
19 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Dey, S.S., Kazachkov, A., Lodi, A., Munoz, G. (2022). CUTTING PLANE GENERATION THROUGH SPARSE
PRINCIPAL COMPONENT ANALYSIS. SIAM JOURNAL ON OPTIMIZATION, 32(2), 1319-1343
[10.1137/21M1399956].

Published Version:

CUTTING PLANE GENERATION THROUGH SPARSE PRINCIPAL COMPONENT ANALYSIS

Published:
DOI: http://doi.org/10.1137/21M1399956

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905200 since: 2024-03-01

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1137/21M1399956
https://hdl.handle.net/11585/905200

CUTTING PLANE GENERATION THROUGH SPARSE PRINCIPAL1

COMPONENT ANALYSIS2

SANTANU S. DEY∗, ALEKSANDR M. KAZACHKOV† , ANDREA LODI‡ , AND GONZALO3

MUÑOZ§4

Abstract. Quadratically-constrained quadratic programs (QCQPs) are optimization models5
whose remarkable expressiveness have made them a cornerstone of methodological research for non-6
convex optimization problems. However, modern methods to solve a general QCQP fail to scale,7
encountering computational challenges even with just a few hundred variables. Specifically, a semi-8
definite programming (SDP) relaxation is typically employed, which provides strong dual bounds for9
QCQPs, but relies on memory-intensive algorithms. An appealing alternative is to replace the SDP10
with an easier-to-solve linear programming relaxation, while still achieving strong bounds. In this11
work, we make advances towards achieving this goal by developing a computationally-efficient linear12
cutting plane algorithm that emulates the SDP-based approximations of nonconvex QCQPs. The13
cutting planes are required to be sparse, in order to ensure a numerically attractive approximation,14
and efficiently computable. We present a novel connection between such sparse cut generation and15
the sparse principal component analysis problem in statistics, which allows us to achieve these two16
goals. We show extensive computational results advocating for the use of our approach.17

Key words. quadratically-constrained quadratic programs, nonconvex optimization, sparse18
cutting planes, sparse principal component analysis19

AMS subject classifications. 90C26, 90C20, 90-0820

1. Introduction. Nonconvex quadratically-constrainted quadratic programs (QC-21

QPs) are highly expressive models with wide applicability. For example, they can rep-22

resent mixed-integer polynomial optimization over a compact feasible region, which23

already captures a broad set of real-world problems. At the same time, the flexi-24

ble modeling capabilities of QCQPs imply steep computational challenges involved in25

designing practical general-purpose techniques for these problems.26

One successful approach for solving QCQPs is based on cutting planes, or cuts,27

in which a more computationally tractable relaxation of the initial QCQP is formu-28

lated and then iteratively refined. Although there exist numerous families of cuts for29

QCQPs (see, for example, [12, 13, 17, 43, 44, 51, 55]), we focus on understanding30

and improving the performance of sequential linear cutting plane methods for solving31

QCQPs, which have the advantage over more complex cutting surfaces in that linear32

relaxations can be more easily embedded in intelligent search of the feasible region,33

such as spatial branch and bound [34].34

One crucial aspect that has been largely underexplored for QCQPs is the ef-35

fect of cut sparsity, in terms of the number of nonzero coefficients involved in the36

cut, on computational performance. Sparsity can be exploited by most modern lin-37

ear programming solvers to obtain significant speedups; see for example, results and38

discussion in [1, 8, 25, 26, 49, 61]. While denser cuts are typically stronger, they39

also significantly increase the time required to solve the resulting relaxations and are40

associated with tailing off effects, in which numerical issues impair convergence.41

We investigate this tradeoff between strength of dense cuts and potential speedup42

using sparse cuts, by developing an understanding of which cuts to generate and apply,43

∗Georgia Institute of Technology, Atlanta, GA, USA (santanu.dey@isye.gatech.edu).
†University of Florida, Gainesville, FL, USA (akazachkov@ufl.edu).
‡Canada Excellence Research Chair in Data Science for Real-Time Decision-Making. Polytech-

nique Montréal, Montréal, QC, Canada (andrea.lodi@polymtl.ca).
§Universidad de O’Higgins, Rancagua, Chile (gonzalo.munoz@uoh.cl).

1

This manuscript is for review purposes only.

mailto:santanu.dey@isye.gatech.edu
mailto:akazachkov@ufl.edu
mailto:andrea.lodi@polymtl.ca
mailto:gonzalo.munoz@uoh.cl

2 DEY, KAZACHKOV, LODI AND MUÑOZ

with the goals of quickly improving the relaxation quality while encouraging favorable44

computational speed and convergence properties. Prior work has attempted to convert45

dense cuts into sparse ones [46]; in contrast, we draw a connection to literature from46

statistics on sparse principal component analysis (SPCA), in order to directly generate47

sparse cuts based on where they can best tighten the current relaxation. Sparse cuts48

generated in this manner have recently been shown to have promising strength in49

a computational study by Baltean-Lugojan et al. [5]. We substantially expand on50

those results through extensive computational experiments on larger-scale instances51

in which we evaluate sparse cuts, compared to dense ones, in terms of their strength,52

convergence properties, and effect on solution time.53

Concretely, we consider nonconvex QCQPs of the form54

(QCQP)
min
x∈Rn

xTQ0x+ cT0x

xTQix+ cTix+ di ≤ 0 i = 1, . . . ,m.
55

The main computational difficulties that arise in solving (QCQP) are due to lack56

of convexity and numerical instability associated with nonlinear expressions. One57

method to overcome these hurdles that has garnered considerable attention is based58

on semidefinite programming (SDP).59

The standard SDP relaxation of (QCQP), due to Shor [54], is obtained by adding60

new variables Xij , 1 ≤ i ≤ j ≤ n, to replace and represent the bilinear terms xixj in61

(QCQP), and then relaxing the nonconvex condition X = xxT, yielding62

(1.1)

min
x,X

〈X,Q0〉+ cT0x

〈X,Qi〉+ cTix+ di ≤ 0 i = 1, . . . ,m

X − xxT � 0.

63

The constraint X − xxT � 0 is typically expressed, by Schur’s complement, as64

(1.2)

[
1 xT

x X

]
� 0.65

Additionally, when some of the x variables are bounded, the SDP relaxation is then66

typically further refined by adding the well-known linear McCormick inequalities [41],67

to obtain better bounds.1 Slightly abusing notation, we refer to the resulting relax-68

ation as (SDP):69

(SDP)

min
x,X

〈X,Q0〉+ cT0x

〈X,Qi〉+ cTix+ di ≤ 0 i = 1, . . . ,m

McCormick inequalities[
1 xT

x X

]
� 0.

70

It has been shown that (SDP) can provide tight approximations to the optimal71

value of (QCQP); some notable examples of such strong performance are the max-72

imum cut problem (MaxCut) [30], optimal power flow [38], and box-constrained73

1The explicit form for the McCormick inequalities is not consequential for this paper, aside from
them being linear. In fact, our results apply more generally, e.g., if the relaxation is strengthened
with any valid linear inequalities for (QCQP).

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 3

quadratic programs (BoxQP) [2, 17, 19, 66]. We also refer the reader to [20, 62] and74

references therein for exactness results regarding the SDP relaxation.75

Our goal goes beyond solving the SDP and obtaining a good dual bound: we76

would like to obtain an outer approximation of the original set that can capture the77

strength of the SDP relaxation, but that is lightweight and linear. This way, the78

expressiveness of an SDP relaxation could be embedded in mature branching schemes79

— which require relaxations that are as efficiently-solvable as possible — with ease in80

order to solve the original QCQP instance to provable optimality.81

In principle, to approximate the SDP relaxation (SDP), one can exploit the ma-82

turity of linear programming (LP) solvers by iteratively refining LP relaxations of83

(SDP) in a cutting-plane fashion [31, 48, 53]. Consider a first LP relaxation of (SDP),84

obtained by removing the SDP constraint:85

(LP)

min
x,X

〈X,Q0〉+ cT0x

〈X,Qi〉+ cTix+ di ≤ 0 i = 1, . . . ,m

McCormick inequalities.

86

Let (x̃, X̃) denote an optimal solution to this relaxation. Throughout the paper, we87

will refer to the matrix M(x,X) for a given (x,X) ∈ Rn ×R(n
2)+n, which we define88

as89

(M) M(x,X) ..=

[
1 xT

x X

]
.90

For notational convenience, we define91

(M̃) M̃ ..= M(x̃, X̃).92

If M̃ � 0, then (SDP) is solved. Otherwise, we can efficiently find a vector93

v ∈ Rn+1 such that94

vTM̃v < 0,95

e.g., an eigenvector of M̃ with negative eigenvalue. Then, the linear inequality96

(1.3)

〈
vvT,

[
1 xT

x X

]〉
≥ 097

is valid for (SDP) and cuts off (x̃, X̃). This procedure can be viewed as a finite98

approximation of the semi-infinite outer description of the positive semidefinite (PSD)99

cone:100

(1.4) M � 0 ⇐⇒ 〈vvT,M〉 ≥ 0 ∀v ∈ Rn+1.101

This family of cutting planes has been considered before (see [5, 6, 31, 46, 48, 53]),102

and the main drawback has been repeatedly acknowledged: the vector v will typically103

be dense, which can cause numerical instability in the LP after adding many cuts of104

the form (1.3). Fukuda et al. [29] provide one way of avoiding this issue, in the presence105

of structured sparsity of the objective and linear constraints in (SDP). Under such106

structured sparsity, one can (without any loss in relaxation quality) replace (1.2), the107

PSD requirement on the full matrix M(x,X), with the requirement that a set of small108

principal submatrices of M(x,X) is PSD, which implies that it suffices to only add109

the cuts of type (1.3) associated with the eigenvectors of those principal submatrices.110

This manuscript is for review purposes only.

4 DEY, KAZACHKOV, LODI AND MUÑOZ

We instead follow a different direction, in which we directly enforce a target111

sparsity, say k, on the vector v. This involves searching for a v such that112

(1.5) vTM̃v < 0 and ‖v‖0 ..= |supp(v)| ≤ k,113

where supp(v) denotes the nonzero entries of v and |·| is the cardinality operator. We114

call a vector v ∈ Rn+1 a k-sparse-eigencut if it satisfies (1.5), and if the k-length115

vector obtained by only taking the nonzero elements of v is a unit eigenvector of the116

principal submatrix of M̃ defined on the indices in supp(v).117

Contributions. We formulate the problem of finding a k-sparse-eigencut, or de-118

termining if none exists, as an optimization problem and show that it is equivalent to119

Sparse Principal Component Analysis (SPCA). This implies the problem is NP-hard,120

and from the results of Blekherman et al. [9], we observe that there exist matrices121

where k-sparse-eigencuts exist, but there are no (k − 1)-sparse-eigencuts. In spite of122

these negative worst-case results, the same connection with SPCA allows us to use123

an empirically-strong heuristic for this problem to efficiently compute one strong k-124

sparse-eigencut in practice. We then devise a novel scheme to compute multiple k-125

sparse-eigencuts for a given M̃ , and we conduct extensive computational experiments126

using a cutting plane approach. Our results strongly advocate for the importance of127

sparsity, and show that a lightweight polyhedral approach can successfully approxi-128

mate the quality of SDP-based approaches.129

Notation. We define [n] ..= {1, . . . , n}. The cardinality of a set I is denoted by130

|I|. We denote the set of n-dimensional vectors with real entries by Rn, and the set131

of n × n real-valued matrices by Rn×n. For v ∈ Rn, ‖v‖0 denotes the number of132

nonzero entries in v. We use 〈·, ·〉 to represent the matrix inner-product. For a matrix133

X ∈ Rn×n and I ⊆ [n], we let XI be the principal submatrix of X given by the134

columns and rows indexed by I. Similarly, vI will be the vector corresponding to the135

entries of v indexed by I. We denote by Sn+ the cone of n× n PSD matrices. For an136

n× n matrix X, we also use X � 0 to denote X ∈ Sn+. We let Sn,k+ denote the cone137

of n× n matrices such that every k × k principal submatrix is PSD; that is,138

Sn,k+
..= {X ∈ Rn×n : XI ∈ Sk+, ∀I ⊆ [n], |I| = k}.139

2. Literature review. Given the vast literature involving cutting planes for140

nonconvex QCQPs, here we restrict ourselves to reviewing approaches which rely on141

the structure142

(2.1) X = xxT, x ∈ [`, u],143

in order to derive inequalities. We refer the reader to [12] for a survey on cutting144

planes methods for nonlinear optimization.145

Historically, the main limitation of using the SDP relaxation (SDP) has been146

its lack of scalability, but significant progress has been made on this front; see, for147

example, [18, 68]. One way to alleviate the computational burden of the SDP is148

leveraging structured sparsity. When the bilinear terms are represented as edges of a149

graph, and this graph is close to being a tree, one can use the framework of Fukuda150

et al. [29] to avoid imposing (1.2) on a large matrix, and instead enforce the PSD151

requirement over small submatrices. We refer the reader to [36, 37, 60] and references152

therein for other approaches exposing structured sparsity from an SDP perspective.153

The most common way to exploit (2.1) is by adding the McCormick inequalities154

[41]. These are valid inequalities derived from each equality Xi,j = xixj and variable155

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 5

bounds. Using these inequalities can provide strong relaxations in combination with156

the SDP constraint (1.2) [2, 16, 17, 19, 66].157

More generally, in the presence of (2.1), one can use valid inequalities for the158

Boolean Quadric Polytope [45] in order to obtain valid inequalities for (QCQP). Their159

strong computational performance for BoxQP was shown by Bonami et al. [11]. See160

also [14, 17, 65] and [13, 23, 27, 47] for cuts that are valid for the convex hull of side161

constraints together with (2.1).162

An alternative way to generate cuts in the presence of (2.1) is through the con-163

struction of convex sets whose interior does not intersect the feasible region. These164

sets can be used via the intersection cut [4, 58] framework in order to construct valid165

inequalities. The work in the papers [6, 7, 22, 44] falls in this category. Bienstock166

et al. [7] introduce the concept of outer-product-free sets as convex sets of matrices167

that do not include any matrix of the form X = xx> in its interior. Fischetti and168

Monaci [28] construct bilinear-free sets through a bound disjunction and McCormick169

inequalities.170

Beyond linear programming relaxations, Saxena et al. [52] use eigenvectors of171

X − xxT to construct convex quadratic inequalities that iteratively approximate the172

constraint X − xxT = 0.173

In contrast to the techniques mentioned above, which would cut through the174

constraint (1.2), we derive valid inequalities for the semidefinite relaxation of X = xxT175

in (2.1), in which this constraint is replaced with (1.2). The inequalities we construct176

are valid for {(x,X) : M(x,X) � 0}, and additionally are required to be sparse. There177

are two papers that propose a similar methodology. Qualizza et al. [46] look for k-178

sparse-eigencuts by iteratively setting to zero the components of a dense eigenvector179

until reaching the target sparsity. Baltean-Lugojan et al. [5] use a neural network in180

order to select a promising k × k submatrix of M(x,X), for k ≤ 6, to compute a k-181

sparse-eigencut for the problem. A theoretical analysis on the quality achieved by182

k-sparse-eigencuts was recently provided in [9, 10]. The authors provide upper and183

lower bounds on the distance between Sn+ and Sn,k+ . Recently, Rodrigues de Sousa184

et al. [50] used eigenvector-based cuts for obtaining strong linear relaxations to the185

maximum k-cut problem.186

3. The k-sparse separation problem and SPCA. We seek a k-sparse-eigencut187

violated by (x̃, X̃), which can be thought of as an optimal solution to (LP) or a dif-188

ferent relaxation, in which M̃ 6� 0. This is equivalent to determining if M̃ ∈ Sn,k+ ,189

since it can easily seen that190

A ∈ Sn,k+ ⇐⇒ vTAv ≥ 0 ∀v ∈ Rn, ‖v‖0 ≤ k.191

Finding a k-sparse-eigencut, or determining if none exists, is closely related to192

the SPCA problem, which we define next.193

Definition 3.1. Given a matrix A ∈ Sn+1
+ and a sparsity level k ∈ N, the k-194

Sparse Principal Component Analysis (k-SPCA) problem is defined as195

max
v∈Rn+1

vTAv

‖v‖2 = 1

‖v‖0 ≤ k.
(3.1)196

197

Its decision version reads: given A ∈ Sn+1
+ , k ∈ N, and K ∈ R≥0, determine if198

This manuscript is for review purposes only.

6 DEY, KAZACHKOV, LODI AND MUÑOZ

there exists v ∈ Rn such that199

(3.2) ‖v‖2 = 1, ‖v‖0 ≤ k, vTAv > K.200

We begin by showing that one can reduce the decision version of the SPCA201

problem to determining if a k-sparse-eigencut exists. The proof is trivial.202

Proposition 3.2. Let A ∈ Sn+1
+ , k ∈ N and K ∈ R. A vector v satisfies (3.2) if203

and only if v is a k-sparse-eigencut of Ã defined as204

Ã ..= KI −A,205

where I is the (n+ 1)× (n+ 1) identity.206

This immediately implies that finding a k-sparse-eigencut is NP-hard [40, 56, 57].207

Although we cannot hope for an efficient algorithm for finding our proposed cuts,208

SPCA is a well-studied problem and efficient practical heuristics exist [3, 24, 35, 39,209

67]. We pursue the connection of our separation problem and SPCA through the210

problem of finding the most violated k-sparse-eigencut:211

min
v∈Rn+1

vTM̃v

‖v‖2 = 1

‖v‖0 ≤ k.
(3.3)212

213

If the value of (3.3) is negative, we obtain a valid k-sparse-eigencut, and otherwise,214

none exists. Whenever the matrix M̃ is negative semidefinite, problem (3.3) is exactly215

a k-SPCA problem as (3.1). In our case, however, we are interested in studying the216

problem with no assumption over M̃ . Lemma 3.3 shows that, in any case, (3.3) is217

equivalent to (3.1).218

Lemma 3.3. For every (x̃, X̃) ∈ Rn ×R(n
2)+n and k ∈ N, there exists a matrix219

A � 0 such that (3.3) is equivalent to solving the k-SPCA problem (3.1).220

Proof. Let λmax be the largest eigenvalue of M̃ . We can equivalently rewrite (3.3)221

as222

min
v

vT(M̃ − λmaxI)v + λmaxvTv223

‖v‖2 = 1224

‖v‖0 ≤ k,225226

with I the (n+ 1)× (n+ 1) identity matrix. Since ‖v‖2 = 1, the above is equivalent227

to228

λmax −max
v

vT(λmaxI − M̃)v229

‖v‖2 = 1230

‖v‖0 ≤ k.231232

It easy to see that λmaxI− M̃ is positive semidefinite. We define A = λmaxI− M̃ and233

conclude that (3.3) is equivalent to an SPCA problem.234

Due to the NP-hardness results discussed above, it is unlikely there exists a235

polynomial-time algorithm to compute a separating k-sparse-eigencut. However, one236

could still hope to always find a good cut independently of the computing time in-237

volved. The following example, constructed by Blekherman et al. [9], shows that this238

cannot be done in general.239

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 7

Example 3.4. Consider the n × n matrix G(a, b) whose entries are b in the di-240

agonal entries and −a in the off-diagonal entries, for some a, b ≥ 0. That is, G(a, b)241

takes the form242

G(a, b) =


b −a · · · −a
−a b · · · −a
...

. . .
...

−a · · · −a b

 .243

The results in [9] show that if a, b are such that244

(k − 1)a ≤ b < (n− 1)a,245

then all k×k submatrices of G(a, b) are PSD, but G(a, b) 6� 0. In other words, even if246

a given n×n matrix is not PSD, there is no guarantee that an (n−1)-sparse-eigencut247

exists. �248

In Example 3.4, the matrix G(a, b) is dense, and one may naturally wonder if the249

same result holds for a sparse matrix, since in this case one might expect it would be250

easier to find sparse cuts. The next example shows that no such hope can be realized251

in general.252

Example 3.5. Consider now a n × n matrix defined as G(a, b) and let m ∈ N.253

Let N = nm and define the block diagonal N × N matrix G̃(a, b) whose blocks are254

given by G(a, b), with sparsity 1/m.255

Since G̃(a, b) � 0 if and only if G(a, b) � 0, it suffices to consider256

(n− 2)a ≤ b < (n− 1)a257

in order to obtain that G̃(a, b) 6� 0. In this case, the existence of n-sparse-eigencuts258

is guaranteed, but there is no (n− 1)-sparse-eigencut. �259

While the above examples are negative results, they are only informing us that260

we cannot hope to devise an efficient method that will work in the worst case. In261

practice, the story might be different. In the following, we first analyze the empirical262

expressiveness of these cuts and then exploit the connection with SPCA in an efficient263

on-the-fly generation of sparse cuts. Specifically, in Section 4 we study how much264

we can expect dual bounds to improve if we have access to all k-sparse-eigencuts;265

this motivates our main algorithm (Section 5), which computes k-sparse-eigencuts266

sequentially. These computations, due to the connection drawn by Lemma 3.3, can267

be transformed into solving sequences of SPCA instances, for which we can exploit268

efficient heuristics from the SPCA literature.269

4. Empirical expressiveness of k-sparse-eigencuts. The computational hard-270

ness of solving (3.3) to find a k-sparse-eigencut lies in selecting an optimal support, i.e.,271

where the nonzeroes in the solution should be. If the support of size k of an optimal272

solution of (3.3) is known, finding the actual optimal solution reduces to computing273

an eigendecomposition of the corresponding k × k submatrix of M̃ . This support274

selection is what Baltean-Lugojan et al. [5] tackle via a neural network. Their results275

suggest that k-sparse-eigencuts can substantially close the gap between the optimal276

values of (LP) and the SDP relaxation with McCormick inequalities added. However,277

for our purposes, we desire a more refined analysis of the expressiveness, or modeling278

power, of k-sparse-eigencuts, particularly in comparison to the performance of dense279

eigencuts.280

This manuscript is for review purposes only.

8 DEY, KAZACHKOV, LODI AND MUÑOZ

In this section, we perform experiments with low-dimensional instances for which281

we can exhaustively enumerate all
(
n+1
k

)
possible supports, to compute cuts via the282

eigendecompositions of all possible k × k principal submatrices of M̃ . Our goal is to283

answer the following questions:284

Question 1. What is the right number of k-sparse-eigencuts to add?285

Question 2. What is the appropriate level of sparsity, k, to use?286

Question 3. Given a budget on the number of cuts we can add, can we efficiently287

identify a set of strong k-sparse-eigencuts?288

To this end, first, in Section 4.3.1, we evaluate how much a single k-sparse-eigencut289

can improve the dual bound in an optimization problem. Then, in Section 4.3.2, we290

assess how much the dual bound improves if we add multiple k-sparse-eigencuts,291

including all possible cuts of this type, or only a limited number of cuts. To answer292

Question 3, we examine metrics by which a good set of eigencuts can be selected,293

in order to find a few k-sparse-eigencuts that are responsible for most of the bound294

improvement.295

The answer to these questions motivate the choices we make in our main algo-296

rithm, Algorithm 1, which is presented in Section 6. Specifically, the enumeration297

experiments justify how many sparse cuts we should generate at each round, and298

whether or not we should allow the use of a few dense eigencuts.299

4.1. Experimental setup for enumeration experiments. We consider three300

low-dimensional instances of the BoxQP library [15, 59]: spar30-060-1, spar30-080-1301

and spar030-100-1; these have the form302

min
x

xTQx+ cTx303

x ∈ [0, 1]n304305

with Q 6� 0. For these instances, n = 30, and the second number in their names (60,306

80, and 100) indicates (roughly) the percentage of nonzero entries in Q. While for307

succinctness we report on only these three instances, we obtained similar outcomes308

with other instances from the family.309

For each instance, we first solve the LP relaxation (LP) of (SDP). As before,310

let (x̃, X̃) be an optimal solution to this LP. Then, we enumerate all possible
(
n+1
k

)
311

supports for k = 4, and compute eigenvectors for all negative eigenvalues of the312

corresponding k × k submatrix of M̃ . We also compute dense cuts, which are just313

eigenvectors of all negative eigenvalues of M̃ . We only add one round of cuts. A round314

of cuts is obtained from a given LP solution, without adding any new cuts to the LP315

and reoptimizing to get a new solution.316

We implemented the enumeration code in C++. We use the Eigen library [32] for317

linear algebra computations and the LP solver is Gurobi 9.0 [33]. In order to measure318

relaxation quality, we also solve the SDP relaxation (SDP) using the C++ Fusion API319

of MOSEK version 9.2 [42].320

4.2. Performance measures. We measure strength through the commonly321

used gap closed. Let us denote the initial (LP) optimal value as LPopt and the SDP322

optimal value of (SDP) as SDPopt, which is an upper bound on the value any set323

of eigencuts can achieve. For a subsequent LP relaxation LP ′, obtained by adding324

additional cuts to the base LP, the gap closed GC(LP′) is325

GC(LP′) = 100× LP′opt − LPopt

SDPopt − LPopt
.326

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 9

Table 1
Percent gap closed by k-sparse-eigencuts from a single support, contrasted with requiring a

single k × k principal submatrix to be PSD, and with adding dense cuts.

1-supp-cuts 1-supp-PSD

Instance Max Avg Max Avg Dense cuts

spar30-060-1 3.37 0.25 3.69 0.31 38.77
spar30-080-1 4.19 0.57 4.83 0.75 49.31
spar30-100-1 4.56 0.95 4.95 1.20 60.94

Given an optimal solution (x̃, X̃) to the initial LP relaxation and an eigencut327

of the form (1.3), that is, 〈vvT, M̃〉 ≥ 0, the violation is the nonnegative number328

−〈vvT, M̃〉. In all our experiments, ‖v‖2 = 1, making the violation of different cutting329

planes comparable.330

While we focus on relaxation strength in this section, we apply more comprehen-331

sive quality metrics, including solution time, in the more extensive experiments of332

Section 6.333

4.3. Results.334

4.3.1. Single support reports. In Table 1, for k = 4, we summarize how much335

gap is closed by three approaches: adding k-sparse-eigencuts obtained from a single336

k × k principal submatrix, requiring that a k × k principal submatrix is PSD, and337

adding dense cuts. The columns labeled 1-supp-cuts show the maximum and average338

gap closed when all k-sparse-eigencuts for a single k × k support are added to (LP).339

The columns labeled 1-supp-PSD show the maximum and average gap closed when340

a single k × k support is imposed to be PSD. The column labeled Dense cuts shows341

the gap closed by adding all dense cuts.342

From this table, we draw several conclusions. First, we see that convexifying a343

single k × k principal submatrix has only limited impact on gap closed. Adding a344

PSD requirement for one k× k submatrix never closes more than 5% of the gap, and345

the average is usually around 1%. The corresponding k-sparse-eigencuts also do not346

perform well in this case, though the gap closed from a round of cuts is not significantly347

different from the gap closed by imposing a single submatrix to be PSD. Second, the348

performance of dense cuts is remarkable: a large percentage of the gap is closed with349

only one round of cuts, which for these instances is 14–16 cuts. Lastly, there is a350

trend that, overall, cuts are more effective in dense instances. This is somewhat351

expected: the larger the number of zeros in the objective, the more common it is for352

k×k submatrices to have a considerable portion of zero objective coefficients. In this353

case, if a sparse support is convexified, the objective value may not change by much.354

However, the strength of sparse cuts from a single support, as a proportion of the gap355

closed by dense cuts, is higher in sparser instances.356

4.3.2. Multiple support reports. The single-support experiments suggest that,357

in order to have some impact with k-sparse-eigencuts, adding cuts across many sup-358

ports simultaneously is necessary. This raises the question of which supports to use,359

given that, in practice, we have a budget on the number of cuts we can add. We360

examine this in our next set of experiments, in which we evaluate different support361

selection criteria. We assign a score to each of the 31,465 supports, then select the362

top 5% of supports (1,574 supports) having the highest score.363

This manuscript is for review purposes only.

10 DEY, KAZACHKOV, LODI AND MUÑOZ

Table 2
Percent gap closed when multiple supports are used to generate k-sparse-eigencuts, contrasted

with requiring the corresponding principal submatrices to be PSD, and with adding dense cuts.

k-cuts k-PSD

Instance All Top (gap) Top (viol) All Top (psd) Dense cuts

spar30-060-1 50.51 31.46 18.93 61.31 44.38 38.77
spar30-080-1 80.95 63.20 42.03 91.53 84.08 49.31
spar30-100-1 87.84 63.29 66.01 95.32 82.51 60.94

The scores we test for each support are: (1) gap, which is the change in objective364

value when all k-sparse-eigencuts from that support are added; (2) violation, which365

is the maximum violation of any k-sparse-eigencut from that support; and (3) psd,366

which denotes the change in objective value after adding the PSD requirement on that367

support. We include both gap and violation as scores, because violation is commonly368

used to measure the importance of a cut, due to it being cheap to compute relative369

to resolving an LP; hence, we are interested in evaluating whether violation is a good370

proxy for expected objective improvement in this setting.371

Table 2 shows the results. Columns 2–4, with the heading k-cuts, give the gap372

closed by k-sparse-eigencuts when all possible such cuts are added, and when the top373

5% of cuts are added, sorted by “gap” and “violation”. Columns 5 and 6, with the374

heading k-PSD, show the gap closed when requiring k × k principal submatrices are375

PSD, both for all such matrices, and for only the top 5% sorted by their “psd” score.376

Column 7 repeats the gap closed by dense cuts from Table 1.377

From Table 2, we observe many interesting phenomena. First, we see that adding378

all sparse cuts significantly outperforms all dense cuts; however, while only 14–16379

dense cuts are added per instance, the number of sparse cuts is in the thousands. On380

one hand this indicates sparse cuts can replicate the strength of dense cuts, but on381

the other hand, any speed advantages from resolving the LP with sparser cuts are382

likely to be negated by that many additional constraints. Second, adding cuts from383

only the top 5% of supports can achieve 60 to 77% of the gap closed by all supports.384

This indicates that, although multiple supports need to be considered to produce a385

strong relaxation, an intelligent choice of a small number of supports can suffice. Last,386

concerning the violation measure: while, on average, the selection of cuts via violation387

performs worse than its gap closed counterpart, it can happen, as in spar30-100-1,388

that the top 5% of supports sorted by violation together close more gap than if the389

top 5% of supports were chosen by their individual objective improvement.390

4.4. Summary of enumeration experiments. We conclude this section with391

the high-level messages imparted by these experiments. First, k-sparse-eigencuts392

closely emulate, in strength, the addition of the PSD requirement to a support. Sec-393

ond, no single support has a significant effect in terms of gap closed. Therefore, one394

should find multiple supports that together perform well. Third, the violation of a cut395

presents a good and efficient heuristic for cut selection in this setting. Finally, dense396

cuts are remarkably strong, considering there are usually very few of them available.397

We do not directly consider interactions among supports: that is, we score in-398

dividual k-length subsets of [n + 1], whereas it may be better to score, for example,399

pairs of supports, or otherwise incorporating combinatorial effects.400

Since the experiments in this section required enumeration of all
(
n+1
k

)
∈ Θ((n+401

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 11

1)k) possible sparse supports, the technique is not practical for even medium-size402

instances or moderate values of k. The same drawback is observed by Baltean-Lugojan403

et al. [5]; their neural-network-based approach can estimate if a given support will404

have a considerable effect (in terms of the cut generated), but they still need to405

enumerate supports for their evaluation. Our next goal is to effectively choose strong406

sets of sparse supports on the fly.407

5. Computation of multiple sparse cuts. We develop an algorithm to com-408

pute multiple k-sparse-eigencuts for a given matrix M̃ , using an oracle that can com-409

pute a single k-sparse-eigencut. We compare the performance of the cutting planes410

produced by this algorithm with the results of the previous low-dimensional enumer-411

ation experiments.412

5.1. Iterative k-sparse-eigencut computation. Our strategy to compute413

multiple sparse cuts starts with an oracle that efficiently returns a single cut with414

sparsity level k. Instead of using that cut directly, we take its support, say I, and we415

add all the k-sparse-eigencuts from M̃ I .2 Lemma 5.1 formally states that such cuts416

exist from M̃ I .417

Lemma 5.1. Let M̃ ∈ R(n+1)×(n+1) be a symmetric matrix, and suppose w ∈418

R
n+1 is such that wTM̃w < 0. Let I ..= supp(w) and k ..= |I|. The number of k-419

sparse-eigencuts of M̃ I is between 1 and k.420

Proof. The number of k-sparse-eigencuts from M̃ I depends on its number of neg-421

ative eigenvalues. The result follows because the matrix M̃ I has at most k dis-422

tinct unit eigenvectors, and at least one of those is associated with a negative ei-423

genvalue. This second fact follows from the existence of a sparse cut using w, since424

0 > wTM̃w = wT

IM̃ IwI , so that M̃ I is not positive semidefinite.425

Based on the results in Section 4, we know that limiting ourselves to one support426

may lead to a weak set of cuts. The next question is how to use M̃ to generate more427

cuts, having exhausted the ones from the initial support I. A natural first idea is to428

target a set of indices from [n+1] that is disjoint to I, to diversify the areas of M̃ being429

convexified. We implemented a version of this proposal, and on small- to medium-size430

BoxQP instances, there were encouraging results. However, this approach is unable431

to adequately capitalize on another observation from Section 4, that a sufficiently432

large number of sparse cuts can outperform dense cuts. For example, for a moderate433

sparsity level such as k = n/4, the orthogonal scheme can only generate up to 4434

supports and n cuts (by Lemma 5.1), while we desire more cuts from each iteration.435

With that motivation, we present Algorithm 1, our strategy to compute multi-436

ple sparse cuts from M̃ , without solving another LP. The oracle referenced within437

Algorithm 1 solves (3.3). It can be helpful for intuition to keep in mind the case438

that k = n+ 1, for which Algorithm 1 simply returns all eigenvectors with a negative439

eigenvalue in an eigendecomposition of the matrix.440

We now establish finiteness of this algorithm.441

Lemma 5.2. Algorithm 1 terminates in a finite number of iterations, even if the442

parameter MaxNumSupports is set to infinity.443

Proof. At each start of the while loop, the matrix M i
I has signature3 (p, q) with444

q ≥ 1 (otherwise, the algorithm would have terminated), and M i+1
I has signature445

2Adding all k-sparse-eigencuts, as opposed to just one per support, is shown to be effective in
the computational results of Qualizza et al. [46] with their Minor PSD cuts.

3The signature of a matrix is (p, q) if it has p positive and q negative eigenvalues.

This manuscript is for review purposes only.

12 DEY, KAZACHKOV, LODI AND MUÑOZ

Algorithm 1: SparseRound(M̃, k): one round of k-sparse-eigencuts

Input : A matrix M̃ ∈ R(n+1)×(n+1) with M̃ 6� 0, and a sparsity level k ∈ N.
Parameters: MaxNumSupports: maximum number of considered supports.

Oracle: oracle for solving (3.3).
Output : A sequence of k-sparse-eigencuts {w̃j}pj=1 such that ‖w̃j‖2 = 1, ‖w̃j‖0 ≤ k,

and w̃T
j M̃w̃j < 0, for j ∈ [p].

1 Initialize: p← 0, i← 1, M1 ← M̃ , and w ← Oracle(M1);

2 while wTM iw < 0 and i < MaxNumSupports do
3 I ← supp(w);

4 Let λmin
i and qi denote the most negative eigenvalue, and associated unit eigenvector,

of M i
I ;

5 Let w̃i denote qi lifted to Rn+1 by setting all components not in I to 0;

6 M i+1 ←M i − λmin
i w̃iw̃

T
i ;

7 i← i+ 1 and p← p+ 1;

8 w ← Oracle(M i);

9 end
10 return {w̃j}pj=1;

(p, q−1). Additionally, if an arbitrary k×k principal submatrix M i
S , with S ⊆ [n+1],446

|S| = k, has signature (p, q), then M i+1
S has signature (p′, q′) with q′ ≤ q. This is447

because M i+1
S is obtained from adding a PSD matrix (−λmin

i w̃Sw̃
T

S , with w̃S the448

sub-vector of w̃i given by the entries in S) to M i
S .449

Thus, at each step, the number of negative eigenvalues of every k × k submatrix450

does not increase, and decreases strictly for at least one such submatrix. Since there451

are at most
(
n+1
k

)
principal k×k submatrices, the algorithm finishes in at most k

(
n+1
k

)
452

steps.453

The following lemma shows that all k-sparse-eigencuts generated by Algorithm454

1 are valid inequalities being violated by M̃ . Additionally, it shows precisely which455

matrices M i are being cut by each generated k-sparse-eigencut.456

Lemma 5.3. The sequence of vectors {w̃j}pj=1 generated by Algorithm 1 satisfies457

1. w̃T
iM

iw̃i < 0 for every i ∈ [p],458

2. w̃T
i M̃w̃i < 0 for every i ∈ [p], and459

3. w̃T
iM

i+1w̃i = 0 and w̃T
jM

i+1w̃j > 0, for 1 ≤ j ≤ i− 1 ≤ p.460

Proof. Part 1 follows by assumption of the existence of a cut returned by Oracle.461

Part 2 follows by noting that462

M̃ = M i +

i−1∑
j=1

λmin
j w̃jw̃

T

j .463

Therefore,464

w̃T

i M̃w̃i = w̃T

iM
iw̃i +

i−1∑
j=1

λmin
j (w̃T

i w̃j)
2 < 0,465

where the last inequality follows from Part 1 and the fact that λmin
j < 0. The first466

statement in Part 3 follows since ‖w̃i‖2 = 1 and it is the eigenvector associated to467

λmin
i , thus468

w̃T

iM
i+1w̃i = w̃T

iM
iw̃i − λmin

i = 0.469

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 13

Table 3
Summary of gap closed by multiple k-sparse-eigencuts selected by Algorithm 1, contrasted with

same number of cuts selected via enumeration and sorting and imposing PSD-ness.

k-cuts k-PSD

Instance Algorithm 1 Top (gap) Top (violation) Top (psd)

spar30-060-1 5.48 9.06 6.09 10.01
spar30-080-1 14.98 16.83 14.75 25.60
spar30-100-1 22.62 25.48 23.22 30.52

For the second statement in Part 3, we proceed via induction over i − j ≥ 1. For470

j = i− 1,471

w̃T

i−1M
i+1w̃i−1 = w̃T

i−1M
iw̃i−1 − λmin

i (w̃T

i w̃i−1)2 = −λmin
i (w̃T

i w̃i−1)2 > 0.472

Lastly, for general i− j,473

w̃T

jM
i+1w̃j = w̃T

jM
iw̃j − λmin

i (w̃T

i w̃j)
2 > 0,474

where the inequality follows by the inductive step.475

5.2. Enumeration experiments revisited. To get a sense of the quality of476

the cuts produced by Algorithm 1, we compare them to the other selection procedures477

evaluated in Section 4.3.2.478

Our implementation of Oracle used in Algorithm 1 is based on the Truncated479

Power Method (TPower) by Yuan and Zhang [67], which is an efficient practical480

heuristic, with some theoretical guarantees, to generate high-quality solutions for the481

SPCA problem. Specifically, we run TPower after appropriately modifying the current482

solution M̃ as per our discussion in Lemma 3.3.483

The results of the experiments are shown in Table 3. For these small examples,484

Algorithm 1 does not generate as many cuts as generated by the scores we considered485

in the earlier enumeration experiments: the TPower method may fail to yield a cut486

even if one is available, and step 6 of Algorithm 1 may inadvertently discard some487

supports from which a cut could be computed. Note that the gaps closed in Table 2488

are considerably larger than those of Table 3, but the latter requires a full enumeration489

of supports. For this reason, we restrict the number of supports considered for the490

“top” selection in Table 3 to be the same number of supports used by Algorithm 1.491

We see that Algorithm 1 performs quite well. It is always within 1% of the492

gap closed by the supports selected by “violation”, and less that 4% away from the493

gap-closed-based selection. Unlike the other scores, Algorithm 1 does not require a494

complete enumeration of the supports, and it does not require us to solve an LP or495

SDP: it achieves our goal of generating supports dynamically.496

At this point, we have motivated the use of k-sparse-eigencuts, and we have shown497

a practical algorithm that can generate many cuts on the fly, using the connection of498

the separation problem with SPCA. Additionally, we have seen in Section 4 that dense499

cuts are usually quite strong, and therefore it is sensible to also consider them when500

building a high-quality approximation. One needs to be careful though, since adding501

too many dense cuts can impair the efficient solvability of the LPs, which was the502

motivation of this work in the first place. In what follows, we show a computational503

study which includes a way of balancing these forces.504

This manuscript is for review purposes only.

14 DEY, KAZACHKOV, LODI AND MUÑOZ

6. Computational experiments. We present a computational study of the505

tradeoffs between strength and efficiency in eigenvector-based cuts that approximate506

the semidefinite constraint (1.2). To do this, we compare the performance of k-sparse-507

eigencuts and dense cuts in a pure cutting plane procedure.508

6.1. Implementation details. All of our algorithms are implemented in C++.509

As in the experiments in Section 4, we use the Eigen library [32], version 3.3.7, for510

linear algebra computations and the LP solver is Gurobi 9.0 [33]. We use the C++511

Fusion API of MOSEK 9.2 [42] to solve SDP relaxations.512

The k-sparse-eigencut oracle used in Algorithm 1 is the same described in Section513

5.2: we execute the Truncated Power Method (TPower) by Yuan and Zhang [67] after514

modifying the current iterate’s M̃ as in Lemma 3.3.515

All experiments were performed single-threaded in shared computing environ-516

ments. Most of the reported results used nodes from the Béluga cluster of Calcul517

Québec, in which each machine has two Intel Xeon Gold 6148 Skylake CPUs clocked518

at 2.4 GHz, and a variable amount of memory depending on the node. Some experi-519

ments with larger instances were run on a shared server with 512 GB of memory and520

thirty-two Intel Xeon Gold 6142 CPUs clocked at 2.6 GHz.521

6.1.1. Cutting plane algorithm. We use a straightforward implementation of522

a cutting plane algorithm. We first solve (LP), the standard LP relaxation of (SDP)523

for bilinear terms, to obtain a solution (x̃, X̃). If the corresponding M̃ is not PSD,524

we use Algorithm 1 to find linear inequalities of the form (1.3) that are violated by525

M̃ . We then resolve the LP updated with the new cuts, and we repeat the above526

process until we reach a terminating condition. We next specify which specific cuts527

are added in each iteration, how we obtain the LP optimal solution M̃ , and what are528

the parameters and numerical tolerances used for our procedure.529

Cutting plane families. We consider two cut families: k-sparse-eigencuts, which530

were extensively described throughout the paper, and dense cuts, which are the eigen-531

vectors corresponding to the negative eigenvalues of M̃ . For dense cuts, we add one532

for every distinct negative eigenvalue.533

The results of the enumeration experiments from Section 4 showed that even a534

few dense cuts are able to close a large amount of gap. On the other hand, sparse535

cuts are likely to yield faster LPs. Thus, with dense cuts, one may expect to have536

a fast improvement in the bound, followed by a tailing off as each iteration takes537

longer, as compared to sparse cuts for which more iterations might be possible, but538

each iteration may close less gap. We explore how these two phenomena interact with539

the following three algorithm types:540

• DENSE: At each iteration, add all cuts obtained from the eigenvectors associated to541

negative eigenvalues of the matrix M̃ .542

• SPARSE: At each iteration, generate k-sparse-eigencuts through Algorithm 1; a more543

detailed description is given in Algorithm 2.544

• HYBRID: This strategy begins with DENSE, switching to SPARSE when the LP solve545

time is at least the value of a parameter HybridSwitchingTime.546

The motivation for HYBRID is to mix dense and sparse cuts, by focusing on rapid547

improvement in gap closed in the beginning through dense cuts, and then switching548

to sparse cuts to moderate the growth in the LP solution time.549

Solution to cut. In an LP solver, one typically has three basic choices of opti-550

mization methods: Simplex, Barrier, and Barrier with Crossover. The first and third551

methods generate an extreme-point solution to the LP, while the second only guaran-552

tees a solution in the optimal face (which may or may not be a vertex). We conducted553

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 15

Algorithm 2: SPARSE(LP, k): k-sparse-eigencuts

Input : Initial LP relaxation of (QCQP), e.g., (LP), and sparsity level k ∈ N.
Parameters: NumCutsPerIter: maximum number of cuts per iteration;

TerminatingConditions: check when execution should terminate.
Output : A sequence of k-sparse-eigencuts {w̃j}pj=0 such that ‖w̃j‖2 = 1, ‖w̃j‖0 ≤ k

for all j ∈ [p].
1 Initialize: LP1 ← LP, p← 0, t← 1;
2 while TerminatingConditions have not been met do

3 Let M̃ be an optimal solution to LPt;

4 Let {w̃t
j}

pt
j=0 be the output of SparseRound(M̃, k), i.e., Algorithm 1, sorted in order

of decreasing violation with respect to M̃ ;
5 p′t ← min{pt,NumCutsPerIter};
6 LPt + 1 ← LPt with the addition of the first p′t cuts of form (1.3) from {w̃t

j}
pt
j=0;

7 w̃p+j ← w̃t
j for all j ∈ [p′t];

8 p← p+ p′t;
9 t← t+ 1;

10 end
11 return {w̃j}pj=0;

extensive preliminary experiments to determine which strategy to choose, and con-554

cluded that Barrier always performs better for both sparse and dense cuts. It is not555

surprising that the quality of the cuts is better in this case, as cutting off a point in556

the interior of the optimal face can remove a larger portion of said face. However,557

within a cutting plane algorithm, a sequence of LPs can often be solved substantially558

faster with Simplex, using its warm start capabilities, than with Barrier. Yet in our559

early experiments, the faster iterations afforded by Simplex led to significantly worse,560

and ultimately slower, bound improvements than with Barrier.561

Cut management. As discussed in Section 4, at each iteration of the cutting562

plane algorithm, it is desirable to add a large number of k-sparse-eigencuts to ensure563

sufficient progress. As accumulating an excessive number of inequalities can slow down564

the LP solution time, especially when many of them become permanently inactive565

after a few iterations, we implemented a simple cut management policy that is used566

in all our experiments: a cut is removed from the pool if it is inactive for more than567

one iteration.568

6.1.2. Parameters.569

Sparsity. We set a target sparsity level of k = b0.25(n + 1)c. This implies that570

all of the cuts that we add have fewer than 7% nonzero entries in the matrix space,571

M(x,X).572

Limits on cuts and supports. We set NumCutsPerIter in Algorithm 2 to 5n,573

and MaxNumSupports in Algorithm 1 to 100. We set HybridSwitchingTime,574

the time limit for generating dense cuts in the HYBRID algorithm, to min{10 seconds,575

100 times the initial LP solve time}.576

TPower initialization. A significant detail in our implementation is the initial-577

ization of TPower. The TPower method incorporates a truncation step (to achieve578

sparsity) in the classical power method to compute the largest eigenvalue of a PSD579

matrix. Since this algorithm is a heuristic for SPCA, the initialization plays a signifi-580

cant role in the performance. We found that initializing TPower with the eigenvector581

associated to the smallest eigenvalue generally leads to the best (and most consistent)582

behavior.583

This manuscript is for review purposes only.

16 DEY, KAZACHKOV, LODI AND MUÑOZ

Tolerances. We use a variety of tolerances throughout our procedure to ensure584

numerical stability. We say that the cut with respect to a vector v is violated by585

M̃ if vM̃vT < −ε, where we set ε = 10−7. An eigenvalue is considered negative586

if it is less than −10−6. If the coefficient of a cut is less than 10−9, we treat it587

as zero. To measure the progress of the algorithm, at each iteration, we compare588

the objective value, say znew, to the previous iteration’s objective value, say zold; if589

|znew−zold|/(|zold|+ε) < 10−5, we say that the objective has stalled for that iteration.590

For cut management, we track how often each cut is satisfied at equality; for this, we591

permit a tolerance of 10−3.592

Terminating conditions. We terminate the cutting plane algorithm (whether it593

is SPARSE, DENSE, or HYBRID) when one of the following conditions is met: (1) the594

time limit of 1 hour is reached, (2) no more cuts are added, (3) the objective did not595

sufficiently improve over the last 100 iterations.596

6.2. Instances. We test three families of nonconvex quadratic problems, includ-597

ing several large instances with n ≥ 200, i.e., with over 40,000 variables in the matrix598

space. In our representation of the problem, all variables (x,X) are present even if,599

for example, there is sparsity in (QCQP); solving the SDP using MOSEK (an interior-600

point optimizer) for these problems becomes extremely memory intensive, requiring601

35 GB or more for the larger instances, whereas the memory needed for the cutting602

plane algorithm remains relatively manageable. In addition to memory, the SDP also603

can take a significant amount of time; starting from n = 200, most SDP solution604

times are at least 1200 seconds, with some taking more than an hour. This suggests605

an advantage to the cutting plane approach in resource-constrained environments.606

BoxQP. We consider the BoxQP family of QPs [15, 19, 59]. These are problems607

with nonconvex quadratic objective, and with box constraints x ∈ [0, 1]n, that is,608

problems of the form609

min
x

xTQx+ cTx610

x ∈ [0, 1]n.611612

The experiments of Section 4 considered three of these instances. For BoxQP in-613

stances, it is well known that the SDP approach provides strong dual bounds to the614

nonconvex problem; we refer the reader to [19] for a semidefinite programming ap-615

proach to this class of instances and [21] for a completely positive approach to QPs.616

Recent papers [11, 64] have considered solving BoxQP with integer linear program-617

ming. We opted for not comparing with these approaches since, as we mentioned618

at the beginning, our goal is to mimic the effect of the semidefinite inequality (1.2).619

These alternative integer linear programming approaches cut through the SDP cone620

and derive valid inequalities for X = xxT directly. This makes our approach rather621

complementary.622

For this family, we consider all instances available at https://github.com/sburer/623

BoxQP instances, and we additionally generate our own larger instances, for n = 200624

and n = 250, using the same instance-generation code available in the link. In total,625

we conducted our experiments on 111 BoxQP instances, with n ∈ [20, 250] and626

density d ∈ [0.2, 1].4627

Biq. The Biq instances are similar to the BoxQP instances: they only have a628

nonconvex quadratic objective function, although in this case the quadratic is homo-629

4We define the density of a QCQP as the proportion of nonzero entries in Q0 = Q.

This manuscript is for review purposes only.

https://github.com/sburer/BoxQP_instances
https://github.com/sburer/BoxQP_instances
https://github.com/sburer/BoxQP_instances

CUTTING PLANE GENERATION THROUGH SPARSE PCA 17

geneous.5 The other difference is that the variables are restricted to be binary. In630

order to make these instances suitable for our setting, we reformulate each constraint631

xi ∈ {0, 1} as632

xi(1− xi) = 0.633

Therefore, the instances have the form634

min
x

xTQx635

xi(1− xi) = 0, i ∈ [n]636

x ∈ [0, 1]n,637638

which is a QCQP. The Biq instances we consider are all the available instances on639

the Biq Mac library [63] with n up to 250. We do not consider the larger instances in640

the library due to memory limitations. We also exclude 14 instances for which none641

of the methods close any gap (e.g., if the initial solution is PSD).6 In addition, we642

remove one instance (bqp50-9) in which the objective value of the initial LP is within643

10−6 of the SDP optimal value. This leaves us with 135 instances from this family,644

with n ∈ [20, 250] and d ∈ [0.1, 1].645

MaxCut. We take the MaxCut instances available in the Biq Mac library. It646

is well known that a MaxCut instance over a graph G = (V,E) with weights wij ,647

{i, j} ∈ E can be formulated as648

max
x

∑
{i,j}∈E

wij

(
1

2
− 1

2
xixj

)
649

x2i = 1, i ∈ [n]650

x ∈ [−1, 1]n,651652

which are also nonconvex QCQPs. Note that the bounds xi ∈ [−1, 1] are redundant, as653

the quadratic constraints imply xi ∈ {−1, 1}. However, the initial relaxation benefits654

from having these bounds explicitly, which is why we left them in the formulation.655

For this class of instances, it is known that the SDP relaxation provides a strong656

provable approximation of the problem [30]. We test all but 27 of the available657

instances in the Biq Mac library, pruning any with n > 250; this leaves us with 151658

instances, where n ∈ [60, 225] and d ∈ [0.1, 0.99].659

6.3. Computational results. We use two comparison metrics. First, we com-660

pare the gap closed by all three methods, to assess relaxation strength. Second, we661

report the solution time of the last LP that is solved, to evaluate how lightweight are662

the linear relaxations we are obtaining. Our most extensive analysis is for the BoxQP663

instances in Section 6.3.1; we curtail our discussion of the remaining families as the664

results lead to conceptually similar conclusions.665

6.3.1. BoxQP. In Table 4, we summarize the performance of the SPARSE, DENSE,666

and HYBRID algorithms. We group instances by size, and the second column states667

the number of instances in each group. The next three columns give the percent gap668

closed, and the final three columns provide the time to solve the last LP.669

The gap closed by the three methods is similar for smaller instances, and for670

n ≤ 125 the relaxations obtained by all the methods are quite strong. The limit671

5A homogeneous polynomial has the same degree for all nonzero terms.
6These are bqp50-1 through bqp50-8, gka1a, gka2a, gka3a, gka6c, gka7c, and gka8a.

This manuscript is for review purposes only.

18 DEY, KAZACHKOV, LODI AND MUÑOZ

Table 4
Results on 111 BoxQP instances for SPARSE, DENSE, and HYBRID. Results are averages over

instances grouped by size, under a time limit of 1 hour.

Gap closed (%) Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID

n ∈ [20, 30] 18 98.50 100.00 100.00 0.10 2.93 2.93
n ∈ [40, 50] 33 98.83 99.90 99.89 0.64 10.73 7.34
n ∈ [60, 80] 21 98.45 96.24 98.17 6.49 28.27 11.69
n ∈ [90, 125] 27 94.62 90.68 95.48 48.09 106.54 49.08
n ∈ [200, 250] 12 75.16 84.70 83.92 520.24 764.30 506.98

HybridSwitchingTime is never reached for the instances with n < 40, i.e., only672

dense cuts are used, and DENSE and HYBRID have identical performance, while SPARSE673

closes less gap, though with a corresponding final solving time for the LP of 0.1674

seconds, compared to nearly 3 seconds for the other two methods.675

For the instances with n ∈ [40, 50], we see that HYBRID closes a little less of676

the gap than DENSE, but with a 30% improvement in the LP solution time. Upon677

a closer observation of this group, we observed that HYBRID encounters the limit678

HybridSwitchingTime for 16 of the 33 instances, but it only adds sparse cuts for679

4 of the instances. In the other 12 cases, HYBRID (via Algorithm 1) finds no sparse680

cuts to add, terminating with fewer iterations, and a slightly lower gap closed, than681

DENSE, but with a correspondingly lighter LP.682

For the next two groups, n ∈ [60, 80] ∪ [90, 125], we see that sparse cuts, even in683

isolation, outperform dense ones, whereas the gap closed by HYBRID is comparable to684

that closed by SPARSE. As n grows, the importance of including dense cuts increases,685

and eventually HYBRID dominates both SPARSE and DENSE. Curiously, this holds even686

when accounting for the last LP time, showing that it is possible to have the best of687

both worlds, i.e., both strength and speed, especially by combining dense and sparse688

inequalities. This is more emphatic in the n ∈ [90, 125] set: HYBRID closes nearly 5%689

more of the gap than DENSE with an LP that solves over twice as quickly.690

In the final and largest set of instances, in terms of gap closed, sparse cuts alone691

now lag severely behind either of the procedures involving dense cuts, and the LP692

time for HYBRID is the best of the three algorithms. We do observe a degradation in693

the gap closed by HYBRID relative to DENSE, which we investigate further below.694

In Figure 1, we focus on DENSE and HYBRID, and show a more detailed comparison695

of the gap closed by each method. The dashed diagonal line indicates parity between696

the two methods; instances above the line are ones in which HYBRID performs better,697

and the opposite for instances below the line. Additionally, in this figure, we classify698

instances according to their density.699

The plot reinforces the message of Table 4, that a method combining sparse700

and dense cuts has significantly stronger performance than one based on dense cuts701

alone. We can further see that the improvement of HYBRID relative to DENSE gets702

more pronounced on sparser instances, except for the ones in the lower left corner,703

which we elaborate on next. There are seven instances in which at least one of the704

two methods closes less than 82% of the gap: spar125-025-1, spar200-025-*, and705

spar250-025-*. We focus on the three lying below the diagonal line, spar250-025-1706

through spar250-025-3, for which HYBRID closes around 4% less gap than DENSE.707

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 19

70 80 90 100
DENSE (%)

70

80

90

100
H
Y
B
R
I
D

–
d

en
se

th
en

sp
ar

se
cu

ts
(%

)

spar125-025-1

spar125-025-2

spar125-025-3

spar200-025-1

spar200-025-2

spar200-025-3

spar250-025-1
spar250-025-2

spar250-025-3

spar250-075-1

spar250-075-2
spar250-075-3

low density (≤ 33%)

medium density (34 − 67%)

high density (≥ 68%)

Fig. 1. Gap closed after 1 hour by HYBRID and DENSE algorithms on BoxQP instances, where
the diagonal dashed line is a reference for equal performance. Most instances lie above this line,
indicating that incorporating sparse cuts can close a substantially larger gap than a procedure with
dense cuts alone. The size of the markers is proportional to n, and both methods tend to close less
gap on larger instances within the time limit. Similarly, both methods perform worse on sparser
instances, though HYBRID tends to have stronger performance relative to DENSE when an instance is
sparser.

Unlike the situation for the rest of the family, HYBRID actually performs fewer iter-708

ations on these three instances. In these three cases, the reason is that an order of709

magnitude more sparse than dense cuts are produced, and ultimately the LP solution710

time for HYBRID tends to be slower than for DENSE, again in stark contrast to the rest711

of the family.712

Our takeaway is that, although our heuristic parameter choices can be better713

tuned for larger BoxQP instances, overall HYBRID appears to be the better method714

on average, while SPARSE might be preferred for instances with n ≤ 80, especially if715

LP solution time is weighed more heavily than gap closed, which can well be the case716

for a mixed-integer QCQP context.717

We conclude this section with two plots detailing the progress of the three al-718

gorithms over the course of the hour. While this will be for only one instance,719

spar125-025-1, it exemplifies the relative behavior of the approaches that we ob-720

served during most of the experiments.721

In Figure 2, the left panel shows the progress in gap closed throughout the hour,722

while the right panel shows the corresponding sequence of LP solution times. We see723

that DENSE suffers from tailing off, with a nearly flat curve after the first ten minutes724

of computation. Meanwhile, SPARSE eventually surpasses the gap closed of DENSE,725

though its rate of change is initially much slower. On the other hand, HYBRID, by726

design, captures the initial steep improvement achieved by dense cuts, after which it727

makes steady progress with the more efficient, but less aggressive, sparse cuts. Thus,728

if a shorter solution time is enforced, HYBRID would continue to dominate DENSE,729

whereas the same cannot be said for SPARSE compared to DENSE.730

The right panel underscores the effect of the density of the cuts. The solution731

This manuscript is for review purposes only.

20 DEY, KAZACHKOV, LODI AND MUÑOZ

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

20

40

60

80

100

G
ap

cl
os

ed
(%

)

HYBRID

DENSE

SPARSE

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

25

50

75

100

125

150

175

200

L
P

ti
m

e
(s

)

HYBRID

DENSE

SPARSE

Fig. 2. Progress of gap closed (left) and LP time (right) for BoxQP instance spar125-025-1

for the three methods during the first hour.

times of DENSE are rapidly increasing, while for SPARSE, the LPs never take more than732

100 seconds to solve. HYBRID shows the expected middle-ground: the rapid initial gap733

closed comes at the expense of a nonnegligible initial increase of the LP solution times.734

However, switching to sparse cuts keeps the LP under control, while still being able735

to improve the gap closed. In fact, to test this further, we performed an extended736

test for this instance with a time limit of 1 day instead of 1 hour, at the end of which737

the LP solution times for SPARSE, HYBRID, and DENSE were 129.7, 127.1, and 375.8738

seconds, corresponding to a gap closed of 96.4, 96.3, and 88.1 percent, respectively.739

Hence, DENSE creates a sequence of increasingly heavy LPs with stagnating bound740

improvement, whereas SPARSE and HYBRID do not substantially slow down relative to741

the statistics after one hour and show sustained progress in the objective value.742

Comparison to Qualizza et al. [46]. We also evaluate HYBRID by implementing743

the best approach by Qualizza et al. [46], referred to as S2M, which was exten-744

sively tested on BoxQP instances. We modify the original S2M algorithm, in or-745

der to make a fair comparison with HYBRID, by enforcing the same rule based on746

HybridSwitchingTime used in HYBRID to determine when to start sparse cuts. In747

our experiments, HYBRID significantly outperforms S2M, closing substantially more748

gap within an hour, and HYBRID does increasingly better relative to S2M for larger749

instances. We refrain from adding detailed reports on this comparison since we imple-750

mented S2M ourselves; our tests with S2M qualitatively align with the results reported751

by Qualizza et al. [46], but subtle implementation details may differ.752

6.3.2. Biq. In Table 5, we summarize the performance of SPARSE, DENSE, and753

HYBRID for the 135 Biq instances. The structure of the table is the same as Table 4.754

We have similar conclusions as for the BoxQP instances. For the smallest set of755

Biq instances, all three methods yield strong relaxations, with SPARSE closing about756

1% less gap than HYBRID, but having an 80% reduction in solving time, while HYBRID757

already comes with a 50% faster LP than DENSE, on average. In the next group,758

with n = 100, we see that HYBRID and SPARSE dominate DENSE, both closing around759

12.5% more of the gap on average while requiring only 34–38% of the time to solve760

the final LP compared to DENSE. This is a marked difference in gap closed, showing761

a substantially larger benefit to using sparse cuts in moderate-sized Biq instances,762

compared to the more modest advantages we observed in the BoxQP family. Just763

as for the BoxQP instances, the relative performance, in terms of gap closed, of764

DENSE starts to improve again for larger n, while accordingly the quality of SPARSE765

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 21

Table 5
Results on 135 Biq instances for SPARSE, DENSE, and HYBRID. Results are averages over instances

grouped by size, under a time limit of 1 hour.

Gap closed (%) Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID

n ∈ [20, 90] 18 98.70 99.47 99.81 1.33 15.14 7.26
n = 100 31 94.92 82.53 95.00 31.33 91.35 34.82
n ∈ [120, 150] 41 90.18 89.35 92.61 125.87 262.56 132.43
n ∈ [200, 250] 45 54.72 65.72 64.06 479.61 830.75 519.96

Table 6
Results on 151 MaxCut instances for SPARSE, DENSE, and HYBRID. Results are averages over

instances grouped by size, under a time limit of 1 hour.

Gap closed (%) Last LP time (s)

Instance group # SPARSE DENSE HYBRID SPARSE DENSE HYBRID

n = 60 10 97.45 98.73 98.86 3.20 13.69 10.98
n = 80 30 93.61 93.43 96.65 18.59 47.48 24.07
n = 100 99 79.36 77.44 82.66 60.09 107.76 86.74
n ∈ [150, 225] 12 6.00 5.13 5.85 717.56 775.20 704.32

deteriorates, and HYBRID retains its status as a happy compromise of the two.766

6.3.3. MaxCut. Analogously to the other families, Table 6 summarizes our767

results for the 151 MaxCut instances. The high-level trends remain the same as with768

the other two families, but there are a few notable differences for the largest group of769

instances. The gap closed is considerably less than for the other two families, with all770

methods closing only 5–6% of the gap. The reason is that the LP relaxation quickly771

becomes very heavy, and fewer than 15 iterations are able to be performed within the772

time limit.773

In Figure 3, we take as a case study the MaxCut instance pm1s 100.1, and774

we show the detailed evolution of all three methods over the course of the one hour775

time limit, with respect to gap closed (left panel) and LP solution time (right panel).776

For the time comparison in the right panel, the relative ordering of the algorithms777

is the same as for the BoxQP instance plotted in Figure 2, with SPARSE requiring778

the least amount of time throughout, followed by HYBRID, and then DENSE. As we779

did for spar125-025-1, here too we used an extended time limit of 1 day to ob-780

serve the longer-run behavior: at the end of the day (not plotted), the LP solution781

was computed by for SPARSE, DENSE, and HYBRID in 58.5, 193.0, and 73.5 seconds,782

respectively.783

However, the story for gap closed is different: while HYBRID continues to do784

well, picking up on the early momentum afforded by dense cuts and then continually785

increasing its relative advantage with respect to DENSE, the SPARSE algorithm seems786

to have much slower convergence than for the BoxQP setting. Indeed, after one day787

of computation time, SPARSE still trails DENSE in gap closed, with 92.6% of the gap788

closed by SPARSE, compared to 92.9% gap closed by DENSE. In the meantime, HYBRID789

improves from the one-hour mark gap closed of 89.6% to a final gap closed of 97.0%.790

This manuscript is for review purposes only.

22 DEY, KAZACHKOV, LODI AND MUÑOZ

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

20

40

60

80

100

G
ap

cl
os

ed
(%

)

HYBRID

DENSE

SPARSE

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

20

40

60

80

100

120

L
P

ti
m

e
(s

)

HYBRID

DENSE

SPARSE

Fig. 3. Progress of gap closed (left) and LP time (right) for MaxCut instance pm1s 100.1 for
the three methods over one hour.

7. Concluding remarks. The availability of strong, sparse outer approxima-791

tions of an SDP constraint is practically important, such as when solving QCQPs with792

LP-based spatial branch and bound. In this case, the need for such relaxations comes793

from the large number of LPs that need to be solved within that process and the794

target of quickly obtaining good bounds. A related, but distinct, motivation comes795

from convergence: without sparsity, a cutting plane approach may stall, either due to796

slower iterations or due to numerical issues.797

This paper introduces a viable method to apply sparse eigenvector-based cutting798

planes to capture the strength of an SDP constraint in a linear programming context.799

While these families of cuts have been considered before, their empirical performance800

has been limited on one hand by the high density of eigenvector-based inequalities,801

causing linear programs that are too slow for practical purposes, and on the other802

hand by the relative weakness of sparsified versions of the dense cuts.803

We first empirically justify, through our enumeration experiments, that sparse804

cuts tend to indeed be weak in isolation, while we observe that dense cuts are surpris-805

ingly strong when compared to all available sparse cuts. With this in mind, and via806

our novel connection between k-sparse-eigencut generation and the classical Sparse807

PCA problem, we develop HYBRID, an efficient separation routine for producing a mul-808

titude of strong and sparse eigenvector-based cuts. This method combines the initial809

strength of dense cuts and the steady progress that can be obtained when generating810

multiple sparse cuts using Algorithm 1. Our computational results indicate that we811

can successfully produce strong, lightweight linear relaxations; for QCQP instances812

with at most 100 variables and across three different benchmark families, within an813

hour of computation, we tend to close more than 90% of the gap between the initial814

LP relaxation and the SDP relaxation, representing a significant improvement with815

respect to either dense or sparse cuts alone. Further, our experiments indicate that816

a driving force for this relative improvement is that LPs with sparse cuts solve much817

faster: for example, in the last iteration, the LP with dense cuts can be two to three818

times slower, on average, than one with sparse cuts. Moreover, even with a much819

longer time limit, dense cuts often never attain the same gap closed as when sparse820

cuts are employed.821

Future work involves further improving scalability. Right now, our handling of822

the variable matrix is straightforward, and all entries in X are created and stored.823

Avoiding this is a crucial step into scaling our approach into even larger instances and824

This manuscript is for review purposes only.

CUTTING PLANE GENERATION THROUGH SPARSE PCA 23

to be able to properly embed it in spatial branch and bound.825

Acknowledgments. This research was enabled in part by support provided826

by Calcul Québec (calculquebec.ca) and Compute Canada (computecanda.ca). GM827

would like to thank the Institute for Data Valorization (IVADO) for their support828

through the Postdoctoral Fellow program, and to the Government of Chile for their829

financial support through the FONDECYT grant number 11190515.830

References.831

[1] E. Amaldi, S. Coniglio, and S. Gualandi, Coordinated cutting plane gen-832

eration via multi-objective separation, Math. Program., 143 (2014), pp. 87–110.833

[2] K. M. Anstreicher, Semidefinite programming versus the reformulation-834

linearization technique for nonconvex quadratically constrained quadratic pro-835

gramming, J. Global. Optim., 43 (2009), pp. 471–484.836

[3] M. Asteris, D. S. Papailiopoulos, and G. N. Karystinos, Sparse principal837

component of a rank-deficient matrix, in 2011 IEEE International Symposium on838

Information Theory Proceedings, IEEE, 2011, pp. 673–677.839

[4] E. Balas, Intersection cuts—a new type of cutting planes for integer program-840

ming, Oper. Res., 19 (1971), pp. 19–39.841

[5] R. Baltean-Lugojan, P. Bonami, R. Misener, and A. Tramontani, Scor-842

ing positive semidefinite cutting planes for quadratic optimization via trained843

neural networks. Working paper., 2019, http://www.optimization-online.org/844

DB HTML/2018/11/6943.html.845

[6] D. Bienstock, C. Chen, and G. Muñoz, Outer-product-free sets for polyno-846

mial optimization and oracle-based cuts, Math. Program., (2020), pp. 1–44.847

[7] D. Bienstock, C. Chen, and G. Muñoz, Intersection cuts for polynomial848

optimization, in Integer Programming and Combinatorial Optimization, Springer849

International Publishing, 2019, pp. 72–87.850

[8] R. E. Bixby, Solving real-world linear programs: A decade and more of progress,851

Oper. Res., 50 (2002), pp. 3–15.852

[9] G. Blekherman, S. S. Dey, M. Molinaro, and S. Sun, Sparse PSD ap-853

proximation of the PSD cone, Mathematical Programming, (2020), pp. 1–24.854

[10] G. Blekherman, S. S. Dey, K. Shu, and S. Sun, Hyperbolic relaxation of855

k-locally positive semidefinite matrices, SIAM J. Optim., 32 (2022), pp. 470–856

490, https://doi.org/10.1137/20M1387407.857

[11] P. Bonami, O. Günlük, and J. Linderoth, Globally solving nonconvex qua-858

dratic programming problems with box constraints via integer programming meth-859

ods, Math. Program. Comput., 10 (2018), pp. 333–382.860

[12] P. Bonami, J. Linderoth, and A. Lodi, Disjunctive cuts for mixed inte-861

ger nonlinear programming problems, Progress in Combinatorial Optimization,862

(2011), pp. 521–541.863

[13] P. Bonami, A. Lodi, J. Schweiger, and A. Tramontani, Solving quadratic864

programming by cutting planes, SIAM J. Optim., 29 (2019), pp. 1076–1105.865

[14] E. Boros, Y. Crama, and P. L. Hammer, Chvátal cuts and odd cycle inequal-866

ities in quadratic 0–1 optimization, SIAM J. Discrete Math., 5 (1992), pp. 163–867

177.868

[15] S. Burer, Optimizing a polyhedral-semidefinite relaxation of completely positive869

programs, Math. Program. Comput., 2 (2010), pp. 1–19.870

[16] S. Burer, A gentle, geometric introduction to copositive optimization, Math.871

Program., 151 (2015), pp. 89–116.872

This manuscript is for review purposes only.

www.calculquebec.ca
www.computecanada.ca
http://www.optimization-online.org/DB_HTML/2018/11/6943.html
http://www.optimization-online.org/DB_HTML/2018/11/6943.html
http://www.optimization-online.org/DB_HTML/2018/11/6943.html
https://doi.org/10.1137/20M1387407

24 DEY, KAZACHKOV, LODI AND MUÑOZ

[17] S. Burer and A. N. Letchford, On nonconvex quadratic programming with873

box constraints, SIAM J. Optim., 20 (2009), pp. 1073–1089.874

[18] S. Burer and R. D. Monteiro, A nonlinear programming algorithm for solv-875

ing semidefinite programs via low-rank factorization, Math. Program., 95 (2003),876

pp. 329–357.877

[19] S. Burer and D. Vandenbussche, Globally solving box-constrained noncon-878

vex quadratic programs with semidefinite-based finite branch-and-bound, Comput.879

Optim. Appl., 43 (2009), pp. 181–195.880

[20] S. Burer and Y. Ye, Exact semidefinite formulations for a class of (random881

and non-random) nonconvex quadratic programs, Math. Program., (2018), pp. 1–882

17.883

[21] J. Chen and S. Burer, Globally solving nonconvex quadratic programming884

problems via completely positive programming, Math. Program. Comput., 4885

(2012), pp. 33–52.886

[22] A. Chmiela, G. Muñoz, and F. Serrano, On the implementation and887

strengthening of intersection cuts for qcqps, in Integer Programming and888

Combinatorial Optimization, M. Singh and D. P. Williamson, eds., Cham,889

2021, Springer International Publishing, pp. 134–147, https://doi.org/10.1007/890

978-3-030-73879-2 10.891

[23] S. S. Dey, B. Kocuk, and A. Santana, Convexifications of rank-one-based892

substructures in QCQPs and applications to the pooling problem, J. Global. Op-893

tim., (2019), pp. 1–46.894

[24] S. S. Dey, R. Mazumder, and G. Wang, A convex integer programming895

approach for optimal sparse PCA, arXiv preprint arXiv:1810.09062, (2018), https:896

//arxiv.org/abs/1810.09062. Working paper.897

[25] S. S. Dey and M. Molinaro, Theoretical challenges towards cutting-plane898

selection, Math. Program., 170 (2018), pp. 237–266.899

[26] S. S. Dey, M. Molinaro, and Q. Wang, Approximating polyhedra with sparse900

inequalities, Math. Program., 154 (2015), pp. 329–352.901

[27] S. S. Dey, A. Santana, and Y. Wang, New SOCP relaxation and branching902

rule for bipartite bilinear programs, Optim. Eng., 20 (2019), pp. 307–336.903

[28] M. Fischetti and M. Monaci, A branch-and-cut algorithm for mixed-integer904

bilinear programming, Eur. J. Oper. Res, (2019).905

[29] M. Fukuda, M. Kojima, K. Murota, and K. Nakata, Exploiting sparsity906

in semidefinite programming via matrix completion I: General framework, SIAM907

J. Optimiz., 11 (2001), pp. 647–674.908

[30] M. X. Goemans and D. P. Williamson, Improved approximation algorithms909

for maximum cut and satisfiability problems using semidefinite programming, J.910

ACM, 42 (1995), pp. 1115–1145.911

[31] G. Gruber, On Semidefinite Programming and Applications in Combinatorial912

Optimization, PhD thesis, University of Klagenfurt, 2000.913

[32] G. Guennebaud, B. Jacob, et al., Eigen v3. http://eigen.tuxfamily.org,914

2010.915

[33] Gurobi Optimization, LLC, Gurobi optimizer reference manual, 2020, http:916

//www.gurobi.com.917

[34] R. Horst and H. Tuy, Global Optimization, Springer Berlin Heidelberg, 1996.918

[35] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, Generalized919

power method for sparse principal component analysis., J. Mach. Learn. Res., 11920

(2010).921

[36] J. B. Lasserre, Convergent SDP-relaxations in polynomial optimization with922

This manuscript is for review purposes only.

https://doi.org/10.1007/978-3-030-73879-2_10
https://doi.org/10.1007/978-3-030-73879-2_10
https://doi.org/10.1007/978-3-030-73879-2_10
https://arxiv.org/abs/1810.09062
https://arxiv.org/abs/1810.09062
https://arxiv.org/abs/1810.09062
http://www.gurobi.com
http://www.gurobi.com
http://www.gurobi.com

CUTTING PLANE GENERATION THROUGH SPARSE PCA 25

sparsity, SIAM J. Optimiz., 17 (2006), pp. 822–843.923

[37] M. Laurent, Sum of squares, moment matrices and optimization over polyno-924

mials, in Emerging Applications of Algebraic Geometry, vol. 149 of IMA Vol.925

Math. Appl., Springer, New York, 2009, pp. 157–270.926

[38] J. Lavaei and S. H. Low, Zero duality gap in optimal power flow problem,927

IEEE T. Power Syst., 27 (2011), pp. 92–107.928

[39] L. Mackey, Deflation methods for sparse PCA, in Advances in Neural Informa-929

tion Processing Systems, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,930

eds., vol. 21, Curran Associates, Inc., 2009, pp. 1017–1024.931

[40] M. Magdon-Ismail, NP-hardness and inapproximability of sparse PCA, Inform.932

Process. Lett., 126 (2017), pp. 35–38.933

[41] G. P. McCormick, Computability of global solutions to factorable nonconvex934

programs: Part I – Convex underestimating problems, Math. Program., 10 (1976),935

pp. 147–175.936

[42] MOSEK ApS, The MOSEK optimization toolbox for C++ manual. Version937

9.2.21, 2019, https://docs.mosek.com/9.2/cxxfusion/index.html.938

[43] B. Müller, F. Serrano, and A. M. Gleixner, Using two-dimensional pro-939

jections for stronger separation and propagation of bilinear terms, SIAM J. Op-940

tim., 30 (2020), pp. 1339–1365.941

[44] G. Muñoz and F. Serrano, Maximal quadratic-free sets, in International942

Conference on Integer Programming and Combinatorial Optimization, Springer,943

2020, pp. 307–321.944

[45] M. Padberg, The boolean quadric polytope: some characteristics, facets and945

relatives, Math. Program., 45 (1989), pp. 139–172.946

[46] A. Qualizza, P. Belotti, and F. Margot, Linear programming relaxations947

of quadratically constrained quadratic programs, in Mixed Integer Nonlinear Pro-948

gramming, vol. 154 of IMA Vol. Math. Appl., Springer, New York, 2012, pp. 407–949

426.950

[47] H. Rahman and A. Mahajan, Facets of a mixed-integer bilinear covering set951

with bounds on variables, J. Global. Optim., 74 (2019), pp. 417–442.952

[48] M. V. Ramana, An algorithmic analysis of multiquadratic and semidefinite pro-953

gramming problems, PhD thesis, The Johns Hopkins University, 1994.954

[49] J. K. Reid, A sparsity-exploiting variant of the Bartels-Golub decomposition for955

linear programming bases, Math. Program., 24 (1982), pp. 55–69.956

[50] V. J. Rodrigues de Sousa, M. F. Anjos, and S. Le Digabel, Improving the957

linear relaxation of maximum k-cut with semidefinite-based constraints, EURO958

Journal on Computational Optimization, 7 (2019), pp. 123–151.959

[51] A. Santana and S. S. Dey, The convex hull of a quadratic constraint over a960

polytope, SIAM J. Optim., 30 (2020), pp. 2983–2997.961

[52] A. Saxena, P. Bonami, and J. Lee, Convex relaxations of non-convex mixed962

integer quadratically constrained programs: extended formulations, Mathematical963

programming, 124 (2010), pp. 383–411.964

[53] H. D. Sherali and B. M. P. Fraticelli, Enhancing RLT relaxations via a965

new class of semidefinite cuts, J. Global. Optim., 22 (2002), pp. 233–261.966

[54] N. Z. Shor, Quadratic optimization problems, Sov. J. Comput. Syst. S.+, 25967

(1987), pp. 1–11.968

[55] M. Tawarmalani, J.-P. P. Richard, and K. Chung, Strong valid inequali-969

ties for orthogonal disjunctions and bilinear covering sets, Math. Program., 124970

(2010), pp. 481–512.971

[56] A. Tillmann, Computational aspects of compressed sensing, PhD thesis, Tech-972

This manuscript is for review purposes only.

https://docs.mosek.com/9.2/cxxfusion/index.html

26 DEY, KAZACHKOV, LODI AND MUÑOZ

nischen Universität Darmstadt, 2014.973

[57] A. M. Tillmann and M. E. Pfetsch, The computational complexity of the974

restricted isometry property, the nullspace property, and related concepts in com-975

pressed sensing, IEEE Transactions on Information Theory, 60 (2013), pp. 1248–976

1259.977

[58] H. Tuy, Concave programming with linear constraints, in Doklady Akademii978

Nauk, vol. 159, Russian Academy of Sciences, 1964, pp. 32–35.979

[59] D. Vandenbussche and G. Nemhauser, A branch-and-cut algorithm for non-980

convex quadratic programs with box constraints, Math. Program., 102 (2005),981

pp. 559–575.982

[60] M. J. Wainwright and M. I. Jordan, Treewidth-based conditions for exact-983

ness of the Sherali-Adams and Lasserre relaxations, Tech. Report 671, University984

of California, September 2004.985

[61] M. Walter, Sparsity of lift-and-project cutting planes, in Operations Research986

Proceedings 2012, Springer, 2014, pp. 9–14.987

[62] A. L. Wang and F. Kılınç-Karzan, On the tightness of SDP relaxations of988

QCQPs, Math. Program., (2021).989

[63] A. Wiegele, Biq Mac Library, 2007, http://biqmac.uni-klu.ac.at/biqmaclib.990

html. Accessed August 14, 2020.991

[64] W. Xia, J. C. Vera, and L. F. Zuluaga, Globally solving nonconvex qua-992

dratic programs via linear integer programming techniques, INFORMS J. Com-993

put., (2019).994

[65] Y. Yajima and T. Fujie, A polyhedral approach for nonconvex quadratic pro-995

gramming problems with box constraints, J. Global. Optim., 13 (1998), pp. 151–996

170.997

[66] Y. Ye, Approximating quadratic programming with bound constraints, Math.998

Program., 84 (1997), pp. 219–226.999

[67] X.-T. Yuan and T. Zhang, Truncated power method for sparse eigenvalue1000

problems, J. Mach. Learn. Res., 14 (2013), pp. 899–925.1001

[68] A. Yurtsever, J. A. Tropp, O. Fercoq, M. Udell, and V. Cevher, Scal-1002

able semidefinite programming, SIAM Journal on Mathematics of Data Science,1003

3 (2021), pp. 171–200.1004

This manuscript is for review purposes only.

http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html
http://biqmac.uni-klu.ac.at/biqmaclib.html

	Introduction
	Literature review
	The k-sparse separation problem and SPCA
	Empirical expressiveness of k-sparse-eigencuts
	Experimental setup for enumeration experiments
	Performance measures
	Results
	Single support reports
	Multiple support reports

	Summary of enumeration experiments

	Computation of multiple sparse cuts
	Iterative k-cut computation
	Enumeration experiments revisited

	Computational experiments
	Implementation details
	Cutting plane algorithm
	Parameters

	Instances
	Computational results
	BoxQP
	Biq
	MaxCut

	Concluding remarks

