly, we can rule out a meaningful dependence
on µf since W+

λA
W−λB → HH is driven almost exclusively by W+

0 W
−
0 scattering. To check

that these power corrections are driving the disparity between the full and approximated
MEs, we turn to the reduced-vev case. Remarkably, if we reduce MW by a factor of 10,
the disagreement between the EWA and the full ME disappears to within MC statistical
uncertainties.

The same scenarios are presented for γγγ production in figure 2(b). There, we plot
the invariant mass distribution of the (γγγ)-system for the full (solid) and EWA MEs. As
W+
λA
W−λB → γγγ is driven by W+

T W
−
T scattering, there is an ambiguity associated with

our choice for µf in the W±T PDFs. Therefore, we consider the envelop spanned by setting
µf =

√
ŝ (dash) and µf =

√
ŝ/4 (dot). In the SM case (light curves), the scale uncertainty

envelope spans a huge gap that sandwiches the full ME for M(γγγ) & 750 GeV. This
large scale variation can be understood by considering the logarithms in the W±T PDFs
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themselves. For a fixed M(γγγ), the ratio of the two EVA distributions is given by

dσEVA
dM(γγγ)

∣∣
µf=
√
ŝ

dσEVA
dM(γγγ)

∣∣
µf=
√
ŝ/4

∣∣∣∣∣
fixed M(γγγ)

=
log2

(
ŝ

M2
W

)
log2

(
ŝ

16M2
W

)∣∣∣∣∣
ŝ=M2(γγγ)

(4.6)

=
log2 M2(γγγ)

M2
W

log2 M2(γγγ)
M2
W

+ log2(16)− 2 log(16) log M2(γγγ)
M2
W

. (4.7)

For the representative triphoton invariant masses M(γγγ) ∈ {0.5, 1, 2, 2.5}TeV, we
obtain roughly the respective ratios {17, 4.9, 3.1, 2.8}, in agreement with the distribution. For
M(γγγ) . 750 GeV, the full ME curve sits just above the EWA envelope. This is in contrast
to W+

0 W
−
0 → HH, where the full ME distribution sits below the EWA rate. We attribute

this to W+
T W

−
T ′ scattering having a weaker dependence on power corrections than W+

0 W
−
0

scattering. Differences between the full ME and fW±T PDFs are associated with expanding
in powers of (pν2

T /M
2(HH)) ∼ (M2

W /M
2(HH)). However, there is no second expansion

in powers of (M2
W /M

2(γγγ)) as one has for the fW±0 PDFs. For M(γγγ) > 1.5 TeV, the
distribution of the full ME approaches the EWA curve for µf =

√
ŝ/4, suggesting a preferred

choice for setting µf .
In the reduced-vev scenario (dark curves), we observe several noteworthy features. First

is an improved agreement between the full and EWA distributions for M(γγγ) & 250 GeV.
For even lower invariant masses, the full ME is again higher than the EWA band. Second, we
find that the full ME converges to the EWA curve for µf =

√
ŝ/4 when M(γγγ) & 750 TeV.

Third is the appearance of a smaller scale uncertainty envelope, in accordance with eq. (4.7).
Numerically, this follows from the fact that for small variations of the argument x, the
quantity log(x) varies less when x is large than when x is near unity. Physically, this means
that in the reduced-vev case, typical M(γγγ) are further away from the W ’s mass threshold,
and therefore is less sensitive to O(log(M2(γγγ)/M2

W )) variations. Despite being smaller in
this scenario, we stress that the scale uncertainty band remains sizable. For instance: using
eq. (4.7) and our benchmark values for M(γγγ), we obtain the ratios {2.3, 2.0, 1.8, 1.7}.
This indicates that for realistic EW boson masses, one must go to asymptotically large
M(γγγ) in order to obtain O(10%–20%) uncertainties. From an alternative perspective,
the large µf dependence is indicative of the need to extend the formula of eq. (2.2) by
an EW Sudakov form factor and/or RG evolution for weak boson PDFs, as studied in
refs. [4, 26, 56, 89, 90, 93, 116–118].

From these distributions, we can conclude that the EWA is acutely sensitive to power
corrections of the form (M2

V /M
2
V V ′). This is particularly true when scattering longitudinally

polarized weak bosons. Distributions also suggest a weaker dependence on power corrections
when scattering transversely polarized weak bosons. We attribute this difference to the
different expansions needed to derive longitudinal and transverse weak boson PDFs: WT

PDFs require a single power expansion whereas W0 PDFs require a double expansion.
Altogether, this points to evidence of the EWA’s success for both transverse and longitudinal
VλAV

′
λB

scattering when MV V ′ > O(1 TeV), or (M2
V /M

2
V V ′) . 0.01. To further demonstrate
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σEVA [fb] (Polarization Fraction)
√
s= 4TeV

√
s= 14TeV

√
s= 30TeV∑

λA,λB
W+
λA
W−λB→HH 364×10−3 +2%

−2% (−) 2.44 +1%
−1% (−) 4.63 +1%

−1% (−)

W+
0 W

−
0 →HH 353×10−3 (97%) 2.41 (99%) 4.59 (99%)

W±0 W
∓
T →HH 13.7×10−6 +34%

−34% (< 0.5%) 47.6×10−6 +34%
−34% (< 0.5%) 71.5×10−6 +33%

−33% (< 0.5%)

W+
T W

−
T →HH 10.8×10−3 +75%

−54% (3%) 34.6×10−3 +71%
−52% (1%) 53.1×10−3 +69%

−50% (1%)∑
λA,λB

W+
λA
W−λB→ γγγ 87.9×10−3 +70%

−51% (−) 308×10−3 +62%
−46% (−) 423×10−3 +59%

−45% (−)

W+
0 W

−
0 → γγγ 36.8×10−6 (< 0.5%) 166×10−6 (< 0.5%) 240×10−6 (< 0.5%)

W±0 W
∓
T → γγγ 572×10−6 +33%

−33% (1%) 1.53×10−3 +31%
−31% (0.5%) 1.86×10−3 +31%

−31% (< 0.5%)

WTWT → γγγ 87.3×10−3 +71%
−52% (99%) 307×10−3 +62%

−47% (99%) 421×10−3 +59%
−45% (99%)

σFull [fb]
e+µ−→HH ν̄eνµ 325·10−3 2.31 4.61
e+µ−→ γγγ ν̄eνµ 84.8·10−3 309·10−3 412·10−3

Table 3. Same as table 2 but requiring M(HH)> 1TeV and M(γγγ)> 1TeV.

this at the level of cross sections, we show in table 3 the same quantities as in table 2 but
require also that M(HH) > 1 TeV and M(γγγ) > 1 TeV. The improved agreement between
the full and EWA computations is due to the cuts on M(WW ).

4.4 Dependence on collider energy

In light of the above, we consider now the impact collider energy on the EWA’s accuracy.
Increasing

√
s has two prominent effects on VλAV ′λB scattering: (i) For fixed momentum

fractions ξ1 and ξ2, more energetic µ+µ− collisions lead to more energetic (V V ′)-systems,
with M2

V V ′ = ξ1ξ2s. The corresponding enhancement of collinear logarithms indicates
an enlargement of collinear regions of phase space. (ii) For a fixed hard-scattering scale
MV V ′ , increasing the collider energy leads to probing smaller ξ1 and ξ2. The corresponding
enhancement of soft logarithms similarly indicates an enlargement of soft regions of phase
space. (Soft logarithms appear after integrating f̃Vλ(ξi) ∼ 1/ξi over ξi; see, e.g., ref. [42].)

To explore these effects, we present in figure 3 the invariant mass distributions of (a)
the (HH)-system and (b) the (γγγ)-system at

√
s = 4 TeV (light), 14TeV (darker), and

30TeV (darkest), assuming the full MEs for the processes in eq. (4.1) (solid), and the EWA
MEs for the processes in eq. (4.3) (dash). For the W+

T W
−
T → γγγ process, we show the

scale variation envelop obtained by setting µf =
√
ŝ (dash) and µf =

√
ŝ/4 (dot).

Focusing on the M(HH) distribution in figure 3(a), several observations can be made.
We start with the anticipated jump in cross section for increasing

√
s. For both the EWA and

the full MEs, we find that increasing the collider energy by a factor of 3.5 causes all total cross
sections to increase by about a factor of 3 (see table 2). Increases are much more dramatic
at the differential level for M(HH) & 1.5 TeV due to the significant opening of phase space.
In this regime, we also find good agreement with the normalization and shape between
the EWA and full MEs. At lower invariant masses, particularly for M(HH) . 500 GeV,
we find that the EWA overestimates the full ME in the same manner as observed in the
previous section. In this regime, the EWA distributions increase more quickly with rising
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(a) (b)

Figure 3. (a) The invariant mass distribution M(HH) of the process W+W− → HH , as predicted
by the full 2→ 4 ME (solid) and the EVA W+

0 W
−
0 → HH ME (dash) at

√
s = 4 TeV (lower light

curves) and 14 TeV (upper dark curves). (b) Same but for the M(γγγ) distribution of the process
W+W− → γγγ, assuming the fiducial cuts in eq. (4.4), and for the W+

T W
−
T → γγγ ME in the EWA

with µf = M(γγγ) (dash) and µf = M(γγγ)/4 (dots).

√
s than the full ME distributions: in the lowest M(HH) bins, the EWA ME overestimates

the full ME by about a factor of 3–5 at
√
s = 4 TeV and by about 3.4–4.7 at 30 TeV. As

longitudinal weak boson PDFs do not contain collinear logarithms, the enhancements in
figure 3(a) are driven exclusively by soft logarithms. This implies that the EWA favors
the production of relatively softer W±0 , and hence lower M(HH), a phenomenon that is
sometimes [4] described as “ultra collinear enhancements.” Consequentially, increasing the
collider energy reinforces the sensitivity to (M2

W /M
2(HH)) power corrections, which must

be negative. Despite this, the distributions show that regardless of
√
s the EWA converges

to the full ME computation for M(HH) & 1TeV.
Turning to the M(γγγ) distribution in figure 3(b), we observe several of the same

characteristics. Foremost we find that the full ME distribution consistently sits within
the EVA scale uncertainty band for M(γγγ) & 750 GeV–1 TeV, for all

√
s = 4–30 TeV.

Though, for increasing
√
s we find that the full ME expectation migrates away from the

µf =
√
s/4 boundary and towards the envelope’s center. For a fixed M(γγγ), we find

that the thicknesses of the µf uncertainty bands remain about the same for increasing√
s, with changes just outside MC statistical uncertainties. This is consistent with the

ratio expression of eq. (4.7), which does not obviously suggest an additional dependence on
collider energy once M(γγγ) is fixed. An important difference with respect to the M(HH)
case is the preference for larger values of M(γγγ) with increasing

√
s. (For W+

0 W
−
0 → HH ,

smaller invariant masses are preferred at increasing collider energy.) As W+
T W

−
T → γγγ is

devoid of possible ME-level enhancements from longitudinal polarizations, we attribute these
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behaviors to the collinear logarithm contained in the fW±T PDF, which favors producing
larger invariant masses. Notably, the collinear logarithms reinforce the accuracy of the EVA
by favoring phase space regions where (M2

W /M
2(γγγ)) is small.

4.5 Dependence on evolution variable and phase space cuts

As shown in section 2, EW boson PDFs can be constructed using either the virtuality q of
Vλ or transverse momentum pT of l as the evolution variable in collinear µ→ Vλl splitting.
Given that the expressions for the fW±T PDFs differ, we investigate whether these schemes
give appreciably different results. To explore this, we focus on the process W+

T W
−
T ′ → γγγ

since the fW±0 PDFs are the same under both schemes.
In figure 4(a), we show the invariant mass distribution of the (γγγ)-system inW+

T W
−
T ′ →

γγγ at
√
s = 4 TeV using the full ME for the 2 → 5 scattering process (solid) and the

analogous process under the EWA. For the EWA curves, we consider the scale variation
envelop spanned by setting µf =

√
ŝ (dash) and µf =

√
ŝ/4 (dot) for evolution by q2 (thick

curves) and evolution by p2
T (thin curves). We also impose the fiducial cuts in eq. (4.4). As

found in previous subsections, the distribution for the full ME sits in the EWA envelope for
M(γγγ) & 750 GeV, when assuming evolution by q2. In comparison, the evolution-by-p2

T

envelope is systematically shifted upward to a larger set of rates. Notably, this leads to the
µf =

√
ŝ/4 curve for evolution by p2

T to overestimate the full ME when M(γγγ) & 2 TeV.
This shift is entirely due to the different arguments in the PDFs’ collinear logarithms.

More specifically, for evolution by q2, one has f̃W±T (ξ, µf ) ∝ log(µ2
f/M

2
W ), whereas for

evolution by p2
T , one has h̃W±T (ξ, µf ) ∝ log(µ2

f/(1− ξ)M2
W ). This difference implies that for

a fixed factorization scale, the logarithm in the evolution-by-p2
T PDF is relatively enhanced

by a factor of 1/(1 − ξ). This favors larger momentum fractions and therefore harder
invariant mass distributions since M2(γγγ) = ξ1ξ2s. This enhancement and subsequent
disagreement do not imply that evolution-by-p2

T scheme itself is incorrect. It only indicates
that setting µf =

√
ŝ or µf =

√
ŝ/4 are poor choices of factorization scale for this process

and collider energy. Obviously, setting µf =
√

(1− ξ)ŝ or µf =
√

(1− ξ)ŝ/4, which is a
common practice SCET [98, 99], would recover the results for evolving by q2.

In figure 4(b), we show the invariant mass distribution but for
√
s = 14 TeV. Remarkably,

we find that two the envelopes converge, and differences between the two evolution schemes
are within MC statistical uncertainties. Importantly, the full ME distribution remains inside
both envelopes for M(γγγ) & 750 GeV. To understand this improved agreement, recall that
when the hard scattering scale M(γγγ) is fixed, one probes smaller momentum fractions for
increasing collider energies. This implies that as

√
s increases, the 1/(1− ξ) enhancements

cease and systematically approach unity, i.e., 1/(1− ξ)→ 1.
In figure 4(c) and (d), we investigate the impact of tighter phase space cuts on the

final-state system. In particular, we consider the cases when photons are (c) more central
with |ηγ | < 1.5, and (d) harder with pγT > 150 GeV. Aside from an obvious reduction in
cross section, a few qualitative observations are worth reporting. In figure (c), we observe
a shift in the distribution to smaller M(γγγ), whereas in figure (d) the shift is to larger
M(γγγ). In both cases, the change is kinematical. Consider the invariant mass of the entire
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(a) (b)

(c) (d)

Figure 4. (a) The invariant M(γγγ) distribution of the process W+W− → γγγ, as predicted by
the full 2 → 5 ME (solid) and the EVA W+

T W
−
T → γγγ ME at

√
s = 4 TeV, assuming fWT

PDF
evolution by virtuality q2 (thick lines) and transverse momentum p2

T (thin lines), with µf = M(γγγ)
(dash) and µf = M(γγγ)/4 (dots). (b) The same as (a) but for

√
s = 14 TeV. (c) The same as (a)

but for |ηγ | < 1.5. (c) The same as (a) but for pγT > 150 GeV.
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three-photon system in terms of two-photon systems, i.e.,

M2(γγγ) = 2M(γ1γ2) + 2M(γ2γ3) + 2M(γ1γ3), where (4.8)
M2(γiγj) ∼ piT p

j
T [(yi − yj)2 + (φi − φj)2]. (4.9)

Here, ηi and φi are the pseudorapidity and azimuth of γi. Requiring a smaller |ηγ | window
leads to smaller diphoton masses, and hence smaller triphoton masses. Likewise, requiring
larger pγT leads to larger diphoton masses, and therefore larger triphoton masses. Despite
these different shifts, we do not find clear improvement or worsening of the agreement
between either evolution scheme and the full ME. In both (c) and (d), the full ME
distribution sits inside both envelopes for M(γγγ) & 750 GeV. However, as in the baseline
case, the p2

T -scheme again overestimates the full ME for M(γγγ) & 2 TeV due to too large
log(1− ξ) enhancements. This suggests that the specific dynamics of the hard scattering
process may not have an appreciable impact the validity of the EWA, as one would hope.

4.6 Matrix element matching with collinear WT PDFs

As a final check of our implementation of EW boson PDFs into mg5amc and as a proof-
of-concept demonstration of the potential capabilities, we briefly explore matrix element
matching (MEM) with transverse weak boson PDFs. The idea behind MEM is that one can
divide computations for complicated, many-leg final states that are susceptible to numerical
instabilities, e.g., µ+µ− → νµνµγγγ, into two easier, more stable parts: (i) a ME with a
smaller final-state multiplicity that represents a particular region of phase space of the
original process, e.g., the process µ+W− → νµγγγ with a f̃W−/µ− PDF, which describes
the collinear µ− → W−νµ splitting; and (ii) the ME for the original process but where
the phase space for (i) is excluded, e.g., µ+µ− → νµνµγγγ process with only wide-angle
µ− →W−νµ splittings. In principle, summing the two components should recover the full
phase space for the original ME, up to power corrections that are formally small. The
aim of this procedure is to efficiently describe regions of phase space that are otherwise
difficult to model simultaneously due to instabilities associated with soft and/or collinear
radiation. If MEM is successfully implemented, then the sum of (i) and (ii) should not only
reproduce the original cross section, up to uncertainties, but also display an insensitivity to
the (artificial) cutoff scale that divides the original process into regions (i) or (ii).

This subsection serves as a proof-of-concept check and exploration of the power-law-like
corrections in the factorization formula of eq. (2.2). The discussion here also touches upon
whether there is a natural or preferred choice for µf , which might resolve the collinear/wide-
angle ambiguity described in section 4.2. (It is not obvious that arguments for setting
µf in hadron collisions, such as those given in refs. [114, 115], are applicable here.) As
discussed below, there are technical nuances at play that merit comprehensive exploration.
However, this is beyond the scope of our work. Future studies that expand on this section
are therefore encouraged.

To sketch MEM conceptually for the case of matching collinear WT (or ZT ) PDFs with
full ME, we focus on the scattering process e+µ− → νeνµγγγ. One can schematically divide
the cross section of the process (σTot.) into three disjoint pieces that describe different
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modes of µ− →W−νµ splitting: (i) a collinear piece (σC), (ii) a quasi-collinear piece (σQC),
and (iii) a hard piece (σH). Taking pνµT as the evolution variable, one can write:

σTot. =
∫ µf

0
dp

νµ
T

dσ

dp
νµ
T︸ ︷︷ ︸

σC

+
∫ Λ

µf

dp
νµ
T

dσ

dp
νµ
T︸ ︷︷ ︸

σQC

+
∫ pmax

T

Λ
dp

νµ
T

dσ

dp
νµ
T︸ ︷︷ ︸

σH

. (4.10)

Here, µf �MW is a factorization scale separating collinear and wide-angle µ− →W−νµ
splittings. The second cutoff Λ, which satisfies µf . Λ� pmax

T , is some arbitrary scale such
that collinear factorization remains a good approximation. (The introduction of Λ is simply
for bookkeeping: it ensures σQC can be written in a convenient manner.) Finally, pmax

T is
upper bound on pνT allowed by momentum conservation and phase space cuts.

After integration over pνT , both σC and σQC will scale like a collinear logarithm and
power corrections, which we neglect (retain) in the (quasi-)collinear expression:

σC =
∫ µf

0
dp

νµ
T

dσ

dp
νµ
T

∼ log
µ2
f

M2
W

+O
(

µ2
f

M2
WW

)
︸ ︷︷ ︸

neglect

, (4.11)

σQC =
∫ Λ

µf

dp
νµ
T

dσ

dp
νµ
T

∼ log Λ2

µ2
f

+O
(

Λ2

M2
WW

)
︸ ︷︷ ︸

retain

. (4.12)

Combining the quasi-collinear and hard terms, one obtains the cross section (σW ≡ σQC+σH)
for wide-angle µ− →W−νµ splitting that is independent of Λ (since all Λ-dependent terms
are kept). Moreover, were one to combine the leading logarithmic term of σC with σW,
then the logarithmic dependence on µf would vanish identically. One would also recover
the total cross section, up to the neglected power corrections. Explicitly, one finds

σSum = σC + σW ∼ log
µ2
f

M2
W

+ log Λ2

µ2
f

+O
(

Λ2

M2
WW

)
︸ ︷︷ ︸

retained

+ σH +O
(

µ2
f

M2
WW

)
︸ ︷︷ ︸

neglected

. (4.13)

This indicates that µf can be interpreted in MEM also as the “matching scale” that matching
collinear and wide-angle regions of phase space in an inclusive calculation.

To demonstrate that MEM is possible with transverse weak boson PDFs, we focus on
W+W−T → γγγ in e+µ− collisions and define the following disjoint regions of phase space:

Collinear Region : e+W−T → νeγγγ, for p
νµ
T ≤ µf or

√
|q2
µνµ | ≤ µf , (4.14)

Wide-Angle Region : e+µ− → νeνµγγγ, for p
νµ
T > µf or

√
|q2
µνµ | > µf . (4.15)

When mediated by the EWA, we can identify e+W−T scattering in eq. (4.14) as the collinear
component of the inclusive e+µ− → νeνµγγγ process. Analogously, we can identify eq. (4.15)
as the wide-angle component of the inclusive e+µ− → νeνµγγγ process, when the appropriate
phase space cut is applied to pνµT or the µ− → νµ momentum transfer qµνµ .
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To regulate poles associated with final-state photons, to avoid instabilities associated
with collinear e+ →W+νe splittings, and to minimize the power corrections described in
section 4.3, we impose the following phase space restrictions on both eqs. (4.14) and (4.15):

pνeT > 50 GeV, |ηνe | < 5, pγT > 50 GeV, |ηγ | < 3, M(γγγ) > 1 or 3 TeV. (4.16)

We treat the initial-state W−T using the appropriate PDF and consider when the PDF is
defined in terms of (i) q2 as given in eq. (2.7), and (ii) p2

T as given in eq. (2.8). Assuming
that f̃W−T has been evaluated at a factorization scale µf , then for the case of evolution by
q2, we remove collinear and shallow-angle splittings in eq. (4.15) by requiring that the norm
of the µ− → νµ momentum transfer is larger than µf . Symbolically, this is given by

|q2
µνµ | > µ2

f , where q2
µνµ ≡ (pµ − pνµ)2. (4.17)

This cut is implemented into mg5amc through the dummy_cuts function (file dummy_fct.f).
For the case of evolution by p2

T , we require that νµ satisfies the following restriction

p
νµ
T > µf . (4.18)

In figure 5, we show as a function of the factorization scale at
√
s = 10 TeV: (i) the

total fiducial cross section for e+µ− → νeνµγγγ without restrictions on the µ− → W−

splitting (flat black curve labeled “Total”); (ii) the same but with restrictions on the
µ− → W− splitting (light purple curve labeled “Full ME + q cut” or “Full ME + pT
cut”); (iii) the fiducial cross section with its scale uncertainty band for e+W−T → νeγγγ

(light green band labeled “EWA”); and (iv) the sum of the restricted cross section and
EWA with scale uncertainty (dark blue or red bands labeled “Sum”). More specifically, we
show the dependence when µf =

√
|q2
µνµ | in figure 5(a) and when µf = p

νµ
T in figure 5(b),

at M(γγγ) > 1 TeV (solid lines) and M(γγγ) > 3 TeV (dashed lines). For both M(γγγ)
cuts we also show in the lower panel of each plot the ratio of the summed result, with its
uncertainty band, to the total fiducial cross section without collinear restrictions. The fWT

PDF and the restriction on µ− → W− splittings are evaluated at the same value of µf .
Uncertainty bands are obtained from three-point variation of µf in the EWA computations.

To establish a baseline, we start with figure 5(a) for evolution by qµνµ at M(γγγ) >
1 TeV. As one can anticipate, the fiducial cross sections with and without restrictions on
µ− →W− splittings converge to the same rate, about σ ∼ 0.3 fb, when effectively no cut is
placed on the momentum transfer variable |q2

µνµ |, i.e., when µf → 0 TeV. For increasing µf ,
we observe a logarithmic-like dependence for both the full ME with a |q2

µνµ | cut as well as
the EWA result. In the former (latter), the rate decreases (increases) with increasing µf .
We observe that the restricted rate and the EWA rate are comparable over the approximate
range µf ∈ (200 GeV, 500 GeV). For µf & 1.5 TeV–2 TeV, we find that the full ME with a
|q2
µνµ | cut becomes negligible, whereas the EWA result remains comparable to the total cross

section. Over the range of µf investigated, we find that the EWA uncertainty band spans
from about ±75% at µf ∼ 200 GeV to about ±20% at µf & 2.5 TeV; we caution, however,
that the large change to the uncertainty band reflects the extreme range of µf we investigate.
(Varying µf downward to µf = MW , for instance, would induce a −100% change since
f̃WT

∼ logµ2
f/M

2
W .) Importantly, when adding the restricted and EWA cross sections, we
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Figure 5. Matrix element matching in EVA for e+µ− → γγγνeνµ using the (a) q-scheme and (b)
pT -scheme, at

√
s = 10 TeV and assuming cuts of eq. (4.16). (c,d) Same as (a) but for |ηγ | < 1.5

and pγT > 160 GeV, respectively.

find that the sum reproduces the total fiducial cross section to within uncertainties and
shows a strong insensitivity to the matching scale for µf < 2 TeV. This indicates that MEM
was achieved. While not shown, we report that the central value for the summed result
consistently overestimates the total result by about 3%–7% for µf = 200 GeV–1 TeV, and
up to 20%–30% for µf = 2 TeV–3 TeV. For the case of M(γγγ) > 3 TeV, we observe much
of the same qualitative and quantitative behavior. The two notable differences are: (i) the
obvious reduction in cross sections due to a more restrictive phase space cut, and (ii) a
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more stable summed result that features a central value (curve not shown) sitting nearly
uniformly at about 10% above the total result for µf up to µf = 1 TeV.

Much can be learned from this exercise. First is that the power corrections (∆σPC) that
distinguish the total fiducial cross section without t-channel cuts (σTotal) from the summed
result (σSum), and which scale as ∆σPC = σTotal − σSum ∼ O(µ2

f/M
2
WW ), are negative.

(This is clear from the fact that the summed rate exceeds the total rate.) Second is that the
WT PDFs, and by extension the ZT PDFs, work best when µf is set to lower values, e.g.,
µf . 1 TeV when

√
s = 10 TeV. Naïvely, requiring relatively small µf may appear at odds

with standard practices in pQCD, where µf are typically very high. However, in pQCD,
one nearly always uses QCD PDFs that have been DGLAP-evolved; this has the effect of
reducing the size of PDFs due to the RG running of αs(µr), thereby compensating for large
collinear logarithms. The EW PDFs throughout this work are not evolved with EW-DGLAP
equations and necessitates smaller µf . The third observation is that for sufficiently large
values of µf , the EWA rate begins to overestimate the total cross section. With little
doubt, this can be attributed to a breakdown of the collinear approximation, which requires
collinear initial-state splittings, i.e., |q2

µνµ | ∼ pν2
T � M2

WW . Fourth is that the relative
independence of the summed result on a matching scale indicates that the logarithmic
dependence on µf in each component effectively cancel, in accordance with expectations.
This serves as a highly non-trivial check of MEM with WT /ZT PDFs but also demonstrates
the potential to support it in MC event generators. Finally, we note that the very similar
and consistent size of the scale uncertainty bands across all channels can be attributed to the
fact that we are working with fixed µf . For example: in (a), the scale variations are given
by the ratio σ(µf = ζµ0)/σ(µf = µ0) = log(ζ2µ2

0/M
2
W )/ log(µ2

0/M
2
W ) with ζ ∈ {0.5, 1, 2}.

Focusing now on figure 5(b), we show the same quantities as in figure 5(a) but for
evolution by pνµT . Qualitatively, we see many similarities to the previous case, including
that the summed result reproduces the total fiducial cross section to within uncertainties
for µ . 1.5 TeV. For larger µf , the difference between the summed and total results exceeds
the uncertainty band of the summed result. We attribute this breakdown of MEM to a
breakdown of the collinear approximation. The breakdown is more explicit in this case since
one is varying pνµT and is influenced by the large-ξ enhancement discussed in section 4.5.

To further explore the dependence on the kinematics of the hard W+W−T → γγγ

scattering process, we show in figures 5(c) and 5(d) the same quantities as in figures 5(a), but
consider the more restrictive phase space cuts (c) |η| < 1.5 and (d) pγT > 150 GeV. We again
observe many of the same qualitative features, indicating some degree of independence from
the hard scattering process. (Fewer changes would suggest more universal-like behavior.)
One notable difference is that the tighter ηγ restriction helps extend the agreement between
the summed and total results out to about µf ∼ 3 TeV. Slightly better agreement is also
observed for the tighter pγT requirement, but only until µf ∼ 2.25 TeV.

Finally in figure 6(a) and (b), we show the same quantities as in figure 5(a) and (b) but
for
√
s = 30 TeV. As the qualitative and quantitative findings are highly comparable, little

needs to be said. One noteworthy difference, however, is that higher collider energy further
alleviates differences between the total and summed results, and extends the agreement to
µf & 3 TeV. For all cases, the “summed” rate remains bigger than the “total” rate.
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Figure 6. Same as figure 5(a) and (b) but for
√
s = 30 TeV.

5 Polarized vector boson scattering at muon colliders

A scenario in which the EVA promises to be highly relevant is that of a multi-TeV µ+µ−

collider. It is worth reiterating that when considering a generic multi-particle state F , the
VBF mechanism becomes an increasingly important, if not dominant, production vehicle
in lepton collisions as the energy increases [42]. Given this, it is natural to consider muon
colliders as effective weak boson colliders and take full advantage of the EVA in order to
systematically organize and simplify the precision of scattering computations.

In this section, we explore the production of SM states generically parameterized by∑
Vλ∈{γλ, Zλ,W±λ }

VλA V
′
λB
→ F , (5.1)

where F contains up to nF = 4 unpolarized states from the collection {H, t, t,W+,W−, Z, γ}.
All helicity polarizations are defined in the hard-scattering frame, i.e., the rest frame of F .
We consider collider configurations over the range

√
s = 2–30 TeV, and require final-state

particles to obey the following kinematic and fiducial cuts:

M(F) > 1 TeV, pIT > 50 GeV, |yI | < 3, for I ∈ {F}. (5.2)

The invariant mass cut of 1 TeV on the system F is needed to ensure that power corrections
of the form (M2

V /M
2(F)) are negligible, in accordance with findings of section 4. We require

moderate rapidities y to avoid t- and u-channel singularities and instabilities associated with
final-state particles, as advocated by ref. [26]; in the massless limit, the pseudorapidity value
of y → η = 3 corresponds to a polar angle of θ ≈ 5.7◦. For all calculations involving VTV ′T
or VTV ′0 scattering, we set the central collinear factorization scale according to eq. (4.5)
and display three-point scale uncertainties. Scale uncertainties are unavailable for V0V

′
0

scattering as the f̃V0 PDFs do not depend on µf .

– 25 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
4

Our survey is organized in the following manner: we start in section 5.1 with associated
and multi-Higgs production. In section 5.2, top quark and associated top quark produc-
tion are discussed, followed by diboson and triboson production in sections 5.3 and 5.4,
respectively.

5.1 Higgs production

We first consider Higgs production in µ+µ− collisions and focus on the channels

VλAV
′
λB

→ ZH, W+H, γH, HH, HHH, and HHHH. (5.3)

In figure 7, we show as a function of collider energy [TeV] the fiducial cross section [fb],
along with the associated three-point scale uncertainty band (from left to right in eq. (5.3)
corresponds the darkest to lightest color band), as mediated by (a) all initial-state EW
boson polarizations, (b) longitudinal-longitudinal scattering, (c) transverse-longitudinal
scattering, and (d) transverse-transverse scattering.

At the unpolarized level in figure 7(a), we observe a strong hierarchy between associated
and multi-Higgs production, with V H production rates being more than an order of
magnitude larger than HH production. More specifically, the ZH and W+H rates span
roughly σ ∼ 5–25 fb for

√
s ∼ 5–30 TeV, while HH production reaches about σ ∼ 0.5–1 fb

over the same range. By C-symmetry, the W−H production rate is the same as W+H,
and therefore is not shown. The production of γH is universally smaller than ZH and
WH by about a factor of 2–3. Since ZH and γH are both mediated by W+W− scattering,
the difference can be attributed to the difference in WWZ and WWγ gauge couplings,
where σZH/σγH ∼ (g2

ZWW /g
2
γWWW ) = (g cos θW /g sin θW )2 ∼ 3. As the HH channel is

also driven by W+W− fusion (recall that the Zµµ coupling is smaller than the Wµνµ
coupling), it is tempting to also attribute the relative size of the V H and HH production
rates to the coupling ratio (g/λ)2 ∼ 27. However, as shown in figure 7(b) and discussed
in the next paragraph, this is not actually the case. All V H and HH channels are about
2-to-3 orders of magnitude larger than HHH production, which is yet another 2-to-3 orders
of magnitude larger than HHHH production. The (relatively) tiny triple and quadruple
Higgs cross sections follow from the compound effect of a small Higgs self-coupling and
phase space suppression. For

√
s . 5 TeV, all rates are sensitive to small changes in collider

energy due to threshold effects; above this scale, the energy dependence becomes milder.
As a function of polarization, one sees from figures 7(b-d) several notable characteristics.

For instance: the V H channels are driven almost exclusively by V0V
′
T scattering, with a sub-

leading component of V0V
′

0 scattering. HH is dominated by V0V
′

0 scattering, which accounts
for the smaller dependence on factorization scales when summing over all polarizations,
but also contains a sub-leading VTV ′T contribution. Notably, ZH, W+H, and HH all have
comparable V0V

′
0 scattering rates, which is in line with the Goldstone Equivalence Theorem.

This indicates that the σV H -σHH hierarchy observed in figures 7(a) is actually due to
the compound effect of logarithmic enhancements in f̃VT PDFs and helicity configurations
allowed by angular momentum conservation, e.g., VTV ′0 → HH is helicity suppressed. We
report that HHH production has significant and comparable contributions from V0V

′
0
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Figure 7. As a function of collider energy, the fiducial cross section and scale uncertainties under the
EVA for associated Higgs and multi-Higgs production in µ+µ− collisions from (a) all initial-state EW
boson polarizations, (b) longitudinal-longitudinal scattering, (c) transverse-longitudinal scattering,
and (d) transverse-transverse scattering.

and VTV ′0 scattering, but only a marginal contribution from VTV
′
T . Interestingly, HHHH

receives comparable contributions from all polarization configurations. As one can expect,
production from VTVT scattering exhibits larger scale uncertainties than in VTV0 scattering.
For each unpolarized and polarized scattering configuration, we document in table 4 the
relevant mg5amc process syntax that enables our computation and the fiducial cross section
[fb] with its scale uncertainty [%], for representative collider energies.
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σ [fb]
mg5amc syntax

√
s= 3TeV

√
s= 14TeV

√
s= 30TeV∑

VλAV
′
λB
→ZH vxp vxm > z h 4.5·100 +63%

−31% 2.1·101 +57%
−28% 2.5·101 +56%

−28%

VTV
′
T →ZH vxp{T} vxm{T} > z h 9.0·10−3 +181%

−56% 4.0·10−2 +169%
−53% 5.1·10−2 +165%

−52%

V0V
′
T →ZH vxp{0} vxm{T} > z h 4.3·100 +66%

−33% 1.9·101 +61%
−30% 2.4·101 +59%

−30%

V0V
′

0→ZH vxp{0} vxm{0} > z h 2.3·10−1 1.3·100 1.6·100∑
VλAV

′
λB
→W+H vxp vxm > w+ h 3.6·100 +36%

−18% 1.6·101 +34%
−17% 1.9·101 +34%

−17%

VTV
′
T →W+H vxp{T} vxm{T} > w+ h 1.8·10−2 +113%

−43% 8.8·10−2 +105%
−40% 1.2·10−1 +102%

−39%

V0V
′
T →W+H vxp{0} vxm{T} > w+ h 3.5·100 +36%

−18% 1.5·101 +35%
−17% 1.9·101 +34%

−17%

V0V
′

0→W+H vxp{0} vxm{0} > w+ h 5.3·10−2 3.0·10−1 3.7·10−1∑
VλAV

′
λB
→ γH vxp vxm > a h 9.8·10−1 +67%

−33% 4.8·100 +61%
−30% 6.0·100 +60%

−30%

VTV
′
T → γH vxp{T} vxm{T} > a h 2.3·10−3 +188%

−57% 1.1·10−2 +178%
−55% 1.4·10−2 +176%

−55%

V0V
′
T → γH vxp{0} vxm{T} > a h 9.8·10−1 +67%

−33% 4.8·100 +61%
−30% 6.0·100 +59%

−30%

V0V
′

0→ γH vxp{0} vxm{0} > a h 4.5·10−6 2.7·10−5 3.5·10−5∑
VλAV

′
λB
→HH vxp vxm >h h 1.4·10−1 +10%

−3% 8.5·10−1 +7%
−2% 1.1·100 +8%

−2%

VTV
′
T →HH vxp{T} vxm{T} > h h 7.9·10−3 +177%

−55% 3.8·10−2 +162%
−52% 5.2·10−2 +157%

−51%

V0V
′
T →HH vxp{0} vxm{T} > h h 8.2·10−6 +69%

−35% 3.4·10−5 +67%
−38% 4.1·10−5 +67%

−33%

V0V
′

0→HH vxp{0} vxm{0} > h h 1.3·10−1 8.2·10−1 1.0·100∑
VλAV

′
λB
→HHH vxp vxm > h h h 2.9·10−4 +30%

−14% 2.9·10−3 +24%
−12% 3.9·10−3 +25%

−12%

VTV
′
T →HHH vxp{T} vxm{T} > h h h 1.1·10−5 +170%

−54% 6.4·10−5 +150%
−49% 9.2·10−5 +144%

−48%

V0V
′
T →HHH vxp{0} vxm{T} > h h h 1.1·10−4 +65%

−32% 1.1·10−3 +55%
−27% 1.6·10−3 +53%

−26%

V0V
′

0→HHH vxp{0} vxm{0} > h h h 1.7·10−4 1.7·10−3 2.3·10−3∑
VλAV

′
λB
→HHHH vxp vxm > h h h h 1.3·10−7 +75%

−30% 3.2·10−6 +49%
−21% 5.0·10−6 +46%

−20%

VTV
′
T →HHHH vxp{T} vxm{T} > h h h h 3.8·10−8 +156%

−51% 7.1·10−7 +118%
−42% 1.2·10−6 +110%

−39%

V0V
′
T →HHHH vxp{0} vxm{T} > h h h h 6.4·10−8 +62%

−31% 1.5·10−6 +49%
−25% 2.4·10−6 +47%

−24%

V0V
′

0→HHHH vxp{0} vxm{0} > h h h h 3.0·10−8 9.8·10−7 1.5·10−6

Table 4. Fiducial cross sections with scale uncertainties for associated Higgs and multi-Higgs
production in µ+µ− collisions through VλA

V ′λB
scattering, where Vλ ∈{γλ,Zλ,W±λ }, under the

EVA for polarization-summed and polarized initial states, at
√
s= 3, 14, and 30TeV. All helicity

polarizations are defined in the hard-scattering frame. Phase space cuts are summarized in eq. (5.2).
Also shown is the mg5amc syntax for modeling the process assuming the multi-particle definitions
“vxp=z,w+,a” and “vxm=z,w-,a.” The configuration (0,T ) implies a sum over both (0,T ) and (T,0),
and uses the syntax generate vxp{0} vxm{T} > ...; add process vxp{T} vxm{0} > ...

5.2 Top and associated top production

Next, we address tt pair and associated tt production, focusing on the channels

VλAV
′
λB

→ tt, ttZ, ttW+, ttγ, ttH, and tttt. (5.4)
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Figure 8. Same as figure 7 but for tt pair production and tt+X associated production.

For the tttt process, we consider both the production though QCD and EW couplings
(ttttQCD+EW) as well as purely through EW couplings (ttttEW). In figure 8 we present
the unpolarized and helicity-polarized cross sections as a function of collider energy in
the same manner as in figure 7. An immediate observation is that for all processes each
of the polarization combinations of initial-state EW bosons VλAV ′λB give a comparable
contribution to the unpolarized process. This is in contrast to associated and multi-Higgs
production in section 5.1, where typically one particular VλAV ′λB configuration drives the
total process. For all polarized and unpolarized cases, tt production exhibits the largest
cross sections, whereas pure EW production of tttt exhibits the lowest rates. The difference
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between the channels is about three orders of magnitude. Mixed QCD+EW production of
tttt sits just above the pure EW rate; notably, the difference between the two tttt processes
is larger than their uncertainty bands. All ttV and ttH cross sections are sandwiched
between the two processes and exhibit a rate hierarchy that is in line with naïve EW
coupling enhancement/suppression. While the hierarchy is independent of collider energy,
some reordering can be observed when individual helicity configurations are considered.

Focusing first on V0V
′

0 scattering in figure 8(b), we find that the ttV and ttH channels
all have highly comparable rates. This is essentially due to all these channels being driven
by eitherW+

0 W
−
0 orW+

0 Z0 scattering. (There is no γ0 PDF.) Hence, appreciable differences
in rate are due to differences in coupling constants. Moreover, unlike other polarization
configurations, there is no log(µ2

f/m
2
µ) enhancement since this is associated with γT PDFs.

More explicitly, for VTV ′0 scattering in figure 8(c) and VTV ′T scattering in figure 8(d),
we find appreciably larger cross sections than for pure V0V

′
0 scattering. Again, we attribute

this to the opening of γTVλ scattering and logarithmic enhancements in transverse PDFs.
Interestingly, we find that the hierarchy of ttγ/Z/W+/H depends on the precise polarization
configuration of initial-state EW bosons. For example: ttZ has a larger rate than ttW+ in
VTV

′
0 scattering, but the opposite is true in VTV ′T scattering. Both configurations lead to

larger rates than for ttγ, which is not the case for V0V
′

0 scattering.
We summarize these results for representative

√
s in table 5.

5.3 Diboson production

We now turn to diboson production in EVA. In figure 9, we plot again the (a) polarization-
summed and (b-d) polarized production cross section with their respective factorization
scale uncertainties, as a function of collider energy for the following six processes

VλAV
′
λB

→ W+W−, ZZ, ZW+, γZ, γW+, and γγ. (5.5)

As in previous cases, there are several global features that one can infer. Foremost is
that unlike Higgs (figure 7) and top quark (figure 8) processes, we find a clear hierarchy
among initial-state EW boson polarizations. More specifically, we find that VTV ′T scattering
is categorically the dominant production vehicle of EW boson pairs. The role of VTV ′0
scattering is about one-to-two orders of magnitude smaller than VTV

′
T scattering, and

rate of V0V
′

0 scattering is yet another decade smaller. As of V0V
′

0 scattering is negligible,
unpolarized diboson cross sections in the EVA exhibit a relatively larger scale uncertainty
than Higgs and top quark production, which feature a larger dependence on V0V

′
0 scattering.

Another consequence of the strong polarization dependence is that the hierarchy of
fiducial cross sections shown in the unpolarized case largely mirrors the hierarchy in VTV ′T
scattering. That said, we find that this same hierarchy is mostly preserved with other
helicity configurations. This suggests a larger dependence on available partonic chan-
nels and gauge couplings than logarithmic enhancements from soft and collinear regions
of phase space. For example: the W+W− production cross section dominates for all
helicity configurations but also can be produced via the most number of partonic config-
urations, i.e., W+

λA
W−λB , ZλAZλB , ZλAγλB , and γλAγλB fusion. The reverse can be said for
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σ [fb]
mg5amc syntax

√
s= 3TeV

√
s= 14TeV

√
s= 30TeV∑

VλAV
′
λB
→ tt vxp vxm > t t˜ 1.3·100 +42%

−18% 9.4·100 +49%
−21% 1.3·101 +50%

−21%

VTV
′
T → tt̄ vxp{T} vxm{T} > t t˜ 6.4·10−1 +58%

−23% 3.7·100 +73%
−27% 5.0·100 +76%

−28%

V0V
′
T → tt̄ vxp{0} vxm{T} > t t˜ 4.6·10−1 +43%

−22% 4.0·100 +48%
−24% 5.7·100 +47%

−24%

V0V
′

0→ tt̄ vxp{0} vxm{0} > t t˜ 2.5·10−1 1.7·100 2.3·100∑
VλAV

′
λB
→ tt̄ Z vxp vxm > t t˜ z 1.4·10−1 +99%

−38% 1.4·100 +86%
−34% 2.1·100 +84%

−33%

VTV
′
T → tt̄ Z vxp{T} vxm{T} > t t˜ z 6.0·10−2 +155%

−50% 6.2·10−1 +134%
−45% 9.5·10−1 +127%

−43%

V0V
′
T → tt̄ Z vxp{0} vxm{T} > t t˜ z 7.6·10−2 +62%

−31% 7.5·10−1 +54%
−27% 1.1·100 +52%

−26%

V0V
′

0→ tt̄ Z vxp{0} vxm{0} > t t˜ z 4.9·10−3 5.8·10−2 8.3·10−2∑
VλAV

′
λB
→ tt̄W+ vxp vxm > t t˜ w+ 1.7·10−1 +68%

−28% 1.4·100 +61%
−25% 2.0·100 +59%

−24%

VTV
′
T → tt̄W+ vxp{T} vxm{T} > t t˜ w+ 1.0·10−1 +99%

−39% 8.0·10−1 +88%
−35% 1.1·100 +85%

−34%

V0V
′
T → tt̄W+ vxp{0} vxm{T} > t t˜ w+ 7.0·10−2 +29%

−14% 6.0·10−1 +28%
−14% 8.4·10−1 +27%

−14%

V0V
′

0→ tt̄W+ vxp{0} vxm{0} > t t˜ w+ 2.6·10−3 2.9·10−2 4.2·10−2∑
VλAV

′
λB
→→ tt̄ γ vxp vxm > t t˜ a 4.2·10−2 +88%

−34% 4.3·10−1 +78%
−31% 6.4·10−1 +76%

−30%

VTV
′
T → tt̄ γ vxp{T} vxm{T} > t t˜ a 1.9·10−2 +133%

−43% 1.8·10−1 +122%
−42% 2.7·10−1 +117%

−40%

V0V
′
T → tt̄ γ vxp{0} vxm{T} > t t˜ a 2.0·10−2 +61%

−31% 2.2·10−1 +54%
−27% 3.2·10−1 +52%

−26%

V0V
′

0→ tt̄ γ vxp{0} vxm{0} > t t˜ a 3.3·10−3 3.1·10−2 4.5·10−2∑
VλAV

′
λB
→ tt̄ H vxp vxm > t t˜ h 1.5·10−2 +55%

−23% 1.5·10−1 +45%
−19% 2.2·10−1 +44%

−19%

VTV
′
T → tt̄ H vxp{T} vxm{T} > t t˜ h 5.9·10−3 +86%

−31% 4.5·10−2 +85%
−31% 6.5·10−2 +83%

−31%

V0V
′
T → tt̄ H vxp{0} vxm{T} > t t˜ h 6.4·10−3 +47%

−23% 7.0·10−2 +44%
−22% 1.0·10−1 +43%

−21%

V0V
′

0→ tt̄ H vxp{0} vxm{0} > t t˜ h 2.6·10−3 3.5·10−2 5.1·10−2∑
VλAV

′
λB
→ tt̄ tt̄ QCD+EW vxp{T} vxm{T} > t t˜ t t˜ 7.1·10−4 +47%

−31% 1.4·10−2 +36%
−26% 2.3·10−2 +35%

−26%

VTV
′
T → tt̄ tt̄ QCD+EW vxp{T} vxm{T} > t t˜ t t˜ 4.9·10−4 +57%

−33% 8.4·10−3 +45%
−29% 1.4·10−2 +43%

−29%

V0V
′
T → tt̄ tt̄ QCD+EW vxp{0} vxm{T} > t t˜ t t˜ 1.9·10−4 +35%

−27% 4.5·10−3 +30%
−24% 7.9·10−3 +30%

−23%

V0V
′

0→ tt̄ tt̄ QCD+EW vxp{0} vxm{0} > t t˜ t t˜ 2.6·10−5 7.7·10−4 1.4·10−3∑
VλAV

′
λB
→ tt̄ tt̄ EW vxp{T} vxm{T} > t t˜ t t˜ QCD=0 2.5·10−4 +45%

−19% 5.1·10−3 +41%
−18% 8.8·10−3 +40%

−17%

VTV
′
T → tt̄ tt̄ EW vxp{T} vxm{T} > t t˜ t t˜ QCD=0 1.6·10−4 +53%

−21% 2.7·10−3 +53%
−21% 4.4·10−3 +54%

−22%

V0V
′
T → tt̄ tt̄ EW vxp{0} vxm{T} > t t˜ t t˜ QCD=0 7.1·10−5 +38%

−19% 1.8·10−3 +35%
−18% 3.3·10−3 +34%

−17%

V0V
′

0→ tt̄ tt̄ EW vxp{0} vxm{0} > t t˜ t t˜ QCD=0 1.8·10−5 6.4·10−4 1.1·10−3

Table 5. Same as table 4 but for tt pair production and tt associated production.

γγ and γW+ production. These processes exhibit the lowest diboson cross sections but
can only proceed through one or two partonic channels, namely W+

λA
W−λB and W+

λA
γλB .

We also note that helicity suppression stemming from angular momentum conservation
also plays a role in this hierarchy. For example: while W+

0 Z0 → W+
0 γT exhibits a larger

longitudinal polarization enhancement than W+
0 Z0 → W+

T γT , the former (later) is disfa-
vored (favored) since it must proceed through a high-wave (low-wave) angular momentum
configuration.

We summarize these results for representative
√
s in table 6.
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Figure 9. Same as figure 7 but for V V production.

5.4 Triboson production

In the final part of our survey, we show in figure 10 the fiducial cross sections for triboson
production (a) after summing over all initial-state helicity polarizations and (b-d) for
individual (λA, λB) configurations. For conciseness, we focus on the representative channels

VλAV
′
λB
→ ZW+W−, γW+W−, ZZZ, ZZW+, γZW+, and γγW+. (5.6)

An immediate observation we can make is the qualitative similarities between triboson and
diboson production in figure 9. In particular, we find that triboson production is driven by
largely VTV ′T scattering. The V0V

′
T rate is an order of magnitude or two smaller, and the

V0V
′

0 rate is smaller by about one or two additional decades.
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σ [fb]
mg5amc syntax

√
s= 3TeV

√
s= 14TeV

√
s= 30TeV∑

VλAV
′
λB
→W+W− vxp vxm > w+ w- 2.2·102 +98%

−35% 7.0·102 +91%
−33% 8.6·102 +88%

−32%

VTV
′
T →W+W− vxp{T} vxm{T} > w+ w- 2.0·102 +99%

−35% 6.6·102 +93%
−34% 8.0·102 +92%

−33%

V0V
′
T →W+W− vxp{0} vxm{T} > w+ w- 1.2·101 +54%

−27% 4.4·101 +50%
−25% 5.2·101 +49%

−24%

V0V
′

0→W+W− vxp{0} vxm{0} > w+ w- 4.2·10−1 1.7·100 2.0·100∑
VλAV

′
λB
→W+Z vxp vxm > w+ z 5.3·101 +105%

−40% 1.8·102 +97%
−37% 2.2·102 +95%

−37%

VTV
′
T →W+Z vxp{T} vxm{T} > w+ z 5.0·101 +111%

−42% 1.6·102 +103%
−39% 2.0·102 +100%

−38%

V0V
′
T →W+Z vxp{0} vxm{T} > w+ z 3.4·100 +36%

−18% 1.4·101 +34%
−17% 1.7·101 +34%

−17%

V0V
′

0→W+Z vxp{0} vxm{0} > w+ z 3.9·10−2 2.1·10−1 2.6·10−1∑
VλAV

′
λB
→ZZ vxp vxm > z z 4.4·101 +164%

−52% 1.6·102 +144%
−48% 1.9·102 +143%

−48%

VTV
′
T →ZZ vxp{T} vxm{T} > z z 4.0·101 +171%

−54% 1.4·102 +153%
−50% 1.7·102 +150%

−49%

V0V
′
T →ZZ vxp{0} vxm{T} > z z 4.2·100 +66%

−33% 1.8·101 +61%
−30% 2.2·101 +60%

−30%

V0V
′

0→ZZ vxp{0} vxm{0} > z z 1.1·10−1 6.0·10−1 7.2·10−1∑
VλAV

′
λB
→ γZ vxp vxm > a z 1.9·101 +169%

−53% 7.1·101 +149%
−49% 8.8·101 +145%

−48%

VTV
′
T → γZ vxp{T} vxm{T} > a z 1.8·101 +172%

−54% 6.8·101 +153%
−50% 8.4·101 +149%

−49%

V0V
′
T → γZ vxp{0} vxm{T} > a z 9.5·10−1 +67%

−33% 4.4·100 +61%
−30% 5.5·100 +60%

−30%

V0V
′

0→ γZ vxp{0} vxm{0} > a z 5.6·10−4 4.5·10−3 6.5·10−3∑
VλAV

′
λB
→ γW+ vxp vxm > a w+ 1.1·101 +111%

−42% 4.0·101 +101%
−39% 4.9·101 +99%

−38%

VTV
′
T → γW+ vxp{T} vxm{T} > a w+ 1.1·101 +111%

−42% 3.9·101 +102%
−39% 4.8·101 +100%

−38%

V0V
′
T → γW+ vxp{0} vxm{T} > a w+ 1.6·10−2 +62%

−31% 7.3·10−1 +56%
−28% 9.2·10−1 +54%

−27%

V0V
′

0→ γW+ vxp{0} vxm{0} > a w+ 1.5·10−4 1.2·10−3 1.7·10−3∑
VλAV

′
λB
→ γγ vxp vxm > a a 2.1·100 +172%

−54% 8.5·100 +152%
−50% 1.1·101 +147%

−48%

VTV
′
T → γγ vxp{T} vxm{T} > a a 2.1·100 +172%

−54% 8.5·100 +152%
−50% 1.1·101 +147%

−48%

V0V
′
T → γγ vxp{0} vxm{T} > a a 7.8·10−4 +70%

−35% 3.4·10−3 +67%
−34% 4.2·10−3 +67%

−33%

V0V
′

0→ γγ vxp{0} vxm{0} > a a 5.8·10−4 4.7·10−3 6.8·10−3

Table 6. Same as table 4 but for V V production.

The precise polarization composition has a slight dependence on the underlying pro-
cess: the production of ZW+W− categorically exhibits the largest cross section, with
σ(ZW+W−) ∼ O(10–100 fb) for

√
s ∼ 5–30 TeV. Over this same range, the V0V

′
T compo-

nent is about O(1–10 fb), and the V0V
′

0 component is about O(0.01 fb). On the other hand,
for γγW+ production, which categorically exhibits the second smallest cross section with
σ(γγW−) ∼ O(1 fb), the V0V

′
T component is about O(10−2 fb), and the V0V

′
0 component

is about O(10−5–10−4 fb). In other words, ZW+W− production is very roughly O(90%)
VTV

′
T scattering while γγW+ production is roughly O(99%) VTV ′T scattering.
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(a) (b)

(c) (d)

Figure 10. Same as figure 7 but for V V V production.

Other similarities between triboson and diboson production include the cross section
hierarchy that one observes in VTV

′
T scattering largely appears also in V0V

′
T scattering

and V0V
′

0 scattering. One exception is γγW+ and γγγ production in V0V
′

0 scattering,
where the ordering inverts. We attribute this to the opening of orbital angular momentum
configurations in 2→ 3 scattering, which can spoil the cancellations described in section 5.3.
While it is beyond our immediate scope, one can, in principle, investigate the hierarchy of
triboson processes by considering the relative important of specific partonic and helicity
channels, e.g., γ−γ+ scattering or Z+Z0 scattering. One can also further decompose the final-
state triboson system into its helicity components, thereby allowing one to investigate the
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σ [fb]
mg5amc syntax

√
s= 3TeV

√
s= 14TeV

√
s= 30TeV∑

VλAV
′
λB
→ZW+W− vxp vxm > z w+ w- 2.1·101 +48%

−38% 1.0·102 +41%
−33% 1.4·102 +39%

−32%

VTV
′
T →ZW+W− vxp{T} vxm{T} > z w+ w- 2.0·101 +49%

−38% 9.9·101 +42%
−34% 1.3·102 +40%

−33%

V0V
′
T →ZW+W− vxp{0} vxm{T} > z w+ w- 9.4·10−1 +25%

−25% 5.1·100 +21%
−21% 6.8·100 +21%

−21%

V0V
′

0→ZW+W− vxp{0} vxm{0} > z w+ w- 1.6·10−2 9.2·10−2 1.2·10−1∑
VλAV

′
λB
→ γW+W− vxp vxm > a w+ w- 1.2·101 +44%

−35% 4.8·101 +40%
−32% 6.3·101 +38%

−31%

VTV
′
T → γW+W− vxp{T} vxm{T} > a w+ w- 1.2·101 +45%

−36% 4.6·101 +40%
−33% 6.1·101 +40%

−32%

V0V
′
T → γW+W− vxp{0} vxm{T} > a w+ w- 4.0·10−1 +24%

−24% 1.6·100 +21%
−21% 2.1·100 +17%

−17%

V0V
′

0→ γW+W− vxp{0} vxm{0} > a w+ w- 8.4·10−3 2.9·10−2 3.6·10−2∑
VλAV

′
λB
→ZZZ vxp vxm > z z z 3.5·100 +59%

−45% 1.9·101 +49%
−39% 2.5·101 +46%

−37%

VTV
′
T →ZZZ vxp{T} vxm{T} > z z z 3.3·100 +61%

−46% 1.7·101 +50%
−40% 2.3·101 +48%

−38%

V0V
′
T →ZZZ vxp{0} vxm{T} > z z z 2.2·10−1 +28%

−28% 1.3·100 +23%
−23% 1.7·100 +22%

−22%

V0V
′

0→ZZZ vxp{0} vxm{0} > z z z 4.2·10−3 2.6·10−2 3.5·10−2∑
VλAV

′
λB
→ZZW+ vxp vxm > z z w+ 3.5·100 +45%

−37% 1.8·101 +38%
−32% 2.3·101 +37%

−31%

VTV
′
T →ZZW+ vxp{T} vxm{T} > z z w+ 3.3·100 +46%

−38% 1.7·101 +39%
−33% 2.2·101 +38%

−32%

V0V
′
T →ZZW+ vxp{0} vxm{T} > z z w+ 1.7·10−1 +19%

−19% 9.3·10−1 +17%
−17% 1.2·101 +16%

−16%

V0V
′

0→ZZW+ vxp{0} vxm{0} > z z w+ 1.9·10−3 1.1·10−2 1.5·10−2∑
VλAV

′
λB
→ γZW+ vxp vxm > a z w+ 3.5·100 +46%

−38% 1.5·101 +39%
−33% 1.9·101 +38%

−32%

VTV
′
T → γZW+ vxp{T} vxm{T} > a z w+ 3.4·100 +47%

−38% 1.4·101 +40%
−34% 1.8·101 +39%

−33%

V0V
′
T → γZW+ vxp{0} vxm{T} > a z w+ 1.6·10−1 +20%

−20% 6.7·10−1 +17%
−17% 8.5·10−1 +17%

−17%

V0V
′

0→ γZW+ vxp{0} vxm{0} > a z w+ 2.0·10−3 8.3·10−3 1.0·10−2∑
VλAV

′
λB
→ γγW+ vxp vxm > a a w+ 6.9·10−1 +48%

−39% 2.6·100 +41%
−34% 3.3·100 +40%

−33%

VTV
′
T → γγW+ vxp{T} vxm{T} > a a w+ 6.8·10−1 +48%

−40% 2.5·100 +41%
−34% 3.2·100 +40%

−34%

V0V
′
T → γγW+ vxp{0} vxm{T} > a a w+ 1.5·10−2 +23%

−23% 5.0·10−2 +21%
−21% 6.2·10−2 +21%

−21%

V0V
′

0→ γγW+ vxp{0} vxm{0} > a a w+ 1.8·10−4 4.6·10−3 5.3·10−3

Table 7. Same as table 4 but for V V V production.

relative importance of high- and low-wave angular momentum configurations. Finally, due
to the similarities between diboson and triboson production, we conjecture that comparable
behavior will be observed for the production for four or more EW vector bosons.

We summarize these results for representative
√
s in table 7.

6 Discussion, outlook, and conclusions

As a weakly coupled, non-Abelian gauge theory, the weak sector of the SM naturally exhibits
similarities to the electromagnetic and strong sectors, e.g., coupling universality. However,
as the weak sector is also spontaneously broken, scattering and decay rates involving weak
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bosons feature a power-law dependence on the scale ratio (M2
V /Q

2)k or (v2/Q2)k, with k > 0.
In the absence of such contributions, i.e., when momentum-transfer scales are much larger
than the EW scale, meaning that O(M2

V /Q
2) terms are negligible, scattering and decay

rates involving weak gauge bosons resemble the analogous expressions for massless gauge
bosons in QED and pQCD. Importantly, this resemblance also holds for the factorization
of weak-boson emission in the collinear and soft limits.

Precisely how factorization (and resummation) operates in the weak sector, and in
particular how it differs from QED and pQCD, is no longer an academic intrigue as multi-
TeV µ+µ− colliders and 100TeV pp colliders are being seriously discussed as eventual
successors of the HL-LHC program [40, 41]. At these colliders, typical parton collisions
readily satisfy known criteria for collinear factorization of weak bosons. Even at the√
s = 13 TeV LHC, such hard-scattering scales have already been observed in measurements

of VBF/S. Therefore, establishing a fuller picture of the colliders’ physics potential requires
a better understanding of how collinear and soft weak bosons behave in multi-TeV collisions.

Motivated by the fact that multi-TeV µ+µ− colliders are effectively “high-luminosity
weak boson colliders” [42], we have revisited the treatment of weak bosons as perturbative
constituents of high-energy leptons, the so-called Effective W/Z Approximation [5, 6]. To
conduct this investigation, we have implemented PDFs at LO for helicity-polarized γ, W±,
and Z bosons from e± and µ± into the MC event generator MadGraph5_aMC@NLO.3 This
allows for the fully differential simulation of scattering processes that are initiated by one
or two initial-state EW bosons. Starting from a formula for scattering partons from a
muon, which we state in eq. (2.2), we systematically explored the limitations of the EWA
in section 4. Novelties of our comparative investigation are the focus on: (i) universal
and quasi-universal power-law corrections, (ii) universal and quasi-universal logarithmic
corrections, (iii) phase space dependence, (iv) helicity polarization, and (v) many-body
processes with VBF. Past studies were mostly restricted to 2 → 1 and 2 → 2 scattering
processes, which possess special kinematics, at a single choice of factorization scale. We
stress that some important issues, such as ZT /γT mixing and Sudakov resummation, were
not investigated and are left to future work.

As documented in section 4.3, a key conclusion is that the EWA is acutely sensitivity
to power corrections of the form (p2

T /M
2
V V ′)k ∼ (M2

V /M
2
V V ′)k and (M2

V /M
2
V V ′)k for k > 0.

These corrections originate in the derivation of weak boson PDFs and are related to the
accuracy of collinear factorization and the Goldstone Equivalent Theorem. Our results
suggest that using the EWA to describe VBF requires MV V ′ > O(1 TeV), or (M2

V /M
2
V V ′) .

0.01. This is in addition to the typical assumptions needed to justify collinear factorization.
When VBF systems carry larger invariant masses, we find that the difference between the
full computation and the EWA are within factorization scale uncertainties. As documented
in and around eq. (4.7), these uncertainties can be very large and demonstrate a need for
RG evolution in order to achieve precise results with weak boson PDFs. We caution that
we restricted our attention to dynamic factorization scales that are proportional to MV V ′

for consistency across the many processes that we surveyed. As in pQCD, more “optimal”

3These features were released publicly in version 3.3.0, and available from the mg5amc repository.

– 36 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
4

choices probably exist but are also (probably) process dependent and should be investigated
thoroughly. Our implementation of EW boson PDFs in mg5amc can facilitate such studies.

Importantly, we show that the size of non-universal power corrections and the size
of factorization scale ambiguities in multi-TeV µ+µ− collisions are due to the largeness
of the W and Z masses. At first, this may seem at odds with collinear factorization in
pQCD, where above even a few GeV, PDFs can describe full matrix elements involving light
quarks. However, using the operator product expansion, one can show that the phenomenon
of “precocious scaling,” i.e., the emergence of asymptotic freedom at moderate energies,
is due to the smallness of parton masses [119–121]. Power corrections associated with
quark masses mq are of the form (m2

q/Q
2)k. For a scattering scale of Q ∼ 2–3 GeV, these

reach at most O(m2
q/Q

2) . 10−5–10−2. Likewise, heavy quark PDFs become adequate
and reliable tools for O(m2

q/Q
2) . 0.01 [8–11, 13]. Both are consistent with requiring that

(M2
V /M

2
V V ′) . 0.01 for the EWA to adequately describe full matrix elements.

For MV V ′ . O(1 TeV), we find contrasting behaviors between longitudinal and trans-
verse weak boson PDFs: whereas longitudinal PDFs overestimate full scattering amplitudes,
transverse PDFs underestimate them. As documented in section 4.4, increasing the col-
lider energy does not necessarily improve the accuracy of the EWA for MV V ′ . O(1 TeV).
Whereas the presence of soft logarithms slightly improve the accuracy of transverse PDFs
when

√
s is increased, these same logarithms worsen the accuracy for longitudinal PDFs. It

is clear that a matching, subtraction, or re-weighting scheme akin to those already available
for pQCD and QED is needed to correct EWA matrix elements in this region. To facilitate
such developments, we also report the availability in mg5amc of both q2- and p2

T -dependent
PDFs for transversely polarized EW bosons. As shown in section 4.5, p2

T -dependent PDFs
consistently lead to larger cross sections in EWA, but converge to the q2-dependent results
when

√
s increases. To further strengthen the parallels with pQCD, we give a proof-of-

principle demonstration in section 4.6 of matrix-element matching of WT PDFs with the
full matrix elements. Despite its formally large scale uncertainty band, the matched result
shows significant independence on the matching scale. Broadly speaking, these capabilities
provide a starting point for matching EWA matrix elements to EW parton showers and
more sophisticated EW boson PDFs that involve RG evolution.

Given these considerations, we cataloged in section 5 a litany of processes of the form∑
Vλ∈{γλ, Zλ,W±λ }

VλA V
′
λB
→ F , (6.1)

where F contains up to nF = 4 states from the collection {H, t, t,W+,W−, Z, γ}. In
comparing polarized and polarization-summed cross sections, we find an intriguing inter-
play between helicity polarizations and hard scattering processes. For example: whereas
multiboson and many-boson production is driven by the scattering of initial-states in the
(λA, λB) = (T, T ) configuration, top quark and associated top quark production features a
large (0, T ) and (T, 0) component. In further contrast, multi-Higgs processes are dominated
by (T, T ) and (0, 0) helicity configurations but receive only a marginal contribution from
mixed configurations. It is worth noting that scale uncertainties at

√
s = 3–30 TeV reach

about δσ/σ ∼ 20%–50% for many processes, which is beyond expectations based on coupling
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order. As we remained inclusive with respect to the helicities of final-state particles, the
processes we surveyed and their differential behavior can all be further investigated.

6.1 Recommendations for using W/Z PDFs in high-energy lepton collisions

Finally, while much about PDFs for polarized and unpolarized weak bosons remains to be
investigated, we believe this work helps clarify quantitatively when the W and Z bosons
can be treated as partonic constituents of high-energy leptons. To further this prerogative,
we provide a set of recommendations on using weak boson PDFs in many-TeV scattering
calculations. These guidelines draw heavily from the findings in section 4, are supported by
analytic derivations of weak boson PDFs, and are applied to our survey in section 5. For
details on the usage of EW boson PDFs in mg5amc, see appendix A.1.

• To minimize power corrections of the form
(
M2
V /M

2
V V ′

)k, for k > 0, and which spoil
the accuracy of the Goldstone Equivalence Theorem, require that MV V ′ > O(1) TeV.

• To minimize power corrections of the form
(
pl 2
T /M2

V V ′

)k
, for k > 0, and which spoil

the accuracy of collinear factorization, require that µf < O(1) TeV.

• To minimize corrections associated with gauge bosons at x→ 1, restrict the use of
p2
T -evolved PDFs to

√
s & O(10 TeV), or choose small µf for

√
s . O(10 TeV).

• While not discussed in detail, we find notably improved numerical stability for compu-
tations throughout section 5 when evaluating matrix elements in the Feynman gauge.
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A How to use EVA in MadGraph5_aMC@NLO

The simulation of polarized and unpolarized EW PDFs in high-energy charged lepton
collisions, i.e., EVA, is possible using a series of commands inside the mg5amc interface.
Instruction on how to run/setup MadGraph5_aMC@NLO for various configurations involving
unpolarized matrix elements can be found in ref. [106]; for the setup of polarized matrix
elements, see ref. [85]. In this appendix, we describe how to setup a EVA computation in
mg5amc and particularly focus the new options and syntax introduced for this mode.

As a concrete example, we consider the hard scattering process W+W− → hh in µ+µ−

collisions. A typical set of mg5amc commands to simulate a process like this is

set group_subprocesses False
generate w+ w- > h h
output DIRECTORY_OUTPUT
launch DIRECTORY_OUTPUT

The command “set group_subprocesses False” is currently mandatory and deactivates
some internal optimization mechanisms that are not (yet) compatible with EW boson PDFs
as implemented into mg5amc. The second command corresponds to the hard process, and
operates at the level of initial-state weak bosons. (In this sense, EW bosons are treated as
partons of e± and µ±.) Note that EVA is only implemented here at LO in perturbation
theory, without ZT /γT mixing, and without EW-DGLAP evolution. Such corrections
have a nontrivial impact on numerical results [4, 26, 56, 90–93]. The “output” command
defines the directory where the code containing MEs and phase space integration routines,
i.e., MadEvent [108], are physically written on disk. The “launch” command activates an
interface to configure, compile, and execute this code. As mg5amc works by numerically
evaluating helicity amplitudes, the command above syntax is equivalent [85] to the syntax

set group_subprocesses False
generate w+{+} w-{+} > h h
add process w+{+} w-{-} > h h
add process w+{+} w-{0} > h h
add process w+{-} w-{+} > h h
add process w+{-} w-{-} > h h
add process w+{-} w-{0} > h h
add process w+{0} w-{+} > h h
add process w+{0} w-{-} > h h
add process w+{0} w-{0} > h h
output DIRECTORY_OUTPUT

In both cases, the particle species W±λ is paired with the polarized PDF fW±
λ
/µ±(ξ, µf ).

When the user interface is initiated, i.e., just after the “launch” command, the user
is prompted with the ability to edit multiple configuration files. To run in EVA mode, a
user will need to edit the file DIRECTORY_OUTPUT/Cards/run_card.dat. This file contains
all configuration details related to the beam, factorization scales, phase space restrictions
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(cuts), etc. The list of the important and new parameters are summarized in table 8, and are
described below. It is important to stress that in our implementation of EVA, initial- and
final-state W and Z bosons retain their masses in all helicity amplitudes; nowhere do we set
MW ,MZ = 0 GeV. As a consequence, other mg5amc modules, such as MadSpin [122, 123],
can be employed in conjunction with EVA computations. This allows one to study, for
example, the full process, W+

T W
−
T → h(→ cc)h(→ bb).

Investigating new physics remains possible through the interface [107] to Universal
FeynRules Object (UFO) libraries [124]. We caution, however, that EW boson PDFs are
hard-coded into files ElectroweakFlux.f and ElectroweakFluxDriver.f in the directory
LO/Source/PDF/. This means that modifications to the `− `− γ/Z and `− ν −W vertices
introduced by a UFO will not propagate into the PDFs. We have designed and organized
the calling of EW boson PDFs in mg5amc such that the W and Z boson masses as well
as the EW couplings are automatically set to those values listed in the configuration file
DIRECTORY_OUTPUT/Cards/param_card.dat. The values of the electron and muon masses
are not read from the param_card.dat. Instead, the values listed in eq. (3.3) are hard-coded
into the file DIRECTORY_OUTPUT/Source/PDF/ElectroweakFlux.inc.

In order to initiate a computation with the EVA, the most important parameter that
must be set in the file run_card.dat is the PDF set. Choosing EW boson PDFs for both
beams can be done via the “pdlabel” parameter, which now accepts three additional modes:
“eva” for the EW boson PDFs described in section 2; “iww” for the so-called Improved
Weizsäcker-Williams (IWW) γ PDF of ref. [125]; and “mixed” for enabling different PDF
configurations for beams 1 and 2. A fourth option “none” deactivates PDFs for both
beams. The γ PDF described in section 2 is known historically as the Weizsäcker-Williams
approximation [16, 17, 88], and is analogous to the gluon PDF in QCD at LO. Setting
“pdlabel=iww” calls the γ PDF derived using the IWW approximation [125]; this PDF is
sometimes mislabeled in the literature. Simply put, the IWW γ PDF augments the original
Weizsäcker-Williams γ PDF by terms that correspond to operators in the operator product
expansion with a twist larger than 2, i.e., are relatively suppressed by powers of (m2

`/Q
2).

Just like for partons in hadron PDFs, the appropriate PDF and ME are paired automatically
by the routines of pdg2pdf.f and pdg2pdf_lhapdf6.f in the directory LO/Source/PDF/.
To make these options clearer, we have updated instructions within run_card.dat to read:

#*********************************************************************
# PDF CHOICE: this automatically fixes alpha_s and its evol. *
# pdlabel: lhapdf=LHAPDF (installation needed) [1412.7420] *
# iww=Improved Weizsaecker-Williams Approx.[hep-ph/9310350] *
# eva=Effective W/Z/A Approx. [21yy.zzzzz] *
# none=No PDF, same as lhapdf with lppx=0 *
#*********************************************************************

As described in section 2, it is possible to derive EW boson PDFs that are functions
of either the virtuality carried by the incoming EW boson or the transverse momentum
carried away by the outgoing lepton in `→ V `′ splittings. The two are related but can lead
to numerical differences (see section 4.5). In mg5amc, both have been implemented and can

– 40 –



J
H
E
P
0
6
(
2
0
2
2
)
1
1
4

run_card variable Newly allowed values Comments

PDF config. for beams 1 & 2 pdlabel

none Deactivates PDF for beams 1 & 2
eva Activates EVA for beams 1 & 2
iww Activates Improved Weizsäcker-Williams γ PDF [125]
mixed Allows beams 1 & 2 to be configured differently

PDF config. for beam 1 pdlabel1

none Deactivates PDF for beam 1
eva Activates EVA for beam 1
iww Activates IWW γ PDF for beam 1

PDF config. for beam 2 pdlabel2 same as pdlabel1 Analogous to pdlabel1

Fixed factorization scale
fixed_fac_scale1

True Set µf for beam 1 to be static
for beam 1 False Sets µf for beam 1 to be dynamic

This option overrides global variable fixed_fac_scale

Fixed fact. scale for beam 2 fixed_fac_scale2 same as fixed_fac_scale1 Analogous to fixed_fac_scale1

PDF evolution variable ievo_eva
0 (default) Sets EVA PDF evolution variable to q2 (only for EVA)

1 Sets EVA PDF evolution variable to p2
T (only for EVA)

Treatment of external helicities nhel
0 Summation over all helicities
1 Importance sampling over helicities (req. for EVA)

New cut dsqrt_shat default:0 Min. invariant mass cut on the scattering process (in GeV)

Table 8. The list of the important and/or new parameters introduce into mg5amc to support PDFs
for polarized EW gauge bosons (EVA) from high-energy leptons. See text for further details.

be selected using the run_card.dat parameter “ievo_eva.” If this parameter is set to “0”
(default), q2-based PDFs will be called, otherwise p2

T -based PDFs will be called.
For asymmetric process, it is also possible, for the first time in mg5amc, to employ a

different PDF configuration for each beam. This development makes it possible to call
both EW boson PDFs and QCD parton PDFs for processes such as W−b → t in e−p or
µ−p collisions. To enable this, a user must set “pdlabel=mixed” and configure two new
run_card.dat parameters “pdlabel1” and “pdlabel2.” These two parameters operate in
the same manner as “pdlabel” but are limited to only one beam. We stress that it is up to
the user to ensure that “pdlabel1” and “pdlabel2” align with the parameters “lpp1” and
“lpp2,” as well as align with the 1 2 > 3 4 ... ordering of “generate” command above.

Presently, the EVA is only enabled for e± and µ± beams; other capabilities are under
development. Therefore, for the EVA to work in mg5amc, one must stipulate which types of
beams are colliding. In run_card.dat, this is specified via the parameters “lpp1” for beam
1 “lpp2” for beam 2. The allowed values of these parameters retain the same meaning as in
previous versions of mg5amc. Explicitly, setting “lppX=0” corresponds to no PDF for beam X,
where X is 1 or 2. Likewise, “lppX=+1(-1)” corresponds to a PDF for a proton (antiproton),
and “lppX=+2(-2)” calls the Equivalent Photon Approximation4 γ PDF of ref. [127], which
describes the elastic emission of a photon from a proton (antiproton). Setting “lppX=+3(-3)”
means employing a PDF for an electron (positron) beam, and “lppX=+4(-4)” means a
PDF for a muon (antimuon) beam. Presently, setting “pdlabel=eva” or “pdlabelX=eva”
requires setting “lppX=±3” or “lppX=±4.” (The same is true for setting “pdlabel=iww” or
“pdlabelX=iww.”) To make these options clearer, we have updated the relevant instructions

4We report the correction of a long-standing labeling ambiguity of this PDF in the file LO/Source/PDF/
PhotonFlux.f, which contains the implementation of this PDF. We also reiterate that this PDF describes a
photon from a proton in the elastic limit [126] and therefore does not include DGLAP evolution. For inelastic
emissions of photons from protons, set “lppX=+1(-1)” and use a proton PDF set with QED evolution.
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within run_card.dat to now read:

#*********************************************************************
# Collider type and energy *
# lpp: 0=No PDF, 1=proton, -1=antiproton, 2=elastic photon of proton,*
# +/-3=PDF of electron/positron beam *
# +/-4=PDF of muon/antimuon beam *
#*********************************************************************

It is possible to use the EVA in mg5amc with same-sign lepton beams, e.g., “lpp1=+4” and
“lpp2=+4,” as well as mixed-flavor lepton beams, e.g., “lpp1=-3” and “lpp2=+4.” At this
point, we reminder potential users that due to electric and weak isospin charge assignments,
polarized weak boson PDFs are not charge symmetric, e.g., f̃W−−1/µ

−
L

(ξ, µ) 6= f̃W+
−1/µ

+
L

(ξ, µ).
Likewise, the EW boson PDF implemented here are only LO accurate. This means that
the W+ content of `− is zero since such splittings first appear first at O(ααW ).

Presently, it is possible in mg5amc to polarize electron and muon beams in lepton-lepton
and lepton-hadron collisions in the absence of lepton PDFs, i.e., “lppX=0” [106]. We
have extended this capability and it is now also possible to polarize electron and muon
beams when “lppX=±3,±4” and “pdlabel=eva” or “pdlabelX=eva.” This is done via the
run_card.dat parameters “polbeam1” and “polbeam2.” A value of “polbeamX=0” (default)
corresponds to an unpolarized beam, while “-100” and “+100” indicate, respectively, that
100% of beam X is polarized in the LH and RH helicity state.5 Note that the helicity
polarization of an EW boson cannot be changed at run time via run_card.dat. It can only
be specified when executing the “generate” command; see ref. [85] for details.

To implement beam polarization with the EVA, we have augmented eq. (2.9), which
describes a polarized EW boson Vλ from an unpolarized muon by the expression

f̃Vλ/µ±(ξ, µf ) =
(
βL + 1− βL

2

)
× f̃Vλ/µ±L (ξ, µf ) + (1− βL)

2 × f̃Vλ/µ±R(ξ, µf ). (A.1)

Here, −1 ≤ βL ≤ 1 is a parameter describing the degree of LH polarization of the parent
beam. For βL = 0, which corresponds to setting “polbeamX=0,” one recovers eq. (2.9).
Likewise, setting βL = −1 (1), and implies that the muon beam itself is purely in the
LH (RH) helicity state corresponds to setting “polbeamX=-100 (100).”

The collinear factorization scale µf that enters into EW boson PDFs in the EVA can
be either dynamical, i.e., determined on an event-by-event basis, or fixed. This is chosen in
run_card.dat via the Boolean parameter “fixed_fac_scale.” Setting this parameter to
“true (false)” activates a fixed (dynamical) µf . Like “pdlabel,” the dynamical/static
scale scheme can be set separately for each beam using the two Boolean parameters
“fixed_fac_scale1” and “fixed_fac_scale2.” If a static µf is selected, then its value
is set in units of GeV by the parameters “dsqrt_q2fact1” and “dsqrt_q2fact2.” For
dynamical choices of µf , a user can choose from predefined or user-defined scale schemes

5We note for clarity that setting “polbeamX=-70” indicates that 70% of beam X is polarized in the LH
state while the remaining 30% is unpolarized. This implies that 85% (15%) of beam X consists of leptons in
their LH (RH) helicity state.
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using the parameter “dynamical_scale_choice.” For details on this, see ref. [106]. It
is possible to rescale µf by the scale factor “scalefact”.6 Importantly, automated scale
variation of EW boson PDFs is possible using the “systematics” feature and setting
“use_syst=True.” Users are reminded that W/Z boson PDFs are not defined for values of
µf < MW/Z .

A.1 Example usage of EVA in MadGraph5_aMC@NLO

To reproduce the cross sections for the process VλAVλB → HH in table 4, we use the
following syntax to generate our (polarized) matrix elements and work environments:

set group_subprocesses false
set gauge Feynman
define vxp = w+ z a
define vxm = w- z a

generate vxp vxm > h h
output vxvx_hh

generate vxp{T} vxm{T} > h h
output vtvt_hh

generate vxp{T} vxm{0} > h h
add process vxp{0} vxm{T} > h h
output vtv0_hh

generate vxp{0} vxm{0} > h h
output v0v0_hh

Fiducial cross sections, scale uncertainties, and events at
√
s = 3 TeV can then be

obtained in accordance to the setup in section 5 through the following run time commands

launch vxvx_hh
set width all 0
set lpp1 -4
set lpp2 4
set pdlabel eva
set fixed_fac_scale false
set dynamical_scale_choice 4 # muf = scalefact * dsqrt(shat)
set scalefact 0.5
set ievo_eva 0 # (0=q^2 or 1=pT^2)
set ebeam 1500

6This new release of mg5amc is the first to allow both “scalefact” to be set different from unity and
simultaneously allow “use_syst=True.” However, one should note that the deprecated implementation of
scale computation (SysCalc [128]) is not compatible with either the EVA or the new “scalefact” capability.
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set no_parton_cut
set nevents 1k
set dsqrt_shat 1000
set pt_min_pdg {25:50}
set eta_max_pdg {25:3}
set use_syst true
set nhel 1

The new and important commands for using the EVA in mg5amc are documented in
appendix A and summarized in table 8.

A.2 Validation of EVA in MadGraph5_aMC@NLO

As one high-level check (of several) of our implementation of the EVA, we consider the
process W+

λA
W−λB → tt in multi-TeV µ+µ− collisions as studied in ref. [26]. To simulate this

process for various polarization configurations, we use the mg5amc syntax

set group_subprocesses false
set gauge Feynman

generate w+ w- > t t~ QED=2 QCD=0
output wxwx_tt_XLO

generate w+{0} w-{0} > t t~ QED=2 QCD=0
output w0w0_tt_XLO

generate w+{0} w-{T} > t t~ QED=2 QCD=0
add process w+{T} w-{0} > t t~ QED=2 QCD=0
output w0wT_tt_XLO

generate w+{T} w-{T} > t t~ QED=2 QCD=0
output wTwT_tt_XLO

The commands above correspond to (i) unpolarized W+W− scattering, (ii) W+
0 W

−
0 scat-

tering, (iii) W±0 W∓T scattering for T = ±1, and (iv) W+
T W

−
T scattering.

To avoid potential instabilities, the authors of ref. [26] require final-state top quarks to
have a nonzero polar angle in the hard-scattering frame. Specifically, they require

cos θt (t) = p
t (t)
z

|~p t (t)
| < m2

t

m2
tt

. (A.2)

Here pt(t)z is the z momentum of the (anti)top quark in the hard frame, ~p is its three-
momentum in the same frame, and mtt is the invariant mass of the (tt)-system. We
implement this cut by adding the following lines in their appropriate locations to the
dummy_cuts function in the auxiliary file DIRECTORY_OUTPUT/SubProcesses/dummy_fct.f:
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integer ff
double precision mtop2,sHat,rat,cosTh
double precision SumDot
external SumDot

mtop2 = (173.0d0)**2
sHat = SumDot(p(0,1), p(0,2), 1d0)
rat = 1.d0 - mtop2 / sHat

do ff=nincoming+1,nexternal
c = pz / dsqrt(px2 + py2 + pz2)

cosTh = p(3,ff) / dsqrt(p(1,ff)**2 + p(2,ff)**2 + p(3,ff)**2)
if(cosTh.gt.rat) then

dummy_cuts=.false.
return

endif
enddo

To steer phase space integration, we use the following commands at
√
s = 10 TeV:

launch wxwx_tt_XLO
set no_parton_cut
set ebeam 5000
set nevents 40k
set lpp1 -4 # setup beam1 as anti-muon
set lpp2 4 # setup beam2 as muon
set pdlabel eva
set fixed_fac_scale1 false
set fixed_fac_scale2 false
set dynamical_scale_choice 4 # muf = scalefact * dsqrt(shat)
set scalefact 0.5
set ievo_eva 0 # (0=q^2 or 1=pT^2)
set use_syst true
done

We make the necessary modification to this script for
√
s = 14 and 30 TeV.

We report in table 9 the EVA-level cross section [fb] as reported by ref. [26], denoted
by σref., the cross section computed with mg5amc, denoted by σEVA, and the statistical
pull, defined by ∆σ/δσStat. ≡ (σEVA − σref.)/δσStat., for

√
s = 10, 14, and 30TeV, for

(top row) unpolarized W+W− scattering, (second row) W+
0 W

−
0 scattering, (third row)

W±0 W
∓
T scattering for T = ±, and (bottom row) W+

T W
−
T scattering. Due to MadEvent’s

multi-channel integration routines, a precise determination of our MC statistical uncertainty
is complicated. Therefore, as a conservative estimate of our statistical uncertainty for
400k events, we take δσStat. = 1/

√
4 · 105 ≈ 0.16%. While we find that differences are all

negative, meaning σEVA is always larger, we report that differences only span ∆σ ≈ −0.13%
to −0.01%. This translates to a statistical pull ranging from ∆σ/δσStat. ≈ −0.1 to −0.8.
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√
s=10TeV

√
s=14TeV

√
s= 30TeV

Channel σref. [fb] σEVA [fb] ∆σ
δσStat.

σref. [fb] σEVA [fb] ∆σ
δσStat.

σref. [fb] σEVA [fb] ∆σ
δσStat.

Unpolarized 17.23 17.21 −0.8 21.17 21.15 −0.6 30.71 30.68 −0.7
W+

0 W
−
0 7.702 7.694 −0.6 9.244 9.235 −0.6 12.85 12.84 −0.7

W±0 W
∓
T 7.713 7.704 −0.7 9.595 9.582 −0.8 14.18 14.17 −0.6

W+
T W

−
T 1.811 1.810 −0.3 2.329 2.327 −0.6 3.682 3.682 −0.1

Table 9. For the process W+
λA
W−λB

→ tt in multi-TeV µ+µ− collisions, EWA-level cross sections [fb]
as reported by ref. [26] (σref.), the cross section computed with mg5amc (σEVA), and the statistical
pull (∆σ/δσStat.), for (top row) unpolarized W+W−, (second row) W+

0 W
−
0 , (third row) W±0 W∓T ,

and (bottom row) W+
T W

−
T scattering, at

√
s= 10TeV (left), 14TeV(center), and 30TeV (right). The

mg5amc statistical uncertainty corresponds to 400k events, or δσStat.≈±0.16%.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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