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Abstract
Multibody musculoskeletal models are important tools to perform kinematic, kinetostatic,
and dynamic analyses of the whole human body. In these models, bones are regarded as
rigid bodies, while different strategies are used to model structures such as muscles and
ligaments. In this context, ligaments are often represented using a finite set of spring-like
elements to compute the wrench applied to the bones (multibundle model). While this model
is fast and easy to be implemented, it can suffer from inaccuracies due to the limited number
of fibers and their positioning. In this study, a ligament model is proposed to overcome
these limitations, representing the ligament as an infinite distribution of fibers from which
the wrench on the bones can be obtained. The model takes advantage of thin-plate spline
mapping to model the fiber structure of the ligament by defining a correspondence between
the points of the two ligament insertions. The accuracy and the performances of the model
are verified on a ligament and compared to the standard multibundle model. Results indicate
that the model is faster and more accurate than the multibundle model. Moreover, accuracy
can be modified according to the application in order to decrease the computational time.

Keywords Ligament model · Fiber structure · Thin-plate spline mapping · Ligament
wrench

1 Introduction

Many biomechanical applications require the solution of the kinematic, kinetostatic, and
dynamic analysis of human articulations, bone complexes (such as the limbs or the spine),
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and the full human body. These problems can be generally solved by musculoskeletal multi-
body models, where the different bony segments are considered as rigid bodies connected by
joints representing the different articulations of the skeletal system. Musculoskeletal multi-
body models were used to improve estimates of the bone motion during in vivo experiments,
where the relative movement between soft tissues and the underlying bones significantly bi-
ases experimental measurements based on skin markers [19]. Similar models proved useful
to predict the articular motion and the loads provided by articular structures (namely, the lig-
aments and the contacts) under different loading conditions, both in a healthy state [5, 33]
or after arthroplasty [21]. Other studies used multibody models to analyze the muscle forces
during several motion tasks [13].

Depending on the application, the joint constraints between the bony segments are mod-
eled either by lower pairs (such as revolute or spherical joints) or by planar or spatial link-
ages [19]. While lower pair and planar linkages are simplified models of the articulations,
the latter are parallel mechanisms that, through a more detailed representation of the joint
structures, allow a better description of the three-dimensional joint motion [28, 29] and the
determination of the forces applied by contacts and ligaments [23]. However, these models
are rigid and cannot represent possible changes in the joint configuration due to the effect
of elasticity and loads. Joint models with compliant elements that simulate elasticity at the
ligaments and contacts were also proposed for multibody analyses, and their application is
becoming more and more common to improve the description of the joint behavior under
loads [21, 33]. However, the computational complexity of these models could be challeng-
ing, since the number of bones and their elastic connections (i.e., the compliant articular
structures) is generally high. Moreover, the intrinsic redundancy of muscular systems re-
quires the simultaneous solution of optimization criteria to find the muscle forces [13]. Sim-
plified techniques were proposed to deal with computational problems that arise in models
with compliant elements. For instance, some authors proposed to ignore the effect of inertia
forces during forward dynamics simulations [1], basically reducing the analysis to the so-
lution of a sequence of quasistatic problems. Other authors decoupled the effect that joint
elastic deformation has on muscle forces, by finding their approximation through a rigid-
joint model and subsequently by applying these forces on a corresponding multibody model
with compliant elements [16]. In both cases, fast ligament models are useful to compute the
resultant force of ligaments on the bones with a good accuracy and with a reduced compu-
tational time.

In this context, compliant ligaments are modeled by a simplified approach, for instance
representing the ligament with a single or multiple fibers (multibundle model, or MBM).
These fibers are often line elements that connect points on a bone with corresponding points
on another bone, ignoring intersections of fibers with bones or other fibers [24, 25]. A force–
strain relationship obtained from previous experiments is associated. Methods were pro-
posed to consider fiber–bone and fiber–fiber interactions within a MBM. A first geometric
model [17] represents the fibers as polygonal chains, assuming the contacts between bone
and fibers happens only at given bone edges. A more general model, originally proposed
for the muscles, finds the ligament configuration in space considering fiber–bone contacts
through a fast computation technique based on geodesics [32]. A further model discretizes
the fibers as chains of spheres connected by springs that represent both the volume and the
elasticity of ligaments: the fiber configuration is determined by a constrained minimization
of the total elastic potential energy [14, 31], considering both fiber–bone and fiber–fiber in-
teractions. A generalization of the same approach models ligaments as a continuous “thick”
strand, being more efficient and precise for fiber–bone contact [26]. However, despite the
greater potential accuracy of all these methods, these interactions are often ignored in a
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MBM to reduce the computational burden. The main limitation of a MBM is that results
depend on how the ligament is discretized, i.e., the choice of fibers, their number, their po-
sitioning, and their mechanical characteristics (such as stiffness, cross-sectional area, etc.).
Moreover, studies show that if the number of fibers per ligament is too low, inaccurate results
or even numerical instabilities could occur [3, 25]. A high number of fibers increases com-
putational time and requires awkward model definitions to define the characteristics of all
fibers. Finite-element models were also proposed [15, 18] but they are too computationally
expensive for multibody analyses.

A new ligament model is proposed in this study for multibody simulations. It represents
the ligament as a continuous distribution of infinitesimal fibers over the insertion area, an
approach that has some similarities to models proposed in muscle-modeling-related litera-
ture [4, 22]. The model relies on thin-plate spline mapping to describe the above-mentioned
distribution, through which the force and the moment of each infinitesimal fiber applied to
the bone is represented as a continuous function over the ligament-insertion surface. The
new model is the extension of a preliminary version from the same authors featuring a pla-
nar approximation of insertion surfaces [27]; numerical-integration strategies and analyses
are also provided to compare it with the standard MBM. Albeit the model can be thought of
as a generalization of the MBM model, it overcomes its main drawbacks. Indeed, the model
is not dependent on the position and the number of the chosen fibers, it has an inherently
high (i.e., theoretically infinite) number of fibers whose mechanical characteristics can be
easily assigned. As a result, the model is faster and more accurate than the standard MBM.

2 The Ligament model

The process of model definition is based on five main steps. It requires reference data on
ligament insertions, usually given as planar image (i.e., one per insertion), which provide a
generic subdivision of each ligament into a finite number of bundles. As a first step, these
reference data are registered on a planar approximation of the specific insertion, thus cre-
ating a personalized discrete mapping. Then, this mapping is used to define a continuous
correspondence between the points on the two planar insertion surfaces. The resulting con-
tinuous function over the ligament insertion represents the fibrous structure of the ligament.
Thirdly, the anatomical surfaces of the ligament insertions are analytically described to guar-
antee a proper representation of the relevant anatomy. As a fourth step, the wrench of each
ligament fiber is determined as a continuous function of each point on the ligament insertion.
The final step is the integration of the wrench function over one ligament insertion.

The first and second steps involve a nonrigid registration of planar data. Among all possi-
ble methods, thin-plate splines (TPS) [2, 6, 7, 9] provide a convenient mean to tackle the reg-
istration. TPS are thus exploited throughout the definition of the model, which will be called
the thin-plate splines model (TPSM) hereinafter. They indeed provide a smooth function
that allows the registration of points on planes to be driven only by some selected reference
points. That is, given a set of n points Pi (xi, yi), (i = 1 . . .n) on a plane (called landmarks
hereinafter) whose correspondence is known with a set of points Qi (ui, vi) on another plane
(called homologous landmarks hereinafter), TPS define a function φ : R2 → R

2 that maps
the two sets of points one on the other so that the correspondence between the landmarks
and their homologs is satisfied exactly or within a given approximation.

Before model derivation, the main features of TPS are outlined due to their pivotal role
in the present study. Further details can be found elsewhere [2, 6].
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2.1 Thin-plate splines

TPS provide continuous and continuously differentiable functions in the form:

t (x, y) = α0 + α1x + α2y +
n∑

i=1

aigi (x, y) , (1)

where on the right-hand side αk (k = 0,1,2) and ai (i = 1,2, . . . , n) are coefficients to be
determined, n is the number of landmarks and gi (x, y) is a function that depends only on
the distance to the ith landmark, the so-called radial basis function (RBF). Different types
of RBFs can be found in the literature [2, 9]. Among them, TPS use:

gi (x, y) = r2
i log (ri) , (2)

with ri = ‖x − xi, y − yi‖.
Two distinct parts can be recognized in Eq. (1): a polynomial with coefficients αk and

a linear combination of RBFs with coefficients ai . The polynomial constitutes the affine
part of the function and controls its behavior far from the landmarks. RBFs, instead, are
responsible for the amount of warp introduced to match the landmark exactly or within a
given approximation. Above all RBFs, Eq. (2) minimizes the warp, since it describes the
shape that minimizes the linearized bending energy of a thin plate with point constraints at
given heights above or under its undeformed plane [6].

If Eq. (1) is used for mapping or registration purposes, then each coordinate of the
homologous landmarks is mapped through Eq. (1) independently from the other. That
is, the one-to-one connection between P (x, y) and Q (u, v) is described by φ (x, y) =
(φu (x, y) ,φv (x, y)), where φu : (x, y) �→ u and φv : (x, y) �→ v are according to Eq. (1).
Function φ can be seen as a transformation that moves points in the plane from an initial
to a final position identified by the landmarks and their homologs, respectively, therefore
deforming one set of points onto the other.

It could be shown [6] that, to determine the coefficients αk and ai , the correspondences
between landmarks and their homologs is prescribed to the function t (x, y) at each corre-
sponding point by solving a linear system of n + 3 equations:

C = L−1

[
t
0

]
, (3)

where t is a matrix whose lines ti = [ui, vi] are composed of the coordinates of the ho-
mologous landmarks Qi (ui, vi) and C is the (n + 3) × 2 matrix of the coefficients to be
determined whose first n out of n + 3 lines stores the coefficients ai and the last three lines
store the coefficients αk .

In Eq. (3) L is the block matrix:

L[(n+3)×(n+3)] =
[

G P
Pt 0

]
(4)

composed of the following submatrices:

G[n×n] = {
gij

} =

⎡

⎢⎢⎢⎣

0 g12 . . . g1n

g21 0 . . . g2n

...
...

. . .
...

gn1 gn2 . . . 0

⎤

⎥⎥⎥⎦ P[n×3] =

⎡

⎢⎢⎢⎣

1 x1 y1

1 x2 y2
...

...
...

1 xn yn

⎤

⎥⎥⎥⎦ , (5)
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Fig. 1 The first step of the model: the registration of reference data onto the subject-specific insertion. Pale
gray areas are the anatomical surfaces of the anterior cruciate ligament (ACL) insertion �t and �f , red
dashed contours represent the external contours of their planar projections �tp and �fp on planes πt and
πf . Literature insertions are represented in the Srt and Srf coordinate systems for the tibial and femoral
insertion, respectively, Sst and Ssf are the coordinate systems of the subject-specific tibial and femoral inser-
tion, respectively. Thin-pate spline mappings φt and φf are shown between the reference and subject-specific
insertions for tibia and femur, respectively. (Color figure online)

where G is a symmetric matrix in which gij = gi

(
xj , yj

)
(i, j = 1 . . .n), 0 is a 3 × 3 null

matrix and P is the matrix that stores the coordinates of the landmarks.
TPS guarantees that Eq. (1) with coefficients obtained from Eq. (3) attains the prescribed

values at landmarks by introducing the minimum warp. The fulfillment of the prescribed val-
ues can be relaxed by introducing a parameter λi (i = 1 . . .n) on the diagonal elements of the
matrix G. These parameters λi are weight factors between a purely affine transformation and
the minimization of the bending energy (i.e., the warp effect). If λi = 0, ∀, i = 1 . . . n, then
landmarks are perfectly matched with their homologs. Whereas, if λi → ∞, ∀, i = 1 . . . n,
then the mapping becomes a rigid registration between the landmarks and their homologs.

2.2 Reference data registration

Ligaments are composed of several bundles of fibers that run between the two insertions
following different patterns depending on the ligament. The fiber-bundle arrangement of a
ligament can be revealed by means of in vitro experiments [24, 25]. However, it is difficult
to retrieve this arrangement in vivo. Since the fiber-bundle arrangement of the ligament is
needed to define the ligament model, TPS are used in the first step of the model to register
a reference arrangement on the anatomy of a specific subject. In the following, all the steps
to derive the model are shown using the anterior cruciate ligament (ACL) of the knee as a
reference, albeit the model is completely general and can be extended to any ligament.

Ligament insertion areas and relative surfaces (�t and �f , pale gray areas in Fig. 1) as
well as the surfaces of the tibia and the femur are obtained by means of medical-imaging
techniques. Reference data to be registered on the subject-specific anatomy are generally
planar representations of tibial and femoral ACL insertions composed of their external con-
tours and the centroids of their main fiber bundles (literature insertions and corresponding
black dots in Fig. 1) [24], each centroid on one insertion being paired with its homolog on
the other insertion. To allow a correspondence between the subject-specific and the reference
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Fig. 2 The second step of the
model: the insertion-to-insertion
mapping. The thin-plate spline
mapping is shown between the
planar projection of the insertions
�tp and �fp . P (x, y) is a point
on �tp represented in Sst , while
Q(u,v) is a point on �fp

represented in Ssf . (Color figure
online)

anatomy, the external contour of the subject-specific insertions on the tibia and the femur
are projected onto planes (πt and πf in Fig. 1) in order to obtain their planar approximation
(red contours in Fig. 1). The plane πt for the planar projection �tp of the tibial insertion
as well as the plane πf for the femural one, �fp , are the same planes used to represent the
reference data or the best-fitting planes.

With reference to the tibial insertion, local coordinates systems Sst and Srt are defined
on the planar projection of the subject-specific insertion and on the reference insertions, re-
spectively, (Fig. 1). The point coordinates of the external contour and of the bundle centroids
belonging to the reference data are represented in Srt , while point coordinates of the external
contour of the subject-specific insertion are represented in Sst .

The function φt is defined to map points Prt (x, y) in Srt to points Qst (u, v) in Sst ac-
cording to Eq. (1). To determine the coefficients matrix C in Eq. (3), the landmark set is
composed of points belonging to the external contour of the reference insertion, while the
homologous landmarks are picked among points belonging to the external contour of the
subject-specific insertion. Since the exact correspondence between landmarks and their ho-
mologs is not known, λ parameters are used to relax the landmark-matching constraint.

As for the femoral insertion, the same procedure is followed. The function φf is defined
between the local coordinate system of the reference femoral insertion Srf and the local
coordinate system of the subject-specific insertion Ssf to register the reference insertion on
the subject-specific one. Once the functions φf and φt are determined, it is possible to map
the coordinates of the fiber-bundle centroids from the reference insertions to the subject-
specific ones. This is done by computing Eq. (1) with the values of the coordinates of the
centroids in Srt and Srf .

2.3 Insertion-to-insertion mapping

To reconstruct the fiber-bundle structure of the ligament, a bijective map between the points
P (x, y) ∈ �tp in Sst and points Q(u,v) ∈ �fp in Ssf is established by defining the TPS
mapping φ (Fig. 2). The centroids of the tibial and femoral insertions are, respectively, the
landmarks and their homologs for transformation φ. This transformation can be determined
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Fig. 3 The third step of the
model: the interpolation of the
spatial anatomical surfaces �t

and �f of the tibial and femoral
insertion, respectively. �t and �f

are the interpolation function that
represent �t and �f ,
respectively. P (x, y, z) is a point
on �t represented in Sst , while
Q(u,v, z) is a point on �f

represented in Ssf . The
out-of-plane axis of both Sst and
Ssf is defined as the normal to
the plane πt and πf ,
respectively, directed according
to the right-hand rule. (Color
figure online)

through Eq. (3) by imposing the perfect correspondence of centroids. To create a correspon-
dence between the contour of the two insertions and to reduce the number of fibers mapped
outside the femoral insertion, some landmarks belonging to the external contour are added
to the centroids. A λ parameter is associated to these additional landmarks since the exact
correspondence is not known.

2.4 Insertion-surface interpolation

The measured ligament insertions are generally obtained from medical images as point
clouds. At this step of the procedure, the planar descriptions of ligament insertions are
transformed back to the original three-dimensional shape. Basically, this is equivalent to
assigning a third coordinate to each point of the planar approximation in Sst and Ssf along
the normal to planes �t and �f , respectively. This requires interpolating the original point
clouds by continuous functions �t and �f in Sst and Ssf , to obtain a continuous description
in three dimensions of the mapping obtained at the previous step.

This interpolation can be done using different techniques like approximating primitives
(e.g., spherical section) or polynomial surfaces. For this reason, this aspect is not discussed
here. An example of application of the TPS function also for this scope is shown in the
numerical-simulation section.

2.5 Ligament wrench

The combination of the previously defined functions φ, �t and �f establishes a continuous
one-to-one correspondence between points on the spatial surfaces of the insertions (Figs. 2
and 3). With this correspondence, the ligament is represented as a continuous set of in-
finitesimal fibers connecting paired points P (x, y, z) and Q(u,v,w) on the two insertions
through function composition:

x, y
φ−→ u (x, y) , v (x, y)

�t ↓ ↓ �f

x, y, z (x, y) u (x, y) , v (x, y) ,w (u (x, y) , v (x, y)) .
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In this way, all parameters on the tibia and femur insertion depend only on the local coor-
dinates x, y of the spatial tibial insertion surface �t . The wrench of each ligament fiber can
thus be computed as a function of the same coordinates and the total wrench of the ligament
is found by considering the contribution of each infinitesimal fiber to the resultant force and
torque applied by the ligament to the bones.

With reference to Fig. 3, points P (x, y, z) and Q(u,v,w) are represented in Sst and Ssf ,
respectively. Poses of these local reference systems are known in a common global coordi-
nate system Sg , thus, the position vectors p and q of P and Q, respectively, are obtained in
Sg by standard coordinate transformations.

Each infinitesimal fiber applies a force f and moment mO (with respect to a pole O) per
unit area to the bones given by:

f = f (ck, ε) ŝ = f (ck, l, l0) ŝ mO = o × f, (6)

where l = ‖p − q‖ and l0 are the infinitesimal fiber actual and free length, respectively,
ε = (l − l0) / l0 is the infinitesimal fiber strain; f (ck, ε) is a constitutive law linking f to ε

through stiffness parameter(s) ck (depending on the chosen law); ŝ = (p − q) / l is the unit
vector that defines the orientation of the infinitesimal fiber; o is the moment arm of f with
respect to the pole O . In Eqs. (6), both the stiffness parameter ck and the free length of the
infinitesimal fiber l0 can be represented either as constants or continuous functions of the
local coordinates (x, y) of surface �t . Therefore:

f = f (x, y) mO = mO (x, y) . (7)

The ligament wrench is obtained at each relative pose between the tibia and femur by inte-
grating Eqs. (6) over the surface �t :

F =
∫

�t

f dς =
∫

�tp

f (x, y)
∥∥rx (x, y) × ry (x, y)

∥∥dxdy

MO =
∫

�t

mOdς =
∫

�tp

mO (x, y)
∥∥rx (x, y) × ry (x, y)

∥∥dxdy,

(8)

where rx (x, y) = ∂r (x, y) /∂x, ry (x, y) = ∂r (x, y) /∂y and r (x, y) = [x y �t (x, y)].
The factor

∥∥rx × ry

∥∥ is a local projection factor [11] that relates a surface-area element
dς of �t to a planar-area element of �tp so that the surface integral is brought back to an
integration over the plane.

2.6 Numerical integration

Integration of Eqs. (8) over �tp can be performed using different numerical algorithms. In
this case we propose to use a Gauss method, as it proved effective and it allows a direct
comparison with a standard MBM.

The integration domain is subdivided into ntr triangular subregions σk (Fig. 4) by means
of Delaunay triangulation:

�tp =
ntr⋃

k=1

σk. (9)
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Fig. 4 A discretization of the integration domain �tp into triangular subregions σk is shown in red. The
spatial anatomical surface �t disretized into subregions σkS is shown in black as well. Together with the two
surfaces, the mapping between a generic triangular subregion σk and the reference right triangle is shown.
(Color figure online)

The integration over �tp is thus split into multiple integrations on the subregions σk so that
the wrench of the ligament is obtained as the sum of the contribution of every subregion σk :

F =
ntr∑

k=1

Fσk

MO =
ntr∑

k=1

MOσk
.

(10)

With reference to Fig. 4, each triangular subregion σk is then mapped onto a reference
right triangle with unit-length catheti through a linear interpolation of the values of the
coordinates of its vertices:

[
x (r, s) y (r, s)

] = [
1 − r − s r s

]
⎡

⎣
x1 y1

x2 y2

x3 y3

⎤

⎦ , (11)

where r , s ∈ [0,1] and
(
xj , yj

)
(j = 1,2,3) are the coordinates of the vertices of a triangle

σk in Sst . Through Eq. (11) the integration of the wrench over σk is thus carried out over the
reference right triangle:

Fσk
=

∫ 1

0

∫ 1−r

0
f (x (r, s) , y (r, s))‖rr × rs‖dsdr

MOσk
=

∫ 1

0

∫ 1−r

0
mO (x (r, s) , y (r, s))‖rr × rs‖dsdr,

(12)

where:

‖rr × r s‖ = ∥∥rx (x (r, s) , y (r, s)) × ry (x (r, s) , y (r, s))
∥∥ |Jk| . (13)

In Eq. (13) the factor |Jk| = (
∂x
∂r

∂y

∂s
− ∂x

∂s

∂y

∂r

)
is the determinant of the Jacobian matrix of

the mapping between σk and the reference triangle. It is worth noting that, as long as an
interpolation according to Eq. (11) is used, the determinant of the Jacobian matrix Jk is
constant over σk and equal to twice the area Aσk

of the triangle.
Using the Gaussian quadrature rule [10], Eqs. (12) are integrated as a weighted sum of

the integrand functions evaluated at points
(
rg, sg

)
according to the number of integration
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Table 1 Coordinates of sampling points in the reference system of the reference right triangle and the asso-
ciated weights for numerical integration [10]

Number of
sampling points

Coordinates (r, s) Weights

1
(

1
3 , 1

3

)
1

3
(

1
2 ,0

)
,
(

0, 1
2

)
,
(

1
2 , 1

2

)
1
3 , 1

3 , 1
3

4
(

1
3 , 1

3

)
,
(

3
5 , 1

5

)
,
(

1
5 , 1

5

)
,
(

1
5 , 3

5

)
− 27

48 , 25
48 , 25

48 , 25
48

points nG:

Fσk
≈

nG∑

g=1

f
(
rg, sg

)∥∥rr

(
rg, sg

) × rs

(
rg, sg

)∥∥Wg

MOσk
≈

nG∑

g=1

mO

(
rg, sg

)∥∥rr

(
rg, sg

) × r s

(
rg, sg

)∥∥Wg,

(14)

where:

∥∥rr

(
rg, sg

) × r s

(
rg, sg

)∥∥ = ∥∥rx

(
x

(
rg, sg

)
, y

(
rg, sg

)) × ry

(
x

(
rg, sg

)
, y

(
rg, sg

))∥∥Jkg. (15)

In Eq. (14), the weights Wg , and the coordinates rg and sg depend on nG, as shown in Table 1.
In Eq. (15) the factor Jkg is in general Jkg = 1

2

∣∣Jk

(
rg, sg

)∣∣ that, as long as interpolation
according to Eq. (11) is used, is equal to Aσk

.

3 Numerical simulations

The proposed model is tested on an ACL coming from in vivo data obtained on a spe-
cific subject by means of medical-imaging techniques (i.e., magnetic resonance imaging
and computed tomography [28]). These data comprise 3D models of the femur and tibia,
their relative pose and the insertion areas of the ACL. Reference data of the fiber-bundle
arrangement of the ACL are obtained from the literature [24], and are composed of the cen-
troids of the ligament bundles as well as the external contour of both the tibial and femoral
insertions. All simulations are performed with the knee at full extension.

The procedure detailed in the previous section is used to derive the TPSM of the ligament.
The best-fitting planes πt and πf to the subject specific tibial and femoral insertion surfaces
�t and �f are determined, while �tp and �fp are obtained as their projection on πt and
πf , respectively.

Reference-data registration is performed by imposing an exact matching between land-
marks on the subject specific and reference ACL insertion contour. Then, to define the map-
ping φ between the tibial and the femoral insertion, the coefficient λ = 0.1 is used for land-
marks on the external contour, whereas a perfect match is imposed between the centroid of
the bundles. This value is chosen based on a visual inspection of the matching.

The point cloud describing the subject-specific insertion surface of the tibia is represented
in Sst obtaining the coordinates Sj

(
xj , yj , zj

)
, (j = 1 . . .m). In this case, for the sake of the

fourth step of the procedure, an interpolating function is obtained using TPS with Sj used
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Fig. 5 The main features of the
meshes used in the simulations.
The black lines represent the
values of the longest and shortest
edge of the triangles in each
mesh, the blue line represents the
mean length of the edges, and the
pale blue area the standard
deviation. The relation between
the number of triangles and
vertices is also reported. (Color
figure online)

as landmarks. In particular, if x and y are the coordinates in πt , the interpolant function �t

is obtained through Eq. (1) by imposing t
(
xj , yj

) = zj using Eq. (3) with λ = 0 for all land-
marks. The same procedure is repeated for the femoral insertion, leading to an interpolant
function �f .

The ligament fibers are modeled as straight-line segments connecting points on the tib-
ial insertion to their homologs on the femoral one (Fig. 10). A constant stiffness parameter
ck = 100 MPa relates the force exerted by the fibers to the strain through a quadratic consti-
tutive relation [25]: f (ck, ε) = ckε

2. This parameter is chosen as purely representative of a
realistic scenario [20]. Two different values of the fiber free length l0 equal to 27 and 10 mm,
respectively, are tested and assumed constant over the insertion area. The first value is the
length of an intermediate fiber and is chosen to represent a physiological reliable scenario
in which the ligament is likely to be partially slack, whereas the second one represents the
extreme condition of a completely taut ligament. It is worth noting that both ck and l0 are not
changed over the fibers to simplify the example, but the model could allow a more general
variation.

The planar projection �tp of the tibial insertion �t is subdivided into triangular elements
by means of Delaunay triangulation [12]. Several triangular meshes are tested from rough
to more refined ones in order to verify the convergence of the model (Fig. 5).

The wrench of the ligament is obtained by integrating Eqs. (8) over the tibial insertion
area by means of Gauss quadrature rules using one, three, and four sampling points (Table 1).
These different integration methods are hereinafter named TPSM-1, TPSM-3, and TPSM-4,
respectively.

The TPSM performance is compared to the MBM [25]. Ligament fibers in the MBM
are defined as straight lines connecting the vertices of the triangles for each mesh with their
homologous points on the femoral insertion. The ligament parameters used for the MBM
are the same as for the TPSM. However, since the stiffness parameter ck is defined per unit
area, it needs to be adapted for the MBM. This can be accomplished by multiplying it by the
mean area belonging to each fiber, defined as the ratio between the area of the ligament’s
tibial insertion (obtained as the sum of the area of the triangles σkS ) and the number of fibers.

The results from each technique (MBM, TPSM-1, TPSM-3, and TPSM-4) are compared
to those obtained from the algorithm integral2 of Matlab, here representing the benchmark,
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Fig. 6 Absolute error of the TPSM compared with the MBM: (a and b) trend of the error over the Force and
Moment of the ligament with the fibers partially taut, (c and d) trend of the error over the Force and Moment
of the ligament with the fibers fully taut. (Color figure online)

by computing the absolute error defined as:

ei
F = 100

∣∣F i
model − Fintegral2

∣∣
Fintegral2

i = 1,2, . . . ,number of meshes, (16)

where F i
model is the magnitude of the ligament force obtained by one of the four techniques,

using different meshes, while Fintegral2 is the one computed by integral2. A similar error
definition is used for the ligament moment. Since the different techniques may involve a
different number of fibers (MBM) or integration points (TPSM) for each triangle, result
comparison is based on the number of triangles in each mesh. The relation between number
of triangles and number of vertices is reported in Fig. 5.

To evaluate the computational burden of the models, each evaluation of the ligament
wrench using the MBM, TPSM-1, TPSM-3, and TPSM-4 is repeated forty times so that the
mean computational time of each model is evaluated. All simulations are performed on a
personal computer (Intel Core i5-3360M, 2.80 GHz with 8 GB RAM and a 64-bit Windows
7) and all the models are implemented in Matlab.
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Fig. 7 The computational time of the TPSM compared with the MBM. The blue, green, red, and black lines
represent the mean computational time, while the pale areas represent the standard deviations (std). (Color
figure online)

3.1 Results

Overall, the TPSM shows a higher accuracy and convergency rate than the MBM regard-
less of the integration algorithm. This is especially evident in the physiologically consistent
scenario of a partially slack ligament (Figs. 6a and b), whereas the accuracy of the two mod-
els is comparable when the ligament is fully taut (Figs. 6c and d). In particular, the MBM
reaches errors below 10% with a number of triangles greater than 360, while TPSM-1 needs
only 45 triangles. TPSM-3 and TPSM-4 shows an error below 4% at 30 triangles. As for
the TPSM, the accuracy increases almost smoothly with the number of triangles, while for
the MBM the trend is less regular (Fig. 6). On a sparse mesh, the TPSM-1 shows a lower
accuracy than TPSM-3 and TPSM-4. However, this difference is reduced with finer meshes
(Fig. 6). In most tests, no relevant differences are noted between the TPSM-3 and TPSM-4.

The computational time for the TPSM depends on the integration algorithm and increases
with the number of triangles in the mesh. Similarly, the number of fibers affects the com-
putational time of the MBM (Fig. 7). For a low number of triangles (below 50 elements)
the computational times are similar among all models and integration algorithms. Compu-
tational times of TPSM-3 and TPSM-4 tend to be higher after this point, though remaining
below 1.2 ms at the finest mesh (360 triangles). However, a comparison of the computa-
tional time for the same level of accuracy shows the advantage of TPSM (Fig. 8). For a low
accuracy (errors higher than 10%) computational time of MBM is two to three times the
TPSM’s. For a higher accuracy, comparison is complicated since in many tests MBM failed
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Fig. 8 Comparison of the accuracy of the MBM and TPSM-1, TPSM-3, and TPSM-4 represented in black,
blue, red, and green lines, respectively. (Color figure online)

to reach errors lower than 10%, but extrapolation of error-to-time curves suggests that the
same level of accuracy can be reached within a time that is more than two times higher than
the TPSM-1.

4 Discussion

In the present article, the general formulation of the thin-plate spline model (TPSM) of a
ligament was introduced and an example of its application to the modeling of the ACL is
presented. The model primary goal is to reproduce the fiber structure of the ligament to
obtain the ligament wrench. Similar models can be found in the muscle-modeling literature
[4, 22]. However, as far as the authors know, this is the first time that this approach is
proposed to model the ligament structure. Moreover, while both TPSM and muscle models
employ a mapping function to register generic data on a subject specific anatomy, TPSM
introduces a further mapping between the two insertions to obtain the fiber arrangement of
the ligament, which is the main novelty of the model.

The TPSM deeply relies on thin-plate splines that are used both as a mapping to perform
a nonrigid registration of a generic anatomy on a subject-specific one and to establish the
connection between the two ligament insertions. The TPS mapping allows the representation
of the fiber structure of the ligament with continuity over the whole ligament insertion area.
As a consequence, the ligament is an inherently continuous structure whose mechanical
features (i.e., the stiffness and the fiber free length) are represented as continuous functions,
allowing the wrench of the ligament to be computed by integration over the insertion area.

To this end, a numerical integration is performed based on a tessellation of the integra-
tion domain. In particular, the Gaussian quadrature rule is used here since it guarantees a
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Fig. 9 How the position of the fiber affects the ligament wrench. Black, blue, and yellow lines are, respec-
tively, the MBM, the TPSM-1, and the MBM with the fibers in the centroids of the triangles. (Color figure
online)

high degree of precision and has a simple implementation. Both tessellation and numeri-
cal integration introduce approximations. However, TPSM can be adapted to the simulation
needs by acting on the refinement of the tessellation and on the integration algorithm to find
a balance between the accuracy of the model and the computational time. Ultimately, the
computation of the ligament wrench through numerical integration requires the evaluation
of the integrand at discrete points (i.e., the sampling points) over the insertion area. Each
point, through the TPS mapping, can be seen as representative of a single fiber within the
ligament. As a consequence, the sampling points in the TPSM are a generalization of the
discrete fibers of the MBM. The main advantages with respect to the MBM are that the
TPSM approach defines a rigorous and automatic procedure to place the sampling points
and to choose their weights according to the preferred integration algorithm.

The effects of these advantages are clearly shown by the simulation results. The accu-
racy achieved by the TPSM with respect to the MBM is higher (Fig. 6), this difference being
greater in the case of partially slack ligament. This discrepancy between the two models can
be accounted for via the reasons presented above: the fiber (i.e., the sampling point) defini-
tion and the contribution of each fiber to the wrench. As for the first one, in the MBM the
fibers’ endpoints are placed at the vertices of the triangles to mimic the standard MBM pro-
cedure. In the TPSM, the position of the sampling points depends on the Gaussian quadra-
ture rule chosen, which guarantees minimization of the error [10]. The importance of the
position of the fiber is clearly shown in Fig. 9 in which the standard MBM and the TPSM-1
are compared against a modified MBM where the origin of the fibers are placed at the cen-
troid of each triangle. It is worth noting that the modified MBM differs from the standard
one only for the position of the fibers, while the stiffness coefficient of each fiber is still
multiplied by the mean area belonging to each fiber. However, the accuracy of the MBM is
improved by this modification. If, for each fiber, the area of each spatial triangle were con-
sidered instead of the mean area, the modified MBM would be coincident with the TPSM-1.
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Fig. 10 A representation of the
fiber’s distribution obtained with
the TPSM. The blue fibers are
those obtained with the TPSM-1,
whereas the black ones are the
fibers of the MBM. (Color figure
online)

More specifically, in the MBM the wrench of each fiber is equally weighted by the mean
area belonging to the fiber or, in general, by considerations not rigorously related to insertion
tessellation. In the TPSM, instead, different sampling points have different weights depend-
ing on the quadrature rule (Table 1). Even though the total stiffness of the ligament between
the MBM and the TPSM is preserved, the weight associated by the Gaussian quadrature to
the different fibers enhances the integration accuracy. It is also worth noting that in many
studies ligaments are modeled using a MBM with very few fibers (generally less than 10),
while the present results show that the errors obtained by the MBM with a few fibers can be
higher than 70% (Fig. 6).

Personalization of the model is one of the main features of the TPSM. The model allows
a detailed description of the three-dimensional shape of the ligament insertion area to be
included in the model. This can be done through three-dimensional representations of the
bones and ligament geometry obtained by means of clinical imaging. These representations
are used to tune the coefficient of Eq. (1) to a specific subject by solving Eq. (3) for matrix
C. The distribution of fibers within the ligament is more difficult to be personalized, thus
the solution proposed is to register generic data (obtained from the literature or from in
vitro experiments) on the subject-specific anatomy, still using Eq. (3). Finally, fiber free
lengths and stiffness parameters in Eq. (6) can be personalized using data from the literature,
reference poses or optimization procedures [30] as in other models. It is worth noting that
these parameters need to be determined for sampling points only, i.e., the specific fibers used
in the integration procedure.

This study has limitations. TPS mapping is driven by point correspondences, thus a curve
can be mapped into another one by dividing them into sets of corresponding points. The
correspondence between the two sets affects the mapping near the curve, so it should be
performed carefully. To cope with that, λ coefficients are a simple method to relax the point-
matching constraint for points belonging to the border of the insertion areas. However, other
more refined techniques may be used [8] that allow the points to slide along the tangent to
the border line of the insertion areas.

Moreover, TPS are only one of the possible mappings. They were chosen since the as-
sociated nonrigid registration technique guarantees the minimum warp of the surface, and
since they are quite common in this field, but the same approach could be extended using
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different mappings. In general, the RBF controls how a landmark affects the surrounding
space, therefore the same point can be mapped to different positions depending on the RBF
used, resulting in a different fiber structure of the ligament and possibly a different wrench.
It is expected that increasing the number of landmarks will reduce the discrepancies be-
tween different RBFs, considering also that most RBFs have a local influence. However,
investigations should be carried out in the future to evaluate the sensitivity of results to this
choice.

A rigorous validation was not performed to compare the computed and the real wrench of
the ligament. However, the reported comparison between different models is sound. Results
from the MBM and TPSM indeed were obtained under the same hypotheses, which are
commonly accepted for ligament modeling in a multibody environment. As clarified above,
the TPSM can be seen as a generalization of the MBM, inherently using an infinite number
of fibers. The results obtained through an adaptive numerical algorithm is thus representative
of the exact result within the given hypotheses and can be used to compare the different
methods. In support of this, the model results using different methods (MBM, TPSM-1,
TPSM-3, and TPSM-4) converge to this value.

The wrench corresponding to each insertion point was determined using the distance be-
tween the points on the tibia and femur. This is equivalent to considering the single fiber as a
line element between corresponding points on the insertions. However, the method could be
extended considering ligament wrapping on the surfaces, by finding at each sampling point
the fiber length with known ligament-wrapping algorithms [14, 32]. For a given level of
accuracy (with respect to the benchmark model), the inclusion of fiber wrapping will likely
require a higher number of sampling points (i.e., fibers) and thus a higher computational
time. Both the TPSM and the MBM will be affected by this increment. However, since the
suggested TPSM implementation uses the Gaussian quadrature rule, the sampling points
of TPSM are expected to provide a better approximation of the wrench with respect to the
MBM, therefore requiring fewer fibers at the same level of accuracy.

Finally, the aim of the present study is to introduce the TPSM and discuss its formulation.
In this perspective, some aspects more related to the biomechanical application of the model
are not considered here and will be developed in future studies on the subject.

5 Conclusions

A new ligament model, namely the Thin-Plate Spline Model (TPSM), is presented in the
paper. The analytical formulation, the model definition, and corresponding numerical simu-
lations are provided, comparing the TPSM with the classical multibundle model (MBM).

TPSM allows the representation of the whole ligament as a continuous distribution of
infinitesimal fibers and the description of its mechanical features as a continuous function
over the insertion area. Numerical integration of the model requires the continuous function
to be evaluated at discreet points similarly to the classical MBM, so that the TPSM can be
thought as a generalization of this model where each sampling point can be interpreted as
a ligament fiber. However, in contrast to the MBM, TPSM provides a rigorous method to
identify, place, and weight the contribution of each fiber to the ligament wrench. Finally,
numerical simulations show that the TPSM is faster than the MBM when compared at the
same level of accuracy.
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