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Abstract: In this paper, a methodology based on data-driven models is developed to predict the NOx
emissions of an internal combustion engine using, as inputs, a set of ECU channels representing the
main engine actuations. Several regressors derived from the machine learning and deep learning
algorithms are tested and compared in terms of prediction accuracy and computational efficiency to
assess the most suitable for the aim of this work. Six Real Driving Emission (RDE) cycles performed at
the roll bench were used for the model training, while another two RDE cycles and a steady-state map
of NOx emissions were used to test the model under dynamic and stationary conditions, respectively.
The models considered include Polynomial Regressor (PR), Support Vector Regressor (SVR), Random
Forest Regressor (RF), Light Gradient Boosting Regressor (LightGBR) and Feed-Forward Neural
Network (ANN). Ensemble methods such as Random Forest and LightGBR proved to have similar
performances in terms of prediction accuracy, with LightGBR requiring a much lower training time.
Afterwards, LightGBR predictions are compared with experimental NOx measurements in steady-
state conditions and during two RDE cycles. Coefficient of determination (R2), normalized root mean
squared error (nRMSE) and mean average percentage error (MAPE) are the main metrics used. The
NOx emissions predicted by the LightGBR show good coherence with the experimental test set, both
with the steady-state NOx map (R2 = 0.91 and MAPE = 6.42%) and with the RDE cycles (R2 = 0.95
and nRMSE = 0.04).

Keywords: data-driven models; machine learning; NOx emission; internal combustion engine;
surrogate model

1. Introduction

These days, due to the increasing number of sensors installed on the engine and the
high number of experimental tests, the amount of data available for the car manufacturers
is always wider. This, along with the enhancement of computational power of common
devices, is affecting the way with which data are managed, processed and analyzed [1].

To extract insights from such a high amount of data, Artificial Intelligence (AI) tech-
niques are also spreading in the automotive fields, especially for applications related
to autonomous driving, vehicle control, smart connections, virtual sensing and fault
diagnosis [2].

The AI models are computationally cheap and capable of learning the main charac-
teristics of systems based only on experimental measurements, without requiring explicit
programming, thus reducing the effort required to model complex physical and chemical
phenomena [3,4]. Moreover, the ability to process large amounts of information in a short
time and to learn system behavior from experimental data makes AI models interesting for
many applications. Therefore, the effort of research on development and implementation
of such methodologies in the automotive field is strongly increasing.
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In addition, in the last decades, emission regulations have become increasingly demand-
ing, causing a growth in time and costs needed for engine calibration and development.

To reduce the number of physical experiments needed and to limit the cost increase in
engine development, AI and machine learning can be exploited for modeling and predicting
engine emissions in a virtual environment [5–9]. Differently from the physical and semi-
physical models [10–15], a data-driven approach could be helpful, since the processes at
the basis of emission formation, such as combustion and turbulence, are quite difficult to
model analytically [16] and require much time to run in virtual environments. Despite 0-D
models [17–21] being computationally efficient, the analytical formulation of the physical
phenomena can be difficult to determine when many independent variables are affecting
the output.

Some applications of machine learning aimed at emission modeling are already present
in the literature [22–24]. For example, in their review, Shivansh Khurana et al. [25] show
that most of the machine learning models proposed in the literature for emission predictions
are based on Support Vector Machines (SVMs), ensembles of tree-based models (Random
Forest or Gradient Boosted Trees) and Neural Networks (NNs).

The NN could seem the most reliable approach due to its high complexity, but the
resulting accuracy strongly depends on the particular application. As an example, in their
study, Altuğ and Küçük [26] made a comparison between Elastic-Net, eXtreme Gradient
Boosting (XGBoost) and Long Short-Term Memory (LSTM) neural networks for NOx predic-
tion, showing that XGBoost outperforms the most complex LSTM recurrent neural network.

Moreover, Papaiouannou [27] proposes a Random Forest algorithm to predict par-
ticulate emissions in a GDI engine. It is a simple model, easier to understand and less
computationally expensive than deep neural networks.

However, there are many applications where artificial neural networks are used for
predicting emissions with satisfying results, such as in [28,29].

Other approaches involve the use of advanced techniques for time series modeling
derived from the deep learning (such as NARX, ARIMAX and RegARMA) [30] and heavy
preprocessing techniques, such as in the work of Yu et al., where the Long Short-Term
Memory neural network is applied to predict the NOx processed with Complete Ensemble
Empirical Mode Decomposition with the adaptive noise (CEEMDAN) technique [31].

From the literature, there is not a best approach or algorithm uniquely adopted in
emission modeling, and it is difficult to state it a priori, since each method has its own
advantages and drawbacks.

Therefore, the present work presents a comparison of four different state-of-the-art
techniques, namely the Support Vector Regressor (SVR) [32,33], the Random Forest (RF) [34],
the Light Gradient Boosting (LightGBR) [35] and the Feed-forward Neural Network
(FNN) [36], in order to estimate the NOx engine-out emissions. These models are compared
with a Polynomial Regressor (PR), chosen as the benchmark, in terms of prediction accuracy
and training time, in order to assess the best approach for this specific application. A brief
description of these models is given below.

Most of the research in the literature refers to models for predicting the pollutant
emissions under steady-state conditions. Nevertheless, one challenging aspect in this
field is related to emission prediction under transient operating conditions [37]. Therefore,
the present work wants to outline a procedure for the data preprocessing and analysis
through machine learning techniques aimed at the development of a data-driven engine
surrogate model capable of predicting the emissions not only under steady-state operations
but also for dynamic and transient conditions.

Therefore, the models are trained and validated with data coming from Real Driving
Emission (RDE) cycles that are well representative of a wide range of operating conditions,
including highly dynamic maneuvers. Differently from standard homologation cycles,
the RDE tests are performed on roads, and the emissions are measured by means of a PEMS
(Portable Emission Measurement System). This means that the RDE cycles do not follow a



Energies 2022, 15, 8088 3 of 22

specific speed profile; instead, there are many variables such as the weather, the environ-
mental temperature and humidity, as well as the altitude and the traffic conditions [38].

On the other hand, the conventional homologation cycles such as NEDC (New Euro-
pean Driving Cycle) or WLTC (Worldwide harmonized Light Test Cycle) are carried out in
laboratory and they are set to follow a defined speed and pedal profiles. Therefore, these are
not completely representative of a real driving condition, and they usually underestimate
the pollutant emissions with respect to the real usage on the road [39].

For this work, the RDE cycles are performed reproducing a real road condition, and
then the speed and load profiles are reproduced with a car on a roll bench. This is carried
out mainly for two reasons. First, engine-out emission can be measured only in laboratory,
since the PEMS is installed after the tailpipe; secondly, the measurement systems of the
laboratory are much more accurate and reliable than the PEMS.

The inputs for the model are selected within the engine control unit (ECU) signals,
and the output are obtained from the continuous measurement of the NOx emissions.

In Section 2, the experimental campaign, as well as the data preprocessing techniques,
are described in detail. In this part, the methodology is applied to real industrial experimen-
tal data that require a wide preprocessing activity. First of all, the emission measurements
present a delay with respect to the ECU channels that is compensated through an alignment
over time, based on the first engine firing. Then, an optimal set of features is defined by
combining different feature selection techniques, such as the correlation analysis, the Fea-
ture Importance Permutation (FIP) and domain knowledge. Moreover, a novel Sliding
Window over time is applied to the input matrix to keep into account the partial history of
the inputs and to enhance the performance of the model under transient conditions. In other
words, the innovative contribution of the proposed activity consists of the implementation
of the preprocessing methodologies and the machine learning algorithms to estimate the
NOx emissions produced during real driving maneuvers.

In Section 3, the comparison between different data-driven models is presented. Each
model is calibrated and tuned through the Randomized Search Cross-Validation, and a
summary of their performance is provided. Moreover, a sensibility analysis to the Sliding
Window size is reported, showing the impact that it has on the training time and the model
accuracy. The LightGBR is selected for its low training time and high accuracy, and it is
used to predict the NOx emissions of two RDE cycles and under steady-state operating
conditions. The model trained on the RDE cycles is also validated calculating the NOx
emissions for steady-state conditions. In this way, it is possible to highlight the accuracy of
this methodology also when it is tested on different operating conditions.

Section 4 summarizes the main conclusions with a particular focus on the future
developments of the proposed work.

2. Methodology

In this section, the methodologies implemented for the data preprocessing, the feature
selection and engineering and the comparison of the models performance are presented.

2.1. Experimental Dataset

The models are trained and tested using data from eight different experimental RDE
cycles and from the engine steady-state emission measurements. The complete dataset
is composed of 9.5 h of ECU and emissions recordings for a total of almost 350,000 time
samples. More details about the dataset composition are provided in the following sections.

All the RDE cycles are reproduced on a roll bench, where a virtual driver is set to
follow the target speed and pedal profile of a real on-road RDE cycles. However, it is
possible to reproduce such maneuvers in a controlled laboratory environment, taking
advantage of the more accurate and robust tools for the engine parameters and emissions
measurements. This choice is also made to get as close as possible to the measurements
achievable with the most accurate sensing tools.
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An example of a typical speed profile for an RDE cycle is shown in Figure 1. Three
different sections of the cycle are noticeable:

• Urban: Vehicle speed below 60 km/h;
• Rural: Vehicle speed comprises between 60 km/h and 90 km/h;
• Highway: Vehicle speed up to 140 km/h.

URBAN RURAL HIGHWAY

Figure 1. An example of a Real Driving Emission cycle divided into three main phases: urban, rural
and highway paths.

As a reference for steady-state operating conditions, the dataset also includes an
experimental map of engine-out NOx measurements obtained by testing the engine in
many stationary engine points. A 3-D scatter of the NOx map normalized along all the axes
is reported in Figure 2.
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Figure 2. NOx engine-out concentration under steady-state conditions depending on engine speed
and load.
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During all the experimental tests, both the NOx emissions and the ECU channels are
recorded, corresponding to the output and the inputs of the models, respectively. Therefore,
a supervised learning approach can be adopted.

The data reported here come from a real industrial test, and the reported data cannot
be disclosed. Therefore, for the sake of confidentiality, the whole dataset is normalized in a
range between zero and one according to (1):

xnorm =
x − xmin

xmax − xmin
(1)

For the same reason, the results and plots shown in the following text are normalized
with the same equation.

2.2. Experimental Setup

The experimental tests were conducted on a laboratory roll bench on a vehicle
equipped with a state-of-the-art spark-ignited V12 naturally aspirated engine, whose
specifications are reported in Table 1.

The NOx emissions are measured by means of a Chemiluminescent Detector analyzer
(CLD). This device measures the NOx concentration in the exhaust gases, exploiting the
fact that the nitric oxide (NO) combines with the ozone (O3) to create electronically excited
NO2 molecules, which, returning to the equilibrium state, emit visible radiations with
intensity proportional to the concentration of NO in the gas. Being able to measure the
irradiated light, the CLD can assess NOx concentration in the exhausts. The key features of
the CLD analyzer are reported in Table 2.

Table 1. Engine Specifications.

Engine Specifications

Engine Type V12
Displacement Volume [cc] 6495.6 cc
Intake Type Naturally Aspirated
Combustion System GDI Spark-ignition
Number of Cylinders [#] 12 (6 per bank)
Valves per Cylinder [#] 4 (2 int + 2 exh)
Bore × Stroke [mm] 94.0 × 78.0

Table 2. Chemiluminescent Detector Sensor (CLD) Specifications.

CLD Sensor Specifications

Acquisition Frequency [Hz] 10
NOx Range [ppm] min 10–max 10,000
Response Dynamics 90% full-scale in 1 s
Temperature Effect <2% of full-scale per 10K of T

To figure out the structure of the laboratory roll bench equipment, a schematic layout
is reported in Figure 3. The CLD analyzer is located between the engine and the after-
treatment system of the vehicle to intercept the NOx concentration in the exhausts coming
out from the engine.
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Figure 3. Schematic layout of the roll bench with CLD analyzer.

2.3. Data Pre-Processing

Starting from the experimental measurements, a raw dataset is firstly generated by
including the ECU signals and parameters selected according to the criteria described
below, and these are coupled with the NOx engine-out values sensed by the CLD analyzer.

Typically, the ECU channels have different sampling frequency depending on their
nature and on the quantity they outline. For example, their acquisition frequency can be
10 Hz or 100 Hz, or in some cases, they can be acquired with a frequency proportional
to the engine speed. Therefore, to obtain a homogeneous dataset, a resampling of each
channel is needed.

To this end, all the ECU channels are resampled at 10 Hz, which is the same acquisition
frequency of the CLD sensor used for measuring NOx concentration in the exhausts.

A second issue is related to the presence of two different acquisition systems, namely
the ECU, installed on the vehicle, and the CLD sensor, installed on the roll bench. So,
the synchronization in time between them is needed in the preprocessing phase. The total
delay between them can be split into two main components:

• Different timestamps of the ECU with respect to the CLD analyzer because they are
independent measurement tools;

• Delay in the emission measurement due to: (i) the system dynamics, because of the
time needed for the exhaust gases to achieve the CLD sensor, and (ii) the sensor
dynamics, since it acts as a first-order system that makes the transient measurement
smoother.

For the aforementioned reasons, it is understandable how the emission delay has
an impact on data synchronization and on data quality. Apart from the systematic delay
between the CLD sensor and the ECU, there are components of the delay that depend
on the dynamics of the phenomena that are taking place. Indeed, this delay is related
to the emission pick-up point position on the exhaust pipe and to the distance to the
CLD sensor. Moreover, since the exhaust gas mass flow strongly depends on the engine
operating conditions, the time needed to move across the ducts is variable during the
test. Nevertheless, as a first approximation, the delay is considered constant, supposing
that a rigid shift of the NOx signal is sufficient. The delay due to different timestamps
between the roll bench and the ECU channels is compensated by means of a reference
signal that is acquired both from the roll bench and from the ECU, namely the vehicle
speed. Knowing the vehicle speed calculated from the rolls’ angular speed and aligning it
with the speed coming from the ECU, it is possible to compensate the mentioned delay, as
shown in Figure 4.
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On the other hand, the delay due to the dynamics cannot be easily compensated since it
depends on many variables; firstly, the speed of the exhaust gas flow. Therefore, as a simple
and robust solution, the delay was compensated by aligning the first positive gradient of
the emissions (NOx) with the engine start, as reported in Figure 5. Here, the hypothesis
is that the first emission peak occurs immediately after the engine starts and that, as an
acceptable approximation, the variable part of the delay, related to the changing exhaust
mass flow, can be neglected.
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Figure 4. Vehicle speed reference to compensate the delay between the roll bench and the ECU.
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Figure 5. Synchronization of NOx signal with engine firing, using engine rotational speed as reference.

Then, a table is generated with the ECU channels synchronized with the NOx emission
traces. Different physical quantities are in different columns of the dataset, while each row
represents a timestep. Moreover, having many RDE cycles, it was possible to concatenate
them inside a unique tabular dataset.

As already mentioned above, for confidentiality reasons, every column of such
database is normalized with respect to the maximum value, following the Equation (1).

To develop a data-driven model, the dataset needs to be split into training, validation
and testing sets. The training set is the part of the data from which the model learns relations
between the input and output. The validation set is a part of the data which is held out
from the training process to assess whether the model is incurring overfitting or to perform
hyperparameter tuning. Finally, the testing set is the part of the data used after model
training and hyperparameter tuning to evaluate prediction capability. During testing, only
inputs are provided to the model. Then, by comparing the predicted output with the real
one, it is possible to give a score to the model according to different possible metrics.
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For this activity, a 10-fold cross-validation was performed instead of a typical valida-
tion process, as described in detail later.

The available experimental dataset consists in a set of eight different RDE cycles and
the shortest has a duration of 1800 s while the longest of 6000 s.

Two RDE cycles were held out from the dataset for the model testing, reported in
Figure 6. These two RDE cycles have different durations, with the first one lasting about
2000 s and the second one lasting 6000 s. Since these experiments are used exclusively for
model testing, they are excluded from the training process.
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(a) First RDE cycle with duration around 2000 s.
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(b) Second RDE cycle with duration of 6000 s.

Figure 6. Speed profile of two Real Driving Emission cycles within the test set.

Within the remaining six experiments, 90% of the data were used for training and the
remaining 10% for the cross-validation of the models. To avoid possible biases due to the
time order of the experiments, a random shuffling of the samples was applied.

Table 3 summarizes the split of these sets, specifying the time and the portion of the
total dataset.

Table 3. Dataset split.

Dataset Composition Duration [h] Proportion [%]

Training 6 RDE cycles 6.25 65
Validation 10% of training set 1 10
Test 2 RDE + Steady-state map 2.25 25
Total 8 RDE + Steady-state map 9.5 100

2.4. Model Development
2.4.1. Feature Selection and Processing

To develop a suitable dataset, the input features are chosen by means of different
techniques of features selection, such as the correlation analysis and the features importance
permutation combined with the physical domain knowledge. Afterwards, the selected
features are processed, considering that they are describing dynamical phenomena. So,
in this work, the introduction of a temporal Sliding Window is assessed, and its impact on
the model performances is evaluated. Details and results about the feature selection and
feature engineering processes are provided in Section 3.

2.4.2. Model Selection and Testing

Five data-driven regressors (PR, SVR, RF, LightGBR and FNN) are trained and val-
idated on a set of six RDE cycles. The optimal model is selected as the best compromise
between the training time and accuracy, assessed by means of a 10-fold cross-validation.

Then, the best model is applied to the test set composed of two RDE cycles and
one steady-state map. With this approach, the capabilities in the NOx prediction are
assessed both in highly dynamic and steady-state conditions. All the results are discussed
in Section 3. It is emphasized that the results are obtained by adopting a single experimental
setup, meaning that the vehicle type, the engine type and the emission measurement system
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are the same during all the experimental tests. Nevertheless, it is expected that a change
in the hardware components that have an impact on the combustion and on the emission
production may require a recalibration of the models. In particular, three different cases
can be distinguished:

• Change in the ECU control software: The models do not require further actions if
training data are still representative of the test data.

• Change in hardware components that does not affect the engine’s functional layout: If
there is an impact on the engine combustion and performances, the model needs to be
retrained on an updated experimental dataset.

• Change in the engine’s functional layout: The model needs to be developed from
scratch; the feature selection and the model topology should be assessed.

In all the aforementioned cases, the general methodology proposed in this paper for
preprocessing, feature selection, feature engineering and model selection is still valid. The
algorithm of such methodology is reported in Figure 7.

Raw data 
RDE + Steady-State 

NOx measures

Pre-processing

Alignment/Resampling Normalization

Features Selection

Features Engineering

Complete Dataset

Dataset Split
Training/Test Set

Model Training

Model Cross-Validation

Optimal Topology

+ 

Model Performances

Best Model Selection

and Testing

Figure 7. Flow chart of the main methodology steps.

3. Results
3.1. Features Selection

The features of the model are selected from the available ECU channels because these
signals are also available on-board, and thus can be used for future real-time implementations.

However, a lot of ECU channels are recorded during an experiment, and most of them
represent physical quantities that do not affect NOx formation phenomena.

Therefore, the selection of the relevant ECU channels is a critical step of the features
selection process, since, on one hand, it is crucial to consider all the relevant inputs that
affect the NOx emission, but, on the other hand, it is important having as little redundancy
as possible. In some cases, even if some of the inputs are highly correlated with the NOx
concentration, they are not providing any additional information to the model. Instead,
they are concurring to increase the model complexity and the computational effort.

Moreover, the feature redundancy increases data noisiness, as well as the probability
for the model to find inconsistent input–output relationships.

The main steps of the feature selection are summarized in Figure 8. First of all, the ECU
channels that were either faulty, incomplete, or not related at all with NOx formation
are removed from the input set. As a second selection, the input-to-input Spearman
correlation analysis [40] is calculated for each remaining ECU channel to highlight strong
correlations between them. Then, a similar correlation analysis is applied to underline
existing relationships between the inputs and the output.

However, such approach can lead to incomplete results, since the typical correlation
indexes (i.e., the Pearson or Spearman ones) can highlight only the linear or monotonic
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relationships that can be applied to a single input, neglecting any possible interaction
between multiple inputs.

Features Selection Process

Complete set of ECU channels

from acquisition (n>200)

Removal of redundant chans

computing Spearman cross-

correlation

Removal of incomplete or faulty

channels

(n=81)

Removal of channels physically

unrelated to NOx (n=19)

Features Permutation

Importance (FPI) for features

selection (n=8)

Most important features

Figure 8. Flow chart of main feature selection steps.

Hence, there are several techniques which take advantage of the model itself to define
the key features. One of them is the Feature Importance Permutation (FIP) technique [41].

This method evaluates the drop of model accuracy when a feature is removed from
the inputs. The process is iterated removing one features at a time and repeated 30 times
to increase the statistical relevance of the results. The features that lead to the highest
performance drops can be considered the most important for the model. Since this technique
is a greedy process, the domain knowledge can further help to isolate only the features
physically related to the outputs, such as the engine actuators, sensors and strategies that
are effectively involved in NOx production.

Thereby, only the features considered important from a physical point of view and
not redundant are considered. A plot of the results using FIP with a base Random Forest
model is shown in Figure 9.
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It is clear that the air-to-fuel ratio measured by the lambda probes in both engine banks
is the most relevant feature for the model. This finds confirmation from physics, since the
NOx formation is favored by the lean mixtures.

A further note is needed because some of the inputs are measured independently for
the two engine banks. Normally, the signals of each engine bank are aligned with the same
variable of the other bank. However, some quantities of the particular engine bank are
selected, such as, for instance, the lambda measured in the exhaust line in order to achieve
the highest correlation between the inputs and the output of the model.

In the end, the FIP results are used as general guidelines for the selection of the optimal
set of features. However, the resulting selection of inputs for the proposed models were
conducted by evaluating their impacts on the physical process that affects the emission
production (i.e. the combustion). In other words, even if the ranking reported in Figure 9
shows a high importance of the flags associated, for instance, to the activation of the
component protection strategy (named Bit-Strategy), such Boolean values are not included
in the final set of features because of their poor physical contribution to pollutant emission
production. In this way, the training process leads to calibrate a robust model, since the
selected features have a physical relationship with the estimated outputs. The complete set
of inputs is reported below:

• Lambda (both engine banks);
• Engine speed;
• Engine load;
• Exhaust mass flow;
• Intake valve opening;
• Exhaust valve closing;
• Spark advance.

3.2. Feature Processing

Differently from the typical regression tasks, in this case, the inputs and the output are
time series measurements recorded during the RDE driving cycles, and thus under highly
dynamic operating conditions. This adds a complication to the task, since the output is also
affected by the history of the inputs.

Typical machine learning regressors are not able to keep into account such kind of
dynamic behavior, since each sample is considered temporally independent from the others.

To overcome this limitation, a Sliding Window over time is applied to the inputs.
With this technique, the inputs are not considered on a single time instant, instead, the par-
tial history of each signal is provided to the model.

The scheme in Figure 10 is a graphical explanation of the Sliding Window working
principle in the case of a 30-sample window size and only two inputs. To predict the output
at time t, each timestep of the inputs within the window from t − 3s to t is used to build the
input matrix, which is given to the model to infer the output at time t. Then, to predict the
next output sample, the window is shifted one sample forward and the process is repeated.

The window size affects the model performances; thus, a sensitivity analysis is per-
formed to quantify the effect of this hyperparameter on the model output. To this end,
the performance of the LightGBR model is tested when Sliding Windows of different sizes
are applied. Namely 1-sample (no window), 5-sample, 10-sample, 20-sample, 30-sample,
50-sample and 70-sample windows are the tested configurations.
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Figure 10. Sliding Window techniques, considering 3 s-sized window.

Figure 11 summarizes the results of this analysis, plotting on the x-axis the window
size and on the y-axis the prediction accuracy, represented here by the correlation coefficient
between the real and the predicted output. Generally, an increase in the window size leads
to an increase in the prediction accuracy until a 50-sample window. This appears to
be the optimal size, because for further window enlargements, the prediction accuracy
decreases. However, performances are also assessed in terms of training time, and, since,
the increase in window size corresponds to an increase in computational time, a 30-sample
Sliding Window is chosen as an optimal trade-off between the prediction accuracy and the
computational efficiency.
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Figure 11. Effect of the Sliding Window size on R2 index.

3.3. Model Selection

From the literature, even once the modeling problem has been defined, it is not
possible to detect a priori an optimal data-driven model that can outperform in the emission
prediction task. One of the primary objectives of this study is to investigate the most suitable
learning algorithms for NOx emission prediction.

Each learning algorithm has its own advantages and drawbacks and, since it is not
possible to define the best model a priori, a specific procedure was applied to a set of
machine learning regressors, namely Polynomial Regressor, Support Vector Regressor,
Random Forest, Light Gradient Boosting and Feed-forward Neural Network.
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The procedure consists in a 10-fold cross-validation of the training set. The training
set was split into 10 folds, nine of which are used to train the model, whereas the remaining
fold is used to validate the model and to understand the prediction capability of each
model on new unseen data. This process is iterated, changing the validation fold each time,
until every fold is used, as shown in Figure 12. Moreover, to increase the robustness of the
results, this procedure is repeated five times for each model.

FOLD

1

FOLD

2

FOLD

3

FOLD 

4

FOLD 

5

FOLD 

6

FOLD 

7

FOLD 

8

FOLD 

9

FOLD

10

Training Set Train Val

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 10

…

Figure 12. Iterations of the 10-fold cross-validation procedure. Blue folds are used for training,
whereas orange folds are used for validating the model.

Each iteration supplies information about the time needed to train the model and
about the model accuracy, assessed on each validation fold.

Moreover, a further step in the model development is the optimal hyperparameters def-
initions. These have an important effect on the model performance; thus, it is fundamental
to choose them properly.

To this purpose, the Grid Search method can be used in combination with the cross-
validation procedure. With the Grid Search cross-validation, a grid of possible hyperparam-
eters is defined manually, following general guidelines, then the algorithm itself tests every
possible combination of hyperparameters and finds the best one. As easily understandable,
this process is time-consuming; therefore, a lighter variant of the Grid Search, namely the
Randomized Search [42,43], is used for the same purpose in this work. With this technique,
the total number of iterations can be imposed to reduce the computational time needed.

The Randomized Search cross-validation is repeated for each type of regressor with
different Sliding Window sizes. This is a complete method to provide a robust summary
about model performances, keeping into considerations the many degrees of freedom
available during the model definition, namely:

• Type of learning algorithm;
• Set of hyperparameters for each model;
• Size of the Sliding Window.

The resulting output allows to assess the best model according to the following:

• Model accuracy assessed with different metrics (R2 and nRMSE);
• Average training time over several repetitions.

Results obtained using three different Sliding Window sizes are reported in Table 4
(no window), Table 5 (10-sample window) and Table 6 (30-sample window), considering
only the best set of hyperparameters for each model. The performances are averaged on
the 10 validation folds for all the repetitions and are expressed by means of coefficient for
determination (R2), normalized root mean squared error (nRMSE) and training time.

The coefficient of determination defines the proportion of the output data variation that
can be explained by the model. On the other hand, the RMSE reports the deviation between
the model prediction and the target value. In this case, since the data are normalized,
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the resulting RMSE is a non-dimensional index. For this reason, it is referred to as nRMSE.
Finally, the training time represents the computational time needed to train the model,
expressed in seconds.

Table 4. Models Performance without Sliding Window.

Model (No Window) nRMSE [-] R2 [-] Training Time [s]

Polynomial Regressor (PR) 0.080 0.815 0.57
Support Vector Regressor (SVR) 0.076 0.825 22.3
Random Forest Regressor (RF) 0.048 0.874 42.1
Light Gradient Boosting (LGBR) 0.052 0.867 1.52
Neural Network (FNN) 0.055 0.859 64.7

Table 5. Models’ performance using 10-sample Sliding Window (WS = 1 s).

Model (WS = 1 s) nRMSE [-] R2 [-] Training Time [s]

Polynomial Regressor (PR) 0.072 0.819 27.9
Support Vector Regressor (SVR) 0.061 0.846 32.0
Random Forest Regressor (RF) 0.044 0.890 210
Light Gradient Boosting (LGBR) 0.048 0.888 3.91
Neural Network (FNN) 0.052 0.873 84.3

Table 6. Models’ performance using 30-sample Sliding Window (WS = 3 s).

Model (WS = 3 s) nRMSE [-] R2 [-] Training Time [s]

Polynomial Regressor (PR) - - -
Support Vector Regressor (SVR) 0.059 0.857 72
Random Forest Regressor (RF) 0.042 0.897 657
Light Gradient Boosting (LGBR) 0.043 0.894 11.1
Neural Network (FNN) 0.049 0.887 130

3.3.1. Model Accuracy

As shown in Figure 13, regardless of the model considered, the accuracy increases
along with the size of the Sliding Window. Here, we reported the results, respectively, for
the following model layouts:

• 1-sample window (no window applied);
• 10-sample window (1 s time interval);
• 30-sample window (3 s time interval).

PR SVR RF LGBR ANN
Regressor

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

R2
 (-

)

Model Accuracy (R2)
Window Size

no window
1 sec
3 sec

Figure 13. Comparison of the accuracy (represented by R2) of different data-driven models depending
on Sliding Window size.
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The correlation coefficient (R2) and the normalized RMSE (nRMSE) show consistent
results, indicating the Random Forest and the LightGBR as the best models in terms of
accuracy, followed by the Neural Network. On the other hand, the Support Vector Regressor
is only slightly better than the Polynomial Regressor, which represents the baseline.

Within the three best models, in order: the RF, the LightGBR and the FNN, an inter-
esting aspect to highlight is that the LightGBR seems to improve its accuracy more when
window size increases with respect to the other two models. For example, considering
nRMSE, the relative difference between RF and LightGBR is 8% (in favor of RF) when no
window is applied, but it reduces to only 2% when a 30-sample window is used.

3.3.2. Computational Time

Figure 14 shows the average time needed for training each model in the log-scale.
As expected, the training time shows an increasing trend with the window size adopted.

PR SVR RF LGBR ANN
Regressor

100

101

102

Ti
m

e 
(s

)

Training Time
Window Size

no window
1 sec
3 sec

Figure 14. Comparison of the training time of different data-driven models depending on Sliding
Window size.

The slowest model is the Random Forest, which shows a dramatic increase in time
when the window is enlarged. Probably, this is because the hyperparameters are optimized
to maximize the model accuracy instead of the training time, preferring a forest with more
trees and penalizing the computational efficiency of the model. The FNN is computationally
heavy as well, but its training time is less affected by the window size. On the other hand,
the LightGBR is considerably faster than all the other models, even when wide windows
are used. When using a 30-sample Sliding Window, the training time is around 10 s, and it
is about two orders of magnitude lower than the Random Forest, which needs 657 s to train.
This is a further experimental verification of how efficient the LightGBR algorithm can be
when dealing with large datasets. Therefore, the LightGBR is the optimal model, since it
proved to be much faster than any other tested model, with a minimum lack in accuracy
with respect to the Random Forest.

3.4. Model Testing

In this section, the LightGBR model with a 30-sample backward Sliding Window is
considered for the final performance evaluation on the test set, which was considered yet.
To assess the capabilities of the selected data-driven model, two different validation tests
are performed. Firstly, the trained model is used to produce a NOx map under steady-state
conditions. The virtually generated map is compared with an experimental map obtained
under specific engine steady-state points, defined by different combinations of constant
engine speed and load. Then, the accuracy of the NOx estimation on the two RDE cycles
excluded from the training dataset is evaluated as second validation test.
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To produce a map depending only on engine speed and load, a set of breakpoints
is firstly defined. Under steady-state conditions the main control parameters such as the
spark advance, the valve phasing and the air–fuel ratio are defined, depending on the
engine speed and load, by means of base maps. Therefore, by exploiting these maps, all the
model features can be defined depending only on the engine speed and load breakpoints.
In this case, the engine speed and load are the independent variables from which the other
features are obtained. This is because the majority of the engine actuations and target
values are calibrated as a function of the engine speed and load. As a consequence, the
NOx predicted by the model can also be defined depending only on the engine speed and
load, represented in a three-dimensional map, as shown in Figure 15.

Figure 15. Steady-state NOx map prediction. Engine speed and load (blue) are the only independent
features, whereas the other features are obtained from base maps. Thereby, the final prediction of the
model can be represented as a 3-D map depending only on the engine speed and load.

In Figure 16, the experimental scatter plot of steady-state NOx measurements is
superimposed to the map surface plot obtained from the LightGBR. The model prediction
shows a good fit with the experimental scatter points, excluding the region of the low
engine speed and high engine load, where the model underestimates the real NOx values.
However, the general trend is well-represented, showing NOx increase corresponding to
load and speed increase.
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Figure 16. Three-dimensional comparison between experimental and modeled NOx emissions under
steady-state conditions. Experimental values are represented by the scatter points; model prediction
is represented by the surface.
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A two-dimensional scatter plot is also shown in Figure 17 to highlight the correlation
between experimental and predicted NOx. Apart from the aforementioned region of high
load and low speed conditions, the LightGBR slightly overestimates NOx. This can be due
to training on highly dynamic conditions. Indeed, the model is trained only on a set of
RDE cycles, where steady-state conditions are almost never met. Nevertheless, the general
accuracy of the prediction is good, showing an R2 coefficient higher than 0.9 and a MAPE
lower than 7%.
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Figure 17. Correlation between experimental and predicted NOx under engine steady-state operations.

The second test consists in applying the LightGBR to predict NOx during two RDE
cycles, whose speed profiles are reported in Figure 6. This part of the test is helpful for
determining prediction accuracy under dynamic conditions. The continuous ECU channels
are provided to the model as inputs in the form of time vectors to predict the output.
Then, comparison between the real and the predicted outputs is performed to validate the
model. Figures 18 and 19 show the results on the first and second RDE cycle of the test set,
respectively.

The plots in Figures 18a and 19a show the normalized NOx concentration measured by
the CLD sensor during the experiment with a black continuous line and the corresponding
model prediction with a colored dashed line. In both cases, the model accurately predicts
the trend of the NOx concentration. Indeed, the modelled and the experimental traces are
well superposed in the graphs.
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Figure 18. Comparison between experimental and modeled NOx emissions on the first test RDE cycle.
(a) Instantaneous NOx concentration. (b) Cumulated NOx mass. Normalization makes the final
experimental value equal to 1.
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Figure 19. Comparison between experimental and modeled NOx emissions on the second test
RDE cycle. (a) Instantaneous NOx concentration. (b) Cumulated NOx mass. Normalization makes
the final experimental value equal to 1.

The plots in Figures 18b and 19b show the cumulated mass of NOx obtained from
NOx concentration according to (2) and (3).

mNOx =
∫ t2

t1

ṁNOx(t) dt (2)

where mNOx is the mass of NOx, t1 and t2 are the time instants when the RDE test starts
and finishes, respectively, and ṁNOx is the NOx mass flow calculated as:

ṁNOx(t) = ρNOx k(t) Qexh(t)CNOx(t) (3)

where ρNOx is the density of NOx, k(t) is the dry-to-wet emission correction factor, Qexh is
the exhaust volumetric flow calculated by the ECU and CNOx is the NOx concentration in
the exhausts, either measured experimentally or predicted by the LightGBR. In this case,
the normalization is performed separately for each plot, keeping the values in the range
between 0 and 1. The relative error between the modelled and the experimental cumulative
NOx is thereby reported.

The relative absolute error made on the final NOx mass is around 4% in the first RDE
test and lower than 1% in the second RDE test, confirming the high accuracy of the model.

Finally, a correlation plot is shown in Figure 20. These scatter plots carry out a
sample-by-sample comparison between real and predicted NOx. The black dashed line
represents the ideal correlation line, where all the points of the scatter should lay in case
of a perfect model. The correlation is very good for both RDE tests, showing R2 = 0.953
and nRMSE = 0.038 in the first RDE and R2 = 0.947 and nRMSE = 0.04 in the second RDE.
This shows that the model correctly learned the dynamics behind NOx formation. An
evident dispersion of samples is visible, especially for the RDE 2 (red scatter). This is due
to local delay between experimental and predicted values that for many reasons cannot be
always perfect (due to sensor dynamics, flow dynamics, error in the models, measurement
noise, etc.). However, the dispersion of the scatter is symmetric with respect to the ideal
correlation line, meaning that the general trend is very well-represented by the model.
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Figure 20. Sample-by-sample correlation scatter. In blue, the result of RDE 1, in red the results of
RDE 2.

4. Conclusions

The obtained results confirm that the data-driven approach represents an effective
tool for predicting the instantaneous NOx engine-out emissions during all the typical
maneuvers performed during an RDE cycle. The Sliding Window approach increases
the accuracy of all the models, as well as the training time. The result of the sensitivity
analysis on window size shows an optimal width of 30 samples, corresponding to 3 s. The
cross-validation technique highlighted that the Feed-forward Neural Network (R2 = 0.887),
the Random Forest (R2 = 0.897) and the Light Gradient Boosting (R2 = 0.894) are the most
accurate models on the validation set, with the use of a 30-sample Sliding Window. In
particular, the Light Gradient Boosting Regressor is the best compromise between accuracy
(R2 = 0.947 and R2 = 0.953 on the RDE test cycles) and training time (t = 11 s) for this
application. A good correlation is obtained when the LightGBR is applied to infer the
NOx emissions under steady-state conditions, showing a coefficient of determination of
R2 = 0.947 and MAPE = 6.81%, which can be considered good results. The high accuracy
also achieved under steady-state conditions demonstrates the remarkable reliability of the
model, even for different applications. The proposed methodology can support the engine
development phase to reduce the number of experimental tests at the bench needed for the
emission calibration, leading to a potential cost and time reduction.

5. Future Works

The dataset considered in this work is composed of RDE cycles with different ag-
gressiveness and maneuvers. Therefore, the high accuracy of the model prediction shows
that the training set conditions are quite representative of the test set, and that the input
features selected are sufficiently descriptive of the physical phenomena occurring inside
the engine and affecting NOx formation. As a further development, this NOx model could
be tested on other types of homologation cycles to verify its robustness under different
working conditions.

Moreover, the methods and the techniques explained in this paper will be extended
to other pollutant species, such as CO and HC. Another interesting development will be
the introduction of a data-driven model of the after-treatment system to also extend this
approach to the prediction of the tailpipe emissions, which are relevant for emission legisla-
tion. In particular, the output of the engine-out model presented in this paper can be used
as an input of the catalyst data-driven model. Therefore, once the two data-driven models
are coupled, they represent a digital twin of the complete exhaust system. The models
of the tailpipe emissions can be trained with the experimental on-road measurements to
obtain a model as close as possible to the variability of typical real driving conditions.



Energies 2022, 15, 8088 20 of 22

In this case, the emissions will be measured by means of a Portable Emissions Measurement
System (PEMS) directly installed on the vehicle.

Finally, a future application of this method is in the field of virtual sensing, where
NOx emissions are estimated without the presence of physical sensors. This approach
could be used to estimate emissions where physical sensors cannot be installed due to
engineering constraints or the cost limitations. For example, an interesting application
of such models is for durability tests, where it is not possible to install a PEMS for the
emission measurements, where such models can be used to detect the critical maneuvers
that produce peaks of the pollutant emissions. This can provide an important contribution
to lead towards a more aware and reliable calibration of the ECU control strategies.
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41. Altmann, A.; Toloşi, L.; Sander, O.; Lengauer, T. Permutation importance: A corrected feature importance measure. Bioinformatics

2010, 26, 1340–1347. [CrossRef]
42. Anggoro, D.A.; Mukti, S.S. Performance Comparison of Grid Search and Random Search Methods for Hyperparameter Tuning in

Extreme Gradient Boosting Algorithm to Predict Chronic Kidney Failure. Int. J. Intell. Eng. Syst. 2021, 14, 198–207. [CrossRef]
43. Asif, M.A.A.R.; Nishat, M.M.; Faisal, F.; Dip, R.R.; Udoy, M.H.; Shikder, M.F.; Ahsan, R. Performance evaluation and comparative

analysis of different machine learning algorithms in predicting cardiovascular disease. Eng. Lett. 2021, 29, 731–741.

http://dx.doi.org/10.1016/j.ifacol.2018.06.213
http://dx.doi.org/10.1080/01621459.1972.10481251
http://dx.doi.org/10.1093/bioinformatics/btq134
http://dx.doi.org/10.22266/ijies2021.1231.19

	Introduction
	Methodology
	Experimental Dataset
	Experimental Setup
	Data Pre-Processing
	Model Development
	Feature Selection and Processing
	Model Selection and Testing


	Results
	Features Selection
	Feature Processing
	Model Selection
	Model Accuracy
	Computational Time

	Model Testing

	Conclusions
	Future Works
	References

