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Abstract—Embedding of large but redundant data, such as
images or text, in a hierarchy of lower-dimensional spaces is
one of the key features of representation learning approaches,
which nowadays provide state-of-the-art solutions to problems
once believed hard or impossible to solve. In this work1, in a plot
twist with a strong meta aftertaste, we show how trained deep
models are as redundant as the data they are optimized to process,
and how it is therefore possible to use deep learning models to
embed deep learning models. In particular, we show that it is
possible to use representation learning to learn a fixed-size, low-
dimensional embedding space of trained deep models and that
such space can be explored by interpolation or optimization to
attain ready-to-use models. We find that it is possible to learn an
embedding space of multiple instances of the same architecture
and of multiple architectures. We address image classification
and neural representation of signals, showing how our embedding
space can be learnt so as to capture the notions of performance
and 3D shape, respectively. In the Multi-Architecture setting
we also show how an embedding trained only on a subset of
architectures can learn to generate already-trained instances of
architectures it never sees instantiated at training time.

I. INTRODUCTION

Representation learning has achieved remarkable results

in embedding text, sound and images into low dimensional

spaces, so as to map semantically close data into points

close one to another into the learnt space. In recent years,

deep learning has emerged as the most effective machinery

to pursue representation learning, many scholars agreeing

on representation learning laying at the very core of the

deep learning paradigm. On the other hand, the success of

network compression and pruning approaches [7] highlight the

redundancy of parameters learned by a deep learning model, as

in the Lottery Ticket Hypothesis [8], which shows that training

as few parameters as 4% of those of the full network (i.e. the

winning tickets) can attain similar or even higher performance.

Thus, we felt puzzling and worth investigating whether the

parameter values of a trained deep model might be squeezed

into a semantically meaningful low-dimensional latent space.

Two questions arise: is it possible to train a deep learning

model to learn to represent other, already trained, deep learning

models? And according to which trait should two already

trained models lay either close or further away in the latent

space? The Lottery Ticket Hypothesis may suggest the existence

of a low-dimensional key set of information that is shared by

all possible sets of parameters for a predefined architecture that

achieve comparable performance on a given task. Hence, it

seems reasonable to conjecture that one might pursue learning

1Code available at https://github.com/CVLAB-Unibo/netspace.

of an embedding space shaped according to similarity in

performance. Moreover, many recent works have demonstrated

how small deep networks can be trained to fit accurately

complex signals such as images[26], implicit representations of

3D surfaces [24], [22] and even radiance fields [23]. One might

then be willing to embed such models into a space amenable

to capture the similarity between the underlying signals.

In this paper we propose a first investigation along this new

line of research. In particular, we show that it is possible to

deploy a basic encoder-decoder architecture to learn a low-

dimensional latent space of deep models and that such a space

can be shaped so to exhibit a semantically meaningful structure.

We posit that the loss to drive the learning process of our

encoder-decoder architecture should entail functional similarity

- rather than proximity of parameter values - between the input

and output models. Accordingly, we train our architecture by

knowledge distillation to drive the output model generated by

the decoder to mimic the behaviour of the input model. In our

study we address two settings: learning a latent space from

a training set of models with the same network architecture

and different parameter values as well as based on a training

set comprising models with different architectures. In both

settings, we show that the learnt latent space does posses a

semantic structure as it is possible to sample new trained models

with predictable behaviour by simple interpolation operations.

Moreover, we show that in the Multi-Architecture setting a

latent space trained on a set of architectures can generate

already-trained models of architectures never seen instantiated

at training time. Finally, we show that in both settings it is

possible to train an architecture by performing latent space

optimization on the low dimensional embedding space instead

of optimizing directly the full set of parameters.

II. RELATED WORK

Representations. Representation learning concerns the abil-

ity of a machine learning algorithm to transform the information

contained in raw data in more accessible form. A common

algorithm is the autoencoder [12], a self-supervised solution

where the representation is learnt by constraining the output

to reconstruct the input. Our architecture is inspired by the

autoencoder but aim at producing outputs that behave akin

to the input (e.g. similar performance on a certain task). In a

recent meta-learning paper, LEO [25], the embedding of the

weights of a single layer of a network is learnt for a few shot

learning task. Task2Vec [1] learns a task embedding on different

visual tasks which enables to predict similarities between them

https://github.com/CVLAB-Unibo/netspace
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Fig. 1: Overview of the NetSpace framework.

and how well a feature extractor perform on a chosen task.

Differently from all these works, we focus on learning a fixed-

size embedding for diverse network architectures from which

it is possible to draw ready-to-use weights for a specific task,

even for networks unseen during training.

Network Parameters Prediction. Many works deploy an

auxiliary network to obtain the weights of a target network.

Hypernetworks [9] trained a small network (the hypernetwork)

to predict weights for a large target network on a given

task. The same technique has been extended and applied in

many ways: transforming noise into the weights of a target

network (Bayesian setting) [16], [20], adapting the weights of

a target network to the current situation [2], [14], generating

weights corresponding to hyperparameters [19], focusing on the

acceleration of the architecture search problem [3]. Moreover,

networks that generate their own weights have been proposed

and analyzed [13], [6]. While these works share the use

of a weights generation module with our work, our novel

proposal consists in showing how to learn a fixed-size structured

embedding for different architectures and navigate through this

space to obtain new weights for these kinds of architectures

as well as for architectures not provided as training examples.

Weight-sharing NAS. In Weight-sharing NAS, optimal

architecture search occurs over the space defined by the subnets

of a large network, the supernet. Commonly, subnets share

weights with the supernet and they are available as ready-to-use

networks after training. OFA [4] starts by training the entire

supernet and progresses considering subnets of reduced size.

After training, desired subnets are selected with an evolutionary

algorithm. In NAT [21], many conflicting objectives are

considered, training only the weights of promising subnets

for every objective. While these works deal with obtaining

ready-to-use networks that obey to desired characteristics, we

focus on the embeddability of deep models in a latent space

organized according to features of interest and on the possibility

of explore such latent space by interpolation or optimization.

III. METHOD

Framework. In the following, we will use architecture to

denote the structure of a deep learning model (i.e. number and

kind of layers, etc.) and instance for an architecture featuring

specific parameter values. Of course, given one architecture

there can be many instances with different parameter values.

Our framework, dubbed NetSpace and shown in Fig. 1, is

able to encode trained instances of different architectures into

a fixed-size encoding and to decode this embedding into new

instances that behave like the input ones. The parameters of

each instance presented in input to our framework are stored

by a simple algorithm into a PRep (parameters representation),

a 2D matrix whose rows are filled one after the other with

the sequence of the unrolled parameters. Further details on the

PRep generation algorithm are provided in the Suppl. Material.

NetSpace encoder takes as input the PRep of an instance and

produces a small fixed-size embedding, applying first horizontal

and then vertical convolutions, alongside with max-pooling. It

is worth pointing out that the encoder is designed to produce

embeddings of the same size for any input PRep dimension.

The embedding from the encoder is then processed by

NetSpace decoder, whose basic block first applies convolutions

to increase the depth of the input and then reshapes the

intermediate output to grow along spatial dimensions at the cost

of depth. Once the required PRep resolution has been reached,

an independent linear scaling is applied to every element of

the predicted PRep, with weights and biases learnt during the

training. We found that this is needed, in particular, for very

deep models, probably because convolutions struggle to predict

parameters that are close in the PRep but that belong to distant

layers of the target architecture. The values of the predicted

PRep are loaded into a ready-to-use instance.

The building blocks of the encoder and decoder are specified

in more details in Fig. 1. In the remainder of the paper, we

will use the term target instance to refer to the one in input

to NetSpace and the term predicted instance to refer to that

instantiated with values from the predicted PRep.

Single-Architecture Setting. In the Single-Architecture

setting, NetSpace is used to learn an embedding space for the

parameters of multiple instances of a single architecture. The

first scenario that we consider deals with instances that exhibit

different performance in solving the same task, such as image

classification. Thus, during NetSpace training, the objective is

to learn how to predict weights that match the performance of

the target instances. Akin to common practice in Knowledge

Distillation [11], this can be achieved by minimizing a loss

term Lpred that represents the discrepancy between the outputs

computed by the target instances and those computed by the



corresponding predicted instances. Formally, considering a

target instance Nt and training samples x with labels y, we

denote by Np the instance predicted by NetSpace when the

input instance is Nt, and by t = Nt(x) and p = Np(x)
the logits computed by the target and predicted instances,

respectively. We then realize Lpred as in [11]:

Lpred = KL(softmax(p/T ), softmax(t/T )) · T 2 (1)

where KL denotes the Kullback–Leibler divergence averaged

across the samples. As in [11], the softmax functions used in

Lpred have inputs divided by a temperature term T .

A second scenario deals with networks sharing the same

architecture that are trained to fit different signals. In particular,

recent works [24], [22], [26], [23] have shown that it is possible

to build neural representations of signals by training MLPs

to regress such signals. In this scenario, each instance of the

same MLP architecture is trained to represent a different signal.

Given one of such instances, the objective of NetSpace is

to predict weights capable of regressing the same signal. To

achieve this goal, NetSpace can be trained with a loss term that

directly compares the outputs of the predicted instance to those

computed by the target one, thereby, also in this case, distilling

the knowledge of the target instance into the predicted one. In

this scenario, then, Lpred becomes simply:

Lpred = MSE(yp, yt) (2)

i.e. the Mean Squared Error (MSE) between the outputs from

the predicted instance (yp) and those from the target instance

(yt) when queried by the same inputs. In particular, in the

experiments we consider MLPs trained to regress the Signed

Distance Function (SDF) of a 3D shape (e.g., [24]).

We found that, in both scenarios, using a distillation loss

is more effective than using a weights reconstruction loss,

as the latter would aim just at mimicking on average the

weights of the target instances, which we found not implying

similar predictions. Furthermore, a distillation loss allows for

using each target instance to create many training examples

for NetSpace by simply varying the input data.

Multi-Architecture Setting. In the Multi-Architecture set-

ting, we investigate on how to embed in a common space

instances having different architectures. Thus, we consider

instances trained to solve an image classification task with the

best performances allowed by their architecture. NetSpace is

trained to process such instances and to predict weights that

reproduce their good performances. In order to ease NetSpace

task, we take advantage of the complete Knowledge Distillation

described in [11]. Denoting by N∗ a teacher network with good

performances in the task at hand and by t∗ its logits for a

batch of images x, we define the loss with respect to it as:

L∗

pred = KL(softmax(p/T ), softmax(t∗/T )) · T 2 (3)

Then, as in in [11], we introduce an additional term Ltask

which, in combination with L∗

pred, defines the complete Lkd:

Ltask = CE(softmax(p), y) (4)

Lkd = α · L∗

pred + (1− α) · Ltask (5)

NetSpace

encoder

ClassId K

ClassId K + 2

NetSpace

latent space

NetSpace

decoder

ClassId K + 1

Fig. 2: An example of interpolation in the latent space learnt

by NetSpace in the Multi-Architecture scenario.

where CE denotes the Cross Entropy loss averaged across

the samples of the batch and α is a hyperparameter used to

balance the two terms in Lkd.

As far as the possibility of handling different architectures

is concerned, we identify each architecture uniquely with a

categorical ClassId. In this configuration, NetSpace is trained

to predict an instance with the same architecture as the target.

Even if this information is available at training time from

the target instance itself, we would also like to explore by

means of interpolation or optimization the latent space learnt

by NetSpace after having trained it, without feeding input

instances to the framework. Thus, we wish to be able to extract

the architecture information directly from the embedding. To

achieve this objective, we modify the architecture presented so

far by adding a softmax classifier on top of the embedding in

order to predict the ClassId of the target instance (details on this

variant of the framework are reported in the Suppl. Material).

Consequently, we complement the learning objective introduced

in Eq. 5 with an additional Lclass term. Given a target instance

Nt and the embedding e produced by NetSpace encoder for it,

we denote by ct the ClassId associated to the architecture of Nt

and by cp the logits predicted by the architecture classifier from

e. Lclass is then defined as the Cross Entropy loss between

the predicted and target ClassId:

Lclass = CE(softmax(cp), ct). (6)

The initial experimental results highlighted that NetSpace

was clustering the latent space according to the architecture

ClassId only. We judge such organization of the embedding

space as not satisfactory, as it would allow, perhaps, to sample

new instances within a cluster by proximity or interpolation,

but there would be no simple technique to navigate from one

cluster to the others. Rather, we aim at endowing the embedding

space with a structure enabling exploration along meaningful

directions, i.e. directions somehow correlated to a specific

characteristic, such as number of parameters or performance.

Thus, a more amenable organization would consist in clusters

showing up aligned, rather than scattered throughout the space,

and possibly also sorted w.r.t. a given characteristic of interest.

Should such organization of the embedding space be possible,

given two boundary embeddings (i.e. representing two instances

with the smallest and the largest value of the characteristic of

interest), it could be possible to move across the aligned clusters

by simply interpolating the boundaries and obtain along the way

representations of ready-to-use instances with increasing values



of the characteristic of interest. To further investigate along this

path, we shall consider first that it is possible to assign ClassIds

to a pool of architectures so as to sort them accordingly to

a characteristic of interest. For instance, in our experiments,

ClassIds K and K + 1 will denote two architectures such that

the latter has more parameters than the former.

Therefore, we introduce a new loss, denoted as Lγ (In-

terpolation Loss), whose objective is to impose the desired

ordered alignment of clusters in the latent space. Given training

instances belonging to boundary architectures (i.e. those with

the smallest and largest ClassId), we first use NetSpace

encoder to obtain their embeddings. Then, we interpolate such

embeddings according to a given factor γ, and constrain the

interpolated embedding to belong to the architecture whose

ClassId is interpolated between the boundaries according to the

same factor γ. Figure 2 presents an example of the interpolation

procedure described in this paragraph.

Formally, given boundary embeddings eA and eB of target

instances NA
t and NB

t with ClassIds cA and cB , we define

the interpolated embedding eγ = (1− γ) · eA + γ · eB . Then,

considering the logits cγp predicted by the ClassId classifier for

eγ and the interpolated ClassId cγt = (1− γ) · cA + γ · cB , we

define Lγ
class to impose the consistency of the interpolation

factor for ClassId as:

Lγ
class = CE(softmax(cγp), c

γ
t ). (7)

Moreover, considering the instance Nγ
p predicted by

NetSpace from eγ , we denote by pγ the logits predicted by

such instance for a batch of images and define Lγ
kd as:

Lγ
pred = KL(softmax(pγ/T ), softmax(t∗/T )) · T 2 (8)

Lγ
task = CE(softmax(pγ), y) (9)

Lγ
kd = α · Lγ

pred + (1− α) · Lγ
task (10)

with the objective of distilling the teacher network N∗ also

in the interpolated instances. Finally, we define the total

interpolation Lγ as:

Lγ = Lγ
class + Lγ

kd (11)

In our framework, we use Lγ with different interpolation

factors γ, whose values are computed according to the number

of considered architectures. More precisely, considering A
architectures, γ can be computed as:

γ =
i

A− 1
i ∈ {1, 2, ..., A− 2}. (12)

Given a batch of instances, we compute Lkd and Lclass on

each of them. Then, we apply Lγ , with γ values obtained

from Eq. 12, on all the pairs composed of instances with the

minimum and maximum ClassId. The final loss, thus, is the

sum of Lkd, Lclass for each instance of the batch and Lγ for

each pair of boundary instances.

IV. EXPERIMENTS

We test our framework with networks trained on image

classification and 3D SDF regression.

Datasets and Architectures. For what concerns image

classification, we report results on Tiny-ImageNet (TIN) [17]

and CIFAR-10 [15] datasets. The target architectures for our

experiments are LeNetLike, a slightly modified version of the

lightweight CNN introduced in [18], VanillaCNN, a sequence of

standard convolutions followed by a fully connected layer, and

two variants of ResNet [10], namely ResNet8, and ResNet32.

As far as 3D SDF regression is concerned, we consider MLPs

trained to overfit a selection of ∼ 1000 chairs from the

Shapenet dataset [5]. Each MLP has a single hidden layer with

256 nodes and uses periodic activation functions as proposed

in [26]. Additional details are available in the Suppl. Material.

Single-Architecture Image Classification. As a first experi-

ment, we test NetSpace in the Single-Architecture setting with

the image classification task on CIFAR-10 and TIN. We create a

dataset of 132 randomly initialized ResNet8 instances, training

them for a different numbers of epochs, to collect instances with

different performances. Then we randomly select 100 instances

for training, 16 for validation, and 16 for testing. Fig. 3a and 3c

compare the accuracy achieved on TIN and CIFAR-10 test sets

by target and predicted instances. The target instances belong

to the test sets and were never seen by NetSpace at training

time. We can see that, beside few outliers, our framework is

effective in predicting new instances that emulate the behavior

of the target ones, both on CIFAR10 and on the larger and

more varied TIN. It is remarkable that NetSpace is able to

reconstruct an instance which follows the input one in terms

of performance in spite of the huge compression it introduces.

Indeed, the embedding size is a fraction of the number of

parameters of the instances it can reconstruct, e.g. it is 4096

for TIN, only ∼ 3.18% of the parameters of ResNet8. The key

information about the behaviour of a neural net seems to live in

a low dimensional space. Indeed, as shown by the visualization

of PReps provided in the Suppl. Material, the predicted instance

is very different from the target one: NetSpace captures the

essential information to reproduce the behaviour of the target

network, it does not merely learn to reproduce it.

After training, NetSpace has learnt to map target instances

to fixed-sized embeddings. Thus, we can use NetSpace frozen

encoder to obtain the embeddings of two anchor instances

and linearly interpolate between them in order to study the

representations laying in the space between the two anchors. To

this aim, we decode every interpolated embedding to generate

a new instance with NetSpace frozen decoder and compute

the accuracy of this ready-to-use instances on the images

in the test sets. As a baseline, we consider the possibility

of interpolating directly the weights of the anchor instances.

Results are reported in Fig. 3b and 3d for TIN and CIFAR-10,

respectively. Interestingly, along the multi-dimensional line

connecting the anchor embeddings we find representations

corresponding to instances whose performances grow almost

linearly with the interpolation factor, while interpolating directly

the weights of the anchors yields random performances almost

everywhere. This result suggests that the embedding space

learnt by our framework can be organized to have meaningful

dimensions, that are not exhibited in the instances weights space.
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Fig. 3: Single-Architecture results for ResNet8. (a) and (c): Accuracy achieved on the test set by target and predicted instances.

Target instances are sorted w.r.t. their performances on the test set. (b) and (d): Accuracy achieved on the test set by instances

predicted from interpolated embeddings.

Fig. 4: Interpolation of 3D shapes. Top two rows: results

obtained by interpolating NetSpace embedding space. Bottom

row: the same linear interpolation applied to MLPs weights.

In fact, the loss function used in the Single-Architecture training

concerns performance and our framework learns naturally a

latent space that, at least locally, can be explored along a

direction strictly correlated with performance.

Single-Architecture SDF regression. As a second Single-

Architecture experiment, we train NetSpace to learn a latent

space of MLPs that represent implicitly the SDF of chairs from

the ShapeNet dataset. We train our framework on a dataset

of ∼ 1000 MLPs: each of them has been trained to overfit a

different 3D shape, starting from a different random initial-

ization. The goal of this experiment is to assess if NetSpace

is capable of learning a meaningful embedding of 3D shapes,

which can then be explored by linear interpolation. Thus,

after training NetSpace, we obtain two anchor embeddings

by processing two input MLPs with NetSpace frozen encoder.

Then, we obtain new embeddings by interpolating the anchors

and we predict new MLPs with NetSpace frozen decoder. The

results of this experiment are reported in Fig. 4. The top

two rows show interpolation results obtained from NetSpace

latent space, while the bottom row presents results obtained by

interpolating directly the weights of the anchor MLPs. We can

notice that direct interpolation in the MLPs weights space yields

catastrophic failures, while NetSpace embedding space enables

smooth interpolations between the boundary shapes. This shows

its ability to distill the core content of a trained model into a

small-size embedding abstracting from the specific values of

weights, and also its flexibility: when the loss concerns fitting

of shapes, the latent space of models naturally organizes to

have dimensions correlated with shape.

Multi-Architecture. In the Multi-Architecture setting we

train NetSpace to embed four architectures: LeNetLike, Vanil-

laCNN, ResNet8 and ResNet32. To build the dataset, we

train many randomly initialized instances for each architecture,

collecting multiple instances with good performances (100 for

training, 16 for validation and 16 for testing). We collect in total

400 instances for training, 64 for validation and 64 for testing.

We adopt a ResNet56 with high performance as the teacher

network in Eq. 3 and 11 and set α to 0.9 in Eq. 5. We observe

that supervision is not the same for different architectures:

instances with lower performances receive a stronger signal

from the Lkd and Lγ provides additional supervision for

non-boundary architectures. We alleviate this issue modifing

the training set so as to include a different number of

instances for each architecture : we include 60 LeNetLike,

50 VanillaCNN, 60 ResNet8 and 100 ResNet32 instances.

Fig. 5 left shows the results of this experiment: NetSpace

successfully embeds instances of multiple architectures in

highly compressed representations with all the information

needed to a) predict correctly the architecture of the target

instance and b) reconstruct an instance of such architecture

whose behavior mimics that of the target one.

Multi-Architecture Embedding Interpolation. As we de-

fined the ClassIds of architectures according to their increasing

number of parameters, we expect their latent representations

to be sorted w.r.t. this characteristic thanks to our interpolation

loss Lγ . In this experiment, we explore the latent space by

observing the classification accuracy achieved by instances

obtained when interpolating one embedding of LeNetLike and

one of ResNet32, while moving with smaller steps than those

defined in Eq. 12. Notably, as shown in Fig. 5 center, NetSpace

learns an embedding space where architectures vary according

to their number of parameters along an hyper-line. Moreover,

it organized the space to place best performing embeddings for

every class around the positions on which Lγ was computed.

Sampling of Unseen Architectures. We perform a new

Multi-Architecture experiment by using a training set composed

only of LeNetLike and ResNet32 instances. We collect 40

instances for LeNetLike and 80 for ResNet32, with the

same balancing strategy discussed above. By not showing

to NetSpace encoder any instance of VanillaCNN and ResNet8,
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Fig. 5: Results of the Multi-Architecture setting on TIN (top) and CIFAR10 (bottom). Left: target instances from test set,

instances are sorted w.r.t. their ClassId. Center: interpolation with all architectures available at training time. Right: interpolation

with only variants of LeNetLike and ResNet32 seen at training time. In all figures, color represent architecture: red-LeNetLike,

blue-VanillaCNN, green-ResNet8, fuchsia-ResNet32. Circles correspond to interpolation boundaries. Stars denote instances

obtained with the discrete interpolation factors used in Lγ .

TABLE I: Accuracy on TIN test set achieved with LSO.

Single-Architecture Multi-Architecture

ResNet8 LeNetLike VanillaCNN ResNet8 ResNet32

initial 25.73% 17.44% 22.89% 38.81% 52.17%
optimized 35.72% 18.55% 24.17% 42.07% 53.13%

we deny it the possibility to learn directly a portion of the

embedding space dedicated to them. However, Lγ shapes it

indirectly: for instance, given two embeddings elenet and er32
of, respectively, a LeNetLike and ResNet32, it forces the

embedding eγ = 0.33 · elenet + 0.66 · er32 to represent an

instance of ResNet8 (unseen during training). After training,

we perform an interpolation experiment and report results in Fig.

5 right: we find that the latent space learnt by NetSpace trained

on a reduced set of architectures exhibits the same properties

as the space learnt by training with all of them, allowing to

draw by interpolation instances with good performance of the

unseen architectures VanillaCNN and ResNet8.

Latent Space Optimization. Here we investigate the

navigation of NetSpace embedding by latent space optimization

(LSO). In order to do so, we take NetSpace encoder and

decoder obtained by a Single-Architecture Image classification

experiment, freezing their parameters. Then, we obtain an

initial latent code by embedding one ResNet8 instance from

the test set with the frozen encoder. We then use the frozen

decoder to perform an iterative optimization of the initial

embedding. In each step of the optimization, the embedding

is processed by the frozen decoder, which predicts a PRep

that is loaded into a ResNet8 instance. The resulting network

is then used to produce predictions on a batch of training

images from TIN. We apply Lkd on these predictions using a

ResNet56 as teacher network, to guide NetSpace in the search

of a high performing instance in the learnt latent space. As the

decoder is frozen, we compute the gradient of the loss w.r.t. the

embedding, so as to explore the latent space by gradient descent.

Furthermore, we perform a similar experiment starting from

NetSpace encoder and decoder taken from a Multi-Architecture

training experiment. Also in this case, we use the frozen encoder

to obtain initial embeddings from four instances belonging to

different architectures. Then, we process each embeddings with

the frozen decoder, which predicts a PRep and a ClassId. We

use the predicted ClassId to select the architecture where the

predicted PRep is loaded, building an instance which we use

to produce predictions on a batch of training images from TIN.

In addition to Lkd, in this case we apply also Lclass on the

predicted ClassId, to guide the embedding towards the area of

the latent space that corresponds to the desired class. In Tab.

I we report the performances obtained by the optimizations

(second row), together with the performances of the instances

used to obtain the initial embeddings (first row). Remarkably,

the results show that it is actually possible to improve the

performances of the input instances by exploring the NetSpace

embedding space via latent space optimization.

V. CONCLUSIONS AND FUTURE WORK

NetSpace introduces a framework to learn the latent space

of deep models. We have shown that the embedding space

learnt by NetSpace can be organized according to meaningful

traits and ready-to-use instances with predictable properties

can be obtained by means of linear interpolation or latent space

optimization. Furthermore, our experiments provide evidence

that fixed-size embeddings can represent effectively instances

of several different architectures. The main limitation of our

work concerns lack of investigation on the potential applications

of our findings dealing with embeddability of deep models.

Yet, we deem it worth communicating these findings to the

community as we believe they are non-obvious and valuable

on their own, and may foster further research as well as

identification of the most fruitful outcomes toward applications.
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