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ABSTRACT: The stability o a photocatalyst under irradiation is
important in photoredox applications. In this work, we investigated the
stability o a thermally activated delayed uorescence (TADF)
photocatalyst {3DPAFIPN [2,4,6-tris(diphenylamino)-5-uoroisophtha-
lonitrile]}, recently employed in photoredox-mediated processes,
discovering that in the absence o quenchers the chromophore is
unstable and is eciently converted by irradiation with visible light into
another species based on the carbazole-1,3-dicarbonitrile moiety. The
new species obtained is itsel a TADF emitter and nds useul
applications in photoredox transormations. At the excited state, it is a
strong reductant and was eciently applied to cobalt-mediated allylation
o aldehydes, whereas other TADFs (4CzIPN and 3DPAFIPN) ailed to
promote ecient photocatalytic cycles.

■ INTRODUCTION
Recently, photoredox catalysis has been exploited as a source
o innovative methodologies in organic chemistry.1 Among the
possibilities ofered by photoredox catalysis, dual metal and
photoredox catalysis,2 i.e., the combination o metal-promoted
processes with photoredox cycles, is attracting more and more
interest in academia and industry. For the development o new
ecient and selective metal-promoted reactions, the use o
inexpensive, readily synthesized, and ecient organic dyes
represents a strategic topic in research.3 In this context, organic
dyes need to compete with and replace widely employed
inorganic complexes based on Ir(III) and Ru(II), which have
long excited state lietimes that can avor dynamic quenching
with organic molecules. Normally, organic dyes have shorter
excited state lietimes, which is a major drawback or the design
o ecient photoredox processes. Recently, a particular class o
organic chromophores have attracted considerable attention
or their interesting properties and eciency.4 These molecules
possess a property called thermally activated delayed
uorescence (TADF), which is displayed by molecules
exhibiting a small energy gap (generally <0.2 eV) between
the two lowest excited states, namely, S1 and T1. In these
molecules, reverse intersystem crossing (RISC) rom T1 back
to S1 takes place at room temperature by a thermally activated
process, yielding the so-called delayed uorescence. The
challenge is to couple the high eciency o RISC to the
high quantum yield o uorescence. In 2012, Adachi published
a seminal paper5 reporting carbazolyl dicyanobenzene

molecules displaying the desired photophysical properties
and demonstrated their applications in organic light-emitting
diodes (OLEDs). Since then, similar TADF chromophores
have been applied in a variety o diferent elds, including
photocatalysis.4,6 By taking advantage o the easily tunable
redox potentials and the long-lasting singlet excited states due
to TADF, isophthalonitriles are suitable chromophores or
exploitation as organic photocatalysts or a broad selection o
chemical reactions.7 Specically, 2,4,6-tris(diphenylamino)-5-
uoroisophthalonitrile (3DPAFIPN) has been used in recent
years or a number o visible-light-ueled synthetic protocols,
or instance, in intramolecular cyclizations8,9 and C−C,10,11

N−C,12 and P−C bond ormation.13

3DPAFIPN is reported to be stable under the reaction
conditions used or photocatalysis,14,15 as determined in
experiments by some o us in the photoredox allylation o
aldehydes by using either titanium16,17 or nickel18 in its low
oxidation state. The photostability o 3DPAFIPN in those
applications was demonstrated by its recovery at the end o the
reaction, making its reuse possible. However, upon prolonged
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irradiation o a degassed THF solution o 3DPAFIPN, we
observed the ormation o a photoproduct, which prompted us
to urther investigate the photoreactivity o the ormer. The
stability and reactivity o photoredox catalysts have recently
been addressed, given their importance in dening the species
that are genuinely involved in the photoredox processes. In
some cases, upon photoirradiation, new photocatalysts with
enhanced redox properties were ormed in solution, allowing
challenging transormations.19 We have also demonstrated that
a two-photon process can be driven by the ormation o a
photoproduct originating rom the starting photocatalyst.20
The photoreactivity o TADF chromophores like 3DPA-

FIPN has already been reported in the literature. For instance,
König reported that, upon blue-light irradiation in the presence
o phenylacetic acid, tetracarbazolyl derivative 2,4,5,6-tetrakis-
(9H-carbazol-9-yl) isophthalonitrile (4CzIPN) undergoes a
photosubstitution reaction o a cyano group with a benzyl
group.21 In general, irradiation o 4CzIPN in the presence o
aliphatic carboxylic acids (R-COOH) produces the photo-
substitution product in which one cyano is replaced by the
alkylic group R.22 The resulting photoproducts display blue-
shited absorption and emission, and more negative reduction
potentials. The authors demonstrated that the photosubsti-
tuted TADF chromophores are responsible or the observed
photocatalytic reactions in many reported literature proce-
dures. In our investigation, we considered a TADF
chromophore (3DPAFIPN) that eatures not only cyano and
diphenylamino groups but also a uorine atom in the aromatic
core. Fluorobenzenes are known to undergo photoreactions via
homolytic cleavage o the C−F bond or photosubstitution by
nucleophilic attack, generally proceeding via electron transer
processes.23 For example, the photoreaction o uorobenzene
with aliphatic amines yields the substitution product24 and
addition products.25,26
Here, we investigate the photoreaction o 3DPAFIPN (1) by

isolating the photoproduct 2,4-bis(diphenylamino)-9-phenyl-
9H-carbazole-1,3-dicarbonitrile [2DPAPhCzDCN, 2 (Figure
1)], and we compare the photophysical and electrochemical
properties o the latter with those o the starting TADF
chromophore. Because reduced compound 2•− is a stronger
reductant [E(2/2•−) = −1.74 V vs SCE (vide inra)] compared
to the parent species 1•− [E(1/1•−) = −1.53 V vs SCE (vide
inra)], we examined the perormance o 1 and 2 in the
challenging allylation reaction o aldehydes mediated by cobalt

with allyl acetate.27 We in act report that the widely used and
commercially available 4CzIPN28 was giving only traces o the
desired homoallylic product.29 Herein, we report the ull and
detailed photophysical investigation o the new photocatalyst
230 and its application in the cobalt-mediated allylation
reaction (Figure 1).

■ RESULTS AND DISCUSSION
During the photophysical investigations o photoredox
reactions involving 3DPAFIPN (1) by irradiation with visible
light in the absence o any quencher, we observed the
ormation o another product, which was isolated and ully
characterized. By careul 1H and 13C NMR analysis, and
application o several two-dimensional NMR techniques (see
the Supporting Inormation or details), we were able to assign
the structure o 2 to the newly ormed compound. First, we
checked i the starting material contained any impurity that
could drive the photochemical transormation. By a careul
HPLC-MS analysis, we discovered that the methodology
reported or the preparation o 17 led to the concomitant
ormation o traces o product 3, namely the corresponding
monocyano derivative (Scheme 1A). A challenging chromato-
graphic purication was thereore needed to isolate a pure
sample o 1. Then, a THF solution o 1 was then irradiated
using a blue Kessil lamp (456 nm). The photoreaction was
scaled to 0.1 mmol, and irradiation or 24 h allowed the
complete transormation to 2 (Scheme 1B; see the Supporting
Inormation or details).
It is worth mentioning that the photoreaction was observed

when carrying out the experiment in the absence and presence
o oxygen and the use o diferent solvents (toluene, DMF, and
MeCN) yielded similar results. HPLC-MS analysis showed
that 2,4,5,6-tetrakis(diphenylamino) isophthalonitrile
(4DPAIPN) does not undergo cyclization, as expected or a
nonuorinated compound. On the basis o the literature, three
mechanisms can be envisioned or this class o uorinated
molecules, involving electron transer, photonucleophilic
substitution, or homolysis o the C−F bond.31−34 The charge
transer nature o the lowest excited state o 1 (Figure 2), with
increased electronic density on the uorinated aryl moiety,
would assist a mechanism involving an electron transer.
However, photonucleophilic substitution is also plausible and
discerning between these two mechanisms is dicult. The
pathway that includes the homolytic cleavage o the C−F bond
in 1 can be excluded on the basis o the insucient energy o
the absorbed photons [absorption onset at 480 nm = 60 kcal/
mol (Figure 2)] compared to that o the C−F bond (127 kcal/
mol).35
1 and 2 were studied rom photophysical and electro-

chemical points o view, to analyze and rationalize the efect o
the cyclization on their electronic properties (Table 1).
The absorption spectrum o 2 appears to be blue-shited

compared to that o 1, in terms o absorption onsets (Figure
3). The same trend is observed in the uorescence spectra
(λmax= 510 nm or 1 and 479 nm or 2, in THF at rt) (Figure
3). In both compounds, two lietimes are observed in degassed
THF solutions at room temperature. The shorter component,
in the range o nanoseconds, has been ascribed to prompt
uorescence (τPROMPT), while the longer one, in the range o
microseconds, has been attributed to TADF [τTADF (Table 1)].
In act, the shape o the emission spectra or both compounds
1 and 2 is not afected by the presence o molecular oxygen,
thus suggesting that the transition responsible or the longer

Figure 1. 3DPAFIPN (1), the new photocatalyst 1,3-dicyanocarba-
zole (2), and cobalt-promoted allylation o aldehydes.
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lietime is the same, namely the radiative deactivation S1 → S0.
On the contrary, the emission quantum yield is decreased in
air-equilibrated solutions due to ecient quenching o the
chromophores’ T1 excited state by dioxygen, which con-

sequently prevents the thermally activated RISC rom
undergoing the T1 to S1 step.
The quantum yield o prompt uorescence (ΦFLUO) is

enhanced rom 5.7% to 21% upon passing rom 1 to 2, as
expected or a cyclization that rigidies the molecular structure.
The rigidity o the new chromophore causes an increase in
τPROMPT, τTADF, and τPHOS, as well. Moreover, emission spectra
recorded in a glassy matrix at 77 K evidence the presence o
phosphorescence or both compounds [λmax = 518 and 513 nm
or 1 and 2, respectively (Figure S1)]. Under these
experimental conditions, the phosphorescence bands are
slightly red-shited compared to their uorescence, indicating
that S1 and T1 are close in energy. In particular, the S1−T1
energy gap (ΔEST) is larger or compound 2 (320 meV) than
or the pristine chromophore 1 [190 meV (Figure S1)]. We
expect that the same trend is maintained at room temperature,
proving the lower TADF quantum yield and longer τTADF or 2
than or 1. As a rule o thumb, a high ΔEST is expected to lead
to a low kRISC because o the increased activation energy or the
T1 → S1 intersystem crossing. Moreover, given the inverse
proportionality between kinetic constants and lietimes, a low
kRISC should concomitantly lead to a high τTADF. However, this

Scheme 1. Synthesis of Dyes 1 (3DPAFIPN) and 2 (2DPAPhCzDCN)

Figure 2. Charge transer state involved in the ormation o 2 by irradiation o 1 with a blue LED.

Table 1. Photophysical and Electrochemical Properties (E1/2 in volts vs SCE) of 1 and 2 in THF at Room Temperature, Unless
Otherwise Noted

absorption emission electrochemistry

λABSMAX

(nm)
ε

(M−1 cm−1)
λFLUOMAX

(nm)
λPHOS
MAX

(nm)a
τFLUO
(ns)

τTADF
(μs)b

τPHOS
(ms)a

ΦFLUO
(%) ΦTADF (%)

ΦΔ
(%)

E(A•+/A)
(V)c

E(A/A•−)
(V)c

1 364 15700 510 518 3.3 130 180 5.7 35 88 +1.31d -1.53
2 377 10500 479 513 9.1 680 374 21 6.2 55 +1.31 -1.74

aAt 77K in a glassy matrix [1:1 (v/v) DCM/MeOH]. bDegassed solution. cIn MeCN. dAnodic peak potential at 1 V/s, chemically irreversible
electron transer process.

Figure 3. Absorption (solid line) and emission spectra (dashed line;
λex = 420 nm) o compounds 1 (blue) and 2 (red) in air-equilibrated
THF.
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assumption cannot always be generalized because relatively
small diferences in ΔEST can result in great diferences in
kRISC, as reported or other classes o TADF-active
chromophores.36,37 Cyclic voltammetry was carried out to
determine the redox potentials o both species (Figure 4).

In the case o compound 1, the reduction process (−1.53 V
vs SCE) is chemically and electrochemically reversible while
the oxidation process (+1.31 V vs SCE) shows only partial
chemical reversibility at a scan rate o 1 V/s. Derivative 2
displays less chemically reversible electron transer processes.
While its oxidation potential is unchanged compared to that o
the parent compound (+1.28 V vs SCE), its reduction
potential is cathodically shited to −1.74 V vs SCE. Taking
into consideration the localized nature o rontier molecular
orbitals in TADF molecules,38 the electrochemical data
indicate that the LUMO orbital is destabilized in 2 compared
to 1, as expected upon removal o the uorine substituent in
the photoproduct. On the contrary, the HOMO orbital is not
appreciably afected, as two electron-donating diphenylamine
groups are also present in compound 2. Ultimately, the larger
energy gap between the HOMO and LUMO orbitals detected

rom electrochemical measurements o 2 is in accordance with
the blue-shited absorption and emission spectra o 2 (Figure
3).
Recently, we have reported a cobalt-mediated photoredox

allylation reaction,24 in the presence o the abundant CoBr2
(10 mol %), 4,4′-di-tert-butyl-2,2′-dipyridyl (dtbbpy, 10 mol
%), allyl acetate (3 equiv), [Ir(dtbbpy)(ppy)2]PF6 (ppy = 2-
phenylpyridine, 2 mol %), and N,N-diisopropylethylamine
(DIPEA, 4 equiv). We aced the problem that available TADF
dyes like 4CzIPN were completely inert in this reaction
because o their low reduction potentials. In the proposed
mechanistic picture,24 a reduction o Co(II) to reactive Co(I)
was proposed.39 In particular, the stronger reductant [Ir-
(dtbbpy)(ppy)2], generated by reductive quenching o the
excited state o [Ir(dtbbpy)(ppy)2]+ by DIPEA, is responsible
o the reduction o Co(II). We have reinvestigated the cobalt-
mediated allylation reaction with the stronger reductants 1 and
2, considering that the better reducing properties o the two
organic dyes were sucient to trigger the reactivity o the
Co(II) center needed or the allylation reaction [namely, the
reduction o Co(II) to Co(I)], and allowing us to replace
expensive Ir(III) photocatalysts. We were delighted to nd out
that 2 was active in cobalt-mediated allylation o aldehydes. We
set up some key experiments or the evaluation o the key
parameters o the reaction (see the Supporting Inormation or
details) using 4-chlorobenzaldehyde (4a) as the model
substrate (Scheme 2 and Table S1). The reaction proceeds
with an excellent yield o homoallylic alcohol in the presence
CoBr2 (7 mol %), dtbbpy (10 mol %), allyl acetate (5, 3
equiv), and Hantzsch’s ester (HE, 2 equiv) as the nal
reductant in a mixture o THF and H2O (9:1) under 456 nm
Kessil lamp irradiation, where the photocatalyst absorbs most
o the light compared to the other components o the reaction
(Figure S2).
As we have already remarked in the Introduction, the better

reducing properties o 2 were the key or the reaction, while
3DPAFIPN or 4CzIPN29 were not suitable. The cobalt salt,
the photocatalyst, Hantzsch’s ester, and irradiation with visible
light are all required or a successul reaction. The absence o
the ligand, 4,4′-di-tert-butyl-2,2′-dipyridyl (dtbbpy), which was
careully selected in our previous study,27 caused the complete
consumption o aldehyde 4a with the ormation o the
corresponding pinacol product 7a as the major product, and
only 10% o 6a was detected. We have recently reported that
organic photocatalysts can promote pinacol coupling in the
presence o HE, which activates the aldehyde and increases its
reduction potential or the pinacolization via ketyl radical.40 In
general, we observed complete conversion in the case o

Figure 4. Cyclic voltammetry using the IUPAC convention o 1
(blue) and 2 (red) (0.5 mM) in a degassed MeCN solution
containing 0.05 M tetraethylammonium hexauorophosphate as the
supporting electrolyte and errocene as the internal standard.
Conditions: glassy carbon working electrode, Pt wire counter
electrode, Ag wire quasi-reerence electrode, scan rate o 1 V/s, rt.
Ferrocene’s peaks have been omitted or the sake o clarity.

Scheme 2. Allylation of 4-Chlorobenzaldehyde (4a) under Photoredox Conditions in the Presence of Photocatalysts 1 and 2
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aromatic aldehydes. Byproducts such as pinacol products (10−
20%) and benzylic alcohols (10−15%) were observed in the
reactions, and this explains the moderate yields o isolated
products. During the revision o the manuscript, we
determined that other cobalt salts can promote the reaction
(see the Supporting Inormation or details). In particular,
Co(OAc)2 hydrate was ound to be less active than CoBr2 but
a smaller amount o byproducts was observed in the model
reaction. Thereore, the scale-up o the reaction to 1 mmol was
perormed or 72 h in the presence o this cobalt salt.41 The
addition o water was ound to be important or promoting the
allylation with aromatic and aliphatic aldehydes avoiding, in
the case o aromatic aldehydes, the avorite pinacol coupling.27

The selected conditions were employed or various aromatic
aldehydes, as reported in Scheme 3.
In general, as noticed or the reaction perormed with the

iridium-based photocatalyst, the reactivity was strongly
inuenced by the aromatic moiety o the aldehydes. Electron
rich aldehydes showed a reduced reactivity, and in some cases,
we tried to improve the yields by increasing the reaction time,
as or 6g. In other cases, we did not observe better results. The
moderate yields can be due to concurrent pinacol coupling or
reduction o the aldehydes to the corresponding benzylic
alcohol. The better reduction properties o 2 are unortunately
competing with the promotion o the ketyl dimerization. It is
important to underline that 3DPAFIPN (1) is inert or the
reaction and only traces o homoallylic alcohol 6a were
observed. The results obtained are comparable to those
obtained with [Ir(III)] photocatalysts, but some aromatic
aldehydes were not compatible with the cobalt-mediated
process (see the Supporting Inormation). In particular, the
presence o bromine or iodine on the aromatic core is not
tolerated, as we observed partial dehalogenation in the isolated
product.
Aliphatic aldehydes (Scheme 4), as in the case o Ir(III),

sufered rom reduced reactivity, as observed also by Shi.29 In
act, we have increased the reaction time to 72 h and obtained

poor yields with linear aliphatic aldehydes, while branched
aldehydes were not reactive (see the Supporting Inormation).
We have also perormed the reaction with a prochiral acetate

(Scheme 5), using Co(OAc)2 to minimize the tendency to
produce byproducts with the less reactive substrates. In
general, hex-2-en-1-yl acetate was ound to be reactive with
aromatic aldehydes, while with aliphatic aldehydes, we

Scheme 3. Dual Photoredox Allylation of Aromatic Aldehydes with CoBr2 Using 2 as a Photocatalyst (isolated yields reported)

aReaction perormed on a 1 mmol scale with Co(OAc)2 hydrate.
bReaction perormed on a 0.1 mmol scale. cReaction time o 40 h.

Scheme 4. Dual Photoredox Allylation of Aliphatic
Aldehydes (isolated yields reported)

Scheme 5. Reaction of Hex-2-en-1-yl Acetate with Aromatic
and Aliphatic Aldehydes

aReaction time o 48 h.
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observed a scarce reactivity, in line with previous experi-
ments.27 In the case o 4-chlorobenzaldehyde, the desired
product was obtained in 40% yield with a diastereoisomeric
ratio o 1.4:1 (syn:anti).
To investigate the photochemical mechanism o the

allylation reaction, we perormed some luminescence quench-
ing analysis on compound 2 in the presence o all reactants. No
change in the TADF emission lietime was observed upon
addition o 4-chlorobenzaldehyde, while allyl acetate and the
Co(II) complex in the presence o dtbbpy both showed
signicant quenching o the delayed uorescence (Figure S3).
However, the estimated quenching constant is much larger or
the latter. Unortunately, we were not able to investigate in
detail the quenching o 2 by HE because its absorption
spectrum is largely overlapping that o the photocatalyst and,
under the experimental conditions used or the luminescence
measurements, most o the light is absorbed by HE. However,
HE is likely not responsible or the photoreaction because no
product ormation is observed in the absence o photocatalyst
2 (entry 3, Table S1). On the basis o the experiments
perormed, we can suggest the mechanistic picture depicted in
Figure 5. In recent years, several authors have suggested that
the reaction ollows a Co(II)−Co(I)−Co(III)−Co(II)
cycle.27,29,39,42 Co(II) is reduced by 2 in its excited state
[E(2•+/*2) = −1.31 vs SCE] to Co(I) {E[Co(II)/Co(I)] =
−1.05 V vs SCE43} that is reacting with allyl acetate to orm a
Co(III) allyl intermediate. The Co(III) allyl is then urther
reduced by a SET event (2 or HE•+) to Co(II) allyl,39 the
reactive organometallic species that can react with aldehydes
by a Zimmerman−Traxler transition state.41 2 [E(2•+/2) =
+1.31 V vs SCE (see Table 1)] was restored to the initial state
by HE [E(HE•+/HE) = +1.0 V vs SCE].44

■ CONCLUSIONS
The photodegradation o TADF-active halo-isophthalonitriles
must be considered as a key actor or their use as
photocatalysts and or the design o suitable photoredox-
promoted chemical transormations. In this paper, we
demonstrated that the photoconversion o 3DPAFIPN afords
an easily isolated carbazole-1,3-dicarbonitrile derivative (2)
that is also showing peculiar photophysical properties,

including TADF. Specically, the lietime o its delayed
uorescence and the modulation o the redox potentials in
the ground and excited states are useul properties to employ
in photoredox-activated catalysis in the presence o a Co(II)
species. Dual metal and photoredox catalysis has been
employed or the ecient allylation o aldehydes to aford
homoallylic alcohols in good yields. The employment o the
new dyes 2 in diferent photoredox catalytic reactions and the
development o a stereocontrolled photoredox version o this
reaction are under investigation in our laboratory.45

■ EXPERIMENTAL SECTION
General Methods and Materials. 1H NMR and 13C NMR

spectra were recorded on a Varian Mercury 400 spectrometer.
Chemical shits are reported in parts per million rom TMS with the
solvent resonance as the internal standard (CHCl3, δ 7.26; CDCl3, δ
77.0). Data are reported as ollows: chemical shit, multiplicity (s,
singlet; d, duplet; t, triplet; q, quartet; dd, double duplet; m,
multiplet), coupling constants (hertz). Structural assignments were
made with additional inormation rom gCOSY, gHSQC, and
gHMBC experiments. Chromatographic purication was perormed
with 240−400 mesh silica gel. HPLC-MS analyses were perormed on
an Agilent Technologies HP1100 instrument coupled with an Agilent
Technologies MSD1100 single-quadrupole mass spectrometer using a
Phenomenex Gemini C18 3 μm (100 mm × 3 mm) column; mass
spectrometric detection was perormed in ull-scan mode rom m/z 50
to 2500, with a scan time o 0.1 s in positive ion mode, an ESI spray
voltage o 4500 V, nitrogen gas at 35 psi, a drying gas ow rate o 11.5
mL min−1, and a ragmentor voltage o 30 V. HRMS was perormed
on a Waters Xevo G2-XS QTo instrument, ESI+, with a cone voltage
o 40 V, a capillary voltage o 3 kV, and a source temperature o 120
°C. All reactions were set up under an argon atmosphere in oven-
dried glassware using standard Schlenk techniques. The reaction
mixture was irradiated with a Kessil PR160L@456 nm instrument
(see Figure S20 or the emission prole). Diethyl 2,6-dimethyl-1,4-
dihydropyridine-3,5-dicarboxylate (Hantzsch’s ester)46 was prepared
ollowing a literature procedure.

Procedure for the Synthesis of 3DPAFIPN (1).We adapted the
procedure reported by Zeitler and co-workers.7 A 50 mL round-
bottom ask, equipped with a magnetic stirring bar, was charged with
diphenylamine (5.0 equiv, 10 mmol, 1.69 g) and dry THF (20 mL).
The solution was cooled to 0 °C, and NaH (60% in mineral oil, 7.5
equiv, 15 mmol, 600 mg) was slowly added under vigorous stirring.
Ater 2 h, tetrauoroisophthalonitrile (1.0 equiv, 2 mmol, 400 mg)
was added, and the mixture was stirred at room temperature in the

Figure 5. Suggested mechanistic picture or the reaction.
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dark. The solution slowly turned rom colorless to bright yellow.
When the TLC showed a complete consumption o the starting
material (usually 2 days is needed), water (1 mL) was added dropwise
under vigorous stirring to decompose the excess o NaH, and the
mixture was evaporated to give a yellow solid. The solid was washed
with water (10 mL) and ethyl acetate (20 mL), and the suspension
was ltered over a Gooch crucible. The bright yellow solid was dried
under vacuum to aford NMR-pure 3DPAFIPN (1.04 g, 1.6 mmol,
80% yield). By HPLC/MS analysis, the ormation o 5−7 mol % 3
that was not detected by 1H NMR was observed ater purication. To
obtain pure 3DPAFIPN 1, the product was urther puried by ash
chromatography (SiO2, 98:2 cyHex/Et2O) to obtain pure 3DPAFIPN
1 as a bright yellow solid: 1H NMR (400 MHz, CDCl3) δ 7.25 (m,
12H), 7.11−7.01 (m, 6H), 7.01−6.86 (m, 12H); 13C{1H} NMR (100
MHz, CDCl3) δ 152.4 (d, J = 259.5 Hz, 1C), 151.8 (d, J = 4.0 Hz,
1C), 145.5 (2C), 145.3 (4C), 143.0 (d, J = 11.0 Hz, 2C), 129.43
(8C), 129.36 (4C), 124.6 (4C), 124.0 (2C), 122.73 (8C), 122.70
(4C), 112.6 (d, J = 3.4 Hz, 2C) 108.9 (d, J = 3.2 Hz, 2C).
Procedure for the Synthesis of 2DPAPhCzDCN (2). A dry 20

mL Schlenk tube, equipped with a Rotao stopcock and a magnetic
stirring bar under an argon atmosphere, was rst charged with
3DPAFIPN (0.09 mmol, 60 mg). Then, inhibitor-ree dry THF (10
mL) was added, and the reaction mixture was irradiated with a blue
Kessil lamp (456 nm) ∼15 cm rom the light source, under vigorous
stirring or 48 h. Ater that, the solvent was removed under reduced
pressure. The crude solid was puried by ash column chromatog-
raphy (SiO2, DCM) to aford product 2 as a bright yellow solid in
78% (44 mg, 0.07 mmol): 1H NMR (400 MHz, CDCl3) δ 7.69 (d, J =
8.0 Hz, 1H), 7.57 (m, 3H), 7.49 (m, 2H), 7.36 (t, J = 7.5 Hz, 1H),
7.30−7.15 (m, 16H overlapped with the residual peak o the solvent),
7.12−7.04 (m, 3H), 7.04−6.96 (m, 8H); 13C{1H} NMR (100 MHz,
CDCl3) δ 153.2, 148.2, 146.0 (2C), 145.1 (2C), 144.5, 143.2, 134.9,
130.4, 129.8, 129.4 (4C), 129.43, 129.37, 129.2, 129.2 (4C), 129.1,
127.7, 124.6, 123.5 (2C), 123.5 (2C), 122.9, 122.74 (4C), 122.4,
121.8 (4C), 121.7, 121.0, 120.9, 119.6, 114.2, 112.2, 110.5, 108.0;
HRMS (ESI/Q-TOF) m/z [M + H]+ calcd or C44H30N5 628.2496,
ound 628.2495; HRMS (ESI/Q-TOF) m/z [M + K]+ calcd or
C44H29KN5 666.2055, ound 666.2054.
Standard Procedure for Photoredox Cobalt-Catalyzed

Allylation of Aldehydes. All o the reactions were perormed on
a 0.2 mmol scale o aldehyde, or in duplicate on a 0.1 mmol scale. A
dry 10 mL Schlenk tube, equipped with a Rotao stopcock, a
magnetic stirring bar, and an argon supply tube, was rst charged with
CoBr2·6H2O (7 mol %, 14 μmol, 4.6 mg) that was ame-dried under
vacuum to remove the presence o water. Then 4,4′-di-tert-butyl-2,2′-
dipyridyl (dtbbpy) (10 mol %, 20 μmol, 5.4 mg) and reshly distilled
inhibitor-ree THF (1 mL) were added. The reaction was kept under
vigorous stirring or a ew minutes, and then substrate 4 (0.2 mmol),
organic photocatalyst 2 (5 mol %, 0.01 mmol, 6.3 mg), and diethyl
1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate HE (2 equiv, 0.4
mmol, 101 mg) were added. THF (2.6 mL) and distilled water (0.4
mL) were then added; the reaction mixture was urther subjected to a
reeze−pump−thaw procedure (three cycles), and the vessel was
relled with argon. Then, allyl acetate 5 (3 equiv, 0.6 mmol, 60 mg, 65
μL) was added. The reaction mixture was irradiated with a blue Kessil
lamp (456 nm) ∼15 cm rom the light source, under vigorous stirring
rom 16 to 72h. Ater that, the reaction was quenched with water
(approximately 4 mL) and the mixture extracted with EtOAc (3 × 10
mL). The combined organic layers were dried over anhydrous
Na2SO4, and the solvent was removed under reduced pressure. The
crude was puried by ash column chromatography (100% DCM) to
aford products 6 in the stated yields.
1-(4-Chlorophenyl) But-3-en-1-ol (6a). Pale yellow oil, 87%

(16 mg, 0.088 mmol). The general procedure (16 h) was applied
using 4a (0.1 mmol, 14 mg) and 5 (0.3 mmol, 3 equiv, 32 μL). The
title compound was isolated by ash column chromatography (100%
DCM). Spectroscopic data were according to the literature:47 1H
NMR (400 MHz, CDCl3, 25 °C) δ 7.31−7.26 (m, 4H), 5.81−5.71
(m, 1H), 5.17−5.11 (m, 2H), 4.71 (dd, J = 7.8, 5.1 Hz, 1H), 2.52−

2.39 (m, 2H); 13C{1H} NMR (100 MHz, CDCl3, 25 °C) δ 142.2,
133.9, 133.1, 128.5 (2C), 127.2 (2C), 118.9, 72.5, 43.9.

1-Phenylbut-3-en-1-ol (6b). Pale yellow oil, 68% (10 mg, 0.068
mmol). The general procedure (16 h) was applied using previously
distilled 4b (0.1 mmol, 10 μL) and 5 (0.3 mmol, 3 equiv, 32 μL). The
title compound was isolated by ash column chromatography (100%
DCM). Spectroscopic data were according to the literature:47 1H
NMR (400 MHz, CDCl3, 25 °C) δ 7.35−7.24 (m, 5H), 5.81−5.76
(m, 1H), 5.18−5.11 (m, 2H), 4.72 (dd, J = 7.6, 5.4 Hz, 1H), 2.52−
2.49 (m, 2H), 2.10 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3, 25
°C) δ 143.9, 134.5, 128.4 (2C), 127.5, 125.8 (2C), 118.3, 73.3, 43.8.

1-(4-Fluorophenyl) But-3-en-1-ol (6c). Pale yellow oil, 53% (9
mg, 0.054 mmol). The general procedure (16 h) was applied using
previously distilled 4c (0.1 mmol, 11 μL) and 5 (0.3 mmol, 3 equiv,
32 μL). The title compound was isolated by ash column
chromatography (100% DCM). Spectroscopic data were according
to the literature:48 1H NMR (400 MHz, CDCl3, 25 °C) δ 7.33−7.29
(m, 2H), 7.05−6.99 (m, 2H), 5.82−5.72 (m, 1H), 5.17−5.12 (m,
2H), 4.71 (dd, J = 7.9, 4.8 Hz, 1H), 2.52−2.43 (m, 2H), 1.88 (br s,
1H); 13C{1H} NMR (100 MHz, CDCl3, 25 °C) δ 163.3, 160.9 139.5,
134.1, 127.4 (2C), 118.7, 115.3, 115.1, 72.6, 43.9; 19F NMR (377
MHz, CDCl3, 25 °C) δ −115.23 (m, 1F).

1-(4-Methoxyphenyl) But-3-en-1-ol (6d). Pale yellow oil, 40%
(7.2 mg, 0.040 mmol). The general procedure (16 h) was applied
using previously distilled 4d (0.1 mmol, 12 μL) and 5 (0.3 mmol, 3
equiv, 32 μL). The title compound was isolated by ash column
chromatography (100% DCM). Spectroscopic data were according to
the literature:47 1H NMR (400 MHz, CDCl3, 25 °C) δ 7.29−7.24 (m,
2H), 6.89−6.85 (m, 2H), 5.79 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H),
5.17−5.09 (m, 2H), 4.67 (t, J = 6.5 Hz, 1H), 3.79 (s, 3H), 2.51−2.47
(m, 2H); 13C{1H} NMR (100 MHz, CDCl3, 25 °C) δ 159.0, 136.0,
134.6, 127.0 (2C), 118.2, 113.8 (2C), 72.9, 55.3, 43.7.

1-([1,1′-Biphenyl]-4-yl) But-3-en-1-ol (6e). Pale yellow oil, 31%
(14 mg, 0.063 mmol). The general procedure (16 h) was applied
using 4e (0.2 mmol, 36 mg) and 5 (0.6 mmol, 3 equiv, 65 μL). The
title compound was isolated by ash column chromatography (100%
DCM). Spectroscopic data were according to the literature:47 1H
NMR (400 MHz, CDCl3, 25 °C) δ 7.59−7.57 (m, 4H), 7.43−7.41
(m, 4H), 7.35−7.31 (m, 1H), 5.89−5.79 (m, 1H), 5.22−5.14 (m,
2H), 4.78 (t, J = 5.4 Hz, 1H), 2.58−2.52 (m, 2H), 2.07 (br s, 1H);
13C{1H} NMR (100 MHz, CDCl3, 25 °C) δ 142.9, 140.8, 140.5,
134.4, 128.7 (2C), 127.2, 127.1 (2C), 127.0 (2C), 126.2 (2C), 118.5,
73.0, 43.8.

1-(3,5-Di-tert-butylphenyl) But-3-en-1-ol (6f). Pale yellow oil,
56% (29 mg, 0.11 mmol). The general procedure (16 h) was applied
using 4f (0.2 mmol, 44 μL) and 5 (0.6 mmol, 3 equiv, 65 μL). The
title compound was isolated by ash column chromatography (100%
DCM). Spectroscopic data were according to the literature:49 1H
NMR (400 MHz, CDCl3, 25 °C) δ 7.35 (s, 1H), 7.20 (s, 2H), 5.91−
5.81 (m, 1H), 5.21−5.13 (m, 2H), 4.71 (t, J = 5.4 Hz, 1H), 1.94 (br s,
1H), 1.33 (s, 18H); 13C{1H} NMR (100 MHz, CDCl3, 25 °C) δ
150.8, 143.1, 135.0, 121.6, 120.0, 118.0, 74.1, 43.9, 34.9, 31.5.

1-(Benzo[d][1,3]dioxol-5-yl) But-3-en-1-ol (6g). Pale yellow
oil, 49% (19 mg, 0.096 mmol). The general procedure (16 h) was
applied using 4g (0.2 mmol, 30 mg) and 5 (0.6 mmol, 3 equiv, 65
μL). The title compound was isolated by ash column chromatog-
raphy (100% DCM). Spectroscopic data were according to the
literature:47 1H NMR (400 MHz, CDCl3, 25 °C) δ 6.86 (d, J = 1.5
Hz, 1H), 6.80−6.74 (m, 2H), 5.93 (s, 2H), 5.82−5.72 (m, 1H),
5.16−5.10 (m, 2H), 4.62 (t, J = 6.5 Hz, 1H), 2.47−2.43 (m, 2H),
2.01 (br s, 1H); 13C{1H} NMR (100 MHz, CDCl3, 25 °C) δ 147.7,
146.9, 137.9, 134.4, 119.2, 118.4, 108.0, 106.4, 101.0, 73.2, 43.8.

1-(Thiophen-2-yl) But-3-en-1-ol (6h). Pale yellow oil, 39% (12
mg, 0.078 mmol). The general procedure (16 h) was applied using
previously distilled 4h (0.2 mmol, 19 μL) and 5 (0.6 mmol, 3 equiv,
65 μL). The title compound was isolated by ash column
chromatography (100% DCM). Spectroscopic data were according
to the literature:48 1H NMR (400 MHz, CDCl3) δ 7.25−7.21 (m,
1H), 7.00−6.92 (m, 2H), 5.82 (ddt, J = 17.2, 10.2, 7.1 Hz, 1H),
5.23−5.11 (m, 2H), 4.98 (t, J = 6.4 Hz, 1H), 2.69−2.53 (m, 2H),
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2.19 (s, 1H); 13C{1H} NMR (100 MHz, CDCl3) δ 147.76, 133.79,
126.60, 124.54, 123.66, 118.80, 69.34, 43.76.
1-(Thiophen-3-yl) But-3-en-1-ol (6i). Pale yellow oil, 45% (14

mg, 0.09 mmol). The general procedure (16 h) was applied using
previously distilled 4i (0.2 mmol, 19 μL) and 5 (0.6 mmol, 3 equiv,
65 μL). The title compound was isolated by ash column
chromatography (100% DCM). Spectroscopic data were according
to the literature:48 1H NMR (400 MHz, CDCl3, 25 °C) δ 7.29 (dd, J
= 5.0, 3.0 Hz, 1H), 7.19 (d, J = 2.9 Hz, 1H), 7.07 (dd, J = 5.0, 1.2 Hz,
1H), 5.84−5.74 (m, 1H), 5.18−5.11 (m, 2H), 4.83 (dt, J = 8.0, 4.2
Hz, 1H), 2.58−2.45 (m, 2H), 2.09 (br s, 1H); 13C{1H} NMR (100
MHz, CDCl3, 25 °C) δ 145.3, 134.2, 126.0, 125.6, 120.7, 118.5, 69.5,
43.0.
1-(Naphthalen-2-yl) But-3-en-1-ol (6j). Pale yellow oil, 35%

(14 mg, 0.070 mmol). The general procedure (16 h) was applied
using 4j (0.2 mmol, 31 mg) and 5 (0.6 mmol, 3 equiv, 65 μL). The
title compound was isolated by ash column chromatography (100%
DCM). Spectroscopic data were according to the literature:47 1H
NMR (400 MHz, CDCl3, 25 °C) δ 7.84−7.79 (m, 4H), 7.49−7.45
(m, 3H), 5.88−5.77 (m, 1H), 5.21−5.12 (m, 2H), 4.89 (dd, J = 7.2,
5.9 Hz, 1H), 2.66−2.53 (m, 2H), 2.12 (br s, 1H); 13C{1H} NMR
(100 MHz, CDCl3, 25 °C) δ 141.2, 134.3, 133.2, 132.9, 128.2, 127.9,
127.6, 126.1, 125.8, 124.5, 124.0, 118.5, 73.5, 43.7.
1-Phenylhex-5-en-3-ol (6k). Pale yellow oil, 34% (12 mg, 0.068

mmol). The general procedure (72 h) was applied using previously
distilled 4k (0.2 mmol, 26 μL) and 5 (0.6 mmol, 3 equiv, 65 μL). The
title compound was isolated by ash column chromatography (100%
DCM). Spectroscopic data were according to the literature:47 1H
NMR (400 MHz, CDCl3, 25 °C) δ 7.29−7.17 (m, 5H), 5.81−5.79
(m, 1H), 5.16−5.11 (m, 2H), 3.66 (ddd, J = 12.2, 7.6, 4.7 Hz, 1H),
2.80−2.75 (m, 1H), 2.72−2.64 (m, 1H), 2.31−2.28 (m, 1H), 2.24−
2.15 (m, 1H), 1.81−1.75 (m, 2H), 1.61 (br s, 1H); 13C{1H} NMR
(100 MHz, CDCl3, 25 °C) δ 142.0, 134.6, 128.4 (2C), 128.4 (2C),
125.8, 118.3, 69.9, 42.0, 38.4, 32.0.
6,10-Dimethylundeca-1,9-dien-4-ol (6l). Pale yellow oil, 31%

(12 mg, 0.061 mmol). The general procedure (72 h) was applied
using previously distilled 4l (0.2 mmol, 36 μL) and 5 (0.6 mmol, 3
equiv, 65 μL). The title compound was isolated by ash column
chromatography (100% DCM) as a mixture o syn and anti
diasteroisomers. Spectroscopic data were according to the literature:47
1H NMR (400 MHz, CDCl3, 25 °C) mixture o diastereoisomers δ
5.86−5.76 (m, 1H), 5.14−5.08 (m, 3H), 3.76−3.70 (m, 1H), 2.28−
2.22 (m, 1H), 2.16−2.04 (m, 1H), 2.04−1.87 (m, 2H), 1.66 (s, 3H),
1.69−1.55 (m, 3H), 1.58 (s, 3H), 1.51−1.05 (m, 2H), 0.90 (dd, J =
6.4, 6.4 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3, 25 °C) mixture
o diastereoisomers δ 135.1, 135.0, 131.4, 124.9, 118.3, 118.2, 68.9,
68.5, 44.5, 44.4, 42.9, 42.3, 38.0, 36.9, 29.5, 29.1, 25.9, 25.6, 25.6,
20.4, 19.3, 17.8.
Tridec-1-en-4-ol (6m). Pale yellow oil, 33% (13 mg, 0.066

mmol). The general procedure (72 h) was applied using previously
distilled 4m (0.2 mmol, 38 μL) and 5 (0.6 mmol, 3 equiv, 65 μL).
The title compound was isolated by ash column chromatography
(100% DCM). Spectroscopic data were according to the literature:48
1H NMR (400 MHz, CDCl3) δ 5.83 (dddd, J = 20.4, 9.6, 7.9, 6.5 Hz,
1H), 5.17−5.10 (m, 2H), 3.64 (dtd, J = 7.7, 5.9, 4.1 Hz, 1H), 2.34−
2.26 (m, 1H), 2.13 (dt, J = 13.7, 7.9 Hz, 1H), 1.60 (s, 2H), 1.44 (d, J
= 2.7 Hz, 1H), 1.26 (t, J = 3.2 Hz, 12H), 0.90−0.85 (m, 4H);
13C{1H} NMR (100 MHz, CDCl3) δ 134.9, 118.0, 70.7, 41.9, 36.8,
31.9, 29.6, 29.6, 29.5, 29.3, 25.6, 22.6, 14.1.
1-(4-Chlorophenyl)-2-vinylpentan-1-ol (8a). Isolated as mix-

ture o diasteroisomers, 1.4:1 syn:anti, colorless oil, 40% (9 mg, 0.040
mmol). The general procedure (16 h) was applied using 4a (0.1
mmol, 14 mg) and 7 (0.3 mmol, 3 equiv, 43 mg). The title compound
was isolated by ash column chromatography (7:3 DCM/hexane,
then 8:1 hexane/ethyl acetate). Spectroscopic data were according to
the literature:50 1H NMR (400 MHz, CDCl3) δ 7.31−7.25 (m, 6H),
7.20−7.17 (m, 2H), 5.61 (ddd, J = 17.2, 10.3, 9.2 Hz, 1H, anti orm),
5.45 (ddd, J = 17.1, 10.3, 9.1 Hz, 1H, syn orm), 5.27−5.13 (m, 2H,
anti orm), 5.09−4.96 (m, 2H, syn orm), 4.59 (m, 1H, syn orm), 4.35
(d, J = 8.2 Hz, 1H, anti orm), 2.37 (m, 1H), 2.27−2.19 (m, 1H), 2.18

(d, J = 2.3 Hz, 1H), 2.00 (d, J = 4.6 Hz, 1H), 1.51−1.36 (m, 2H),
1.35−1.27 (m, 2H), 1.14 (m, 6H), 0.84 (t, J = 7.1 Hz, 3H), 0.77 (t, J
= 7.0 Hz, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 141.0, 140.9,
138.9, 138.1, 133.2, 133.0, 128.3, 128.3, 128.1, 128.0, 119.1, 117.7,
76.2, 76.0, 52.6, 51.2, 32.5, 31.7, 20.3, 20.3, 14.0, 13.8; 13C{1H} (100
MHz, CDCl3) δ 141.0 (anti orm), 140.9 (syn orm), 138.9 (anti
orm), 138.1 (syn orm), 133.2 (anti orm), 133.0 (syn orm), 128.3
(syn+anti orm), 128.1 (anti orm), 128.0 (syn orm), 119.1 (anti
orm), 117.7 (syn orm), 76.2 (syn orm), 75.9 (anti orm), 52.6 (anti
orm), 51.2 (syn orm), 32.5 (anti orm), 31.7 (syn orm), 20.3 (syn
+anti orm), 14.0 (syn orm), 13.8 (anti orm).

1-{henyl-4-vinylheptan-3-ol (8k). Isolated as mixture o
diasteroisomers, 1.2:1 syn:anti, colorless oil, 23% (5 mg, 0.023
mmol). The general procedure (48 h) was applied using previously
distilled 4k (0.1 mmol, 13 μL) and 7 (0.3 mmol, 3 equiv, 43 mg). The
title compound was isolated by ash column chromatography (7:3
DCM/hexane, then 8:1 hexane/ethyl acetate). Spectroscopic data
were according to the literature:51 1H NMR (400 MHz, CDCl3, syn
+anti) δ 7.28 (d, J = 7.7 Hz, 2H), 7.22−7.12 (m, 3H), 5.63−5.51 (m,
1H), 5.19−5.03 (m, 2H), 3.54−3.41 (m, 1H), 2.87−2.77 (m, 1H),
2.70−2.58 (m, 1H), 2.14−2.01 (m, 1H), 1.89−1.77 (m, 1H), 1.76−
1.57 (m, 1H), 1.43−1.28 (m, 4H), 0.85 (t, J = 8.0 Hz, 3H); 13C{1H}
NMR (100 MHz, CDCl3) δ 142.3 (syn+anti orm), 138.9 (anti orm),
138.8 (syn orm), 128.4 (syn orm, 2H), 128.3 (anti orm, 2H), 125.7
(syn+anti orm), 118.0 (syn orm), 117.4 (anti orm), 73.7 (anti
orm), 72.9 (syn orm), 50.6 (anti orm), 50.3 (syn orm), 36.5 (syn
orm), 35.7 (anti orm), 32.9 (syn orm), 32.4 (anti orm), 32.3 (anti
orm), 32.1 (syn orm), 20.4 (syn+anti orm), 14.0 (syn+anti orm).

Procedure for Photoredox Cobalt-Catalyzed Allylation of
4a on a 1 mmol Scale. The general procedure (72 h) was applied
using 4a (1 mmol, 140 mg), Co(OAc)2·4H2O (7 mol %, 70 μmol, 18
mg), 4,4′-di-tert-butyl-2,2′-dipyridyl (dtbbpy) (10 mol %, 0.10 mmol,
27 mg), 2 (5 mol %, 50 μmol, 31 mg), diethyl 1,4-dihydro-2,6-
dimethyl-3,5-pyridinedicarboxylate HE (2 equiv, 2 mmol, 506 mg), 5
(3 mmol, 3 equiv, 330 μL), reshly distilled inhibitor-ree THF (18
mL), and distilled water (2 mL). The title compound was isolated by
ash column chromatography (7:3 DCM/hexane) as a pale yellow oil
(50%, 90 mg, 0.49 mmol). Spectroscopic data were according to the
literature.47

Photophysical, Electrochemical, and Mechanistic Studies.
All o the photophysical analyses were carried out in air-equilibrated
tetrahydrouran at 298 K unless otherwise specied. UV−vis
absorption spectra were recorded with a PerkinElmer λ40
spectrophotometer using quartz cells with an optical path length o
1.0 cm. Degassed solutions were obtained by means o repeated
pump−reeze−thaw cycles (∼4 × 10−6 mbar) in sealed quartz
cuvettes. Luminescence spectra were recorded with a PerkinElmer LS-
50, a Varian Cary Eclipse, or an Edinburgh FLS920 spectrouorimeter
equipped with a Hamamatsu R928 phototube. The estimated
experimental errors are 2 nm on the band maximum and 5% on the
molar absorption coecient and luminescence lietime.

Luminescence measurements at 77 K were perormed in a DCM/
MeOH [1:1 (v/v)] mixture using quartz tubes. Fluorescence lietimes
were measured with an Edinburgh FLS920 spectrouorometer by a
time-correlated single-photon counting (TCSPC) technique. Ther-
mally activated delayed uorescence (TADF) lietimes were measured
with a PerkinElmer LS55 spectrouorometer. Emission quantum
yields were measured using perylene in MeOH (ΦFLUO = 92%) as the
standard.52 TADF quantum yields were calculated by knowing ΦFLUO
and the intensity ratio between prompt and delayed uorescence.
Singlet oxygen quantum yields were measured with an Edinburgh
FLS920 spectrouorometer equipped with a Ge detector using
tetraphenyl porphyrin (TPP) in THF (ΦΔ = 62%) as the standard.53

Cyclic voltammetry was perormed at room temperature by using an
EcoChemie Autolab 30 potentiostat in a three-electrode setup [glassy
carbon working electrode (d = 3 mm), silver wire quasi-reerence
electrode, and Pt wire counter electrode] in anhydrous MeCN
(supporting electrolyte, 0.05 M TEAPF6) and using Fc+/Fc as the
internal standard (Fc+/Fc = +0.38 V vs SCE). The working electrode
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was polished with 0.03 μm alumina paste, rinsed with water and
acetone, and nally blow-dried.
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