
19 February 2025

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Del Buono, F., Calabrese, F., Baraldi, A., Paganelli, M., Regattieri, A. (2022). Data-Driven Predictive
Maintenance in Evolving Environments: A Comparison Between Machine Learning and Deep Learning for
Novelty Detection. 152 BEACH ROAD, #21-01/04 GATEWAY EAST, SINGAPORE, 189721, SINGAPORE :
Springer Science and Business Media Deutschland GmbH [10.1007/978-981-16-6128-0_11].

Published Version:

Data-Driven Predictive Maintenance in Evolving Environments: A Comparison Between Machine Learning and
Deep Learning for Novelty Detection

Published:
DOI: http://doi.org/10.1007/978-981-16-6128-0_11

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/905114 since: 2022-11-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-981-16-6128-0_11
https://hdl.handle.net/11585/905114

Data-driven predictive maintenance in evolving environ-

ments: a comparison between machine learning and deep

learning for novelty detection

Francesco Del Buono1[0000-0003-0024-2563], Francesca Calabrese2[0000-0001-9412-0449], Andrea Baraldi3[0000-0002-

1015-5490], Matteo Paganelli4[0000-0001-8119-895X], Alberto Regattieri5[0000-0002-6169-5980]

1,3,4 "Enzo Ferrari" Department of Engineering, UNIMORE, Modena, 41125, Italy
francesco.delbuono@unimore.it

matteo.paganelli@unimore.it
andrea.baraldi96@unimore.it

2,5 Department of Industrial Engineering (DIN), University of Bologna, Bologna, 40136, Italy

francesca.calabrese9@unibo.it
alberto.regattieri@unibo.it

Abstract. Predictive Maintenance (PdM) is the newest strategy for maintenance

management in industrial contexts. It aims to predict the occurrence of a failure

to minimize unexpected downtimes of equipment and maximize the useful life

of the monitored components. In a data-driven approach, PdM makes use of Ma-

chine Learning (ML) algorithms to extract relevant features from historical sig-

nals, identify and classify possible faults (diagnostics), and predict the compo-

nents’ remaining useful life (RUL) (prognostics). The major challenge lies in the

high complexity of industrial plants, where both operational and environmental

conditions change over time and a large number of unknown a priori modes may

occur. A solution to this problem is offered by novelty detection, where a repre-

sentation of the normal operating state of the machinery is learned and compared

with online measurements in order to identify new operating conditions. In this

paper, a comparison between ML and Deep Learning (DL) methods for novelty

detection is conducted, to evaluate their effectiveness and efficiency in different

scenarios. To this purpose, a case study considering vibration data collected from

an experimental platform is carried out. Results show the superiority of DL on

traditional ML methods in all the evaluated scenarios.

Keywords: Predictive Maintenance, Novelty Detection, Deep Learning.

1 Introduction

As one of the pillars of the Industrial 4.0 paradigm, predictive maintenance (PdM) is

attracting researchers and practitioners of several industrial sectors. PdM allows per-

forming maintenance interventions before a failure takes place and maximizing the use-

ful lives of production [1]. Thanks to enabling technologies like IIoT and edge compu-

ting, it is possible to collect a large amount of data from online condition monitoring

systems in order to assess the health condition of machinery at any point in time [2].

The transformation of raw data in useful knowledge supporting the decision making

process in the context of PdM is usually referred to as Prognostics and Health

mailto:francesco.delbuono@unimore.it
mailto:andrea.baraldi96@unimore.it
mailto:francesca.calabrese9@unibo.it
mailto:alberto.regattieri@unibo.it

2

Management (PHM). This process mainly consists of feature extraction, fault detection

and diagnosis, and prognostics [3]. A data-driven PHM approach makes use of condi-

tion monitoring techniques and machine learning (ML) algorithms to perform fault di-

agnostics and prognostics [4]. However, their industrial applicability is limited by the

fact that the training data available to build diagnostic models typically do not include

all the work conditions that components and systems may experience during their life

[5-6]. In addition, the data collected through an online condition monitoring system

refer to equipment under varying operating and environmental conditions. In the liter-

ature, semi-supervised and self-adaptable approaches are proposed for fault diagnosis

in evolving environments [5]. In these contexts, the occurring of a different operating

condition is seen as a concept drift detection problem. When a concept drift is detected,

existing diagnostic models are re-trained including new available data. Thus, the main

goal is to detect abrupt concept drifts which correspond to the occurrence of a novel

operating condition. The concept of drift detection can be considered as a novelty de-

tection problem [7]. According to [8], novelties here are seen as agglomerations of ab-

normal observations, i.e., anomalies, representing a fundamental change in the under-

lying processes generating the observations. Hence, novelty detection can also be seen

as a one-class classification problem [9]. Giving their promising results in several do-

mains, e.g., feature learning, pattern recognition, time series forecasting, Deep Learning

algorithms are receiving great attention in the context of novelty detection. However, a

comparison in terms of classification performance between ML and DL algorithms is

still missing in the field of novelty detection. In addition, existing studies only consider

the case of one-class classification, including one only normal condition during the

learning process. This aspect limits their application to industrial machinery, which op-

erates under several normal conditions.

The main goal of the present study is to compare ML and DL performance in the

recognition of novel operating conditions of a system. In particular, two different sce-

narios and two different levels of analysis will be considered, in order to determine the

best models, in terms of prediction accuracy, in offline and online scenarios and when

a single point or a batch is considered during models training and testing. In addition,

the performance of each method is also compared in terms of required computational

times for both training and prediction, and with a varying training size.

The remaining of the paper is organized as follows. In Section 2, common models

used in the context of novelty detection are briefly reviewed. In particular, details on

models adopted for the comparative analysis are provided. Section 3 shows the results

obtained by the application of those models on raw vibration signals collected from a

test rig.

2 Methods for novelty detection

In general, novelty detection methods learn, during the training, a representation of

the normal operation of the machinery and are used at serving time to identify devia-

tions from this representation. During the test phase, they are therefore required to as-

sign novelty scores to each test data and then categorize them as belonging to a new

3

operating condition depending on whether the score exceeds a certain threshold or not

[10]. The most common ML methods adopted for novelty detection are summarized in

this section. The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly

detection method that computes the local density deviation of a given data point with

respect to its neighbors. It considers as outliers the samples that have a substantially

lower density than their neighbors [11]. The Isolation Forest ‘isolates’ observations by

randomly selecting a feature and then randomly selecting a split value between the

maximum and minimum values of the selected feature. Since recursive partitioning can

be represented by a tree structure, the number of splits required to isolate a sample is

equivalent to the path length from the root node to the terminating node. This path

length, averaged over a forest of such random trees, is a measure of normality and our

decision function. Random partitioning produces noticeably shorter paths for anoma-

lies. Hence, when a forest of random trees collectively produces shorter path lengths

for particular samples, they are highly likely to be anomalies [12]. The One-Class Sup-

port Vector Machine is an unsupervised learning algorithm that is trained only on the

‘normal’ data, in our case the negative examples. It learns the boundaries of these points

and is therefore able to classify any points that lie outside the boundary as outliers

[13]. The Principal Component Analysis (PCA) is frequently used in exploratory data

analysis because it reveals the inner structure of the data and explains the variance in

the data. PCA looks for correlations among the variables and determines the combina-

tion of values that best captures differences in outcomes. For anomaly detection, each

new input is analyzed, and the anomaly detection algorithm computes its projection on

the eigenvectors, together with a normalized reconstruction error. The normalized error

is used as the anomaly score. The higher the error, the more anomalous the instance is

[14]. Online clustering can be considered a distance-based novelty detection approach,

in which the “normal” class is characterized by a small number of prototype points in

the data space [10]. During the prediction step, the distance between the “normal”

points and new points is computed. A threshold is set to determine whether the current

pattern belongs to the same cluster as the normal one, or creates a new cluster. Among

DL approaches, the most widely adopted methods for novelty and anomaly detection

problems are autoencoders. They are neural architectures that compress the input data

into a compact vector representation (encoding phase) and try to reconstruct the original

data starting from this intermediate representation (decoding phase) [9,10,15]. In the

context of novelty detection, these architectures identify new operating conditions

when the reconstruction error obtained exceeds a certain threshold, which confirms that

the processed input cannot refer to any normal condition encountered in the training

phase. This generic architecture can be implemented using different types of neural

networks: simple Feed-Forward neural networks, Convolutional Neural Networks

(CNNs) or Recurrent Neural Networks (RNNs). Feed-Forward AutoEncoder [9] relies

on Multilayer Perceptrons, or MLPs for short, to encode and decode the input data and

intermediate representations respectively. CNN AutoEncoder [15] applies convolutive

filters to an input organized in a grid to derive an intermediate representation that en-

codes the spatial proximity information of the original data (encoding phase) and adopts

an inverse strategy to re-expand this intermediate knowledge. RNN AutoEncoder [10]

(LSTM in our case) is based on a recurrent connection of hidden representations

4

generated from multiple MLPs, which is exploited to compress and reconstruct data

while preserving their sequentiality and order of occurrence.

3 Experimental evaluation

For the purpose of the present study, an experimental platform was built in the De-

partment of Industrial Engineering of the University of Bologna. Several tests have

been conducted to get vibration signals and apply the methods described in the previous

section. The goal of this analysis is to provide a comparative evaluation of them in

terms of effectiveness and efficiency in order to understand the main trade-offs deriving

from their use. In particular, two scenarios are considered. In the first scenario, named

offline, the models are first trained on a single operating condition; then, their ability

to discriminate between the known condition and the other, i.e., novel conditions, was

analyzed; this scenario corresponds to the common approach, which requires the re-

train of models each time a new condition occurs; in the second scenario, named online,

the models are evaluated in terms of their ability to incorporate new knowledge. This

scenario evaluates an incremental learning approach, in which the ability to learn ma-

chinery conditions that were unknown at the time of the initial offline training is as-

sessed. In addition, for each scenario, two levels of analysis are conducted. In the first

case, each sample is considered separately; the prediction accuracy is computed by Eq.

1, where 𝑁 is the number of samples, 1(x) is converts the outcome of a boolean condi-

tion (true or false) into 1 or 0, 𝑦𝑖 and 𝑦̃𝑖 represent the true and the predicted labels for

the i-th sample, respectively

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
1

𝑁
∑ 1(𝑦𝑖 = 𝑦̃𝑖)

𝑁

𝑖=1

 (1)

A second level of analysis considers a batch of samples instead of single samples. In

this case, the batch accuracy is given by Eq. 2, where |𝐵𝑘| indicates the cardinality of

the k-th batch, with 𝑘 = 1, … , 𝑀 and 𝑀 the number of batches, 𝑦𝑘,𝑗 and 𝑦̃𝑘,𝑗represent

respectively the true and the predicted labels for the j-th sample in the k-th batch.

𝐵𝑎𝑡𝑐ℎ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐵. 𝐴𝑐𝑐) =
1

𝑀
∑ 1(∑ 1(𝑦𝑘,𝑗 = 𝑦̃𝑘,𝑗) = |𝐵𝑘|)

|𝐵𝑘|

𝑗=1

𝑀

𝑘=1

 (2)

Hence, a prediction is considered correct when all the samples of a batch are correctly

predicted. Finally, the performance of each model is also evaluated in terms of compu-

tational time of both training and testing.

The dataset. The platform is shown in Fig. 1. It is composed of an asynchronous motor,

a gearbox made of two pulleys that exchange the rotation through a belt, two shafts that

share the motion thanks to a couple of gears, and an electromagnetic brake. The plat-

form is provided with three triaxial accelerometers, which are placed on the bearing’s

support, next to the second pulley and the two gearboxes, respectively. They have a

sampling frequency of 12.8 kHz per axis and an acceleration range of 500 Gpeak. A

complete description of the platform can be found in [17]. For the purposes of experi-

mentation, tests in four distinct operating conditions and a fault condition are

5

conducted. The rotational speed is fixed at 660 rpm, while the distance between the

pulley and the braking torque varies. The parameters, the duration, and the number of

batches of each condition are shown in Table 1. Note that each batch has a length of 10

minutes. A representation of the raw signals in the 4 operating conditions is provided

in Fig. 1. The considered signals represent a multivariate series where each feature is

an acceleration. As can be seen, while the accelerations in the first operating condition

are rather stable, significant oscillations occur in the other conditions, but only state 4

describes an anomalous operation of the machinery (i.e. states 1-3 represent normal

operating conditions). Note that, since C4 is a fault condition, it will be used only as

test data (i.e. no model will be trained on this anomalous state).

Table 1. Dataset Description.

Operating

Conditions

Distance between

pulleys (mm)

Braking

Torque (Nm)

Duration

(min)

Number of

batches

C1 27.33 0.1 70 7

C2 27.33 0.5 150 15

C3 27.54 0.1 70 7

C4 27.54 0.1 30 3

Fig. 1. Raw signals corresponding to each operating condition

Offline evaluation scenario. To carry out this evaluation we trained the models in turn

on one batch at a time and we evaluated them on the remaining batches. This evaluation

is repeated until each batch has been used for model training. The behavior we expect

to obtain is that for all the test data associated with the same machine condition used

for the training no novelty state is detected, while new machinery conditions are de-

tected for the other samples. The results of this experiment are shown in Table 2, where

for each model and training machinery condition, the accuracy, given by Eq. 1, and the

batch accuracy, given by Eq. 2, computed over all the datasets are reported. The models

that provide the worst performance are SVM, IF and LOF, while the remaining models

are almost equivalent. With the exception of C3 where they produce poor results, these

three models generate good performance on single samples (i.e. they obtain accuracy

values in the range 0.66-0.97), however, in batch-level evaluation, they produce many

false alarms (i.e. they obtain batch accuracy values in the range 0.3-0.6). Furthermore,

it is possible to see how the most difficult operating condition to identify is C3, in which

SVM, IF and MLP show the most significant reductions in performance, while C1 is

6

recognized by the models with the highest effectiveness. This differentiation in perfor-

mance does not apply to LSTM and CNN which are highly effective on all scenarios

without distinction.

Table 2. Breakdown of model performance by operating condition

Algorithm All C1 C2 C3

 Acc. B. Acc. Acc. B. Acc. Acc. B. Acc. Acc. B. Acc.

Clustering 0.988 0.758 0.998 0.941 0.978 0.627 0.995 0.830

LOF 0.817 0.572 0.990 0.840 0.915 0.544 0.411 0.326

PCA 0.965 0.808 0.999 0.945 0.939 0.752 0.981 0.772

SVM 0.658 0.351 0.982 0.715 0.703 0.290 0.189 0.067

IF 0.880 0.619 0.994 0.867 0.967 0.598 0.561 0.379

MLP 0.957 0.911 1.000 1.000 0.945 0.906 0.933 0.821

LSTM 0.989 0.944 0.998 0.977 0.984 0.927 0.990 0.942

CNN 0.989 0.939 0.998 0.980 0.984 0.919 0.989 0.933

Online evaluation scenario. Drawing inspiration from [7], in this experiment we sim-

ulate the adoption of the models in a dynamic scenario where a continuous monitoring

of the machinery is performed, and an incremental knowledge of the operating condi-

tions of the machinery is learned by the diagnostic system. To create this experimental

scenario we have considered the three settings shown in Table 3.

Table 3. Online scenario configurations

Conf Training Set Test set

 Known Set Novel Set

S1 C1 (10 min.) C1 (70 min) C2, C3, C4 (150 + 70 min + 10 min)

S2 C1, C2 (10 + 10 min.) C1, C2 (70 + 150 min) C3, C4 (70 min + 10 min)

S3 C1, C2, C3 C1, C2, C3 C4

In the first configuration, each model is trained exclusively on a 10-minute batch of C1

and an operating cycle is then applied to the other machinery settings. In the second

configuration, it is assumed that the model has also learned of the existence of C1 and

C2, and the same operating cycle is applied to other machinery settings. Finally, the

last configuration evaluates the behavior of each model when trained jointly on all three

states. Note how each model stores for each state a limited amount of data compared to

the totality of measurements made (i.e. only 10 minutes of data for each state are con-

sidered). In this way 1) the model is trained quickly and it can continue to monitor the

behavior of the machinery and 2) no dedicated storage is needed to store the entire

measurement history. Results of this scenario are reported in Table 4, where for each

model the batch accuracy is reported both for the entire test set, i.e., all observations

included in both known and novel tests as defined in Table 3, and the known and novel

sets as defined in Table 3, individually. Similar results were obtained considering the

7

record-level accuracy, which were not reported due to space constraints. From Table 4,

it is possible to observe that the configuration where the models perform best is the first

one (S1), where the models are trained exclusively on C1. This confirms that C1 is

significantly different from the other states, thus facilitating its distinction with respect

to the other states. In this configuration, the worst-performing models are SVM, LOF,

and IF, which correctly recognize C2, C3, and C4 as new operating conditions, however

they tend to wrongly categorize batches belonging to C1. In the second configuration,

on the other hand, there is a significant reduction in the effectiveness of the models,

with the exception of LSTM and CNN. In more detail, the LOF, PCA, and Clustering

models hardly recognize C1 and C2 as already known operating conditions (low accu-

racies on the known set). This is probably due to the integration of C2 with the training

data, which has made the separation between the operating conditions less marked. Fi-

nally, by analyzing the third configuration, it is possible to note how all the models

produce good performance in recognizing the known set, however they are no longer

able to discriminate it with respect to the state C4, which actually presents, in the phase

preceding the failure, very similar characteristics compared to other conditions. In par-

ticular, all models except LSTM and CNN have an accuracy equal to 0, i.e. they cannot

correctly predict even a batch. A more detailed analysis of these results revealed that

the record-level accuracy of these models varies in the range 0.1-0.33, while for LSTM

and CNN in the range 0.81-0.83.

Table 4. Models batch accuracy in online scenario

Algorithm C1 C2 C3

 Test Known Novel Test Known Novel Test Known Novel

Clustering 0.941 0.732 1.000 0.567 0.503 0.700 0.410 0.455 0.000

LOF 0.840 0.304 0.990 0.456 0.395 0.586 0.690 0.767 0.000

PCA 0.945 0.750 1.000 0.235 0.000 0.729 0.000 0.000 0.000

SVM 0.715 0.321 0.825 0.618 0.565 0.729 0.790 0.878 0.000

IF 0.867 0.411 0.995 0.618 0.626 0.600 0.757 0.841 0.000

MLP 1.000 1.000 1.000 0.871 1.000 0.600 0.900 1.000 0.000

LSTM 0.997 0.893 1.000 0.935 0.952 0.900 0.743 0.772 0.476

CNN 0.980 0.911 1.000 0.922 0.912 0.943 0.790 0.847 0.286

To further inspect the superiority shown by the LSTM-based AutoEncoder over com-

petitive methods, we propose in Fig. 2 a visual inspection of its internal representation

for the examined operating conditions. In the figure this representation is compared

with the raw distribution of operating states when projected into a two-dimensional

space generated by the popular t-SNE technique [15]. As you can see, the embedded

8

space created by the LSTM emphasizes the separation between the different operating

conditions more than in the original feature space.

Fig. 2. LSTM-based AutoEncoder embedded space compared with the original feature space

Impact of data size on performance. In this subsection, the impact of the size of the

training data on model performance and computation time is assessed. For the evalua-

tion of the performance, each model is trained on a variable number of batches associ-

ated with the same machinery state, i.e. 5, 10, 20 and 30 minutes of data. Each model

is then required to recognize the test data as referring to a novel or already known con-

dition of the machinery. Results of this experiment are shown in Fig. 3, where for each

model the evolution of batch accuracy as the training size increases is reported for all

the three states considered. Results show that the performance of deep learning models

is high even with a small amount of training data (e.g., 5 minutes) and is not influenced

by the availability of further training data. As for the other approaches, the variable

availability of training data influences their performance (with the exception of the PCA

which produces equivalent results for all the settings considered). In particular, Clus-

tering and SVM are more effective as the size of the training set increases: SVM

achieves accuracy improvements in the range between 9-20%, while Clustering be-

tween 6-20%. Similar trends are also confirmed for the LOF and IF models on C1 and

C2. However, the latter two models perform worse as the size of the training set in-

creases when trained on C3. A more detailed analysis of these results has revealed that

in this setting they are unable to distinguish new states (i.e., LOF and IF generate a

batch accuracy of 3 and 6%, respectively). The evaluation of computational time with

varying training size is conducted to assess 1) the impact of a training process on the

inactivity of each model, and 2) their velocity in detecting possible new operating con-

ditions of the machinery (i.e., the prediction time). Note that models are run on a VM

deployed on Google Cloud with 12 GB of RAM, GPU K80, and Intel(R) Xeon(R) CPU

@ 2.30GHz. For each model, both training and test times are considered. Each model

is trained on 5, 10, 20 and 30 minutes of data and the relative times are recorded. In

addition, the prediction time over 1 sample, 10-, 20- and 30-minute batches was also

recorded. The results of these two experiments are displayed in Fig. 4 on the left and

right plots respectively. From the plot on the left in Fig. 4, it is possible to observe how

the models require very different training times. Models like SVM and PCA only take

a few milliseconds to complete the training. Times equal to almost two orders of mag-

nitude are instead produced by IF and MLP models. Clustering and CNN, on the other

hand, require times in the order of a second or a few tens of seconds. Finally, the LSTM

model is the one that produces the highest training times: from 4 minutes in the config-

uration with fewer data to a maximum of 20 minutes. A confirmation of these trends is

9

obtained by analyzing the prediction times shown in the right plot, although the latter

are two orders of magnitude lower. From these results it is also possible to note that the

Clustering approach produces significantly higher prediction times than the other tech-

niques (with the exception of LSTM). This is due to the quadratic nature of the ap-

proach, although it was partially alleviated through a mixed training strategy where a

first clustering solution was produced from 1000 samples and then the remaining data

were included in an online fashion. Finally, it is possible to observe how the time re-

quired to evaluate whether a single sample belongs to an already known or novel state

is a few milliseconds, making them all suitable for operating in an online scenario.

Fig. 3. Performance evaluation as the training size increase

Fig. 4. Train (left) and test (right) performance by varying the data size

4 Conclusions

In this paper we have provided a comparative analysis of the performance of traditional

techniques (e.g. Clustering, LOF, PCA, SVM, IF) and more advanced approaches based

on deep learning models (Autoencoder, CNN) for novelty detection tasks in the context

of fault diagnosis under varying operating conditions. The evaluation has been con-

ducted in multiple test scenarios. The effectiveness was measured both in offline and

online settings, in order to compare the ability of the models to exploit already known

information and to incorporate new ones for the purpose of novelty detection. Further-

more, a variable dimension of the data was considered to analyze their impact on the

time and effectiveness performance of these techniques. The main outcomes of the

evaluation can be summarized as follows. First, traditional methods are less effective

than DL-based models, however the latter requires more time for both training and in-

ference. Second, methods based on autoencoders have shown greater robustness to

noisy signals than competitive approaches. In summary, these results support the direc-

tion towards a beneficiary use of Deep Learning techniques in the context of novelty

detection. Results in terms of testing times are promising for industrial streaming

10

applications of fault diagnostics under dynamic environments. Further assessments in

more complex scenarios will be conducted to verify the generality of this consideration.

References

1. Ayvaz S., Alpay K.: Predictive Maintenance System for Production Lines in Manufac-

turing: A Machine Learning Approach Using IoT Data in Real-Time. Expert Syst. Appl

(173), 114598, (2020)

2. Cakir M., Guvenc M.A., Mistikoglu S.: The experimental application of popular machine

learning algorithms on predictive maintenance and the design of IIoT based condition

monitoring system. Comput. Ind. Eng (151), 106948 (2021).

3. Jardine A.K.S., Lin D., Banjevic D.: A review on machinery diagnostics and prognostics

implementing condition-based maintenance. Mech. Syst. Signal Process. 7(20), 1483–

1510 (2006).

4. Çinar Z.M., Nuhu A.A., Zeeshan Q., Korhan O., Asmael M., Safaei B.: Machine learning

in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sus-

tain. 12 (19), (2020)

5. Hu Y., P. Baraldi, F. Di Maio, and E. Zio, “A Systematic Semi-Supervised Self-adapta-

ble Fault Diagnostics approach in an evolving environment. Mech. Syst. Signal Process.

May (88), 413–427, (2017)

6. Calabrese F., Regattieri A., Botti, L., Mora C., Galizia F.: Unsupervised Fault Detection

and Prediction of Remaining Useful Life for Online Prognostic Health Management of

Mechanical Systems. Applied Sciences 10 (12), 4120 (2020).

7. Cariño J.A., et al.: Fault Detection and Identification Methodology under an Incremental

Learning Framework Applied to Industrial Machinery. IEEE Access, September (6),

49755–49766 (2018).

8. Gruhl C., Sick B., Tomforde S.: Novelty detection in continuously changing environ-

ments,” Futur. Gener. Comput. Syst. (114) 138–154 (2021).

9. Pimentel M.A.F., Clifton D.A., Lei A., Tarassenko, L.: A review of novelty detection.

Signal Process. (99) 215-249 (2014)
10. Pang G., Shen, C., Cao, L., Hengel, A. Deep Learning for Anomaly Detection: A Review.

ACM Comput. Surv. 54(2) (2021)

11. Breunig M., et al: LOF: identifying density-based local outliers. In SIGMOD/PODS00:

ACM International Conference on Management of Data and Symposium on Principles

of Database Systems. Dallas Texas USA May, 2000.

12. Wei X., Ling H., Fox A., Patterson D., Jordan M. Large-Scale System Problems Detec-

tion by Mining Console Logs. In 22nd ACM Symposium on Operating Systems Princi-

ples, Montana, 2009

13. Schölkopf, B., et al: Estimating the support of a high-dimensional distribution. Neural

computation 13 (7), 1443-1471 (2021).

14. Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation-based anomaly detection.”

ACM Transactions on Knowledge Discovery from Data (TKDD) 6(1), (2012)

15. Xiang Li, Xu Li, Hui Ma. Deep representation clustering-based fault diagnosis method

with unsupervised data applied to rotating machinery. Mech. Syst. Signal Process (143),

106825 (2020)

16. Van der Maaten, Laurens, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal

of machine learning research 9 (11), (2008).

17. Calabrese, F., Regattieri, A., Bortolini, M., Gamberi, M., Pilati, F. Predictive Mainte-

nance: A Novel Framework for a Data-Driven, Semi-Supervised, and Partially Online

Prognostic Health Management Application in Industries. Appl.Sciences 11(8), 3380

(2021)

