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Understanding the expansion 

of Italian metropolitan areas: 

a study based on entropy measures 

 
Abstract 

This work presents a study on the urban configuration of a number of Italian metropolitan areas and their 

development over time, with the aim of evaluating the size and shape of urban areas expansion. Raster data 

are used, produced by the European Environmental Agency within the CORINE Land Cover project. The 

study is based on a version of spatial entropy measures proposed and validated by a recent series of papers, 

aimed at the evaluation of spatial data heterogeneity; the methods assess the efficiency of the spatial 

configuration of urban areas. An innovative combination of two entropy measures is the tool for evaluating 

the urban development in Italy. Results allow both conclusive comments about each metropolitan area and 

comparisons across areas over space and time. 

Keywords: Italian metropolitan areas; CORINE; spatial entropy; urban expansion; urban compactness 

 

1. Introduction 

A metropolitan area is an urban structure where a relevant amount of population lives (Tong, Plane 

2014), formed by a main city and its influence area. Delimiting a metropolitan area is a difficult matter, due 

to the expansion of urban phenomena towards external areas (Pacione 2009). From the 1950s, Europe 

worked (Medina, Monclùs 2018) to control the urban development following industrialization and obtain 



an expansion with positive effects on its territory.  The search of a rational city failed due to rapid and out 

of control urban development during the 60s and 70s, known as urban sprawl.  

Inefficient urban expansion over rural or semi-rural areas is among the negative consequences of 

the metropolitan phenomenon (Bhatta, Saraswati, Bandyopadhyay 2010; Yamu, Frankhauser 2016). Two 

main social aspects cause such urbanisation: service and distribution networks take place near main streets 

and highways and people moving from the countryside to cities have different richness levels. This causes 

a dangerous tendency towards social division. Although a definition of urban sprawl is still debated (Jaeger 

et al. 2010; Torrens 2008; Banai, De Priest 2014), a general consensus is that a sprawled city is full of 

empty spaces denoting inefficient development (EEA 2011).  

Urban expansion measurement is performed by different metrics (Dadashpoor, Azizi, Moghadasi 

2019). The simplest indicator is the population density over an area, i.e. the number of residents per square 

kilometre. Further urban growth indicators (Ewing, Hamidi 2015; Jiang et al. 2007) can be compared in 

time and space (Altieri et al. 2014; Cheng, Masser 2004). A popular tool is Shannon's entropy: it comes 

from landscape ecology, but its transposition to urban expansion is direct. Ecological concepts of evenness 

and richness are related to heterogeneity, and entropy proved to be a rigorous and widely used technique, 

suitable for integration of remote sensing and GIS (Yeh, Li 2001), where information is limited but 

extensively available (Herold et al. 2003; Chong 2017). Land cover data are particularly suitable for 

measuring urban expansion: the territory is classified according to the prevailing land use, and split into 

urban or non-urban patches.  

Shannon’s entropy does not consider space as a source of heterogeneity. It is only computed on 

the proportions of land use classes (estimates of land use probabilities), so territories with the same 

proportions but different compactness for the urban tissue share the same entropy value. Entropy measures 

need to incorporate spatial information (Heikkila, Hu 2006) and are the core of the present work. 



In Italy, the metropolitan city is a well-defined entity:  starting 2012, laws establish 10 metropolitan 

cities in the mainland (L. 135 in Gazzetta Ufficiale 189/2012; L. 56 in Gazzetta Ufficiale 81/2014).  

Regional laws established 4 metropolitan cities in Sicily and Sardinia. The 14 Italian metropolitan cities 

are centred on Bari, Bologna, Cagliari, Catania, Firenze, Genova, Messina, Milano, Napoli, Palermo, 

Reggio Calabria, Roma, Torino, Venezia.  Metropolitan cities substitute the administrative units known as 

“provinces” (Balducci et al. 2017; Bettoni 2018). The main municipality is the core of each metropolitan 

city and an attraction pole for residents. It derives from the evolution of urban settlements historically 

organized in walled towns with recognizable borders and countryside, now rather being built up areas 

spread over the territory, including a city town, suburbs and other residential settlements. In this work, the 

administrative border of an Italian metropolitan city cannot be employed, since it regards a wide territory 

beyond the direct influence area of a main hub. Thus, we apply spatial entropy measures to the main 

municipality together with its commuting belt, i.e. the minor municipalities sharing a border with the main 

one and constituting its influence area (see Table S1). In the remainder of the paper, the terms “metropolitan 

area” and “city and commuting belt” indicate the main city plus its surrounding municipalities.  

The main aim of this work is to present an extensive study on the configuration and level of 

urbanization of the 14 Italian metropolitan areas, using official European data and a rigorous statistical 

methodology. The use of administrative borders for all municipalities ensures comparability of the results 

to other areas. The methodological innovation lies in the combination of two entropy measures to describe 

the spatial development of metropolitan areas. Recently, Altieri, Cocchi, Roli (2019a) proposed the use of 

spatial entropy measures on urban/non-urban pixels. The urbanization intensity is summarized by 

Shannon's entropy of a transformation of the study variable, while the intensity level of urban dispersion is 

measured by the entropy-based measure named spatial mutual information (Altieri, Cocchi and Roli 

2019b). The joint use of spatial mutual information and Shannon's entropy offers a new perspective on the 

analysis of urban data, via an evolution of commonly used entropy-based metrics for landscape studies. 



Data come from the European CORINE land cover dataset. For years 1990 and 2012, the territory 

of the considered municipalities is divided into 250mx250m pixels, classified as urban/non-urban according 

to EEA, 2011. The availability of such dataset allows to employ a unified basis for assessing the spatial 

configuration and evolution of metropolitan areas.  

The paper is organized as follows. Section 2 presents the European data for the study. Section 3 

summarizes the methodology in the context of urban expansion, with a data example. Section 4 contains 

the study of Italian metropolitan areas, stressing the combination of urban intensity and compactness. 

Section 5 gives a final discussion. 

 

2. European land cover data 

European land cover data are the basis of the present work. Even if some cities have their own accurate 

system for monitoring land cover, a common dataset is fundamental for comparison. Two data collecting 

programmes about land use are run within the European Union: CORINE Land Cover programme by the 

European Environment Agency (EEA 1994), and LUCAS project under control of Eurostat (Eurostat 2010), 

used for improving CORINE outcome. 

CORINE (COoRdination of INformation on the Environment) is a programme approved by the 

European Community Council in 1985 for gathering, coordinating and ensuring the consistency of 

information on the environment. CORINE Land Cover (CLC) is created for monitoring land characteristics: 

decision-makers need an overview of existing knowledge and information as complete and up-to-date as 

possible on certain features of the biosphere. In 1990, CORINE involved 12 countries and 2.3 million km2 

(EEA 1994); the 2012 update concerns 39 European countries and 5.8 million km2. The Community area is 

divided into units classified in three levels according to CLC nomenclature. The first level includes five 



macro-categories: artificial surfaces, agricultural areas, forests/seminatural areas, wetlands, water bodies. 

The second level counts fifteen and the third one forty-four classes. 

CORINE data come from remote sensing, i.e. acquisition of information by sensing devices not in 

physical contact with the object, for land use observation (Taubenböck et al. 2012). Georeferenced data 

from satellite images are analysed with Geographic Information Systems (GIS) and coded in vector or raster 

format. Vector data are formed by points, lines, polygons, coded based on their geographical coordinates. 

Raster data are visualised by a regular grid, or matrix, whose basic element is called cell or pixel. Each 

pixel contains information about a portion of land. The pixel size is specified in a mapping unit (e.g. metres, 

kilometres etc.) and is linked to data precision and reliability. The raster format is appropriate for studies 

involving entropy-type metrics. When a CLC vector dataset is rasterised, the nearest neighbour method is 

used: each cell is assigned to a land cover category based on the value of the polygon at its centre. Two 

datasets are produced: CLC European 250 metres grid, and CLC European 100 metres grid, given the 

precision of the vector dataset and considering they have to be small in order to reduce conversion errors. 

EEA mapped urban areas across Europe; the selected areas are classified as “Urban Morphological 

Zones” (UMZs), made up of four Corine Land Cover core classes (EEA 2011): ‘Continuous urban fabric’, 

‘Discontinuous urban fabric’, ‘Industrial or commercial units’, ‘Green urban areas’. They are integrated 

with ‘Port areas’, ‘Airports’, ‘Road and rail networks’, ‘Sport and leisure facilities’, provided they are 

neighbours to the core classes. UMZs are useful to identify shapes and patterns of urban areas and detect 

the land cover lost because of urban development. They form a binary dataset that EEA recommends to use 

when studying urban development in Europe, especially at a regional scale (EEA 2011). 

 

 



3. Entropy measures for land cover data 

The present Section gives an introduction of the methodology with interpretation in the context of urban 

data (see Altieri, Cocchi, Roli 2019b for details). Steps are sided by a data example: the metropolitan area 

of Bologna in 2012 is chosen as a representative case in Italy, its level of urbanization intensity and 

compactness being close to the Italian mean values (see Figure 2 in Section 4). A simulation reorganizes 

Bologna’s pixels according to a compact and a random spatial scenario (Figure 1), which have the same 

number of urban and non-urban pixels. 

 

Figure 1: The metropolitan area of Bologna (left panel, 2012 data) and two simulated spatial arrangements of its 

urban tissue as compact (central panel) and scattered (right panel) 

3.1. Non-spatial entropy for the urban tissue: H(X) 

Let X be the categorical variable “land cover”, with I land cover categories; let p(xi) be the 

probability of land cover type i=1, …, I. The entropy of land cover is the average information linked to 

finding one land cover category; it is the expected value of the variable “information function of X” (Cover 

and Thomas 2006): 

𝐻(𝑋) = ෍ 𝑝(𝑥௜) log ቀ
ଵ

௣(௫೔)
ቁ

ூ

௜ୀଵ
.            (1) 



When X has two categories x1=urban and x0=non-urban, with p=p(x1) being the probability of 

finding category “urban”, entropy reduces to 

𝐻(𝑋) = 𝑝 log ቀ
ଵ

௣
ቁ + (1 − 𝑝)log ቀ

ଵ

ଵି௣
ቁ         (2) 

and ranges in [0, log2], where log2 is reached for p=0.5. 

This setting suits to a binary raster dataset with N pixels: each pixel u=1, …, N can be either urban 

or non-urban. Let xu be the realization of pixel u; the sum of all xu is the number of urban pixels N1. The 

only quantity that has to be known or estimated to compute entropy is p. Thus, two raster datasets with 

different urban configurations but a similar urban proportion p return similar entropies: the traditional 

entropy formula, though widely used in urban development studies, is not able to distinguish among urban 

patterns. In Bologna’s example, N=10000 pixels fall within the administrative borders, and N1=1781; 

values are constant across the configurations of Figure 1. Thus, p(x1) = p is estimated by 𝑝̂= N1 / N =0.178 

for all patterns. Shannon’s entropy is 

                              𝐻(𝑋)஻௢ = 0.178 log ቀ
ଵ

଴.ଵ଻଼
ቁ + 0.822 log ቀ

ଵ

଴.଼ଶଶ
ቁ =0.469 

irrespective of the spatial arrangement. 

Several approaches in the literature include some spatial information into entropy measures. The 

first milestones are authored by Batty (1974, 1976, 2010) and define a spatial entropy measure accounting 

for unequal space partition into sub-areas. Such entropy can only be computed for a binary variable, the 

local terms do not possess the properties of the global one, and results are heavily affected by the selected 

area partition. Another approach to spatial entropy starts from a transformation of the study variable 

(O’Neill et al. 1988) and accounts for distance between realizations. Recently, Leibovici and Claramunt 

(2019) extend the method to spatio-temporal studies with the consideration of the size of the land cover 

patch. The same approach is the basis for a series of papers by Altieri, Cocchi and Roli (2018, 2019a, b), 



which propose measures with desirable properties for investigating urban expansion and overcomes the 

limitations of the first approach. 

3.2. Non-spatial entropy for urbanization intensity: H(Z) 

Consider for simplicity a binary classification. When the study variable “land cover” has categories 

“urban” and “non-urban”, three possible pairs can be built if order is irrelevant, i.e. z1={urban, urban}, 

z2={urban, non-urban} and z3={non-urban, non-urban}. We use the word “order” in its standard 

mathematical meaning: the couple (urban, non-urban) is ordered and different from (non-urban, urban); 

conversely the set, or pair, {urban, non-urban} is unordered. Reasons for discarding the order within pairs 

are discussed in Altieri, Cocchi, Roli (2019b). In the remainder of the paper, the word “pair” refers to 

unordered sets. The combinations are categories of the new variable “pairs of land cover categories” Z.  

The general formula for the entropy of Z is 

𝐻(𝑍) = ෍ 𝑝(𝑧௥) log ቀ
ଵ

௣(௭ೝ)
ቁ

ோ

௥ୀଵ
            (3) 

where R is the number of possible pairs. In the binary case R=3 and (3) reduces to  

𝐻(𝑍) = 𝑝(𝑧ଵ)log ቀ
ଵ

௣(௭భ)
ቁ + 𝑝(𝑧ଶ)log ቀ

ଵ

௣(௭మ)
ቁ + 𝑝(𝑧ଷ) log ቀ

ଵ

௣(௭య)
ቁ          (4) 

where the maximum value log3=1.0986 cannot be reached; the actual maximum is 1.0362, reached for 

p=p(x1)=0.5 (Altieri, Cocchi, Roli 2018). 

  H(Z), as well as H(X), is the same irrespective of the data spatial configuration, being only based 

on the probability of occurrence of urban and non-urban pixels. In Bologna’s example, the distribution of 

Z is estimated starting from N1 and N0=N - N1, by relative frequencies:  



𝑝̂(𝑧ଵ) =
௡(௭భ)

௡(௭)
;    𝑝̂(𝑧ଶ) =

௡(௭మ)

௡(௭)
;    𝑝̂(𝑧ଷ) =

௡(௭య)

௡(௭)
, 

where the computation of the number of pairs is the same for all configurations of Figure 1: 

𝑛(𝑧)஻௢ = ቀ
𝑁
2

ቁ = ቀ
10000

2
ቁ = 49995000                                  total number of pairs in Bologna 

𝑛(𝑧ଵ)஻௢ = ቀ
𝑁ଵ

2
ቁ = ቀ

1781
2

ቁ = 1585090                      number of pairs urban, urban}  

𝑛(𝑧ଷ)஻௢ = ቀ
𝑁଴

2
ቁ = ቀ

8219
2

ቁ = 33771871              number of pairs {non-urban, non-urban}  

𝑛(𝑧ଶ)஻௢ = ቀ
𝑁
2

ቁ − ቆቀ
𝑁ଵ

2
ቁ + ቀ

𝑁଴

2
ቁቇ = 14638039             number of pairs {urban, non-urban}.  

Then,  

𝑝̂(𝑧ଵ) = 0.032;   𝑝̂(𝑧ଶ) = 0.293;   𝑝̂(𝑧ଷ) = 0.675 

are used to compute H(Z) 

𝐻(𝑍)஻௢ = 0.032 log ቀ
ଵ

଴.଴ଷଶ
ቁ + 0.293 log ቀ

ଵ

଴.ଶଽଷ
ቁ + 0.675 log ቀ

ଵ

଴.଺଻ହ
ቁ = 0.734. 

This procedure allows efficient results in terms of computational time even for large datasets.  

Entropy H(Z), as well as H(X), is suitable to quantify the intensity of urbanization over an area, intended as 

proportion of urban tissue, but not spatial compactness.  

3.3. Toward a spatially-sensitive entropy measure: H(Z|adjacency) 

Studying pairs of urban/non-urban pixels at different distances is relevant to address urban 

expansion: when most urban pixels are close to other urban pixels, i.e. many {urban, urban} pairs for 

adjacent pixels, the city configuration tends to be compact and efficient. Conversely, in a chaotic urban 



expansion, many adjacent pairs of pixels are {urban, non-urban}. The proportion of the three categories of 

Z for adjacent pixels can be used to evaluate urban expansion at a small scale. The consideration of adjacent 

pixels identifies a subset of the general variable Z, say (Z | distance=adjacency) which brings along spatial 

information and is the basis for O’Neill’s spatial entropy. Entropy is analogous to H(Z) except for 

conditioning, with the important consequence of returning different results according to the spatial pattern: 

𝐻(𝑍|𝑎𝑑𝑗) = 𝑝(𝑧ଵ|𝑎𝑑𝑗)log ቀ
ଵ

௣(௭భ|௔ௗ௝)
ቁ + 𝑝(𝑧ଶ|𝑎𝑑𝑗)log ቀ

ଵ

௣(௭మ|௔ௗ௝)
ቁ + 𝑝(𝑧ଷ|adj)log ൬

ଵ

௣൫𝑧ଷหadj൯
൰.         (5) 

In Bologna’s example, the number of adjacent pairs per category needs to be counted for each 

spatial settlement 

n(z1|adj)obs=1412;     n(z2|adj)obs=719;     n(z3|adj)obs=7671   “observed” Bologna 

n(z1|adj)comp=1734;   n(z2|adj)comp=94;     n(z3|adj)comp=7974   “compact” Bologna  

n(z1|adj)rand=318;      n(z2|adj)rand=2865;  n(z3|adj)rand=6619    “random” Bologna. 

The total number of adjacent pairs n(z|adj) = 9802 (the sum of each line above) is the same across 

spatial configurations. 

Consequently, entropy measures H(Z | adjacency), estimated based on the relative frequencies of 

the categories of Z over adjacent pairs, give different results for each scenario: 

𝐻(𝑍|𝑎𝑑𝑗)௢௕௦ = 0.144 log ൬
1

0.144
൰ + 0.073 log ൬

1

0.073
൰ + 0.783 log ൬

1

0.783
൰ = 0.663  

𝐻(𝑍|𝑎𝑑𝑗)௖௢௠௣ = 0.177 log ൬
1

0.177
൰ + 0.010 log ൬

1

0.010
൰ + 0.813 log ൬

1

0.813
൰ = 0.519  

𝐻(𝑍|𝑎𝑑𝑗)௥௔௡ௗ = 0.032 log ൬
1

0.032
൰ + 0.292 log ൬

1

0.292
൰ + 0.676 log ൬

1

0.676
൰ = 0.736. 



The smallest value is found for the compact configuration, and the greatest for the random one. 

This measure is similar to O’Neill’s entropy and is not satisfactory enough: our objective is a measure of 

compactness taking small values for a random scenario and large values for a compact one. Moreover, the 

extremes are absolute and unrealistic: value 0 is reached when the territory is entirely urban or entirely non-

urban; the maximum is reached when the three types of pairs are present with the same proportion, 

impossible in real situations. We aim at a spatial measure calibrated on the urban context, that conditions 

the level of compactness on the intensity of urbanization.  

3.4. A spatial entropy measure for urban compactness: SPI(Z|wk) 

The evaluation of urban compactness (Burton, 2002) can be enriched by looking in general at pairs 

lying at given distances; intuitively, the more compact a metropolitan area is, the more pairs of type {urban, 

urban} are present at any distance. A set of K distance ranges from w1 to wK can be fixed for investigating 

urban expansion in detail. They should be defined with more focus on small distances and less focus on 

very large distances, of scarce interest for the evaluation of urban development. This results in small ranges 

for the first classes and to wider ranges for the last classes. One example (discussed in Altieri, Cocchi and 

Roli 2019a, b) follows the standard “nearest neighbour system” (i.e. adjacent pixels) and “12 nearest 

neighbour system” (Anselin 1995): w1 collects adjacent pairs of pixels and w2 collects the immediately 

farther neighbours, i.e. pairs of pixels sharing a corner and pairs of pixels adjacent to a common one. This 

allows to understand whether blocks of buildings lie close by or close to rural/non-urban patches. Further 

classes w3 to wK are less relevant to urban studies and are consequently wider; the only requirement is that 

they cover all possible distances within the metropolitan area. In particular, the last class can be considered 

as residual and can be very large according to the study context. 



By the construction of distance classes, K subsets of realizations of Z become available, formed 

by pairs of observations belonging to each distance range: Z|wk, with k=1, …, K. A measure of the 

compactness of the urban tissue at the kth distance range is 

𝑆𝑃𝐼(𝑍|𝑤௞) = ෍ 𝑝(𝑧௥|𝑤௞)log ቀ
௣(௭ೝ|௪ೖ)

௣(௭ೝ)
ቁ

ோ

௥ୀଵ
,           (6) 

where 𝑝(𝑧௥|𝑤௞) denotes the probability of the rth pair to fall within distance range wk and 𝑝(𝑧௥) is the 

marginal probability of occurrence of the rth pair at any distance, i.e. a component of H(Z). SPI stands for 

spatial partial information; the city is more and more compact when relevant SPI values are found for k>1. 

Note that 𝑆𝑃𝐼(𝑍|𝑤௞) is the Kullback-Leibler divergence between 𝑝(𝑧௥|𝑤௞) relative to p(Z) for a given wk. 

One particular case occurs for wk=adjacency, and a binary X, i.e. three categories of Z: 

𝑆𝑃𝐼(𝑍|𝑎𝑑𝑗) = 𝑝(𝑧ଵ|𝑎𝑑𝑗)log ቀ
௣(௭భ|௔ௗ௝)

௣(௭భ)
ቁ + 𝑝(𝑧ଶ|𝑎𝑑𝑗)log ቀ

௣(௭మ|௔ௗ௝)

௣(௭మ)
ቁ + 𝑝(𝑧ଷ|adj) log ቀ

௣(௭య|ୟୢ୨)

௣(௭య)
ቁ. 

In Bologna’s example: 

𝑆𝑃𝐼(𝑍|𝑎𝑑𝑗)௢௕௦ = 0.144 log ൬
0.144

0.032
൰ + 0.073 log ൬

0.073

0.293
൰ + 0.783 log ൬

0.783

0.676
൰ = 0.232 

𝑆𝑃𝐼(𝑍|𝑎𝑑𝑗)௖௢௠௣ = 0.177 log ൬
0.177

0.032
൰ + 0.010 log ൬

0.010

0.293
൰ + 0.813 log ൬

0.813

0.676
൰ = 0.423  

𝑆𝑃𝐼(𝑍|𝑎𝑑𝑗)௥௔௡ௗ = 0.032 log ൬
0.032

0.032
൰ + 0.292 log ൬

0.292

0.293
൰ + 0.676 log ൬

0.676

0.676
൰ = 0.00001. 

This example shows the key difference between entropy (5) and spatial partial information (6). 

Entropy (5) reaches its maximum when the distribution of Z|adj is uniform, without considering the specific 

urban context. Conversely, SPI(Z|adj) increases as the conditional distribution of Z|adj steps away from the 

marginal distribution of Z, i.e. depends on the intensity of urbanization under study. The conditional spatial 

measure (6) is calibrated on the urban context: in SPI, each probability for adjacent pairs is compared to 



the marginal probability of Z, i.e. to a probability where space is not considered. In the random scenario the 

conditional and marginal probabilities are approximately the same, transforming SPI into a sum of zero 

values; the greater departure of each conditional probability from the marginal one, the greater value for 

SPI. Entropy (6) increases as the spatial configuration gets closer to a compact scenario, given the 

proportion of urban and non-urban pixels over the area: we have a measure of spatial compactness 

conditional on the urbanization intensity.  

The weighted sum of SPI values results in a very well-known quantity in Information Theory, i.e. 

mutual information, in the present context renamed spatial mutual information:  

𝑆𝑀𝐼(𝑍, 𝑊) = ∑ 𝑝(𝑤௞)𝑆𝑃𝐼(𝑍|𝑤௞)௄
௞ୀଵ                  (7) 

where the terms p(wk) weight each distance range. The second variable W summarizes the distribution of 

pairs of observations across a set of chosen distance ranges over the observation window. The construction 

of the distance classes wk generalizes measures by Leibovici (2009); Leibovici et al. (2014); O’Neill et al. 

(1988), which do not enjoy the additivity property from local SPI terms to the overall SMI; the property 

holds for any choice of the distance classes. Moreover, O’Neill’s and Leibovici’s measures rely on the 

choice of a single distance for studying couples, without capturing the general behaviour of the variable of 

interest.  

SMI can be added to the quantity known as residual entropy, H(Z)W, in order to obtain H(Z) 

1

( ) ( , ) ( )

( )[ ( | ) ( | )]

W

K

k k k
k

H Z SMI Z W H Z

p w SPI Z w H Z w


 

 
            (8) 

Differences in the overall level of compactness can be measured by the different contribution of 

SMI, and, in particular, of each SPI term, to the total H(Z). An effective way to compare urban compactness 



across areas is to exploit the last line of (8): at each distance class wk, the sum SPI(Z|wk)+H(Z|wk) can be 

set to 1, so that the contribution of space given by each SPI may be appreciated in proportional terms and 

is comparable across datasets. For an example, see Altieri, Cocchi and Roli (2019b). 

In conclusion, the properties of spatial entropy measures make them an appealing tool to evaluate 

urban expansion from a spatial perspective by an effective combination of H(Z) for urban intensity and the 

SPI terms for urban compactness calibrated on the data urban proportion.  

 

4. A comparative study on Italian metropolitan areas 

The proposed measures are computed for the 14 Italian metropolitan areas for 1990 and 2012, with 

the aim of assessing the state and development of each main urban hub in terms of urbanization intensity 

and spatial compactness, by a combination of the information provided by the non-spatial entropy H(Z) and 

the spatial partial information terms.  

4.1. Design of the study 

The 14 datasets are extracted from the database of CORINE Land Cover for 1990 and 2012, using 

the 250m pixel resolution. Every dataset contains the main municipality and its surrounding commuting 

belt towns. Each area is enclosed into a rectangle; all pixels outside the administrative borders are classified 

as “missing values” and do not affect computations. The datasets with 44 classes are then transformed into 

binary UMZ data following the CLC criteria.  

Four distance ranges (K=4) are chosen; a discussion about the underlying motivation is in Section 

5. Class w1=[0, 250] metres includes adjacent pairs of pixels. Class w2=]250, 500] covers the immediately 

farther neighbours. Class w3=]500, 1250] is a wider class including pairs at most 5 pixels apart, for checking 



whether any residual spatial information can be detected. The last class is w4=]1250, dmax], dmax being the 

maximum distance, and collects the least interesting distances that will not be commented in detail.  

The estimation procedure follows the steps illustrated in Section 3. The proportion of urban pixels 

for each city and time point is the estimated p=p(x1) used for H(X); analogously, relative frequencies 

estimate the probabilities p(z1), p(z2) and p(z3), with z1={both urban}, z2={urban, non-urban}, z3={both non-

urban}. For each distance class, relative frequencies of pairs form an estimate of p(Z|wk). The total number 

of pairs for each distance range is counted, and its relative frequency is used as an estimate of p(wk), the 

probability distribution of distance ranges for each city.  

All computations are run on the R software with the help of the packages spatstat (Baddeley, 

Rubak and Turner 2015) and SpatEntropy (Altieri, Cocchi and Roli 2018b). The computational time 

varies from a few minutes to a few hours for each metropolitan area. 

Table 1 summarizes the information about each metropolitan area. The size in pixels of the 

enclosing rectangle gives an idea of the computational burden; in correspondence of each rectangle, we 

report the extension of the studied area both in square kilometres and in number of pixels within the 

administrative borders. They also show that the metropolitan areas of Palermo, Roma and Venezia are 

largely wider than the others. The urban proportion 𝑝̂ at the two time points is “p(urb)”: it increases from 

1990 to 2012 for nearly all areas. The Table also includes the estimated marginal distribution of Z. The last 

columns of Table 1 show the population density and Shannon's entropy of Z for each area and time: this is 

the non-spatial information, as both density and entropy depend only on the amount of black and white 

pixels. Densities range from the low levels of Genova and Reggio Calabria to the crowded levels of Torino, 

Milano, and Napoli, and support the non-spatial nature of Shannon's entropy: the Table shows that the two 

measures are return a similar ranking of metropolitan areas. Values for SPI(Z|w1) - SPI(Z|w3) are in Table 

S2. 



Main City  ER size  Ext Pix  1990 2012 1990 2012 

        p(urb) p(z1) p(z2) p(z3) p(urb) p(z1) p(z2) p(z3) Den H(Z)  Den H(Z)  

Bari 113x225  552 8837 0.169 0.029 0.281 0.690 0.192 0.037 0.310 0.653 1034 0.714 1015 0.763 

Bologna 135x124  625 10000 0.155 0.024 0.262 0.714 0.178 0.032 0.293 0.676 913 0.682 909 0.734 

Cagliari 110x201  484 7739 0.175 0.031 0.288 0.681 0.214 0.046 0.337 0.617 723 0.727 733 0.806 

Catania 264x134  844 13497 0.143 0.021 0.246 0.734 0.160 0.026 0.269 0.705 648 0.651 639 0.694 

Firenze 99x115  404 6466 0.190 0.036 0.307 0.657 0.23 0.054 0.357 0.589 1474 0.758 1388 0.837 

Genova 136x224  731 11697 0.102 0.010 0.183 0.807 0.100 0.010 0.180 0.811 1024 0.531 892 0.524 

Messina 135x112  366 5848 0.138 0,019 0.237 0.744 0.133 0.018 0.230 0.752 697 0.636 727 0.623 

Milano 93x108  404 6466 0.604 0.365 0.478 0.157 0.650 0.423 0.455 0.122 4907 1.010 4622 0.979 

Napoli 67x120  249 3980 0.534 0.285 0.498 0.217 0.596 0.354 0.482 0.164 6521 1.036 6148 1.016 

Palermo  200x196  854 13658 0.124 0.015 0.217 0.768 0.131 0.017 0.228 0.755 921 0.599 913 0.620 

Reggio C. 140x106  519 8301 0.056 0.003 0.105 0.892 0.095 0.009 0.171 0.820 420 0.356 419 0.507 

Roma 284x273  2465 39441 0.200 0.040 0.321 0.639 0.230 0.053 0.354 0.593 1311 0.780 1355 0.833 

Torino 111x113  414 6619 0.402 0.162 0.481 0.357 0.451 0.204 0.495 0.301 3254 1.014 3056 1.033 

Venezia 242x214  762 12185 0.163 0.027 0.273 0.700 0.187 0.035 0.304 0.661 474 0.701 458 0.753 

 

Table 1: Size of the enclosing rectangle in number of pixels (ER size), extension of the administrative 

metropolitan area within the rectangle in km2 (Ext.), number of pixels within the metropolitan area (Pix.), 

urban proportion in 1990 and 2012, estimated distribution of Z in 1990 and 2012, population density 

(number of residents per km2) and Shannon’s entropy of Z for the metropolitan areas. 

4.2. Intensity and compactness of Italian metropolitan areas 

Conclusive comments can be drawn from Figure 2, which shows four scatterplots of the Italian 

metropolitan areas for SPI1 and SPI2 at both years, summarizing the overall situation and detecting the cold 

and hot spots.  

The x axis presents H(Z) for 1990 (left panels) and 2012 (right panels), which measures the 

urbanization intensity. The y axis shows the value of the spatial partial information at distance classes w1 

(upper panels) and w2 (lower panels), synthesizing the compactness of urbanization; the dots corresponding 



to metropolitan areas can shift vertically from upper to lower panels. The scatterplot gives an exhaustive 

summary of the 14 Italian metropolitan areas as regards urban configuration and development. 

 

Figure 2: Scatterplot of Italian metropolitan areas in 1990 and 2012: Shannon’s entropy of Z versus spatial partial 

information at distances w1 and w2 

For the ease of interpretation, dashed vertical and horizontal lines mark three levels for each 

measure, chosen to evaluate the Italian scenario, not as absolute thresholds. For H(Z), they divide each plot 

into low, intermediate and high urbanization intensity, with breaks 0.6 and 0.85; for the SPI terms, they 

divide each plot into low, intermediate and high urbanization compactness, with breaks 0.2 and 0.3 for SPI1 

and 0.15 and 0.2 for SPI2. 

Looking at the x axis, in 1990, H(Z)<0.6 is observed for Genova, Palermo and Reggio Calabria: 

the urban tissue covers a minority of the areas, with some belt municipalities so scarcely populated that no 

pixels are urban.  Reggio Calabria witnesses a major increase in entropy from 1990 to 2012, but remains 



the least urbanized one, while Genova and Palermo have basically constant entropy values. The 

metropolitan areas with H(Z)>0.85 are Milano, Napoli and Torino. Entropies for Milano and Napoli 

decrease slightly from 1990 to 2012, while Torino's entropy increases. All other metropolitan areas present 

an intermediate level of urbanization in 1990, and their entropies increase in 2012 except Messina. 

As regards the spatial information terms on the y axis, the least compact areas with a value under 

0.2 for SPI1 and under 0.15 for SPI2 are Genova, Messina, Reggio Calabria, plus Napoli and Venezia in 

1990. The most compact area, with a value above 0.3 for SPI1 and 0.2 for SPI2 in both years, is Torino; 

Cagliari increases its SPI2 value in 2012, meaning that, though not extremely compact at a really small 

scale, its efficiency has increased. Focusing on time comparison, both SPI1 and SPI2 increase from 1990 to 

2012 for most areas. This can be interpreted as a positive feature, witnessing the increase over time of the 

areas’ compactness, since adjacent and neighbouring pixels tend to be more homogeneous. A slight 

decrease can be observed for Genova and Milano, as a sign of a less efficient (but nearly stable) 

urbanization.  

For all Figure panels, a positive relationship is evident between H(Z) and the SPIs. The diagonal 

dotted line summarizes the relationship according to a linear regression model for w1 and w2 respectively, 

and helps in assessing the relative behaviour of the 14 Italian areas. The regression line for w2 is flatter than 

the one for w1, since SPI2 is not as strong as SPI1, but leads to similar conclusions. Areas under the diagonal 

line present the worst behaviour, being more chaotic, while the ones above the diagonal line are less 

urbanized and more compact. 

4.3. Discussion on the development of Italian metropolitan areas 

When the goal is to evaluate urban expansion and prepare suitable urban plans and policy, usually 

a compact spatial development is regarded as positive while a scattered urban tissue is considered inefficient 



and negative. A general comment stresses that, as regards the 14 Italian metropolitan areas, more 

urbanization brings along more compactness, indicating positive urban development over space. In this 

study, dispersion is detected when urbanization is scarce, therefore areas with little urbanization but 

showing a compact development can be regarded as corresponding to a positive situation under the 

perspective of efficiency.  

At this regard, Genova and Reggio Calabria are not only the least urbanized, but also among the 

least compact areas. They are the only areas in the bottom left quadrant of Figure 2, i.e. the ones with the 

slowest and most inefficient urban development. Palermo has a borderline low/medium level of 

urbanization intensity with a medium spatial efficiency. A consistent group of areas can be considered as 

the representative Italian average metropolitan situation, falling in the middle quadrant of Figure 2: Bari, 

Bologna, Cagliari, Catania, Firenze and Roma. The most urbanized and compact area in the upper right 

panel is Torino. Messina and Venezia are averagely urbanized according to the Italian levels, but they have 

very low SPI1 and SPI2 values and appear therefore inefficiently developed. Milano and Napoli are highly 

urbanized and have the highest population density, but their compactness is medium and low, respectively, 

even if Napoli improves its efficiency in 2012. 

In conclusion, regarding the Italian metropolitan situation, the leading example as regards urban 

development is Torino. As per the contribution of class w3 (Table S2), Torino has a SPI3 value above 0.1, 

which confirms its strong homogeneity. Other metropolitan areas also present a value for SPI3>0.1, 

however their SPI1 and SPI2 values are not as high, leading to the conclusion that the corresponding cities 

cannot be considered really compact.  

Looking at the regression line of Figure 2, Genova and Reggio Calabria share another peculiarity: 

they are chaotic, but when considering their compactness and small level of urbanization jointly, their 



condition is not severe compared to the general Italian level. The most negatively performing areas, farther 

below the regression line, are Messina, Napoli and Venezia.  

 

5. Discussion and conclusion  

Our work focuses on the quantification of urban intensity and spatial compactness; we cannot 

however forget that several socio-economic factors contribute to the classification of Italian metropolitan 

cities in Figure 2, that may have ancient roots. For example, the municipality of Venezia has a peculiar 

condition, being characterized by canals and small islands, and partially under the sea level. Its geographical 

location certainly affected its expansion, while it also makes the city extremely appealing and precious 

under other points of view. In addition, all metropolitan areas with low compactness detected by SPI1 are 

centred on coastal cities: Genova, Messina, Reggio Calabria, Napoli and Venezia. Their location 

encouraged them to be economic hubs in the past, but also impeded the development of a monocentric 

compact configuration that characterizes other areas such as Torino. In addition, the main municipalities of 

Genova and Reggio Calabria areas are very dense, while this does not occur for some of the municipalities 

at their borders, often situated in very steep hills. Other aspects may be considered, such as further insights 

on the historical origins of the cities or more recent local urban plans and laws, as well as delocalization of 

industrial activities, that contribute to a city configuration. The measures proposed in this work may be 

integrated with other indices from different areas of expertise to return a global evaluation of areas 

development.  

The analogy between Shannon's entropy and population density shows that the most appropriate 

interpretation of entropy regards the intensity of the urban phenomenon for each metropolitan area and time 

point: the greater the entropy, the more difficult to predict if a pixel is urbanized or not. Cities with a high 



value for H(Z) are more urbanized than others, not necessarily more chaotic or inefficiently developed. 

However, entropy is a better index of urbanization intensity than the population density, firstly because of 

its theoretical properties that allow a decomposition into spatial and non-spatial components, and secondly 

because density is based on the number of citizens, while entropy is based on the number of urban pixels, 

i.e. on the presence of buildings, consequently giving an idea of the amount of the metropolitan territory 

that is anthropized.  

As regards spatial mutual information, the relevant quantities are the partial terms SPI, where the 

contribution of space can be investigated in detail, rather than the aggregated quantity SMI(Z,W). Such 

weighted sum is meaningless for urban expansion, because it is affected by the residual class wK, which is 

the least interesting but receives the largest weight due to its amplitude. We stress the meaningful minority 

of distances represented by classes w1 and w2: an evaluation of compactness and spatial efficiency of urban 

development can be drawn looking at pixels that lie close-by. In a chaotic configuration, pairs of 

neighbouring pixels do not exhibit any association, and the corresponding spatial mutual information term 

is low. In a compact configuration, pairs tend to be homogeneous, i.e. urban pixels lie close to other urban 

pixels, and non-urban pixels lie close to other non-urban pixels; this returns a high spatial mutual 

information term. High spatial partial information values for class w3 would imply a remarkably compact 

metropolitan configuration, as in Torino. One of the crucial advantages of the present approach is its 

flexibility in choosing the most suitable classes for the study, without limitations to classes of equal size. 

The specific choice for the wks of the present paper is motivated by the tradition of spatial statistics and 

previous works. Indeed, w1 and w2 cover the standard neighbourhood systems in spatial studies, and, being 

the smallest distances, they allow to investigate small-scale spatial effects in detail. The choice of w3 comes 

from Altieri, Cocchi, Roli (2019a): the work suggests that w3 is the distance break where we can distinguish 

a polycentric (multicluster) urban configuration from a scattered one. Choosing regular spaced classes is 

not a satisfying option, as it aggregates small distances which are particularly informative, while 



disaggregating large, uninformative distances with a waste of computational time. Another option to avoid 

is the choice of a high number of classes, as it substantially increases the computational time. A large 

residual class wK is computationally efficient because its elements are got as differences from the total 

number of pairs, once the numbers of pairs for all other distance classes are obtained. Conversely, wide 

intermediate classes imply identifying and counting a large number of pairs, which hugely increases the 

computational burden. The effect of aggregating two classes in SPI depends on the relative size of the two: 

if they are similar, the new aggregated class returns an intermediate SPI value; if one is remarkably larger 

than the other, its relative weight p(wk) dominates the resulting SPI value. In Altieri, Cocchi, Roli (2019b) 

an example is shown about the effect of aggregating/disaggregating classes.  

 A set of measures able to quantify both urbanization intensity and spatial compactness has been 

proposed. First, the entropy of the variable Z evaluates the urban intensity; then, compactness is measured 

as departure from the benchmarking distribution of Z at given distance ranges, so that the level of 

compactness is calibrated on the urbanization intensity over an area. When the attention is focused on a 

joint evaluation of urbanization intensity and spatial efficiency, our set of measures is complete, 

theoretically solid and flexible, both as regards properties of the measures and the ability to draw absolute 

and comparative conclusions.  However, an interdisciplinary assessment of urban development needs 

integration of many disciplines and is beyond the scope of this work. 

 An extension to the present work involves consideration of a more detailed land cover information, 

with more than two categories. In Altieri, Cocchi, Roli (2019b) this is faced via simulation. With many 

categories, only a compact and a randomly scattered city scenario are distinguished: intermediate situations 

such as a polycentric/multicluster city become faded and similar to a random pattern. A desirable feature 

of the proposed method is that as the number of categories increases, a divergence between the two spatial 

configurations is detected: the SPIs and H(Z) are able to quantify the level of compactness and intensity, 

respectively, and distinguish the two scenarios. In conclusion, the approach holds for any number of land 



cover categories; to compare results across datasets with a different number of categories, a normalization 

for H(Z) and the SPI terms is needed. For further details, see Altieri, Cocchi, Roli (2019b) where an 

application with five land cover categories is considered. 
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