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Abstract
We give a proof of the (possibly optimal) Sharp Gårding inequality for system oper-
ators with symbol of limited smoothness directly from the original symmetrization
arguments by Friedrichs and Kumano-Go. The fact that only a few derivatives of the
regularized symbol are really important was already there.
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1 Introduction andmain results

The Sharp Gårding inequality is a powerful tool in the study of systems of PDE. Let
P = p(x, Dx ) = (Pjk) be an !×!matrix of operators Pjk = p jk(x, Dx )with matrix
symbol p(x, ξ) = (p jk(x, ξ)) ∈ Smρ,δ , 0 ≤ δ < ρ ≤ 1, that is satisfying

|∂α
ξ D

β
x p(x, ξ)| ≤ Cα,β〈ξ 〉m−ρ|α|+δ|β|, 〈ξ 〉 =

√
1+ |ξ |2. (1.1)

Assume that the Hermitian part p′ = (p + p∗)/2 of p(x, ξ) is positive semidefinite.
Then, there exists C > 0 such that

)(Pu, u) ≥ −C‖u‖2H (m−µ)/2 , µ = ρ − δ, (1.2)

for every u ∈ S. In particular, for p(x, ξ) ∈ Sm1,0 we have

)(Pu, u) ≥ −C‖u‖2H (m−1)/2 . (1.3)
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Hörmander [4] proved inequality (1.3) for scalar operators and Lax-Nirenberg [7]
extended this result to systems. Friedrichs [3], Kumano-Go [5] and others improved
it and simplified the proof.

For scalar operators, there is the great strengthening µ = 2(ρ − δ) in (1.2) due to
Fefferman and Phong [2] but for matrix operators with smooth symbol the bound for
µ remains µ = ρ − δ.

In many applications operators with symbol of limited smoothness are involved.
Let us consider p(x, ξ) in the class CsSm1,0 of symbols with Cs regularity in the space
variable x defined by

‖∂α
ξ p(x, ξ)‖Cs ≤ Cα〈ξ 〉m−α|. (1.4)

For any fixed δ ∈]0, 1[ one can regularize the symbol obtaining a splitting

p(x, ξ) = p((x, ξ)+ pb(x, ξ), p((x, ξ) ∈ Sm1,δ, pb(x, ξ) ∈ CsSm−sδ
1,δ , (1.5)

e.g. Taylor [9]. If p′ is positive semidefinite, then the Hermitian part of p((x, ξ) is
positive semidefinite as well. Applying (1.2) to P((x, Dx ) and using the boundedness

Pb(x, Dx ) : Hm → Hm−sδ,

the sharp Gårding inequality (1.2) for P(x, Dx ) holds true with a order

µ ≤ 1 − δ, µ ≤ sδ.

Negotiating on δ as done in [9], one obtains (1.2) for p(x, ξ) ∈ CsSm1,0 with

µ = s
s + 1

. (1.6)

Taylor’s bound (1.6) gives µ → 1 for s → ∞ but it is not optimal. By means of
the paradifferential calculus, Bony [1] proved that the best possible bound µ = 1 is
achieved already for s = 2. For 0 < s < 2 Bony obtained the bound µ = s/2 which
is better than Taylor’s one for 1 < s < 2 but it is worse for 0 < s < 1.

Conjugating the operator with the FBI transform, Taturu [8] proved a generalization
of the Sharp Gårding inequality for regular symbols from which he obtained also
inequality (1.2) for symbols p(x, ξ) ∈ CsSm1,0 with

µ = µ∗(s) =
{
1, s ≥ 2,
2s/(s + 2), 0 < s < 2.

(1.7)

We believe this one the optimal estimate for Cs symbols, agreeing with Tataru.
Our aim is to show that a generalization of the Sharp Gårding inequality for regular

symbols, sufficient to get µ = µ∗(s) in the case of Cs limited smoothness, can be
proved directly from Friedrichs symmetrization, that is going back to the original
proofs of (1.2) in [3, 5, 6].
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As in Tataru’s result, what is really important is the order of ∂β
x p(x, ξ)with |β| = 2,

let us denote m + m2 this order. From p(x, ξ) ∈ Smρ,δ clearly we have m2 ≤ 2δ. In
case of equality one can not obtain better than µ = ρ − δ in (1.2) but we can improve
this bound in the case m2 < 2δ. As we will see later on, this is exactly what happens
for p((x, ξ) ∈ Sm1,δ in the splitting (1.5) of p(x, ξ) ∈ CsSm1,0.

For sake of simplicity, from now on we take ρ = 1 which is the case of our interest.
Here we prove the following generalization of inequality (1.2) for regular symbols.

Theorem 1.1 Let P = p(x, Dx ) = (Pjk) be an ! × ! matrix of operators Pjk =
p jk(x, Dx ) with matrix symbol p(x, ξ) = (p jk(x, ξ)) ∈ Sm1,δ , 0 ≤ δ < 1, and such
that

∂β
x p(x, ξ) ∈ Sm+m1

1,δ , |β| = 1; ∂β
x p(x, ξ) ∈ Sm+m2

1,δ , |β| = 2. (1.8)

Assume that the Hermitian part p′ = (p + p∗)/2 of p(x, ξ) is positive semidefinite.
Then, there exists C > 0 such that

)(Pu, u) ≥ −C‖u‖2
(m−µ()/2 (1.9)

for every u ∈ S, with

µ( =
{
min{1 − m1, 1 − m2/2}, 2δ − 1 ≤ m2/2,
min{1 − m1, 2(1 − δ)}, 2δ − 1 > m2/2.

(1.10)

For the largest possible m2 = 2δ of course we have 2δ − 1 < m2/2 hence the
general bound µ( = 1 − δ. The same we have with m1 = δ and any m2 ≤ 2δ.

With m2 < 2δ and m1 < δ there is a gain. For instance, for m1 = m2 = 0 we have
µ( = 1 for 0 ≤ δ ≤ 1/2 and µ( = 2(1 − δ) for 1/2 < δ < 1. Spending such a gain
we can prove the result for symbols of limited smoothness.

Theorem 1.2 Let P = p(x, Dx ) = (Pjk) be an !× ! matrix of operators with symbol
p(x, ξ) = (p jk(x, ξ)) ∈ CsSm1,0. Assume that the Hermitian part p

′ = (p+ p∗)/2 of
p(x, ξ) is positive semidefinite.

Then, there exists C > 0 such that

)(Pu, u) ≥ −C‖u‖2(m−µ∗(s))/2 (1.11)

for every u ∈ S, with

µ∗(s) =
{
1, s ≥ 2,
2s/(s + 2), 0 < s < 2.

(1.12)

2 Proof of Theorem 1.1

We follow the proof of Friedrichs [3] and Kumano-go [5, 6].
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Let p(x, ξ) ∈ Sm1,δ and for δ′ ≥ 2δ − 1, τ = (1+ δ′)/2 (≥ δ) let us consider

p0(x, ξ) =
∫

p(x, ξ + σ 〈ξ 〉τ )q(σ )2dσ (2.1)

where q(σ ) ≥ 0 is a smooth function of σ ∈ Rn with support for |σ | < 1, q(σ ) =
q(−σ ),

∫
q(σ )2dσ = 1.

In the original proof τ = (1+δ)/2 that is δ′ = δ from the beginning. We take some
advantage by fixing δ′ ∈ [2δ − 1, 1[ related to m2 later on.

Performing a change of variable in the integral (2.1) we have

p0(x, ξ) =
∫

p(x, ζ )F(ξ, ζ )2dζ (2.2)

with
F(ξ, ζ ) = q((ζ − ξ)〈ξ 〉−τ )〈ξ 〉−τn/2. (2.3)

To obtain a symmetric operator, we introduce the double symbol pF (ξ, x ′, ξ ′), such
that pF (ξ, x, ξ) = p0(x, ξ), defined by

pF (ξ, x ′, ξ ′) =
∫

F(ξ, ζ )p(x ′, ζ )F(ξ ′, ζ )dζ. (2.4)

We denote again pF (x, ξ) the simplified symbol of the operator PF (x, Dx ).
If the matrix is p(x, ξ) is positive semidefinite, then PF is a positive operator:

(PFu, u) ≥ 0, u ∈ S,

see Theorem 4.3 in [6].
Taking τ = (1+ δ′)/2 > δ (this is the case with the original choice δ′ = δ of [6]),

from the proof of Theorem 4.2 in [6] we have that the simplified symbol pF (x, ξ) of
the operator PF belongs to the class Sm1,δ and has an asymptotic expansion

pF (x, ξ) ∼ p(x, ξ)+
∑

|β|=1

ψβ(ξ)p(β)(x, ξ)+
∑

|α+β|≥2

ψα,β(ξ)p
(α)
(β)(x, ξ),

ψβ ∈ S−1, ψα,β ∈ Sτ (|α|−|β|). (2.5)

Looking at the orders of ψβ and ψα,β and at the orders of ∂
β
x p(x, ξ) for |β| ≤ 2 in

(1.8), from the above expansion we get

p(x, ξ) = pF (x, ξ)+ p1(x, ξ)+ p2(x, ξ),

p1(x, ξ) ∈ Sm−(1−m1)
1,δ , p2(x, ξ) ∈ Sm−µ2

1,δ ,

µ2 = µ2(δ
′) = min{1 − δ′, 1+ δ′ − m2}. (2.6)
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In the limit case τ = (1+ δ′)/2 = δ the proof of Thoerem 4.2 in [6] still gives (2.6)
with the difference p2(x, ξ) ∈ Sm−µ2

δ,δ instead of Sm−µ2
1,δ and what we loose in this case

is the complete asymptotic expansion (2.5) which is not essential for our aims.
The positivity of the operator PF and the orders of P1, P2 in the splitting (2.6) yield

inequality (1.2) for P = PF + P1 + P2 with

µ ≤ min{1 − m1, µ2}.

The order of P1 gives the bound µ( ≤ 1 − m1 for µ( in (1.10). Then, we have to
maximize µ2 = µ2(δ

′) in (2.6) for 2δ − 1 ≤ δ′ < 1 in order to get the best possible
second bound. Since

max
2δ−1≤δ′<1

µ2(δ
′) =

{
1 − m2/2, 2δ − 1 ≤ m2/2,
2 − 2δ, 2δ − 1 > m2/2,

we complete the proof of Theorem 1.1.

3 Proof of Theorem 1.2

Let us show how Theorem 1.1 implies Theorem 1.2. Coming back to the splitting
(1.5) of p(x, ξ) ∈ CsSm1,0, now we have to negotiate between µ( = µ((δ,m1,m2) of
Theorem 1.1 for p( and sδ. We obtain the optimal bound µ = µ∗(s) for

µ( = sδ.

We use the more precise estimates for the regularized part p(

∂β
x p

( ∈ Sm1,δ, |β| ≤ s; ∂β
x p

( ∈ Sm+δ(|β|−s)
1,δ , |β| > s, (3.1)

given by Proposition 1.3.D in [9]. This means, with our notation,

m1 = m1(s) =
{
0, s ≥ 1,
δ(1 − s), 0 < s < 1,

(3.2)

and

m2 = m2(s) =
{
0, s ≥ 2,
δ(2 − s), 0 < s < 2.

(3.3)

We have m1 ≤ m2/2 in any case. In particular m1 does not influence µ( and (1.10)
for p( reduces to

µ( =
{
1 − m2/2, 2δ − 1 ≤ m2/2,
2(1 − δ), 2δ − 1 > m2/2.

(3.4)

Here the best choice, if it is possible to fix δ such that 2δ − 1 ≤ m2/2, is always
µ( = 1 − m2/2.
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For s ≥ 2 we have m2 = 0 in (3.3). Choosing δ = 1/s, (2δ − 1 ≤ m2/2 reads
exactly s ≥ 2), we have

µ( = 1 − m2/2 = 1 = sδ (3.5)

and the best possible bound µ = µ∗(s) = 1 is achieved in (1.12).
For 0 < s < 2 we have m2 = δ(2 − s) in (3.3). Choosing δ = 2/(s + 2) we have

2δ − 1 = m2/2 and
µ( = 1 − m2/2 = 2s/(s + 2) = sδ (3.6)

that leads to µ = µ∗(s) = 2s/(s + 2) in (1.12).
This completes the proof of Theorem 1.2.
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