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Abstract

Given the avian metapneumovirus (aMPV) disease burden in poultry worldwide and

the evidence of a possible role played by wild birds in the virus epidemiology, the

present study summarizes aMPV serological and molecular data on free-ranging avi-

faunaavailable in the literatureby conducting a systematic reviewandmeta-analysis. A

computerized literature research was performed on PubMed, Scopus, CABDirect and

Web of Science to identify relevant publications across the period 1990–2021, along

with the screening of reference lists. A random-effect model was applied to calculate

pooled prevalence estimates with 95% confidence intervals. The inconsistency index

statistic (I2)was applied to assess between-studyheterogeneity. Subgroup analyses for

molecular studies only were performed according to geographical area of samplings,

taxonomic order, genus andmigration patterns of the birds surveyed. A total of 11 pub-

lications onmolecular surveys and6on serological oneswere retained for analysis. The

pooled molecular prevalence was 6% (95% CI: 1–13%) and a high between-study het-

erogeneity was detected (I2 = 96%, p < .01). Moderator analyses showed statistically

significant differences according to geographical area studied, taxonomic order and

genus. Concerning serological prevalence, a pooled estimate of 14% (95% CI: 1–39%),

alongwith a high between-study heterogeneity, was obtained (I2 = 98%, p< .01).Mod-

erator analysis was not performed due to the scarcity of eligible serological studies

included.Overall, molecular and serological evidence suggests that somewild bird taxa

could play a role in aMPVepidemiology. Particularly,wild ducks, geese, gulls andpheas-

ants, according to scientific contributions hereby considered, proved to be susceptible

to aMPV, and due to host ecology, may act as a viral carrier or reservoir. Further sur-

veys of wild birds are encouraged for a better comprehension of the poultry/wild bird

interface in aMPV epidemiology and for better characterizing the virus host breadth.
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1 INTRODUCTION

1.1 Rationale

Avian metapneumovirus (aMPV) is an enveloped negative-sense RNA

virus included in the genus Metapneumovirus of the Pneumoviridae

family (Rima et al., 2017). aMPV is directly transmitted and causes

upper respiratory tract disease and reproductive disorders in turkeys,

chickens, domestic ducks andGuinea fowls, with subsequent economic

and welfare issues for the worldwide poultry industry (Cecchinato

et al., 2018; Rautenschlein, 2020).

To date, four aMPV subtypes (A, B, C and D) have been recog-

nized according to genetic or antigenic characteristics (Bäyon-Auboyer

et al., 2000; Juhasz & Easton, 1994; Seal, 2000). Recent detections

of phylogenetically distinct aMPV strains in North America suggest

the existence of additional viral subtypes. Particularly, a divergent

aMPV strain was detected in a great black-backed gull (Larus marinus

LINNAEUS, 1758) (Canuti et al., 2019) and another in a monk para-

keet chick (Myiopsitta monachus BODDAERT, 1783) (Retallack et al.,

2019).

With respect to viral spreading, aMPV-A and B are distributed

almost worldwide and are especially found in Asia, Africa, Europe and

South America; aMPV-C, which has been further recognized in aNorth

American and a Eurasian genetic lineage, has occurred in the United

States (North American lineage) (Senne et al., 1997) and in France and

China (Eurasian lineage) (Sunet al., 2014; Toquin et al., 1999, 2006;Wei

et al., 2013). aMPVsubtypesalsodiffer in termsofhostbreadth. aMPV-

A, B and C (North American lineage) mainly infect turkeys or chickens,

while the Eurasian subtype C lineage infects ducks, and the subtype D

(detectedonly once inFrance) turkeys (Rautenschlein, 2020).However,

experimental evidence suggests that the subtypes’ host-range may be

more intricate (Brown et al., 2019).

Since aMPV’s first appearance in South Africa in the late 1970s

(Buys & du Preez, 1980), its origin and subsequent spread world-

wide have been repeatedly ascribed, among other factors, to wild

birds and to their migratory movements along their natural flight

paths (Jones, 1996; Panigrahy et al., 2000; Shin et al., 2002). Particu-

larly, aMPV’s sudden appearance in Minnesota (USA), a state with a

large migratory bird population, strongly contributed to this hypoth-

esis (Cook, 2000b). Further evidence of a seasonal pattern observed

during aMPV outbreaks in North American turkeys and viral detec-

tions of aMPV inwild birds outside endemic territories, suggestedwild

species as a viral carrier or reservoir host (Shin et al., 2002; Turpin et al.,

2008). Additional viral or serological evidence of aMPV occurrence

in free-living birds, as reported in America and Europe over the last

two decades, proved the actual viral circulation in non-domesticated

species.

Considering that studies providing a wide overview of diseases at

the poultry/wild bird interface have provided valuable information in

directing future research (Chen et al., 2019; Graziosi et al., 2021; Saw-

icka et al., 2020; Sukon et al., 2021), the present work aims to assess

current knowledge on aMPV occurrence in wild birds.

1.2 Objectives

Given the aMPV disease burden in poultry worldwide and the evi-

dence of a possible role played by wild birds in aMPV epidemiology,

the present study summarizes aMPV serological and molecular data

available in the literature on free-ranging avifauna by conducting a sys-

tematic review and meta-analysis. Although aMPV infection has been

widely reviewed (Cook, 2000a, 2000b; Cook &Cavanagh, 2002; Jones,

1996; Kaboudi & Lachheb, 2021; Naylor & Jones, 1993; Njenga et al.,

2003), to the best of our knowledge this is the first systematic review

andmeta-analysis, which focuses on aMPV occurrence in wild birds.

2 MATERIALS AND METHODS

2.1 Protocol

A systematic review and metanalysis were applied to summarize data

on aMPV infection in wild birds. To build our protocol, the Preferred

Reporting Items for Systematic Reviews andMeta-Analyses Protocols

(PRISMA-P) (Moher et al., 2015) and the PRISMA 2020 Statement

recommendations (Page et al., 2021) were followed (Supporting

Information 1).

2.2 Information sources and search strategy

A literature search for scientific contributions on aMPV in wild

birds was conducted from 16/02/2021 to 16/12/2021. Four elec-

tronic databases were accessed including PubMed (https://pubmed.

ncbi.nlm.nih.gov), the Web of Science (https://apps.webofknowledge.

com/), Scopus (https://www.scopus.com/) and CAB Direct (https://

www.cabdirect.org). Advanced search builders and two separate

search strategieswereapplied, one for searchingmolecular studies and

another for serological ones. The following keywords were used: ‘avian

metapneumovirus’ or ‘avianpneumovirus’ and ‘wildbirds’ or ‘free-living

birds’ together with molecular or serological method related terms

(Tables 1 and 2). Filters on language (English) and timespan (studies

publishedafter1990)wereused.Manual screeningof citations and ref-

erence lists of the articles retrieved were also performed to increase

the chance of finding relevant publications (Higgins et al., 2021).

2.3 Selection criteria

Literature was screened by two independent investigators (G.G. and

C.L.). Considering the paucity of information on aMPV occurrence

in wild birds, different types of scientific contributions were consid-

ered, such as original articles, book chapters, scientific correspon-

dence, conference proceedings, conference contributions and short

communications. After duplicate removal, titles and abstracts were

screened to exclude non-relevant articles with respect to our research

 18651682, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/tbed.14680 by A

rea Sistem
i D

ipart &
 D

ocum
ent, W

iley O
nline L

ibrary on [21/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://pubmed.ncbi.nlm.nih.gov
https://pubmed.ncbi.nlm.nih.gov
https://apps.webofknowledge.com/
https://apps.webofknowledge.com/
https://www.scopus.com/
https://www.cabdirect.org
https://www.cabdirect.org


GRAZIOSI ET AL. 3

TABLE 1 Search lines used for the literature research of aMPVmolecular studies in wild birds present in PubMed, Scopus, CABDirect and
Web of Science databases

Database Search line

No. of studies

retrieved

PubMed ((“pneumovirus”[Title/Abstract] OR “avian pneumovirus” OR “avianmetapneumovirus

ampv”[Title/Abstract] OR avianMetapneumovirus[Title/Abstract]) OR

(“metapneumovirus/genetics”[MeSH Terms] OR “metapneumovirus/isolation and

purification”[MeSH Terms] OR avianmetapneumovirus[MeSH Terms])) AND (“animals,

wild”[MeSH Terms] ORwild bird[MeSH Terms] OR (wild[Title/Abstract] AND

bird*[Title/Abstract]))

28

Scopus TITLE-ABS ( “avianmetapneumovirus” ) OR TITLE-ABS ( “pneumovirus” ) OR

TITLE-ABS(“avian pneumovirus”) AND ( TITLE-ABS ( “wild” ) AND TITLE-

ABS ( *bird* )) OR TITLE-ABS ( *wild ANDbird* ) AND ( TITLE-ABS ( *detect*) OR TITLE-

ABS ( “infection” ) OR TITLE-ABS (* isolat* ))

22

CABDirect (title:(Avian Pneumovirus) OR ab:(Avian Pneumovirus) OR up:(Avian Pneumovirus) OR

id:(Avian Pneumovirus) OR cabicode:(Avian Pneumovirus) OR (title:(Avian

metapneumovirus) OR ab:(Avianmetapneumovirus) OR up:(Avianmetapneumovirus) OR

id:(Avianmetapneumovirus) OR cabicode:(Avianmetapneumovirus)) AND

(title:(detection) OR ab:(detection) OR up:(detection) OR id:(detection) OR

cabicode:(detection) OR title:(isolation) OR ab:(isolation) OR up:(isolation) OR

id:(isolation) OR cabicode:(isolation)) AND (title:(wild bird*) OR ab:(wild bird*) OR up:(wild

bird*) OR id:(wild bird*) OR cabicode:(wild bird*))

10

Web of Science (ALL= ((“avianmetapneumovirus” OR “avian pneumovirus” OR “pneumovirus”) AND (((wild)

OR (free-living)) AND (bird*)) AND (infection* OR detection* OR isolat*))

22

Note: Boolean operators ‘OR’ and ‘AND’ were applied. Number of scientific contributions retrieved before duplicate removal is reported.

TABLE 2 Search lines used for the literature research of aMPV serological studies in wild birds present in PubMed, Scopus, CABDirect and
Web of Science databases

Database Search line

No. of studies

retrieved

PubMed ((((“pneumovirus”[Title/Abstract]) OR “avian pneumovirus”[Title/Abstract]) OR “avian

metapneumovirus”[Title/Abstract])) AND ((((((((Antibodies, Viral[MeSH Terms]) OR

*antibody*[Title/Abstract]) OR *serolog*[Title/Abstract]) OR prevalence*[Title/Abstract])

OR Study*[Title/Abstract]) OR Survey*[Title/Abstract]) OR Survey[MeSH Terms])) AND

(“animals, wild”[MeSH Terms] ORwild bird*[MeSH Terms] OR (wild[Title/Abstract] AND

bird*[Title/Abstract]))

16

Scopus TITLE-ABS(“avianmetapneumovirus”) OR TITLE-ABS(“pneumovirus”) OR TITLE-ABS(“avian

pneumovirus”) AND (TITLE-ABS(“wild”) ANDTITLE-ABS(*bird*)) OR TITLE-ABS (*wild

ANDbird*) AND (TITLE-ABS (*sero*) ORTITLE-ABS (*survey*) ORTITLE-ABS (* antibod*))

14

CABDirect (title:(Avian Pneumovirus) OR ab:(Avian Pneumovirus) OR up:(Avian Pneumovirus) OR

id:(Avian Pneumovirus) OR cabicode:(Avian Pneumovirus) OR (title:(Avian

metapneumovirus) OR ab:(Avianmetapneumovirus) OR up:(Avianmetapneumovirus) OR

id:(Avianmetapneumovirus) OR cabicode:(Avianmetapneumovirus)) AND (title:(sero*)

OR ab:(sero*) OR up:(sero*) OR id:(sero*) OR cabicode:(sero*) OR title:(prevalence) OR

ab:(prevalence) OR up:(prevalence) OR id:(prevalence) OR cabicode:(prevalence)) AND

(title:(wild bird*) OR ab:(wild bird*) OR up:(wild bird*) OR id:(wild bird*) OR cabicode:(wild

bird*))

11

Web of Science ALL= ((“avianmetapneumovirus” OR “avian pneumovirus” OR “pneumovirus”) AND (((wild)

OR (free-living)) AND (bird*)) AND (antibod* OR sero* OR survey*))

14

Note: Boolean operators ‘OR’ and ‘AND’ were applied. Number of scientific contributions retrieved before duplicate removal is reported.

question (i.e. studies regarding experimental trials, studies on poul-

try or on intensive-reared ducks, studies on farmed wild species). The

full texts of the articles which passed the initial screening were down-

loaded and independently assessed for eligibility, data analysis and

extraction by G.G. and C.L. If disagreements occurred, a third expe-

rienced author in the avian pathology field was consulted (E.C.). In

particular, an article was considered eligible if the following require-

ments were met: 1) the study reported information on the occurrence

of aMPV in wild bird species both free-living or captivity kept (i.e. from

wildlife rescue centres); 2) the population tested was included in two
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4 GRAZIOSI ET AL.

studies; 3) the species of bird tested was not identified; 4) the aMPV

sero-prevalence or viro-prevalence outcome was not reported. If pre-

established criteria were partially met, partial data consistent with

our standards were considered. Whenever the same population was

surveyed in more than one publication, we would consider the contri-

bution with the most exhaustive information. Reasons for exclusion of

any study were appropriately recorded and discussed. Whenever nec-

essary, additional information on the survey was directly sought from

the respective authors.

2.4 Data managing and pre-processing

The following information was extracted from each study and included

in a data extraction sheet (Microsoft Excel 2021, version 16.49): first

author, year of the publication, title, country, region, sampling period,

taxonomic order of the host, taxonomic genus of the birds, species,

age classes and sex, number of birds sampled, number of birds testing

positive and diagnostic method applied. All the species were also cat-

egorized as ‘migrant’, ‘migrant/resident’ and ‘resident’ according to the

region of study and the information provided by distribution maps on

BirdLife International (http://datazone.birdlife.org/species/factsheet).

Whenever prevalence data were expressed as percentages, raw num-

bers were obtained converting the percentages to the closest integers.

As taxonomic inconsistencies were found, common names and species

were adapted to current standards following an international online

database (Gill et al., 2021). To facilitate data analysis, countries of each

study were grouped into continents.

2.5 Study risk of bias and quality assessment

Despite current tools able to evaluate publication bias, conventional

funnel plots are believed to be inaccurate for meta-analyses of pro-

portion with low outcomes (Hunter et al., 2014). G.G. and C.L. inde-

pendently assessed the quality of the eligible studies applying the

Joanna Briggs Institute (JBI) critical appraisal checklist for prevalence

studies (https://jbi.global/critical-appraisal-tools). If the JBI checklist’s

outcome resulted in ‘seek for further info’, the corresponding author of

a given study was contacted. Although the JBI checklist was intended

for human-related studies, it perceivably suited the data set of the

study hereby presented.

2.6 Statistical analysis

Collected data were analysed using R software, version 4.0.4. (R Core

Team, 2019) using the meta package. Primary outcomes of interest

were the estimated overall molecular prevalence and the serological

prevalence of aMPV in wild birds, calculated using a double-arcsine

transformation of data and a random-effects model (Wang, 2018). For

the pooled estimates, the Cochran’s Q and the inconsistency index

(I2) were used to estimate the between-study heterogeneity. The I2

statistic was interpreted as small, medium or high according to <25%,

25–50% and >75% values, respectively (Higgins & Thompson, 2002).

Subgroup analysis was planned to explore the potential sources of

heterogeneity including the following variables: continent where the

study was conducted; migration pattern of the species according to

the region of the study; taxonomy of the birds (order and genus). Two

independent meta-analysis were performed, one for serological stud-

ies and another for molecular ones. Eventually, given the paucity of

data for serological surveys, we performed the moderator analysis on

molecular surveys only.

3 RESULTS

3.1 Literature searches

As shown in Figure 1, 98 publications on aMPVmolecular surveyswere

retrieved through database research and reading of relevant reference

lists. After duplicate records’ removal (n = 41), the initial screening of

titles and abstracts according to pre-established criteria brought about

the exclusion of 30 more works. Altogether, 27 scientific contribu-

tionswere accessed as full texts. In a secondary assessment, 16 further

articles were excluded due to data already included in other publi-

cations; surveys regarding farmed wild species; prevalence data not

available; preliminary results presented. Eventually, 11 publications

were retained for qualitative synthesis and meta-analysis as shown in

Table 3. With regards to geographical distribution, the majority of the

studies were conducted in North America (n = 5), followed by Europe

(n = 4) and South America (n = 2). Particularly, the rank order of coun-

tries based on the number of aMPV molecular studies was United

States (n = 3) > Canada (n = 2) ∼ Brazil (n = 2) ∼ Germany (n = 2) >

Italy (n = 1) ∼ Netherlands (n = 1). A total of 3011 wild birds were

molecularly tested for aMPV and 160 individuals tested positive.

Eleven taxonomic orders of birds were surveyed: Anseriformes

(n= 6 papers; 1598 birds tested; 101 positives), Charadriiformes (n= 5

papers; 951 birds tested; 8 positives); Columbiformes (n= 2 papers; 18

birds tested; 10 positives), Falconiformes (n = 1 paper; 2 birds tested;

1 positive), Galliformes (n = 1 paper; 121 birds tested; 8 positives),

Gruiformes (n = 2 papers; 204 birds tested; 16 positives); Passeri-

formes (n= 1 paper; 12 birds tested; 8 positives), Phoenicopteriformes

(n= 1 paper; 35 birds tested; 0 positive), Piciformes (n= 1 paper; 1 bird

tested; 0 positive), Psittaciformes (n = 1 paper; 15 birds tested; 1 pos-

itive) and Strigiformes (n = 1 paper; 1 bird tested; 0 positive). Across

the 11 orders above reported, 50 different species of birds belong-

ing to 31 genera were tested; of these species, 18 resulted positive.

The genera Anas (n = 3 papers) and Larus (n = 5 papers) represented

themore frequently molecularly investigated for aMPV detection. The

species tested are showed Figure 2. For clarification, the number of

studies by order, genus and species of birds tested are summarized in

Table S1 (Supporting Information 3). According to the migration pat-

terns, n = 32 species were classified as ‘migrant’, n = 21 species as

‘resident’ and n = 10 species ‘migrant/resident’. With respect to the

molecular method used, RT-PCR was applied in most of the studies
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GRAZIOSI ET AL. 5

F IGURE 1 Flow diagram of the selection process of molecular studies on aMPV in free-living wild birds, identified via databases and reference
list reading

(n = 9) and qRT-PCR in two works. The glycoprotein attachment (G)

gene sequencewas themost frequently targeted (Cha et al., 2013; Cur-

land et al., 2018; Delogu et al., 2004; Felippe et al., 2011), followed by

thematrix (M) gene sequence (Bennett et al., 2004; Jardine et al., 2018;

Turpin et al., 2008). Lastly, the nucleoprotein (N) gene (Rizotto et al.,

2019) and the large polymerase (L) gene sequences were, respectively,

targeted once (van Boheemen et al., 2012), whereas Heffels-Redmann

et al. (1998) did not specify the gene used for PCR analysis. Finally, in

Canuti et al. (2019) viral sequencewas obtained through a PCR-nested

based genome-walking technique on sequence fragments identified in

a previous study (Verhoeven et al., 2018).

Viral isolation was attempted in five out of 11 studies through inoc-

ulation of chicken embryo fibroblast cultures (Bennett et al., 2004;

Turpin et al., 2008), chicken embryonated specific pathogen free (SPF)

eggs (Rizotto et al., 2019) or chicken embryo tracheal organ cul-

tures (Heffels-Redmann et al., 1998). In one study, virus isolation was

attempted through oculonasal inoculation of SPF 3-day-old turkeys

(Cha et al., 2013). Viral isolation was successfully achieved by Turpin

et al. (2008) and Cha et al. (2013).

As shown in Figure 3, a total of 57 contributions on aMPV serologi-

cal surveyswas retrieved through database research and reference list

reading. After duplicate records’ removal (n = 30), titles and abstracts

of 27 articles were screened according to the pre-established criteria.

Finally, six full texts, whose details are shown in Table 4, were included

in the qualitative synthesis and meta-analysis. Regarding geographic

distribution, n = 2 studies were conducted in Germany, n = 1 in Italy,

n= 1 in the United States and n= 1 in South Africa. In total, 1646 sera

of wild birdswere tested and 213 resulted positive. Eight different tax-

onomic orders were surveyed: Anseriformes (n = 1 paper; 310 birds

tested; 103 positives), Charadriiformes (n= 3 papers; 421 birds tested;
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8 GRAZIOSI ET AL.

F IGURE 2 Word cloud showing the sample size of wild bird species molecularly tested for aMPV. Data are ordered from low to high, with light
colours and a smaller font size for lower number of studies on a species, darker colour and bigger font size for higher number of studies

45positives), Columbiformes (n=1paper; 195birds tested; 1 positive),

Coraciiformes (n=1 paper; 1 bird tested; 0 positive), Galliformes (n=3

papers; 432 birds tested; 37 positives), Gruiformes (n = 1 paper; 114

birds tested; 20 positives), Passeriformes (n= 1 paper; 69 birds tested;

6 positives), Pelecaniformes (n = 2 papers; 69 birds tested; 1 positive),

Phoenicopteriformes (n = 1 paper; 30 birds tested; 0 positive), Strigi-

formes (n= 1 paper; 3 birds tested; 0 positive). Across the eight orders

above reported, 26 different species of birds (Figure 4) belonging to 20

genera were tested; of these species, eight resulted positive. For clar-

ification, the number of studies by order, genus and species of birds

tested are summarized in Table S2 (Supporting Information 3). Larus

(n= 6 papers) was the genusmost frequently tested for aMPV. Accord-

ing to migration patterns, n = 10 species surveyed across the papers

were categorized as ‘migrant’, n = 14 species as ‘resident’ and n = 5

species as ‘migrant/resident’. With respect to the serological method

applied, n = 4 studies used the enzyme-linked immunosorbent assay

(ELISA) protocol, either in house or commercial kits, whereas n = 2

studies used virus neutralization tests (VNT).

3.2 Quality assessment

According to the JBI critical appraisal checklist for prevalence studies,

all the contributions met the required standard.

3.3 Statistical analyses

The pooled molecular prevalence of aMPV in wild birds was 6% (95%

CI: 1–13%) (I2 = 96%, p < .01) (Figure 5). Subgroup analyses were

performed according to geographical area, taxonomic order and genus

of the birds surveyed, and migration patterns (Supporting Informa-

tion 2). Results suggest a significant difference between the pooled

effect estimates for each geographic subgroup with the highest preva-

lence for South America (P: 14%, 95% CI: 1–39%), followed by North

America (P: 8%, 95% CI: 2–20%) and Europe (P: 8%, 95% CI: 0–4%).

Taxonomic orders and genera both appear to influence the effect esti-

mates (p< .0001 each, respectively). Regarding the orders, the highest

viroprevalence was detected in the Passeriformes order (P: 66%, 95%

CI: 38–91%), followed by the Columbiformes order (P: 55%, 95% CI:

30–80%) and the Falconiformes order (P: 50%, 95% CI: 0–100%).

According to genera, Passer showed the highest prevalence (P: 66%,

95% CI: 37–91%), followed by Columba (P: 56%, 95% CI: 30–80%)

and Falco (P: 50%, 95% CI: 0–100%). Finally, migration patterns of the

species surveyed did not appear to be significant (p= .1234).

With respect to the pooled seroprevalence of aMPV in wild birds, it

was estimated as 14% (95% CI: 1–39%) (I2 = 98%, p < .01; Figure 6).

Given the lack of data available, subgroup analyses according to

geographical area, taxonomic order of birds surveyed, genera and

migration patterns were not performed for serological studies.
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GRAZIOSI ET AL. 9

F IGURE 3 Flow diagram of the selection process of serological studies on aMPV in free-living wild birds, identified via databases and
reference list reading

F IGURE 4 Word cloud showing the sample size of wild bird
species serologically tested for aMPV. Data are ordered from low to
high, with light colours and a smaller font size for lower number of
studies on a species, darker colour and bigger font size for higher
number of studies

4 DISCUSSION

4.1 Summary of evidence

The potential role of wild birds as reservoir hosts or epiphenomena

with respect to aMPV epidemiology has not been fully disclosed yet.

Despite limited data available, a systematic revision of literature and

meta-analysiswere, for the first time, applied in our study to the above-

mentioned question to summarize the sero–viroprevalence of aMPV in

wild birds, as a necessary step to identify research gaps and encourage

future study directions.

Literature search strategies hereby applied retrieved more molecu-

lar studies than serological ones, probablydue to the increase in theuse

of PCR-based technologies with respect to serology for the detection

of infectious agents. The overall results of the meta-analyses showed

a moderate exposure of wild birds to aMPV (aMPV molecular preva-

lence: 6%; aMPV serological prevalence: 14%). Given the high degree

of between-study heterogeneity evidenced by the meta-analyses
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10 GRAZIOSI ET AL.

TABLE 4 Details of the eligible studies on the serological prevalence of aMPV in wild birds, sorted by continent

Reference Location Period Taxonomic order of birds Test

Antigen

subtype used

in themethod

Sample

size

Number of

positives (%)

North America

Turpin et al.

(2008)

United States

(Georgia, South

Carolina, Arkansas,

Ohio)

2000–2001 Anseriformes;

Charadriiformes;

Columbiformes;

Coraciiformes;

Pelecaniformes;

Passeriformes;

Strigiformes;

Gruiformes

ELISA† Subtype C –

North

American

lineage

732 131 (17.9)

Africa

Ratcliffe

(2000)

South Africa 1997–2000 Galliformes ELISA‡ n.a.§ 17 7 (41.2)

Europe

Gethöffer

et al. (2021)

Germany 2011–2015 Galliformes VNT¶ n.a. 152 21 (13.8)

Delogu et al.

(2004)

Italy 2001 Charadriiformes;

Phenicopteriformes;

Pelecaniformes

ELISA†† Subtype B 368 0

Catelli et al.

(2001)

Italy 1992–1994 Galliformes ELISA†† Subtype B 263 9 (3.4)

Heffels-

Redmann

et al. (1998)

Germany 1990 Charadriiformes VNT Subtype A 114 45 (39.5)

†In-house enzyme-linked immunosorbent assay (ELISA) test.
‡Commercial ELISA kit (Pathasure, Cambridge Veterinary Sciences Ltd., Ely, UK).
§n.a., not available.
¶VNT, virus neutralization test.
††Commercial ELISA kit (Svanovir Avian Pneumovirus-Ab EIA Test, SVANOVA, Biotech, Uppsala, Sweden).

F IGURE 5 Forest plot of the random-effects meta-analysis of aMPVmolecular prevalence. I2 (inverse variance index), τ2 = the between-study
variance, χ2 and p value of the Cochran’s Q test for heterogeneity
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GRAZIOSI ET AL. 11

F IGURE 6 Forest plot of the random-effects meta-analysis of aMPV serological prevalence. I2 (inverse variance index), τ2 = the
between-study variance, χ2 and p value of the Cochran’s Q test for heterogeneity

conducted, the pooled estimates need to be considered together with

the 95%CI.

Possible sources of heterogeneity may be related to the different

sensitivities and specificities of the assays used, the area studied, the

different sample type analysed, and the different ecology and habits of

the wild birds sampled.

The targeting of different gene segments in molecular studies likely

influenced the results obtained when testing wild birds, due to the

different subtype specificity of theRT-PCRsassays used (Jones&Raut-

enschlein, 2013). With respect to serological surveys, the use of tests

having different sensitivity and specificity levels could have further

influenced the accuracy of the results obtained.

According to subgroup analyses, our results showed a statistically

significant association between positive aMPV molecular findings and

the location of the samplings (p = .01). However, considering that

only three categorical variables were extracted from our data set with

respect to the geographical distribution of the studies (North America,

South America and Europe), we believe this to be poorly represen-

tative of global trends. With respect to North America, initial aMPV

detections were linked to spillover events from poultry to free-living

wild species. The first aMPV-C molecular detections (Shin et al., 2000)

and successful viral isolation in a healthy live-captured Canada goose

(B. canadensis) in Minnesota (Bennett et al., 2002) led the authors to

consider wild birds as natural viral reservoirs. Subsequently, aMPV-

C occurrence outside poultry USA endemic territories was reported

by Turpin et al. (2008), who detected both antibodies and viral RNA

of aMPV-C in American coots (Fulica americana GMELIN, 1789) and in

Canada geese (B. canadensis) in Georgia, South Carolina, Arkansas and

Ohio. aMPV-C direct evidence in wild species was also identified in

aquatic birds by Jardine et al. (2018) in Canada where aMPV infec-

tion has never been reported for poultry. Considering South America,

aMPV subtypes A and B were detected in numerous free-living wild

species and in individuals hosted in rehabilitation centres (Felippeet al.,

2011; Rizotto et al., 2019), probably implying aMPV spread between

the birds sampled in captivity. Concerning Europe, viral subtype C was

molecularly detected in wild mallards (A. platyrhynchos), graylag geese

(Anser anser (LINNAEUS, 1758)) and common gulls (Larus canus LIN-

NAEUS, 1758) sampled in the Netherlands (van Boheemen et al., 2012)

and in wild anatids sampled in Italy (Graziosi et al., 2022; Tucciarone

et al., 2022). aMPV was also detected by RT-PCR in free-living pheas-

ants (P. colchicus) in Germany (Curland et al., 2018), without further

viral subtyping.

Statistical comparison among orders and genera of molecularly

testedwild birds revealed a significant association (p< .0001) between

these moderators and the aMPV molecular prevalence. Nevertheless,

not all the taxa included in the subgroup analysis were represented

in more than one study. The orders Passeriformes, Columbiformes

and Falconiformes showed the highest molecular/viroprevalence out-

comes, although sampling bias due to under-sampling probably influ-

enced the results. In fact, the Passeriformes order, represented solely

by the house sparrow (Passer domesticus (LINNAEUS, 1758)), and

the Falconiformes order, represented by the American kestrel (Falco

sparvierus LINNAEUS, 1758), were both sampled once (Bennett et al.,

2004; Rizotto et al., 2019). Considering Columbiformes, this order also

included a single species sampled, the pigeon (Columba livia GMELIN,

1789), which was surveyed twice (Felippe et al., 2011; Rizotto et al.,

2019). House sparrows, American kestrels and pigeons are com-

mon rural species inhabiting agroecosystems, which could therefore

encounter aMPVby frequenting poultry farm surroundings. Regarding

house sparrows and/or pigeons, results of experimental infection with

aMPV are controversial (Catelli et al., 2012; Gharaibeh & Shamoun,

2012; Gough et al., 1988). Current evidence does not allow a clear epi-

demiological role to be assigned to these species, although they appear

more likely to be epiphenomena.

Taken as a whole, molecular and serological evidence suggests that

some wild bird taxa could play a role in aMPV epidemiology. Partic-

ularly, wild ducks, geese, pheasants and gulls, according to scientific

contributions hereby considered, proved to be susceptible to aMPV

infection. Considering the Eurasian lineage of aMPV-C as well adapted

to ducks (Brown et al., 2019), further investigation onwild anatids may

lead to disclosure of potential aMPV reservoir species. Although mod-

erator analysis on the association between aMPV molecular detec-

tion and migration patterns resulted in a non-statistical significance,

migratory or non-migratory attitudes of species still deserve to be
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12 GRAZIOSI ET AL.

considered for further consideration. It can be fairly hypothesized that

migratory birds may condition the spread of aMPV along migratory

flight paths, especially for the aMPV subtype C, as already proven for

avian influenza (Global Consortium for H5N8 and Related Influenza

Viruses, 2016). In particular, the detection of aMPV-C in wild migra-

tory species sampled in territories where this subtype has never been

reported for poultry (van Boheemen et al., 2012; Graziosi et al., 2022;

Jardine et al., 2018; Turpin et al., 2008) corroborates this hypothesis.

Separate migratory attitudes of Eurasian and American wildfowl could

also be relevant in shaping aMPV-C genetic diversity, which already

recognizes two distinct lineages.

On the other hand, with respect to resident wild bird species,

these could possibly play a bridging role in between-poultry farm or

between-potential natural reservoir species and poultry. Consider-

ing aMPV-A, B or C (North American lineage) as more adapted to

gallinaceous birds (Brown et al., 2019), wild Galliformes such as pheas-

ants could therefore be involved in the viral epidemiology. Evidence

of aMPV-A or B subtype infection in free-living or farmed pheasants

(Catelli et al., 2001; Curland et al., 2018; Gough et al., 2001;Welchman

et al., 2002), and themolecular detection of aMPV-C in pheasants sam-

pled in a live-birdmarket (Lee et al., 2007) in SouthKorea, enlighten the

potential impact of this territorial species with respect to local aMPV

circulation at the poultry/wildlife interface with free-range pheasants

being frequently observed in rural areas or around poultry farms.

Finally,with respect to gulls, their trophic plasticity and theevidence

of their susceptibility to aMPV (Canuti et al., 2019; Heffels-Redmann

et al., 1998; van Boheemen et al., 2012) suggest their possible involve-

ment in viral epidemiology. Larus are indeed regarded as generalist

carnivores, which use different habitats as nesting sites and consume

bothmarine and terrestrial food resources (Belant et al., 1998; Shaffer

et al., 2017).

4.2 Limitations

Among the constraints identified regarding the systematic review and

meta-analysis hereby presented, we acknowledge the scarcity of pub-

lications on aMPV occurrence in free-ranging birds in comparison with

the abundance of studies available for poultry. In that sense, a possible

limitation of our study might be due to a lack of data from Africa and

Asiatic countries, whichmay generate amisinterpretation of the actual

geographic distribution and prevalence of known aMPV subtypes in

wild birds.

We also suggest the existence of possible research which may have

not been accessible through the search strategy adopted.With respect

to the statistical analysis, the scarcity of eligible articles concerning

aMPV serological surveys prevented us from performing subgroup

analyses and exploring the sources of the between-study heterogene-

ity recorded. Moreover, outlier data were not statistically identified to

avoid further decreasing of the overall number of studies considered.

Finally, any statistical test to quantify publication bias was not

applied due to the absence of specific tools applicable to studies on

proportions (Murad et al., 2018; Olsen et al., 2019).

5 CONCLUSION

Further aMPV surveys in wild birds are encouraged for a better com-

prehension of aMPV epidemiology and to better characterize the virus

host breadth. Considering aMPV as transmitted by direct contact, the

gregariousness of wild species could be an important trait to be con-

sidered in selecting the species to be tested. Furthermore, accurate

recording of taxonomic and demographic information of individuals

tested, especially sex and age classes, would be essential to notice spe-

cific aMPV infection patterns. Moreover, sampling location data would

support the understanding of epidemiological links between wild free-

ranging avifauna and aMPV occurrence on poultry farms. Whenever

positive results are discussed, a thorough examination of the host ecol-

ogy may allow further epidemiological considerations. With respect to

the diagnostic methods applied, in order to avoid underestimation of

the circulation of aMPV in new bird taxa and reveal unobvious aspects

of viral distribution in wild hosts, it is strongly recommended to choose

molecular protocols that are not subtype-specific and to proceed with

further characterization of positive findings by sequencing.
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