
17 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Multi-Robot Pickup and Delivery via Distributed Resource Allocation / Andrea Camisa; Andrea Testa;
Giuseppe Notarstefano. - In: IEEE TRANSACTIONS ON ROBOTICS. - ISSN 1552-3098. - STAMPA. -
39:2(2023), pp. 9954913.1106-9954913.1118. [10.1109/tro.2022.3216801]

Published Version:

Multi-Robot Pickup and Delivery via Distributed Resource Allocation

Published:
DOI: http://doi.org/10.1109/tro.2022.3216801

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905577 since: 2024-03-07

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/tro.2022.3216801
https://hdl.handle.net/11585/905577

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Camisa, A. Testa and G. Notarstefano, "Multi-Robot Pickup and Delivery via
Distributed Resource Allocation," in IEEE Transactions on Robotics, vol. 39, no. 2,
pp. 1106-1118, April 2023.

The final published version is available online at:

https://doi.org/10.1109/TRO.2022.3216801

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1109/TRO.2022.3216801

1

Multi-Robot Pickup and Delivery via Distributed Resource Allocation
Andrea Camisa*, Andrea Testa*, Giuseppe Notarstefano

Abstract—In this paper, we consider a large-scale instance
of the classical Pickup-and-Delivery Vehicle Routing Problem
(PDVRP) that must be solved by a network of mobile cooperating
robots. Robots must self-coordinate and self-allocate a set of
pickup/delivery tasks while minimizing a given cost figure. This
results in a large, challenging Mixed-Integer Linear Problem that
must be cooperatively solved without a central coordinator. We
propose a distributed algorithm based on a primal decomposition
approach that provides a feasible solution to the problem in finite
time. An interesting feature of the proposed scheme is that each
robot computes only its own block of solution, thereby preserving
privacy of sensible information. The algorithm also exhibits
attractive scalability properties that guarantee solvability of the
problem even in large networks. To the best of our knowledge,
this is the first attempt to provide a scalable distributed solution
to the problem. The algorithm is first tested through Gazebo
simulations on a ROS 2 platform, highlighting the effectiveness
of the proposed solution. Finally, experiments on a real testbed
with a team of ground and aerial robots are provided.

Index Terms—Distributed Optimization; Distributed Robot
Systems; Planning, Scheduling and Coordination; Cooperating
Robots

I. INTRODUCTION

The Pickup-and-Delivery Vehicle Routing Problem
(PDVRP) is one of the most studied combinatorial
optimization problems. The interest is mainly motivated
by the practical relevance in real-world applications such as
such as battery exchange in robotic networks, [1], pickup and
delivery in warehouses, [2], task scheduling [3] and delivery
with precedence constraints [4]. The PDVRP is known to
be an NP-Hard optimization problem, and can be solved to
optimality only for small instances. In a PDVRP, a group
of vehicles has to fulfill a set of transportation requests.
Requests consist of picking up goods at some locations and
delivering them to other locations. The problem then consists
of determining minimal length paths such that all the requests
are satisfied. To achieve this, we can assign to each location
a label “P” (pickup) or “D” (delivery), and then define a
graph of all possible paths that can be traveled by vehicles.
In Figure 1, we show an example scenario with two vehicles,
two pickups and two deliveries. Note that, in order to have a
well-defined graph, vehicles must start from an initial node
representing the initial position (which may be different for
each of them) and have to reach a target node. This can
be also “virtual” in the sense that, once the last delivery

A. Camisa, A. Testa and G. Notarstefano are with the
Department of Electrical, Electronic and Information Engineering,
University of Bologna, Bologna, Italy. {a.camisa, a.testa,
giuseppe.notarstefano}@unibo.it. This result is part of a
project that has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 638992 - OPT4SMART).

* These authors contributed equally to this work.

Start

End

P1

P2

D1

D2

Start

End

P1

P2

D1

D2

Figure 1. Example PDVRP scenario. Left: vehicles begin from the “start”
node and must end at the terminal node. There are two pickup requests P1

and P2 and two associated deliveries D1 and D2. Right: the optimal path
consists of the first vehicle traveling through P1 and D1 and the second
vehicle traveling through P2 and D2.

position has been reached, the vehicle stops there and waits
for further instructions. With respect to classical Vehicle
Routing Problems, the PDVRP introduces a set of additional
variables and constraints that make the problem harder to
solve. In particular, precedence constraints must ensure
that the pickup of a good is performed before its delivery.
Moreover, vehicles have capacity constraints that must be
satisfied throughout the mission. These additional constraints
are based on additional real variables that are not included in
classical routing problems. In order to determine the optimal
path, one typically formulate an associated optimization
problem and solves it to optimality. Throughout the paper, we
consider a general version of this optimization problem for
which we propose a distributed algorithm, i.e., an algorithm
that robots can run in a peer-to-peer fashion without a central
coordinator. In this distributed setting, communication among
robots occurs according to a given graph and it is not a design
parameter. As the distributed computation paradigm requires
agents to share computation instead of data, it is particularly
recommended in contexts where the local problem data
(such as final assignment of tasks, vehicle capacity, cost of
tasks, etc.) has to be maintained private as e.g. in military
applications or futuristic smart cities with robots belonging
to different users.

A. Related Work
Several algorithms have been proposed to solve the problem

to (sub)optimality in centralized settings, we refer the reader to
the surveys [5]–[8] for a comprehensive list of these methods
in static and dynamic settings. Online, dynamic approaches
have been proposed, see, e.g., [9], taking into account collision
avoidance constraints among robotic agents, [10].

In order to overcome the drawbacks of centralized ap-
proaches, as, e.g., the high computational complexity of the

2

problem, a branch of literature analyzes schemes based on
master-slave or communication-less architectures. In master-
slave approaches, implementations of the parallel auction
based algorithm are among the most used strategies, see,
e.g., [11], [12]. As for communication-less approaches, we
refer the reader to [13] for a dynamic pickup and delivery
application. In [14] authors address a multi-depot multi-split
vehicle routing problem, where computing nodes apply a local
heuristic based on a stochastic gradient descent and then
exchange the local solutions in order to select the best one.

Few works address the solution of vehicle routing problems
in peer-to-peer networks. Indeed, the majority of the ap-
proaches in literature address approximate problems or special
cases of the pickup-and-delivery. Authors in [15]–[17] solve
unimodular task assignment problems by means of convex
optimization techniques. Other works are instead based on the
solution of mixed-integer problems with a simplified structure.
In particular, [18], [19] address generalized assignment prob-
lems, where the order of execution of the tasks is not relevant.
In [20], authors address an assignment problem where agent-
to-task paths are evaluated offline and capacity constraints
are not considered. The distributed auction-based approach,
see [21], [22] for recent applications, is often used to address
task allocation problems. These approaches do not address
more complex models with, e.g., load demands and execution
time of tasks. As for distributed approaches to vehicle routing
problems, in the works [23]–[25], authors propose distributed
schemes based on Voronoi partitions for stochastic dynamic
vehicle routing problems with time windows and customer
impatience. Authors in [26] propose a distributed algorithm
where agents communicate according to cyclic graph and
perform operations one at a time. In [27], a distributed scheme
in which agents iteratively solve graph partitioning problems
is proposed, and is shown to converge to a suboptimal solution
of a dynamic vehicle routing problem. A multi-depot vehicle
routing problem is considered instead in [28], where the
problem is modeled as game in which customers and depots
find a feasible allocation by means of an auction game.

Since the PDVRP is a Mixed-Integer Linear Program
(MILP), let us recall some recent works addressing MILPs in
distributed frameworks. A distributed cutting-plane approach
converging in finite time with arbitrary precision to a solution
of the MILP is proposed in [20]. However, this approach re-
quires each agent to compute the entire solution of the problem
and is not suited for multi-robot PDVRPs. The work in [29] ad-
dresses large-scale MILPs by a dual decomposition approach,
while in [30] the authors propose a primal-decomposition
algorithm with low suboptimality bounds. However, to the
best of our knowledge, there are no works in the literature
specifically tailored for pickup-and-delivery problems.

B. Contributions

The contributions of the present paper are as follows.
We formalize the Multi-vehicle Pickup-and-Delivery Vehicle
Routing Problem as a large-scale distributed optimization
problem with local and coupling constraints. The considered
formulation of the Pickup-and-delivery problem is general and

encompasses scenarios where each robot can only perform a
subset of the tasks. We propose a distributed algorithm for
the fast computation of a feasible solution to the problem.
The algorithm is based on a distributed resource allocation
approach and requires only local computation and communica-
tion among neighboring robots with no external coordination.
The proposed algorithm is scalable in the sense that the amount
of computation performed by each robot is independent of
the network size. Moreover, robots do not exchange private
information with each other such as vehicle capacity or the
computed routes. We formally prove finite-time feasibility of
the solution computed by the algorithm and we provide guide-
lines for practical implementation. We first provide numerical
computations on a ROS 2 set-up in which the PDVRP is
solved with our algorithm and the dynamics of the vehicles is
realistically simulated through Gazebo. Although the problem
is NP-hard, the simulations highlight that our distributed
algorithm is able to compute “good-quality” solutions within
a few (fixed) iterations. Then, we show results of real experi-
ments performed on the ROS 2 testbed with TurtleBot3 ground
robots and Crazyflie2 aerial robots. We now highlight the main
differences with other related approaches. In [21], [22], authors
consider vehicle routing problems with upper-bounds in the
number of tasks a robot can serve. Dynamic variations of these
set-up are considered in [23]–[25]. Our approach instead takes
into account more general capacity constraints. Moreover, we
consider precedence constraints among tasks. Authors in [26]
propose a scheme for pickup-and-delivery problems in which
vehicles execute the steps of the algorithm once at a time and
communicate according to a ring graph with a shared token. In
our protocol instead agents can perform the optimization steps
concurrently, can communicate according to general connected
graphs and do not need a shared memory. Authors in [27], [28]
consider the set-up in which vehicles start their mission from
different depots, pick-up resources at given locations and then
come back to their initial depot. In our set-up instead vehicles
have to pick-up resources and deliver them to other stations
before going to final depots.

The paper is organized as follows. In Section II, the problem
statement together with the needed notation and preliminaries
is provided. The distributed algorithm is provided in Sec-
tion III, while Section IV encloses the theoretical analysis. We
describe the Gazebo simulations in Section VI and, finally, we
provide the experimental results in Section VII.

II. PICKUP-AND-DELIVERY VEHICLE ROUTING PROBLEM

In this section, we provide a mathematical formulation of
the optimization problem studied in the paper together with a
thorough description of its structure.

A. Optimization Problem Formulation

We consider a scenario in which N robots, indexed by
I := {1, . . . , N}, have to serve the transportation requests. We
denote by P := {1, . . . , |P |} the index set of pickup requests
and by D := {|P + 1|, . . . , 2|P |} the index set of delivery
demands (with P ∩ D = ∅). To each pickup location j ∈ P
is associated a delivery location j ∈ D (with |P | = |D|), so

3

that both the requests must be served by the same robot. To
ease the notation, we also define a set R := P ∪D of all the
transportation requests (independently of their pickup/delivery
nature). Each request j ∈ R is characterized by a service time
dj ≥ 0, which is the time needed to perform the pickup or
delivery operation. Within each request, it is also associated a
load qj ∈ R, which is positive if j ∈ P and negative if j ∈ D.
Each robot has a maximum load capacity Ci ≥ 0 of goods that
can be simultaneously held. The travel time needed for the i-
th vehicle to move from a location j ∈ R to another location
k ∈ R is denoted by tjki ≥ 0. In order to travel from two
locations j, k, the i-th robot incurs a cost cjki ∈ R≥0. Finally,
two additional locations s and σ are considered. The first one
represents the mission starting point, while the second one
is a virtual ending point. For this reason, the corresponding
demands qs, qσ and service times ds, dσ are set to 0.

The goal is to construct minimum cost paths satisfying
all the transportation requests. To this end, a graph of all
possible paths through the transportation requests is defined
as follows. Let GA = (VA, EA), be the graph with vertex set
VA = {s, σ} ∪ R and edge set EA = {(j, k) | j, k ∈ VA, j ̸=
k and j ̸= σ, k ̸= s}. Owing to its definition, EA contains
edges starting from s or from locations in R and ending in
σ or other locations in R. For all edges (j, k) ∈ EA, let xjk

i

be a binary variable denoting whether vehicle i ∈ {1, . . . , N}
is traveling (xjk

i = 1) or not (xjk
i = 0) from a location j

to a location k. Also, let Bj
i ∈ R≥0 be an the optimization

variable modeling the time at which vehicle i begins its service
at location j. Similarly, let Qj

i ∈ R≥0 be the load of vehicle i
when leaving location j. To keep the notation light, we denote
by x the vector stacking xjk

i for all i, j, k and by B,Q the
vectors stacking all Bj

i and Qj
i . The PDVRP can be formulated

as the following optimization problem [6],

min
x,B,Q

N∑
i=1

∑
(j,k)∈EA

cjki xjk
i (1a)

subj. to
N∑
i=1

∑
k:(j,k)∈EA

xjk
i ≥ 1 ∀j ∈ R (1b)

∑
k:(s,k)∈EA

xsk
i = 1 ∀i ∈ I (1c)

∑
j:(j,σ)∈EA

xjσ
i = 1 ∀i ∈ I (1d)

∑
j:(j,k)∈EA

xjk
i =

∑
j:(k,j)∈EA

xkj
i ∀i ∈ I, k ∈ R (1e)

∑
k:(j,k)∈EA

xjk
i =

∑
k:(j+|P |,k)∈EA

x
|P |+j,k
i ∀i ∈ I, j ∈ P (1f)

Bj
i ≤ B

j+|P |
i , ∀i ∈ I, j ∈ P (1g)

xjk
i = 1 ⇒ Bk

i ≥ Bj
i + dj + tjki (1h)

xjk
i = 1 ⇒ Qk

i = Qj
i + qk (1i)

Qj ≤ Qj
i ≤ Q

j

i ∀j ∈ VA, i ∈ I (1j)

Qs
i = Qinit

i ∀i ∈ I (1k)

xjk
i ∈ {0, 1} ∀i ∈ I, (j, k) ∈ EA, (1l)

Table I
LIST OF THE MAIN SYMBOLS AND THEIR DEFINITIONS

Basic definitions
N ∈ N≥0 Number of vehicles of the system
I = {1, . . . , N} Set of vehicles
P , D Sets of Pickup and Delivery requests
R = P ∪D Set of all transportation requests
s Mission starting point
σ Mission ending point (virtual or physical)
VA = {s, σ} ∪R Set of PDVRP graph vertices
EA ⊂ VA × VA Set of PDVRP graph edges

Optimization variables
xjk
i ∈ {0, 1} 1 if vehicle i travels arc (j, k), 0 otherwise

Qj
i ∈ R≥0 Load of vehicle i when leaving vertex j

Bj
i ∈ R≥0 Beginning of service of vehicle i at vertex j

Problem data
cjki ∈ R≥0 Incurred cost if vehicle i travels arc (j, k)
qj ∈ R Demand/supply at location j ∈ R
Ci ∈ R≥0 Capacity of vehicle i

tjki ∈ R≥0 Travel time from j to k for vehicle i
dj ∈ R≥0 Service duration at j ∈ VA

Qinit
i ≥ 0 Initial load of vehicle i

where Qj = max{0, qj}, Q
j

i = min{Ci, Ci + qj} and Qinit
i ∈

R≥0. We make the standing assumption that problem (1)
is feasible and admits an optimal solution. Throughout the
document, we use the convention that subscripts denote the
vehicle index, while superscripts refer to locations. Table I
collects all the relevant symbols. Notice that, in order to
satisfy (1j), it is necessary to assume Ci ≥ maxj∈R{qj},
i.e., the generic task can be performed by at least one robot.
In order to keep the discussion not too technical, in the
following we always maintain this assumption. However, note
that the algorithm proposed in this paper works also if this
assumption is removed. A discussion on this extension is given
in Section V-A, from which it follows that trivial solutions
where a robot is assigned all the tasks are not feasible.

We conclude by noting that problem (1) is mixed-integer
but not linear. Indeed, the constraints (1h)–(1i) are nonlinear.
However, an equivalent linear formulation of these constraints
is always possible (the detailed procedure is outlined in
Appendix A). In the rest of the paper, we refer to problem (1)
as being a MILP, with the implicit assumption that the con-
straints (1h)–(1i) are replaced by their linear version. Notice
that it is not necessary to perform such reformulation when
implementing the algorithm. Indeed, several modern solvers
allow for the implementation of these constraints by means of
so-called indicator constraints. We however prefer to consider
a linear reformulation in order to streamline the analysis.

B. Description of Cost and Constraints

Let us detail the cost and constraints of problem (1). The
objective (1a) minimizes the total route cost, in particular, the
total euclidean distance traveled by robots.

Constraint (1b) enforces that every location has to be visited
at least once. Typically, PDVRP formulations consider this
constraint as an equality, however, in the considered case of
cost being the total distance, the solution is the same both
with the equality and with the inequality. We stick to the
inequality formulation as this allows us to exploit the problem

4

structure and efficiently solve the problem. Constraints (1c)–
(1d) guarantee that every vehicle starts its mission at s and
ends at σ. Equality (1e) is a flow conservation constraint,
meaning that if a vehicle enters a location k it also has to
leave it. Constraint (1f) ensures that, if a robot i performs
a pickup operation, it also has to perform the corresponding
delivery. Inequality (1g) imposes that deliveries have to occur
after pickups. Constraint (1h) avoids subtours in each vehicle
route (i.e. paths passing from the same location more than
once), while inequalities (1i)–(1j) ensure that the total vehicle
capacity is never exceeded. Finally, (1k) takes into account the
initial load of the i-th robot.

III. DISTRIBUTED ALGORITHM

In this section, we propose our distributed algorithm to solve
the Multi-vehicle PDVRP. We first present the distributed
problem setup. Then, we formally describe the proposed
distributed algorithm.

A. Toward a Distributed Resource Allocation Scheme

We assume robots aim to solve problem (1) in a distributed
fashion, i.e. without a central (coordinating) node. In order to
solve the problem, we suppose each robot is equipped with
its own communication and computation capabilities. Robots
can exchange information according to a static communication
network modeled as a connected and undirected graph G =
({1, . . . , N}, E). The graph G models the communication in
the sense that there is an edge (i, ℓ) ∈ E if and only if robot i
is able to send information to robot ℓ. For each node i, the set
of neighbors of i is denoted by Ni = {ℓ ∈ I : (i, ℓ) ∈ E}. We
consider the challenging scenario in which the i-th robot only
knows problem data related to it, namely the i-th travelling
times tjki , the i-th local capacity Ci and the i-th cost entries
cjki , thus not having access to the entire problem formulation.
However, we reasonably assume that all the robots know the
demand/supply values qj and service time dj for each task
request j ∈ VA.

Note that the optimization variables in (1) associated with
a robot i are all and only the variables with subscript i (i.e.
xjk
i , Bj

i and Qj
i for all j, k). In order to simplify the notation,

let us define for all i the set

Zi =
{
(xi, Bi, Qi) such that (1c)–(1l) are satisfied

}
. (2)

Indeed, note that the constraints (1c)–(1l) are repeated for each
index i. With this shorthand, any route that robot i can imple-
ment can be denoted more shortly as (xi, Bi, Qi) ∈ Zi. How-
ever, note that feasible solutions to problem (1) must not only
be valid routes, but they must also satisfy the pickup/delivery
demand. More formally, the vectors (xi, Bi, Qi) must satisfy
both the constraints

(xi, Bi, Qi) ∈ Zi ∀i ∈ I, (3a)

and
N∑
i=1

∑
k:(j,k)∈EA

xjk
i ≥ 1 ∀j ∈ R, (3b)

where (3b) is the coupling constraint (1b). In light of this
observation, the main idea to devise a distributed algorithm

for problem (1) is to perform a negotiation to determine the
value of the left-hand side of the constraint (3b) in a distributed
way. This technique is known as primal decomposition (see
also Appendix B). Let us define allocation vectors yi ∈ R|R|

that add up to the right-hand side of (3b), i.e.

N∑
i=1

[yi]j = 1, ∀j ∈ R,

where [yi]j denotes the j-th component of yi. The variables yi
should be interpreted as the allocation of a resource which is
shared among the robots (cf. Appendix B). Each robot i will
aim to determine its allocation yi in such a way that∑

k:(j,k)∈EA

xjk
i ≥ [yi]j , ∀j ∈ R,

from which it directly follows that (3b) is satisfied. As it will
be clear from the forthcoming analysis, the j-th entry of the
vector yi determines whether or not robot i must perform
task j. In the next subsection, we introduce our distributed
algorithm, whose purpose is to coordinate the computation of
allocation vectors yi. such that (3b) is satisfied.

B. Distributed Algorithm Description

Let us now introduce our distributed algorithm. Let t ∈ N
denote the iteration index. Each robot i maintains an estimate
of the local allocation vector yti ∈ R|R|. At each iteration,
the vector yti is updated according to (4)–(5). After a finite
number of iterations, say Tf ∈ N, the robots compute a
tentative solution to the PDVRP based on the last computed
allocation y

Tf

i with (6)–(7). The whole algorithm can be
seen as a subgradient method applied to a suitable, convex
reformulation of problem (1). Algorithm 1 summarizes the
scheme as performed by each robot i. The symbol conv(Zi)
denotes the convex hull of the set Zi, while αt is a step-size
sequence. The algorithm has also some tuning parameters that
are reported on the top of the table.

Let us informally comment on the algorithm table. The
algorithm is composed of two logic blocks. The first block,
represented by the steps (4)–(5), is repeated in an iterative
manner and is aimed at computing a final allocation vector
y
Tf

i . Notice that in (4) we replace the mixed-integer set Zi

with a convex, polyhedral set. This makes the problem easier
to solve. Moreover, thanks to the Shapley-Folkman lemma,
part of the optimal decision variables for (4) satisfy the binary
constraints. The integrality of the remaining optimization
variables is recovered at the end of the algorithm in (7). This
significantly reduces the computational burden of the scheme.
As for the update in (5), it is a subgradient-based iteration on
the resource allocation variable yi. An analysis of this scheme
is provided in Section IV-B. In the second block, represented
by the steps (6)–(7), the final allocation is used to determine
a solution to the original problem. The thresholding step (6)
rectifies the current local allocation y

Tf

i to obtain the final
allocation yEND

i , which is fed to problem (7) to compute the
local portion of solution (xEND

i , BEND
i , QEND

i). An analysis of
the algorithm is provided in Section IV, while a discussion

5

Algorithm 1 Distributed Resource Allocation for PDVRP
Parameters: Tf > 0, M > 0, 0 < δ < 1.
State: yi ∈ R|R| (initialized at [y0i]j = δ/N for all j ∈ R).

Repeat for t = 0, 1, . . . , Tf − 1:
Compute µt

i as Lagrange multiplier of linear program

min
xi,Bi,Qi,vi

∑
(j,k)∈EA

cjki xjk
i +Mvi

subj. to
∑

k:(j,k)∈EA

xjk
i ≥ [yti]j − vi, ∀j ∈ R

(xi, Bi, Qi) ∈ conv(Zi), vi ≥ 0

(4)

Receive µt
ℓ from neighbors ℓ ∈ Ni and update

yt+1
i = yti − αt

∑
ℓ∈Ni

(
µt
i − µt

ℓ

)
(5)

Perform component-wise thresholding of allocation

[yEND
i]j = min

(
[y

Tf

i]j , 1
)
, ∀j ∈ R (6)

Return (xEND
i , BEND

i , QEND
i) as optimal solution of MILP

min
xi,Bi,Qi

∑
(j,k)∈EA

cjki xjk
i

subj. to
∑

k:(j,k)∈EA

xjk
i ≥ [yEND

i]j , ∀j ∈ R

(xi, Bi, Qi) ∈ Zi

(7)

on the choice of the tunable parameters M , Tf and δ can be
found in Section V-A.

A few additional remarks are in order. First, note that the
only information exchanged with neighbors are the Lagrange
multipliers µt

i. Thus, robots never exchange sensitive local
information (such as the cost, the load or the computed routes),
therefore the algorithm maintains privacy. Remarkably, even
though the number of robots increase, the amount of local
computation remains unchanged. This scalability property is
attractive and enables the solution of the problem even in large
networks of robots.

In order to state the theoretical properties of the algorithm,
we make the following standard assumption on the step-size
αt appearing in (5).

Assumption III.1. The step-size sequence {αt}t≥0, with each
αt ≥ 0, satisfies

∑∞
t=0 α

t = ∞,
∑∞

t=0

(
αt
)2

< ∞. □

A discussion on possible choices of the step-size satisfying
Assumption III.1 is given in Section V-A. The next theorem
represents the central result of the paper.

Theorem III.2 (Finite-time feasibility). Let Assumption III.1
hold and let 0 < δ < 1. Then, for a sufficiently large
M > 0, there exists a time Tδ > 0 such that the vector
(zEND

1 , . . . , zEND
N), the aggregate output of Algorithm 1, with

each zEND
i = (xEND

i , BEND
i , QEND

i), is a feasible solution to
problem (1), provided that the total iteration count satisfies

Tf ≥ Tδ . □

The proof is provided in Section IV-D. In Section VI, we
perform an empirical study on the optimality of the solutions
computed by Algorithm 1.

Remark III.3 (Algorithm complexity). Note that the
steps (6)–(7) are performed only once at the end of the
algorithm. Steps (4)–(5) instead are performed Tf times. Let
Li denote the number of constraints of conv(Zi). Then, the
average complexity of (4) (solved via the simplex algorithm) is
O(Li+ |R|). Step (5) consists of sums and multiplications and
its complexity is O(|Ni||R|). Step (6) is a thresholding with
complexity O(|R|). Excluding the MILP (7), the total algo-
rithm complexity is thus O(Tf (|Ni||R|+Li)). Finally, (7) can
be solved using a branch-and-bound scheme, which complexity
is exponential in the number O(|R|2) of integer variables. □

IV. ALGORITHM ANALYSIS

In this section, we provide a theoretical study of Algo-
rithm 1. The algorithm inherits the ideas of [30], however
here we are considering an enlargement of the constraints
rather than a restriction, and moreover there is a thresholding
operation which is specific of Algorithm 1. We provide a
compact analysis focused on those properties that are peculiar
to the PDVRP and that are not considered elsewhere. To arrive
at the final result given by Theorem III.2, we will proceed with
the following steps.

(i) We show that the steps in (4) and (7) are well posed
(Section IV-A).

(ii) We analyze the steps in (4) and (5), needed to retrieve
an optimal solution to a relaxed PDVRP (Section IV-B).

(iii) Finally, we prove Theorem III.2 (Section IV-D) with the
help of auxiliary technical lemmas (Section IV-C).

From now on, we denote by 1 the vector of ones with
appropriate dimension.

A. Feasibility of Local Problems

We begin the analysis by proving that the algorithm is well
posed. In particular, we show that it is indeed possible to
solve the problems (4) and (7). The next lemma formalizes
feasibility of problem (4).

Lemma IV.1. Consider a robot i ∈ I and let yti be allocation
computed by Algorithm 1 at an iteration t. Then, problem (4)
is feasible.

Proof. See Appendix C-A.

Proving feasibility of problem (7) is more delicate and relies
upon the thresholding operation, as formally shown next.

Lemma IV.2. Consider a robot i ∈ I and let yEND
i be the

final allocation computed by Algorithm 1. Then, problem (7)
is feasible.

Proof. See Appendix C-B.

6

B. Convergence of Distributed Resource Allocation Scheme

We now focus on the first logic block of Algorithm 1,
namely steps (4)–(5). These two iterative steps can be used to
obtain an optimal allocation associated with the linear program

min
x,B,Q

N∑
i=1

∑
(j,k)∈EA

cjki xjk
i

subj. to
N∑
i=1

∑
k:(j,k)∈EA

xjk
i ≥ δ ∀j ∈ R

(xi, Bi, Qi) ∈ conv(Zi), ∀ i ∈ I.

(8)

Formally, we denote with (yCONV
1 , . . . , yCONV

N) such optimal
allocation, which is the optimal vector satisfying the conditions
specified in Section III-A. Before stating formally this result,
we note that, by the discussion in Section III-A, problem (8)
is essentially the same as problem (1), except that the mixed-
integer constraints (xi, Bi, Qi) ∈ Zi are replaced by their
convex relaxation (xi, Bi, Qi) ∈ conv(Zi). Moreover, the
coupling constraints are enlarged by changing the right-hand
side from 1 to δ ∈ (0, 1) (recall that δ is a tunable parameter
of Algorithm 1).

Now, denote by (zCONV
1 , . . . , zCONV

N) an optimal solution
of problem (8) with each zi = (xi, Bi, Qi), and by
{yt1, . . . , ytN}t≥0 the allocation vector sequence produced
by (4)–(5). The following lemma summarizes the convergence
properties of the distributed resource allocation scheme (4)–
(5).

Lemma IV.3. Let Assumption III.1 hold and recall that y0i =
δ/N1 for all i ∈ I. Moreover, let (yCONV

1 , . . . , yCONV
N) ∈ RN |R|

be an optimal allocation associated with problem (8), i.e., a
vector satisfying

∑N
i=1 y

CONV
i = δ1 and

∑
k:(j,k)∈EA

xjk
i ≥

[yCONV
i]j for all j ∈ R and i ∈ I. Then, for a sufficiently

large M > 0, the distributed algorithm (4)–(5) generates a
sequence {yt1, . . . , ytN}t≥0 such that

(i)
∑N

i=1 y
t
i = δ1, for all t ≥ 0;

(ii) limt→∞ ∥yti − yCONV
i ∥ = 0 for all i ∈ I.

Proof. We refer the reader to [30] for the proof.

C. Intermediate Results

Before turning to the proof of Theorem III.2, we provide
some preparatory lemmas. The first lemma justifies the use of
δ (an arbitrarily small positive number) in place of the original
right-hand side 1 in the coupling constraints (1b).

Lemma IV.4. For all i ∈ I, let (xi, Bi, Qi) ∈ Zi such that∑N
i=1

∑
k:(j,k)∈EA

xjk
i > 0 for all j ∈ R. Then, it holds∑N

i=1

∑
k:(j,k)∈EA

xjk
i ≥ 1 for all j ∈ R.

Proof. For each component j ∈ R, by assumption we have

N∑
i=1

∑
k:(j,k)∈EA

xjk
i > 0.

Note that, since each xjk
i ∈ {0, 1}, the quantity∑N

i=1

∑
k:(j,k)∈EA

xjk
i is either zero or at least equal

to 1. Therefore, because of the assumption, we have∑N
i=1

∑
k:(j,k)∈EA

xjk
i ≥ 1 for all j ∈ R.

The next two lemmas will be used in the sequel to charac-
terize an optimal allocation associated with problem (8).

Lemma IV.5. For all i ∈ I, let ỹi ∈ R|R| and
(x̃i, B̃i, Q̃i) ∈ conv(Zi) such that

∑
k:(j,k)∈EA

x̃jk
i > [ỹi]j

for all j ∈ R. Then, there exists (x̄i, B̄i, Q̄i) ∈ Zi satisfying∑
k:(j,k)∈EA

x̄jk
i > [ỹi]j for all j ∈ R.

Proof. Fix a robot i ∈ I and note that, because of the flow
constraints (1e) and the subtour elimination constraints (1h),
for all j ∈ R it holds

max
(xi,Bi,Qi)∈Zi

(∑
k:(j,k)∈EA

xjk
i

)
= 1. (9)

Moreover, note that it is possible to choose a local solution
passing through all the locations (possibly at a high cost), i.e.,
there exists (x̄i, B̄i, Q̄i) ∈ Zi such that

∑
k:(j,k)∈EA

x̄jk
i = 1

for all j ∈ R. Therefore, for all j ∈ R it holds∑
k:(j,k)∈EA

x̄jk
i

= max
(xi,Bi,Qi)∈Zi

(∑
k:(j,k)∈EA

xjk
i

)
(a)
= max

(xi,Bi,Qi)∈conv(Zi)

(∑
k:(j,k)∈EA

xjk
i

)
≥

∑
k:(j,k)∈EA

xjk
i for all (xi, Bi, Qi) ∈ conv(Zi), (10)

where (a) follows by linearity of the cost. In particular, the
previous inequality holds with (xi, Bi, Qi) = (x̃i, B̃i, Q̃i)
and thus for all j ∈ R we have

∑
k:(j,k)∈EA

x̄jk
i ≥∑

k:(j,k)∈EA
x̃jk
i > [ỹi]j .

Lemma IV.6. Let (yCONV
1 , . . . , yCONV

N) ∈ RN |R| be an optimal
allocation associated with problem (8), i.e., a vector satisfying∑N

i=1 y
CONV
i = δ1 and

∑
k:(j,k)∈EA

xjk
i ≥ [yCONV

i]j for all
j ∈ R and i ∈ I. Then, yCONV

i ≤ 1 for all i ∈ I.

Proof. By contradiction, suppose that there is a component
j ∈ R for which [yCONV

i]j > 1. By assumption, we have∑
k:(j,k)∈EA

xjk
i ≥ [yCONV

i]j . Using Lemma IV.5, we conclude
that there exists (x̄, B̄, Q̄) ∈ Zi such that∑

k:(j,k)∈EA

x̄jk
i ≥ [yCONV

i]j > 1,

which contradicts (9).

D. Proof of Theorem III.2

First, note that, by Lemmas IV.1 and IV.2, the algorithm
is well posed. Moreover, by construction (cf. problem (7))
it holds (xEND

i , BEND
i , QEND

i) ∈ Zi for all i ∈ I. There-
fore, all the local constraints (1c) to (1l) are satisfied by
(xEND

i , BEND
i , QEND

i) and we only need to show that there
exists Tδ > 0 such that constraint (1b) is satisfied by

7

(xEND
i , BEND

i , QEND
i) if Tf ≥ Tδ . By Lemma IV.4, it suffices

to prove that
∑N

i=1

∑
k:(j,k)∈EA

xjk
i > 0 for all j ∈ R.

Consider the auxiliary sequence {yt1, . . . , ytN}t≥0 generated
by Algorithm 1. By Lemma IV.3, this sequence converges to
the vector (yCONV

1 , . . . , yCONV
N). By definition of limit (using the

infinity norm), there exists Tδ > 0 such that ∥yti −yCONV
i ∥∞ <

δ/N (and thus yti < yCONV
i + δ/N1) for all i ∈ I and t ≥ Tδ .

Let us define a vector ρi ∈ R|R| representing the mismatch
between y

Tf

i and its thresholded version yEND
i ,

ρi = y
Tf

i − yEND
i , for all i ∈ I. (11)

By definition (6), it holds ρi ≥ 0. Then, for all j ∈ R, it holds
N∑
i=1

∑
k:(j,k)∈EA

xEND
i

jk ≥
N∑
i=1

[yEND
i]j

=

N∑
i=1

[y
Tf

i]j︸ ︷︷ ︸
δ

−
N∑
i=1

[ρi]j

= δ −
N∑
i=1

[ρi]j

Let us temporarily assume that ρi < δ/N1 for all i ∈ I. Then,
we obtain the desired statement

N∑
i=1

∑
k:(j,k)∈EA

xEND
i

jk ≥ δ −
N∑
i=1

[ρi]j

>

(
δ −

N∑
i=1

δ/N

)
= 0.

It remains to show that ρi < δ/N1 for all i ∈ I. Fix a robot
i and consider a component j ∈ R of the vector ρi. Owing to
the definition (6) of yEND

i , either the j-th component is equal to
[y

Tf

i]j or it is equal to 1. In the former case, we have [ρi]j =
0 < δ/N . In the latter case, there is a non-negative mismatch
[ρi]j = [y

Tf

i]j−1 ≥ 0. Now, using the fact yti < yCONV
i +δ/N1

for all t ≥ Tδ , we have

[ρi]j = [y
Tf

i]j − 1

< [yCONV
i]j − 1 + δ/N

≤ δ/N

provided that Tf ≥ Tδ , where in the last inequality we applied
Lemma IV.6. The proof follows. □

V. DISCUSSION AND EXTENSION

In this section, we provide guidelines for the choice of the
algorithm parameters and we discuss a possible extension of
Algorithm 1 to a more general setting.

A. On the Choice of the Parameters

As already mentioned in Section III, there are a few param-
eters that must be appropriately set in order for Algorithm 1
to work correctly. The basic requirements for the parameters
are summarized in Theorem III.2 and are recalled here: (i)
M > 0 must be sufficiently large, (ii) δ is any number in the

open interval (0, 1), (iii) the total number of iterations Tf > 0
must be sufficiently large, (iv) the step-size sequence {αt}t≥0

must satisfy Assumption III.1.
The parameter M > 0 is an exact penalty weight (cf. [31]).

The minimum admissible value is the 1-norm of the dual
solution of problem (8). A conservative choice is any large
number not creating numerical instability when solving the
local problems (4). The assumption on the step-size sequence
{αt}t≥0 is typical in the distributed optimization literature. A
sensible choice satisfying Assumption III.1 is αt = K/(t+1),
with any K > 0.

The purpose of the parameter δ is to enlarge the con-
straint (1b) (see also Lemma IV.4) and is linked to the mini-
mum value of Tf , i.e., the minimum number of iterations to
guarantee feasibility (cf. Theorem III.2). There is an inherent
tradeoff between δ and the minimal Tf . For δ close to 1,
precedence is given to feasibility and Tf may become smaller,
while for δ close to 0, solution optimality is prioritized,
possibly at the cost of a higher Tf . Indeed, for δ close to 1,
the time Tδ in the proof of Theorem III.2 may be smaller, and
therefore a smaller number of iterations Tf may be sufficient
to attain feasibility of the solution. Instead, for δ close to
0, a greater number of iterations may be required to obtain
feasibility. However, in the latter case there could be less
robots for which the components of yTf

i are positive (because,
by Lemma IV.3, it must hold

∑N
i=1 y

Tf

i = δ1 with a small
positive δ), thus forcing less robots to pass through the same
location. In Section VI, we perform simulations in order to
study the trade-off between δ and Tf numerically.

B. Extension to Heterogeneous PDVRP Graphs

Let us outline a possible extension of problem (1) that can
be handled by Algorithm 1. Recall from Section II-B that prob-
lem (1) has the implicit assumption that Ci ≥ maxj∈R{qj}
for all i ∈ I, where Ci is the capacity of vehicle i and qj

is the demand/supply at location j. In real scenarios, while
there may be vehicles potentially capable of performing all the
pickup/delivery requests, it is often the case that many vehicles
are small sized and can only accomplish a subset of the task
requests. This means that the assumption Ci ≥ maxj∈R{qj}
may not hold for some robots.

The general case just outlined can be handled with minor
modifications in the formulation of problem (1) and in the
algorithm. Indeed, if Ci < qj for some robot i and some lo-
cation j, the PDVRP (1) would be unsolvable by construction
(due to infeasibility). Thus, for each robot i ∈ I we define
the largest local set of requests Ri ⊆ R such that Ci ≥ qj

for all j ∈ Ri. Following the description in Section II-A, the
sets Ri will now induce local graphs GAi = (VAi, EAi) of
possible paths, with vertex set VAi = {s, σ}∪Ri and edge set
EAi = {(j, k) | j, k ∈ VAi, j ̸= k and j ̸= σ, k ̸= s}. Then,
each robot i defines a smaller set of optimization variables
xjk
i with j, k ∈ VAi (instead of j, k ∈ VA) and similarly for

Bi and Qi. The optimization problem is formulated similarly
to problem (1) by dropping all the references to non-existing
optimization variables. The resulting modified version of prob-
lem (1) is now feasible as long as for all j ∈ R there exists

8

i ∈ I such that Ci ≥ qj (i.e., each task can be performed by
at least one robot).

The distributed algorithm also requires minor modifications.
In particular, the summations in problems (4) and (7) are per-
formed using EAi in place of EA. Moreover, the thresholding
operation (6) is replaced by the following one

[yEND
i]j =

{
min

(
[y

Tf

i]j , 1
)

if j ∈ Ri

min
(
[y

Tf

i]j , 0
)

otherwise

for all j ∈ R. Finally, the sets Zi must be replaced by the new
version of the constraints (1c)–(1l) with EAi in place of EA. It
is possible to follow essentially the same line of proof outlined
in Section IV with only minor precautions in Lemmas IV.2
and IV.5, by which it can be concluded that Theorem III.2
holds with no changes.

VI. SIMULATIONS ON GAZEBO

In this section, we provide simulation results for the pro-
posed distributed algorithm for teams of TurtleBot3 Burger
ground robots that have to serve a set of pickup and delivery
requests scattered in the environment. All the simulations
are performed using the CHOIRBOT [32] ROS 2 framework.
We first describe how we integrate the proposed distributed
scheme in CHOIRBOT and then we show simulation results.

A. Simulation Set-up

In the CHOIRBOT software architecture, each robot is mod-
eled as a cyber-physical agent and consists of three interacting
layers: distributed optimization layer, trajectory planning layer
and low-level control layer. The CHOIRBOT architecture is
based on the novel ROS 2 framework, which handles inter-
process communications via the TCP/IP stack. This allows us
to implement the proposed distributed scheme on a real WiFi
network in which robots communicate with few neighbors
according to a given graph. Robots are simulated in the Gazebo
environment [33], which provides an accurate estimation of the
TurtleBot dynamics. The resulting simulations are so accurate
that the experiments performed in the next section are obtained
without any change or tuning in the code. In this sense, the
proposed results are comparable to experimental results on a
real team of robots. In Figure 2, we show a snapshot of one of
the simulations addressed in the next section. Due to packet
losses in the ROS 2 communication middleware with a large
number of nodes on a single machine, we were not able to
run simulations with more than 30 robots.

We now describe more in detail the components of the pro-
posed architecture. As said, the distributed optimization layer
handles the cooperative solution of the pickup and delivery
problem. It consists of a set of optimization processes, one
for each robot, that perform the steps of Algorithm 1. At the
beginning of the simulation, each optimization node gathers
the information on the pickup and delivery requests and evalu-
ates the cost vector ci (i.e. the robot-to-task distances) and the
local constraint sets Zi. We stress that these computations are
performed independently for each robot on different processes,
without having access to the other robot information. After the
initialization, robots start communicating and performing the

Figure 2. Snapshot of the initial condition of one of the Gazebo simulations.

steps of the distributed algorithm proposed in Section III-B.
To implement Algorithm 1, we used the DISROPT Python
package [34], which provides the needed features to encode
the algorithm steps and is compatible with the CHOIRBOT
framework (see also [32]). As soon as the distributed opti-
mization procedure completes, robots start moving towards the
assigned tasks. Due to constraint (1b), suboptimal solutions of
problem (1) may lead more than one robot to perform the same
task. Thus, the robot communicates to a so-called AUTH node
that it wants to start a particular task. If the task has been
already taken care of by another robot, the AUTH node denies
authorization and the robot performs the next one. In such a
way, redundant assignments are avoided. The target positions
are then communicated to the local trajectory planning layer
and then fed to the low-level controllers to steer the robots
over the requests positions. The controller nodes interact with
Gazebo, which simulates the robot dynamics and provides the
pose of each robot.

We have experimentally found that a satisfying tuning of
the distributed algorithm is as follows. The robots perform 250
iterations with local allocation initialized as in Algorithm 1.
For the first 125 iterations they use the diminishing step size
αt = 0.005/(t+ 1), then they use a constant step size (equal
to the last computed one). Because of the constant step size,
the final allocation fed to the thresholding operation (6) is the
running average computed from iteration 126 on, i.e.(250∑

τ=126

ατyτi

)
/

(250∑
τ=126

ατ

)
This particular tweaking allows the robots to quickly converge
to a good-quality solution.

B. Results

We performed 3 Monte Carlo simulations on random in-
stances of problem (1) on the described platform with Turtle-
Bot3 robots. We test the behavior of the proposed scheme
when both the number of requests |R| and the number of
robots N are varied. In this way it is possible to assess the
performance of the algorithm if |R| > N or if |R| < N .

First simulation. To begin with, we test optimality of the
solution computed by the algorithm while varying the number
of robots N . We perform 50 Monte Carlo trials for each value

9

of N and we fix δ = 0.1 to prioritize optimality over feasibility
(cf. Section V-A). For each trial, 10 pickup requests and 10
corresponding deliveries are randomly generated on the plane.
In Figure 3, we show the cost error of the solution actuated
by robots after 250 iterations of the distributed algorithm
(in blue), compared to the cost of a centralized solver, with
varying number of robots. The distributed algorithm achieves
an average 30− 40% suboptimality.

5 10 15 20 25 30
0

20

40

60

80

100

Number of robots

co
st

er
ro

r
[%

]

Figure 3. Cost error in Monte Carlo simulations on Gazebo for varying
number of robots. Blue: proposed approach. Red: baseline approach. The
shaded areas represent one standard deviation.

Comparison with distributed baseline approach. The solu-
tions are confronted with a distributed greedy market-based
algorithm as follows. Upon receiving the task requests and
filtering out those that cannot be performed due to insufficient
load capacity, each robot initially self-assigns the pickup task
closest to its position together with the corresponding delivery.
Then, it self-assigns the next pickup task closest to the last
delivery location, and so on until the task list is empty. To re-
move ties, robots compute the cost of performing each pickup-
delivery pair, and then perform a min-consensus algorithm to
decide the robot with the lower cost. This algorithm is run up
to its convergence to the best attainable value. The cost error
obtained with this approach is depicted in Figure 3 (in red).
From the figure, it emerges that our approach outperforms the
baseline since it achieves lower suboptimality levels.

Second simulation. Now, we assess the behavior of the cost
error while varying the total number of requests. Specifically,
we consider a team of 20 robots and we let the number of
requests |R| vary from 4 to 24 (with δ = 0.9). For each
of these values of |R|, we perform 50 trials and we let
the robots implement the solution after 250 iterations of the
distributed algorithm. The results are depicted in Figure 4 and
Figure 5. Notably, as it can be seen from Figure 4, the mean
relative error remains constant while increasing the number of
requests. This is an appealing feature of the proposed strategy
considering the fact that, as depicted also in Figure 5, the
global optimal cost increases with the number of tasks.

Third simulation. Finally, we perform simulations to de-
termine the number of iterations needed to achieve finite-
time feasibility while varying the number of robots N and
the value of δ. We employed three values of δ, namely 0.1,
0.5, 0.9, and performed 50 trials for each of the values
N = 5, 10, 15, 20, 25, 30 and for each value of δ. In each trial,
we performed 250 iterations of the algorithm and recorded
the value of the coupling constraint. Then we determined the

4 8 12 16 20 24

10

20

30

40

Number of requests

co
st

er
ro

r
[%

]

± std. dev.

Figure 4. Cost error in Monte Carlo simulations on Gazebo for varying
number of requests.

4 8 12 16 20 24

25

75

125

Number of requests

to
ta

lc
os

t
Figure 5. Comparison between the centralized optimal solution (red) and the
one found by the proposed distributed strategy (blue).

following quantity

min t

such that
N∑
i=1

∑
k:(j,k)∈EA

xjk
i

τ ≥ 1 for all τ ≥ t,

which is essentially an empirical value of Tδ appearing in
Theorem III.2. Interestingly, we found out that, for all the
trials, the empirical value of Tδ is zero, which means that in
all the simulated scenarios the algorithm provides a feasible
solution to the PDVRP (1) since the first iteration.

VII. EXPERIMENTS

To conclude, we show experimental results on real teams
of robots solving PDVRP instances. We first performed a
small benchmark experiment to assess the performance of the
algorithm and then we perform more complex experiments to
showcase how it can be implemented on large fleets of robots.

A. Benchmark Experiment

In this experiment, we consider a fleet of 4 TurtleBot3
burger ground robots that have to serve 4 pickup tasks and
their corresponding 4 deliveries. In this set-up, robots navigate
in a cluttered environment containing obstacles. Robots start
from initial positions on a line. Pickup and delivery tasks
are generated on two different lines, so as to clearly distin-
guish the optimal robot-to-task assignment. To simulate the
pickup/delivery procedure, each robot waits over the request
location a random service time dj between 3 and 5 seconds.
The capacity Ci of each robot and the demand/supply qj

of tasks are drawn from uniform distributions. The velocity

10

of robots is approximately 0.2m/s. As regards the low-
level controllers, we use a linear state feedback for single
integrators. In this way, we can handle collision among robots
and with obstacles via barrier functions using the approach
described in [35]. Then, in order to get the unicycle inputs,
we utilize a near-identity diffeomorphism (see [35]).

In Figure 6, we show a snapshot of the experiment set-
up. We run the distributed algorithm for 1000 iterations and
record the robot-to-task assignment and the cost along the
algorithm evolution. Figure 7 reports the experiment analysis,
while in Table II, we include a comparison of the allocation
found by the proposed distributed algorithm and the one
found via a centralized solver. The figure highlights that, as
the algorithm evolves, the cost of the overall robot-to-task
assignment decreases, and after a certain number of iterations
the computed solution becomes conflict free (i.e., only one
robot is assigned to each task). As it can be seen from
the table, the solution computed by the distributed algorithm
coincides with the optimal (centralized) solution. A video is
also available as supplementary material to the paper.1

1
2

3

4

1
2
3

4

1
2

3

4

Figure 6. Benchmark experiment for the PDVRP problem. Robots start on
a line. Pickups locations are denoted with red crosses, while deliveries are
denoted with green crosses.

Table II
EXPERIMENT ANALYSIS: FINAL ASSIGNMENTS

Robot id Distributed solution Optimal solution
1 [1] [1]
2 [2] [2]
3 [3] [3]
4 [4] [4]

B. Large Experiments

We consider heterogeneous teams composed by Crazyflie
nano-quadrotors and TurtleBot3 Burger mobile robots. Tasks
are generated randomly in the space. In particular, we split the
experiment area in two halves. Pickup requests are located
in the right half, while deliveries are in the left half. Each
robot can serve a subset of the pickup/delivery requests. This
is decided randomly at the beginning of the experiment. The
velocity of robots (both ground and aerial) is approximately
0.2m/s. The solution mechanism is the same used in the
simulations.

As regards the low-level controllers of nano-quadrotors,
a hierarchical controller has been considered. Specifically, a

1The video can be also found at https://youtu.be/tdtGNftdbng.

0 200 400 600 800 1,000

10

11

12

iteration t

to
ta

lc
os

t

200 400 600 800 1,000
iteration t

0

Robot 1

Robot 2

Robot 3

Robot 4

Task 1
Task 2
Task 3
Task 4

Figure 7. Analysis of benchmark experiment. Top: value of the cost along
the algorithmic evolution, computed from problem (4). Bottom: assignment
of robot to tasks along the algorithmic evolution.

flatness-based position controller generates desired angular
rates that are then actuated with a low-level PID control loop.
The position controller receives as input a sufficiently smooth
position trajectory, which is computed as a polynomial spline.

We performed two different experiments. In the first one,
there are 3 ground robots and 2 aerial robots that must serve
a total of 5 pickups and 5 deliveries. In Figure 8, we show a
snapshot from the experiment. Then we performed a second,
larger experiment with 7 ground robots and 2 aerial robots
that must serve 10 pickups and 10 deliveries. In Figure 9, we
show snapshots from the second experiment. A video is also
available as supplementary material to the paper.2

Figure 8. First experiment with ground and aerial robots for the PDVRP
problem. Ground robots are indicated with a square, while aerial robots are
delimited with circles. The red pins represent pickups, while the blue ones
represent deliveries. The paths travelled by robots are depicted as dashed lines.

VIII. CONCLUSIONS

In this paper, we introduced a purely distributed scheme
to address large-scale instances of the Pickup-and-Delivery
Vehicle Routing Problem in networks of cooperating robots.

2The video can be also found at https://youtu.be/NwqzIEBNIS4.

https://youtu.be/tdtGNftdbng
https://youtu.be/NwqzIEBNIS4

11

Figure 9. Snapshots from the second experiment. Left: robots have reached
the pickup positions and perform the loading operation (simulated). Right:
robots have reached the delivery positions and have terminated the mission.

The proposed distributed algorithm is shown to provide a feasi-
ble solution in a finite number of communication rounds and
has remarkable scalability and privacy-preserving properties
that allow for large robotic networks. The theoretical results
are corroborated on a set of realistic simulations through a
combined ROS 2 / Gazebo platform. Finally, experimental
results on a real testbed highlight feasibility of the proposed
solution for a heterogeneous team of ground and aerial robots.
As a future line of research, a more complex set-up could be
investigated. Indeed, variables as travel cost, service duration,
travel time could be considered to be stochastic in order to
obtain a more realistic model. Moreover, the approach can be
enhanced to force assignments of single robots to each task
and a convergence rate analysis can be performed.

APPENDIX A
CONVERSION TO MIXED-INTEGER LINEAR PROGRAM

Problem (1) is almost a mixed-integer linear program,
except for the fact that the constraints (1h) and (1i) are
nonlinear. However, from a computational point of view, the
constraints (1h) and (1i) can be readily recast as linear ones.
To achieve this, we use a standard procedure (see [36], [37])
that can be summarized as follows.

First, we introduce for each i, j, k the constraints 0 ≤ Bj
i ≤

Bi, where Bi ≥ 0 is any conservative upper bound on the total
travel time of vehicle i selected so as to preserve the solutions
of the original problem 3. While this operation does not affect
the problem, it introduces a bound on the value of each Bj .
After defining for all i, j, k the scalars M jk

i = Bi + dj + tjki
(or any larger number), the nonlinear constraint (1h) can be
replaced with the linear one

Bk
i ≥ Bj

i + dj + tjki −M jk
i (1− xjk

i). (12)

Equivalence of the constraint (1h) with (12) can be verified
by noting that, for xjk

i = 1, we obtain the desired constraint
Bk

i ≥ Bj
i + dj + tjki , while for xjk

i = 0 the constraint (12)
becomes Bk

i ≥ Bj
i +dj+tjki −M jk

i (which is already implied
by the constraints Bk

i ≥ 0 and Bj
i ≥ 0).

A similar reasoning can be applied to turn the constraint (1i)
into a linear one. Let us define W

jk

i = Q
j
+ qk and W jk

i =

3A simple possibility is to select Bi as the sum of all possible travel times
tjki from all i to all j, plus the service times dj for all j.

Q
k − qk −Qj (or any larger number), then constraint (1i) can

be equivalently replaced with the pair of linear constraints

Qk
i ≥ Qj

i + qk −W
jk

i (1− xjk
i), (13a)

Qk
i ≤ Qj

i + qk +W jk
i (1− xjk

i). (13b)

After introducing the additional constraints 0 ≤ Bj
i ≤ Bi

for all i, j, k and replacing (1h)–(1i) with their equivalent
versions (12)–(13), problem (1) becomes a MILP.

APPENDIX B
PRIMAL DECOMPOSITION

Consider a network of N agents indexed by I = {1, . . . , N}
that aim to solve a linear program of the form

min
x1,...,xN

N∑
i=1

c⊤i xi

subj. to xi ∈ Xi, ∀i ∈ I,
N∑
i=1

Aixi ≤ b,

(14)

where each xi ∈ Rni is the i-th optimization variable, ci ∈
Rni is the i-th cost vector, Xi ⊂ Rni is the i-th polyhedral
constraint set and Ai ∈ RS×ni is a matrix for the i-th
contribution to the coupling constraint

∑N
i=1 Aixi ≤ b ∈ RS .

Problem (14) enjoys the constraint-coupled structure [38] and
can be recast into a master-subproblem architecture by using
the so-called primal decomposition technique [39]. The right-
hand side vector b of the coupling constraint is interpreted as
a given (limited) resource to be shared among the network
agents. Thus, local allocation vectors yi ∈ RS for all i
are introduced such that

∑N
i=1 yi = b. To determine the

allocations, a master problem is introduced

min
y1,...,yN

N∑
i=1

pi(yi)

subj. to
N∑
i=1

yi = b

yi ∈ Yi, ∀i ∈ I,

(15)

where, for each i ∈ I, the function pi : RS → R is defined as
the optimal cost of the i-th (linear programming) subproblem

pi(yi) = min
xi

c⊤i xi

subj. to Aixi ≤ yi

xi ∈ Xi.

(16)

In problem (15), the new constraint set Yi ⊆ RS is the set of yi
for which problem (16) is feasible, i.e., such that there exists
xi ∈ Xi satisfying the local allocation constraint Aixi ≤ yi.
Assuming problem (14) is feasible and Xi are compact sets,
if (y⋆1 , . . . , y

⋆
N) is an optimal solution of (15) and, for all i,

x⋆
i is optimal for (16) (with yi = y⋆i), then (x⋆

1, . . . , x
⋆
N) is an

optimal solution of the original problem (14) (see, e.g., [39,
Lemma 1]).

12

APPENDIX C
PROOFS

A. Proof of Lemma IV.1

Note that problem (4) is the epigraph form of

min
xi,Bi,Qi

∑
(j,k)∈EA

cjki xjk
i

+M max

{
0,max

j∈R

(
[yti]j −

∑
k:(j,k)∈EA

xjk
i

)}
subj. to (xi, Bi, Qi) ∈ conv(Zi)

Moreover, it holds conv(Zi) ⊃ Zi. Therefore, the proof
follows since Zi is not empty (by assumption). □

B. Proof of Lemma IV.2

Fix a robot i. Because of the thresholding operation (6),
it holds [yEND

i]j ≤ 1 for all j ∈ R. We now show that
the feasible set of problem (7) is not empty. Since prob-
lem (1) is assumed to be feasible, we know that there exists
zi = (xi, Bi, Qi) ∈ Zi. Thus, we only have to show that the
constraint

∑
k:(j,k)∈EA

xjk
i ≥ [yEND

i]j for all j ∈ R can be
satisfied by at least one vector zi ∈ Zi.

Due to the flow constraints (1e), the subtour elimination
constraints (1h) and the integer constraints (1g), for all j ∈ R
the quantity

∑
k:(j,k)∈EA

xjk
i is either equal to 0 or equal

to 1, since there can be at most one index k satisfying
(j, k) ∈ EA and such that xjk

i = 1. Consider the constraint∑
k:(j,k)∈EA

xjk
i ≥ [yEND

i]j and fix a component j ∈ R. Note
that this constraint essentially imposes whether or not robot
i must pass through location j. Indeed, on the one hand, if
[yEND

i]j ≤ 0, the vector zi can be chosen such that the left-hand
side is either equal to 0 (vehicle i does not pass through loca-
tion j) or equal to 1 (vehicle i passes through location j). In
either case, it holds

∑
k:(j,k)∈EA

xjk
i ≥ 0 ≥ [yEND

i]j so that the
constraint is satisfied. On the other hand, if 0 < [yEND

i]j ≤ 1
(recall that [yEND

i] ≤ 1 for all j ∈ R and thus there are no other
possibilities), then the only way to satisfy the constraint is to
have xjk

i = 1 for some index k with (j, k) ∈ EA, in which this
case we would obtain 1 =

∑
k:(j,k)∈EA

xjk
i ≥ [yEND

i]j > 0. As
a consequence, problem (7) admits as feasible solution any
vector (xi, Bi, Qi) ∈ Zi representing a path passing through
all the locations j ∈ R and satisfying [yEND

i]j > 0. □

REFERENCES

[1] N. Kamra, T. S. Kumar, and N. Ayanian, “Combinatorial problems in
multirobot battery exchange systems,” IEEE Transactions on Automation
Science and Engineering, vol. 15, no. 2, pp. 852–862, 2017.

[2] A. Ham, “Drone-based material transfer system in a robotic mobile
fulfillment center,” IEEE Transactions on Automation Science and
Engineering, vol. 17, no. 2, pp. 957–965, 2019.

[3] M. C. Gombolay, R. J. Wilcox, and J. A. Shah, “Fast scheduling of
robot teams performing tasks with temporospatial constraints,” IEEE
Transactions on Robotics, vol. 34, no. 1, pp. 220–239, 2018.

[4] X. Bai, M. Cao, W. Yan, and S. S. Ge, “Efficient routing for precedence-
constrained package delivery for heterogeneous vehicles,” IEEE Trans-
actions on Automation Science and Engineering, vol. 17, no. 1, pp.
248–260, 2019.

[5] P. Toth and D. Vigo, The vehicle routing problem. SIAM, 2002.

[6] S. N. Parragh, K. F. Doerner, and R. F. Hartl, “A survey on pickup and
delivery models part II: Transportation between pickup and delivery
locations,” Journal für Betriebswirtschaft, vol. 58, no. 2, pp. 81–117,
2008.

[7] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” European Journal of Operational
Research, vol. 225, no. 1, pp. 1–11, 2013.

[8] U. Ritzinger, J. Puchinger, and R. F. Hartl, “A survey on dynamic and
stochastic vehicle routing problems,” International Journal of Produc-
tion Research, vol. 54, no. 1, pp. 215–231, 2016.

[9] B. Coltin and M. Veloso, “Online pickup and delivery planning with
transfers for mobile robots,” in Workshops at the Twenty-Seventh AAAI
Conference on Artificial Intelligence, 2013.

[10] M. Liu, H. Ma, J. Li, and S. Koenig, “Task and path planning for multi-
agent pickup and delivery.” in AAMAS, 2019, pp. 1152–1160.

[11] M. H. F. b. M. Fauadi, S. H. Yahaya, and T. Murata, “Intelligent
combinatorial auctions of decentralized task assignment for agv with
multiple loading capacity,” IEEJ Transactions on electrical and elec-
tronic Engineering, vol. 8, no. 4, pp. 371–379, 2013.

[12] B. Heap and M. Pagnucco, “Repeated sequential single-cluster auctions
with dynamic tasks for multi-robot task allocation with pickup and
delivery,” in German Conference on Multiagent System Technologies.
Springer, 2013, pp. 87–100.

[13] A. Arsie, K. Savla, and E. Frazzoli, “Efficient routing algorithms for
multiple vehicles with no explicit communications,” IEEE Transactions
on Automatic Control, vol. 54, no. 10, pp. 2302–2317, 2009.

[14] A. Soeanu, S. Ray, M. Debbabi, J. Berger, A. Boukhtouta, and
A. Ghanmi, “A decentralized heuristic for multi-depot split-delivery
vehicle routing problem,” in 2011 IEEE International Conference on
Automation and Logistics (ICAL). IEEE, 2011, pp. 70–75.

[15] S. Chopra, G. Notarstefano, M. Rice, and M. Egerstedt, “A distributed
version of the hungarian method for multirobot assignment,” IEEE
Transactions on Robotics, vol. 33, no. 4, pp. 932–947, 2017.

[16] A. Settimi and L. Pallottino, “A subgradient based algorithm for dis-
tributed task assignment for heterogeneous mobile robots,” in IEEE
Conference on Decision and Control (CDC), 2013, pp. 3665–3670.

[17] M. Bürger, G. Notarstefano, F. Bullo, and F. Allgöwer, “A distributed
simplex algorithm for degenerate linear programs and multi-agent as-
signments,” Automatica, vol. 48, no. 9, pp. 2298–2304, 2012.

[18] A. Testa and G. Notarstefano, “Generalized assignment for multi-
robot systems via distributed branch-and-price,” IEEE Transactions on
Robotics, 2021.

[19] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithms for
multirobot task assignment with task deadline constraints,” IEEE Trans-
actions on Automation Science and Engineering, vol. 12, no. 3, pp.
876–888, 2015.

[20] A. Testa, A. Rucco, and G. Notarstefano, “Distributed mixed-integer
linear programming via cut generation and constraint exchange,” IEEE
Transactions on Automatic Control, vol. 65, no. 4, pp. 1456–1467, 2019.

[21] Z. Talebpour and A. Martinoli, “Adaptive risk-based replanning for
human-aware multi-robot task allocation with local perception,” IEEE
Robotics and Automation Letters, vol. 4, no. 4, pp. 3790–3797, 2019.

[22] N. Buckman, H.-L. Choi, and J. P. How, “Partial replanning for decen-
tralized dynamic task allocation,” in AIAA Scitech 2019 Forum, 2019,
p. 0915.

[23] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler, “A stochastic and
dynamic vehicle routing problem with time windows and customer
impatience,” Mobile Networks and Applications, vol. 14, no. 3, pp. 350–
364, 2009.

[24] M. Pavone, E. Frazzoli, and F. Bullo, “Adaptive and distributed algo-
rithms for vehicle routing in a stochastic and dynamic environment,”
IEEE Transactions on automatic control, vol. 56, no. 6, pp. 1259–1274,
2010.

[25] F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith, “Dynamic
vehicle routing for robotic systems,” Proceedings of the IEEE, vol. 99,
no. 9, pp. 1482–1504, 2011.

[26] A. Farinelli, A. Contini, and D. Zorzi, “Decentralized task assignment
for multi-item pickup and delivery in logistic scenarios,” in Proceed-
ings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems, 2020, pp. 1843–1845.

[27] L. Abbatecola, M. P. Fanti, G. Pedroncelli, and W. Ukovich, “A dis-
tributed cluster-based approach for pick-up services,” IEEE Transactions
on Automation Science and Engineering, vol. 16, no. 2, pp. 960–971,
2018.

[28] M. Saleh, A. Soeanu, S. Ray, M. Debbabi, J. Berger, and A. Boukhtouta,
“Mechanism design for decentralized vehicle routing problem,” in Pro-

13

ceedings of the 27th Annual ACM Symposium on Applied Computing,
2012, pp. 749–754.

[29] A. Falsone, K. Margellos, and M. Prandini, “A distributed iterative
algorithm for multi-agent milps: finite-time feasibility and performance
characterization,” IEEE control systems letters, vol. 2, no. 4, pp. 563–
568, 2018.

[30] A. Camisa, I. Notarnicola, and G. Notarstefano, “Distributed primal
decomposition for large-scale MILPs,” IEEE Transactions on Automatic
Control, pp. 1–1, 2021.

[31] D. P. Bertsekas, Constrained optimization and Lagrange multiplier
methods. Academic press, 1982.

[32] A. Testa, A. Camisa, and G. Notarstefano, “ChoiRbot: A ROS 2 toolbox
for cooperative robotics,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 2714–2720, 2021.

[33] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, 2004, pp. 2149–2154.

[34] F. Farina, A. Camisa, A. Testa, I. Notarnicola, and G. Notarstefano,
“Disropt: a python framework for distributed optimization,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 2666–2671, 2020.

[35] S. Wilson, P. Glotfelter, L. Wang, S. Mayya, G. Notomista, M. Mote,
and M. Egerstedt, “The robotarium: Globally impactful opportunities,
challenges, and lessons learned in remote-access, distributed control of
multirobot systems,” IEEE Control Systems Magazine, vol. 40, no. 1,
pp. 26–44, 2020.

[36] J.-F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,”
Operations Research, vol. 54, no. 3, pp. 573–586, 2006.

[37] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407–427,
1999.

[38] G. Notarstefano, I. Notarnicola, and A. Camisa, “Distributed optimiza-
tion for smart cyber-physical networks,” Foundations and Trends® in
Systems and Control, vol. 7, no. 3, pp. 253–383, 2019.

[39] G. J. Silverman, “Primal decomposition of mathematical programs by
resource allocation: I–basic theory and a direction-finding procedure,”
Operations Research, vol. 20, no. 1, pp. 58–74, 1972.

Andrea Camisa received the Laurea degree summa
cum laude in Computer Engineering from the Uni-
versity of Salento, Italy in 2017 and the Licenza de-
gree from the excellence school ISUFI, Italy in 2018.
He is a Ph.D student within the Ph.D Programme
“Biomedical, Electrical, and Systems Engineering”
at the Department of Electrical, Electronic and Infor-
mation Engineering, University of Bologna, Italy. He
was a visiting student at the University of Stuttgart
in 2017 and 2018. His research interests include
convex, distributed and mixed-integer optimization.

Andrea Testa received the Laurea degree “summa
cum laude” in Computer Engineering rom the Uni-
versità del Salento, Lecce, Italy in 2016 and the Ph.D
degree in Engineering of Complex Systems from the
same university in 2020.

He is a Research Fellow at Alma Mater Studiorum
Università di Bologna, Bologna, Italy. He was a
visiting scholar at LAAS-CNRS, Toulouse, (July to
September 2015 and February 2016) and at Alma
Mater Studiorum Università di Bologna (October
2018 to June 2019). His research interests include

control of UAVs and distributed optimization.

Giuseppe Notarstefano received the Laurea degree
summa cum laude in electronics engineering from
the Università di Pisa, Pisa, Italy, in 2003 and the
Ph.D. degree in automation and operation research
from the Università di Padova, Padua, Italy, in 2007.

He is a Professor with the Department of Elec-
trical, Electronic, and Information Engineering G.
Marconi, Alma Mater Studiorum Università di
Bologna, Bologna, Italy. He was Associate Professor
(from June 2016 to June 2018) and previously As-
sistant Professor, Ricercatore (from February 2007),

with the Università del Salento, Lecce, Italy. He has been Visiting Scholar
at the University of Stuttgart, University of California Santa Barbara, Santa
Barbara, CA, USA and University of Colorado Boulder, Boulder, CO, USA.
His research interests include distributed optimization, cooperative control in
complex networks, applied nonlinear optimal control, and trajectory optimiza-
tion and maneuvering of aerial and car vehicles.

Dr. Notarstefano serves as an Associate Editor for IEEE Transactions on
Automatic Control, IEEE Transactions on Control Systems Technology, and
IEEE Control Systems Letters. He has been also part of the Conference
Editorial Board of IEEE Control Systems Society and EUCA. He is recipient
of an ERC Starting Grant 2014.

	multi robot pickup copertina
	main_pickup_and_delivery_journ
	Introduction
	Related Work
	Contributions

	Pickup-and-Delivery Vehicle Routing Problem
	Optimization Problem Formulation
	Description of Cost and Constraints

	Distributed Algorithm
	Toward a Distributed Resource Allocation Scheme
	Distributed Algorithm Description

	Algorithm Analysis
	Feasibility of Local Problems
	Convergence of Distributed Resource Allocation Scheme
	Intermediate Results
	Proof of Theorem III.2

	Discussion and Extension
	On the Choice of the Parameters
	Extension to Heterogeneous PDVRP Graphs

	Simulations on Gazebo
	Simulation Set-up
	Results

	Experiments
	Benchmark Experiment
	Large Experiments

	Conclusions
	Appendix A: Conversion to Mixed-Integer Linear Program
	Appendix B: Primal Decomposition
	Appendix C: Proofs
	Proof of Lemma IV.1
	Proof of Lemma IV.2

	References
	Biographies
	Andrea Camisa
	Andrea Testa
	Giuseppe Notarstefano

