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Cold stress is one of the most limiting factors for plant growth and development.
Cold stress adversely affects plant physiology, molecular and biochemical processes
by determining oxidative stress, poor nutrient and water uptake, disorganization
of cellular membranes and reduced photosynthetic efficiency. Therefore, to recover
impaired plant functions under cold stress, the application of bio-stimulants can be
considered a suitable approach. Melatonin (MT) is a critical bio-stimulant that has
often shown to enhance plant performance under cold stress. Melatonin application
improved plant growth and tolerance to cold stress by maintaining membrane integrity,
plant water content, stomatal opening, photosynthetic efficiency, nutrient and water
uptake, redox homeostasis, accumulation of osmolytes, hormones and secondary
metabolites, and the scavenging of reactive oxygen species (ROS) through improved
antioxidant activities and increase in expression of stress-responsive genes. Thus, it
is essential to understand the mechanisms of MT induced cold tolerance and identify
the diverse research gaps necessitating to be addressed in future research programs.
This review discusses MT involvement in the control of various physiological and
molecular responses for inducing cold tolerance. We also shed light on engineering
MT biosynthesis for improving the cold tolerance in plants. Moreover, we highlighted
areas where future research is needed to make MT a vital antioxidant conferring cold
tolerance to plants.

Keywords: antioxidants, cold stress, gene expression, melatonin, oxidative stress, photosynthesis

INTRODUCTION

Cold stress is a severe abiotic stress that significantly limits crop growth and productivity,
particularly in temperate areas (Aazami et al., 2021; Feng et al., 2021). Cold stress induces severe
alterations in plant physiological, biochemical, metabolic and molecular processes, resulting in
a significant reduction in crop productivity (Hu et al., 2016; Repkina et al., 2021). The plasma
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membrane is considered the first place affected by cold stress
(Barrero et al., 2017). Exposure to cold stress substantially alters
lipid composition and increases fatty acid saturation (Lado et al.,
2016). Low temperature reduces water uptake, and inadequate
moisture in aboveground organs leads to drought stress (Aroca
et al., 2012; Hussain et al., 2018). In turn, the onset of drought
owing to cold stress causes a significant reduction in root growth,
nutrient, and water uptake (Nezhadahmadi et al., 2013; Hassan
et al., 2017). Low temperature also induces the production of
reactive oxygen species (ROS) (Hu et al., 2016; Dey et al., 2021)
that damage the proteins, lipids and resultantly inhibit plant
growth and, eventually, its productivity (Hassan et al., 2019, 2020,
2021). However, plants have an excellent antioxidant system to
cope with ROS under stress conditions (Chattha et al., 2021;
Dustgeer et al., 2021; Imran et al., 2021; Seleiman et al., 2021;
Sultan et al., 2021). Additionally, plants can neutralize the impact
of cold stress by accumulating various osmolytes such as proline,
glycine betaine, soluble sugars, and proteins (Erdal, 2012; Ghosh
et al., 2021). However, the accumulation of these osmolytes varies
depending on crop species and stress conditions (Erdal, 2012).
The accumulation of these osmolytes protects the membranes
and ensures better growth and production in cold stress (Sun
et al., 2020; Ghosh et al., 2021).

Melatonin (N-acetyl-5-methoxytryptamine) (MT) is an
imperious endogenous molecule that possesses excellent
antioxidant properties (Arnao and Hernández-Ruiz, 2015a;
Kołodziejczyk et al., 2021). MT is involved in different
processes ranging from root growth (Zhang et al., 2014),
flower development, fruit ripening, photosynthesis (Tan et al.,
2012), leaf senescence (Byeon et al., 2012; Wang et al., 2013),
and alleviation of stress-induced oxidative damage (Wang et al.,
2014; Arnao and Hernández-Ruiz, 2015b; Shi et al., 2015a;
Kołodziejczyk et al., 2021). The application of MT improves
antioxidant activities performing ROS scavenging and conferring
cold tolerance to plants (Zhang H. et al., 2021). Melatonin
improves gene expression, which regulates the antioxidant
activities and redox status under cold stress (Wang et al.,
2017; Li et al., 2018a). MT reduces cold-induced inhibition
in photosynthesis and photosystem-II (PS-II) activities by
increasing antioxidant activities (Han et al., 2017). Moreover,
MT also improves the cold tolerance by degradation of starch
and increasing the electron transport and antioxidant activities
(Li et al., 2018b). In recent years, many functions of MT have
been identified, among which contributing to stress tolerance.
Therefore, in this review we systematically discussed the potential
regulatory mechanism of MT to induce cold tolerance. Further,
we also focused on the future directions to make MT an essential
antioxidant for cold tolerance.

MELATONIN BIOSYNTHESIS IN PLANTS

Tryptophan (TP) is considered a precursor of MT. The
conversion of TP into MT involves four enzymatic reactions
(Figure 1). The first step consists of converting TP into
tryptamine by tryptophan decarboxylase (TDC). Tryptamine
is converted into serotonin (ST) by the action of an enzyme

named tryptamine 5-hydroxylase (T5H) (Posmyk and Janas,
2009). Later on, ST is converted into N-acetyl-serotonin
by means of N-acetyltransferase (SNAT) or arylalkylamine
N-acetyltransferase (AANAT). Afterward, N-acetyl-serotonin is
converted into MT by N-acetyl-serotonin methyltransferase
(ASMT) or hydroxyindole-O-methyltransferase (HIOMT) (Zuo
et al., 2014). In parallel to this, ST is also converted by HIOMT
into the 5-methoxytryptamine, which in turn is converted by
SNAT into the final product, MT (Tan et al., 2016). A recent study
also identified the reverse pathway for MT biosynthesis, in which
N-acetyl-serotonin deacetylase catalyzes N-acetyl-serotonin into
serotonin (Lee et al., 2017). As a precursor of MT, tryptophan
is also a precursor of indole-3-acetic-acid (IAA). Tryptamine
pathway is one of the pathways of IAA synthesis, in which TP
is converted into tryptamine, and then tryptamine is converted
into IAA by indole-3-acetaldehyde (Wang J. et al., 2012; Wang
Y. Y. et al., 2012). This similarity explains why MT has effects
similar to those of IAA, as it has been reported that MT
improves vegetative growth to an extent comparable with IAA
(Hernandez-Ruiz et al., 2004).

ENDOGENOUS MELATONIN
BIOSYNTHESIS IN PLANTS

Plant chloroplast and mitochondria are considered important
sites of MT biosynthesis (Tan et al., 2013). MT biosynthesis
has been reported in many plants, including fruit trees, herbs,
and crops (Byeon et al., 2012). The levels of MT synthesis in
plants are subjected to seasons and circadian rhythms (Beilby
et al., 2015). Additionally, MT concentrations vary among plant
species, organs, and growth stages (Hernández-Ruiz and Arnao,
2008). For instance, in morning glory, the MT concentration
was significantly increased during the maturation period (Van-
Tassel et al., 2001). Lastly, environmental conditions significantly
affect MT synthesis in plants; for instance, MT concentration
was significantly higher in field grown rice compared to the
growth chamber (Byeon et al., 2012). Similarly, MT levels
were also significantly higher in grapevine plants grown under
illumination than under darkness, indicating that light signals
induce MT synthesis (Boccalandro et al., 2011). In contrast to
this, another source reports that MT synthesis in grapevine was
significantly higher during the night compared to the day, which
indicates that light inhibits the MT biosynthesis in these species
(Arnao and Hernández-Ruiz, 2013b).

ABIOTIC STRESS INDUCED MELATONIN
BIOSYNTHESIS IN PLANTS

Melatonin, an excellent antioxidant, interacts with ROS and
reduces ROS production and its damaging effects under stress
conditions (Arnao and Hernández-Ruiz, 2013a). Therefore, in
stress conditions, the increases in MT synthesis is linked with
an increase in ROS (Arnao and Hernández-Ruiz, 2013b). The
concentration of MT in grapevine and barley was significantly
increased in stress conditions, and the level of MT was
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FIGURE 1 | The pathway of melatonin biosynthesis in plants.

further enhanced by increasing the stress intensity (Arnao
and Hernández-Ruiz, 2009). Moreover, MT synthesis in rice
seedlings was also significantly increased under heat stress (Byeon
and Back, 2013). MT biosynthesis considerately increased on
exposure to stress, proving that MT plays an imperative role in
plants’ response to different stresses (Hardeland, 2016).

Melatonin biosynthesis in plants is related to gene expression
and enzymatic activities responsible for MT biosynthesis. For
instance, an increase in genes expression (TDC: tryptophan
decarboxylase: TDC, T5H: tyrosine gene) significantly increased
MT synthesis in rice seedlings grown under cadmium stress
(Byeon et al., 2015). Moreover, an increase in MT in rice was
also linked with SNAT and ASMT under high temperatures
(Byeon and Back, 2013). Generally, the concentration of MT in
plants is strongly correlated with the availability of its precursors
(Byeon et al., 2015), and ST plays a crucial role to improve
cold tolerance (Kang et al., 2010). Moreover, a higher level of 2-
hydroxymelatonin under cold and drought stress in rice indicates
its role in plant resistance to these stresses (Lee and Back, 2016).

Additionally, in the tomato crop, the concentration of MT was
significantly increased by direct binding of a transcription factor
(HsfA1a) to the caffeic acid O-methyltransferase 1 (COMT1)
gene promoter under Cd stress (Cai et al., 2017).

EFFECT OF COLD STRESS ON PLANTS

Cold stress induces several morphological alterations in plants
and causes a reduction in growth and productivity (Equiza
et al., 2001). Cold stress determines leaf chlorosis and wilting,
leading to necrosis and stunted growth (Janowiak et al., 2002).
Cold stress delayed and reduced wheat germination, reducing
stand establishment and final productivity (Jame and Cutforth,
2004). Cold stress limits root proliferation, growth and surface
areas (Figure 2), leading to a substantial reduction in nutrient
and water uptake (Hussain et al., 2018; Kul et al., 2020). The
reproductive stage of plant life is also susceptible to cold stress
(Thakur et al., 2010). For instance, cold stress causes shedding of
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FIGURE 2 | Effect of cold stress on plants. Cold stress induces the formation of crystal which reduces membrane integrity, causes electrolyte leakage and lipid
saturation, reduces root growth which in turn decreases the water and nutrient uptake. Moreover, cold stress also causes leaf wilting and chlorosis and disturbs
photosynthetic performance and microbial activities, and induces flowering shedding, deformation of pollen tube, incomplete fruit setting and results in significant
growth and yield losses.

flowers, deforms pollen tubes (Chakrabarti et al., 2011), induces
pollen sterility (Ji et al., 2017), and disrupts grain development
(Barton et al., 2014), consequently causing a reduction in final
productivity (Hussain et al., 2018).

Cold stress severely alters plant physiological processes. Plants
need to maintain membrane stability in stress conditions;
however, cold stress reduces membrane stability (Table 1) and
protein structures (Chen et al., 2018). Cold stress induces the
formation of ice crystals in plant tissues (Puhakainen, 2004),
which reduces apoplastic water potential and results in the
flow of water from cells. Thus, cold stress at the cellular level,
often followed by drought stress, seriously reduces growth and
productivity (Hassan et al., 2021). This onset of drought stress
reduces root growth (Table 1), root hydraulic conductivity and
turgidity of plant leaves (Siddique et al., 2000). Resultantly, plant
water and nutrient uptake and carbohydrate metabolism are
seriously disrupted, involving significant yield losses (Hassan
et al., 2021). Besides this, lower temperature also disturbs
soil microbial activities, affecting plant nutrient relationships

(Massenssini et al., 2015). Ice crystals’ formation also increases
electrolyte leakage and causes lipid peroxidation (Hassan et al.,
2021). Ice crystals can also puncture the cells, resulting in cytosol
outflow and causing plant death (Zhang F. et al., 2011; Demidchik
et al., 2014; Sun et al., 2019). Thus, preventing the formation of
ice crystals is considered an essential cold tolerance mechanism
in plants. Plants accumulate various cryoprotective polypeptides
(e.g., COR15a) and osmolytes to cope with the damaging effects
of cold stress (Ritonga and Chen, 2020).

Photosynthesis is a major source of grain production, and this
process is seriously affected by cold stress (Rinalducci et al., 2011;
Khan et al., 2017). Cold stress causes the over-excitation of PS-
II, which increases the energy loss by non-radiative reactions
(Venzhik et al., 2011; Cvetkovic et al., 2017). Further, cold
stress reduces chlorophyll synthesis, photosynthetic efficiency,
Rubisco activity, electron transport, stomatal conductivity, which
reduce the assimilates production and cause severe yield losses
(Bota et al., 2004; Yamori et al., 2009; Hussain et al., 2018).
Moreover, cold stress also damages mitochondria’s structure,
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disturbs enzymatic activities, and slows down the flow of
kinetic energy, consequently diminishing the respiration rate
(Ikkonen et al., 2020).

Reactive oxygen species increase under cold stress improved
the oxygenation response in plant chloroplast and increased
glycolate accumulation. This glycolate is converted to glyoxylate
in plant peroxisomes, accompanied by accumulation of hydrogen
peroxide (H2O2) (Hassan et al., 2021). However, plants have
an excellent antioxidant defense system to scavenge these ROS
(Ritonga and Chen, 2020). The response of plants to cold
stress consists of different steps, including dictation of stress
followed by signal perception, transduction, and increased
expression of stress-responsive genes (Ganeshan et al., 2008).
Many genes have been identified in plants that initiate a cascade
of transcriptional, biochemical, and physiological processes
crucial to chilling tolerance (Kosová et al., 2008). Moreover,
plants accumulate various osmolytes, reduce water content,
scavenge ROS and maintain carbon metabolism to counter the
effects of cold stress (Ruelland and Zachowski, 2010; Thakur
and Nayyar, 2013; Hassan et al., 2021). Plants also accumulate
various soluble sugars that stabilize the cellular membrane on
exposure to cold stress (Yokota et al., 2015). Moreover, the
accumulation of osmolytes and sugars also decrease the ROS
and malondialdehyde (MDA) contents under cold stress by
improving catalase (CAT), peroxidase (POD), and superoxide
dismutase (SOD) activities (Sun et al., 2019).

MELATONIN IMPROVES GROWTH AND
YIELD UNDER COLD STRESS

Cold stress is a severe abiotic stress that substantially limits
crop productivity by imposing serious alterations in plant
physiological and metabolic processes, and hormonal imbalance,
nutritional disorders, poor photosynthetic efficiency, and
production of ROS (Turk and Genisel, 2020). MT is an major
signaling molecule that promotes plant growth (Table 2) and
development, and protects against abiotic stresses (Posmyk
and Janas, 2009). Low temperature inhibits plant growth and
development, in response to which, MT possesses excellent
potential to counter cold influence (Table 2; Bajwa et al., 2014).
Cold stress induces reduction in photosynthetic pigments;
however, MT application (100 µM) significantly increases the
synthesis of photosynthetic pigments, and therefore maintains
plant growth under cold stress (Han et al., 2017). Cold stress
induces a marked increase in MDA accumulation, lipid
peroxidation and electrolyte leakage (Hulya et al., 2014; Hu
et al., 2016). However, MT supplementation was shown to
markedly reduce MDA accumulation and ROS deleterious
impact on cellular membranes of rice seedlings, which in turn
resulted in appreciably improved plant growth under cold stress
(Han et al., 2017).

In the same experiment (Han et al., 2017), MT reduced
the cold-induced inhibition in plant photosynthetic activities,
and protected the photosynthetic apparatus by improving
the antioxidant activities; all this determined better plant
performance under cold stress. However, MT mediated

improvement in plant growth largely depends on methods
and rate of MT application under cold stress (Han et al.,
2017). MT supplementation maintains higher Fv/Fm and
plant water relationships, while it reduces MDA and H2O2
by improving antioxidant activities (Table 2: ascorbate
peroxidase: APX, CAT, POD, and SOD), enhancing plants
tolerance to cold stress (Li et al., 2018a). MT supplementation
also protects the photosynthetic machinery, maintains the
redox homeostasis, and enhances gene expression so as to
mitigate the deleterious impacts of cold stress and improve
plant growth (Li et al., 2018a). Exogenous application
of MT improved plant defense to counter the harmful
effects of cold stress in Bermudagrass (Fan et al., 2015).
MT application also improved osmolyte accumulation,
nutrient and water uptake, hormonal accumulation and
enzymatic activities, which countered the effects of cold
stress by strengthening the anti-oxidant defense system and
improving plant growth (Irshad et al., 2021). In addition, MT
supplementation also improved carbon assimilation, osmotic
potential, enhanced plant water content and photosynthetic
efficiency, resulting in substantial growth improvement and
unconstrained development under freezing temperature
(Irshad et al., 2021).

MELATONIN MAINTAINS MEMBRANE
STABILITY AND IMPROVES PLANT
WATER RELATIONS UNDER COLD
STRESS

Membrane stability is a major damage in plants caused due
to cold stress. Cold stress decreases membrane fluidity and
changes the balance between transpiration and water uptake,
and cause water dehydration in plant shoots (Turk et al.,
2014). Eventually, it also affects the stomata movements and
substantially decreases the photosynthetic rate (Hassan et al.,
2021). However, MT application protects membranes and
improves membrane stability by scavenging ROS through
enhanced antioxidant activities (Turk et al., 2014). The foliar
and seed priming with MT appreciably improved the membrane
stability linked with reduced MDA and H2O2 (Table 3)
accumulation (Sun et al., 2018). The increase in membrane
stability reduced the EL and loss of osmolytes and conferred
the cold tolerance in plants (Sun et al., 2018). Additionally,
exogenous MT also improved the enzymatic and non-enzymatic
antioxidant activities, maintaining the membrane integrity and
conferring cold tolerance with corresponding lower electrolyte
leakage (EL), MDA, and H2O2 accumulation (Table 3; Fan
et al., 2015). The regulation of plant water relationships is plants
are linked with plants adaptation to cold stress (Turk et al.,
2014). Cold stress significantly decreased the plant relative water
contents (RWC); however, MT application reduces the negative
impacts of cold stress and maintains higher RWC (Pu et al.,
2021). The larger leaf surface area with MT treatment may be
associated with improved water contents under cold stress (Turk
et al., 2014). Moreover, MT also protects the plant membranes,
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TABLE 1 | Effect of cold stress on growth, physiological attributes, and anti-oxidant activities.

Crop Stress conditions Effects References

Soybean 17/13◦C DNT Cold stress reduced the plant height, nodes production, stem biomass, pods production, biomass, and
seed production.

Staniak et al., 2021

Maize 4◦C Chilling stress reduced the seedling growth, biomass production, RWC, and increased the MDA
contents membrane permeability, proline accumulation, and APX, CAT, POD, and SOD activities.

Zhang Q. et al., 2021

Wheat 6◦C Cold stress reduced the root and shoot growth and biomass production, and increased the MDA and
H2O2 accumulation, proline, glycine betaine accumulation, and EL.

Golizadeh and Kumleh,
2019

Stevia 5◦C Cold stress reduced efficiency of PS-II, chlorophyll contents, photosynthetic rate, and water use
efficiency.

Hajihashemi et al.,
2018

Chickpea 4◦C Cold stress increased EL, MDA, and H2O2 accumulation. However, cold stress also resulted in increase
in activities of APX, CAT, and SOD.

Karami et al., 2018

Sunflower −3◦C Cold stress increased the EL, reduced the chlorophyll fluorescence, osmotic potential of sunflower
plants.

Helena et al., 2017

Sugarcane 4◦C Cold stress reduced the root growth, root biomass, root vigor, activities POD and SOD, MDA, proline,
and soluble sugars accumulation.

Sun et al., 2017

Barley −8◦C The cold stress increased the lipid per-oxidation, MDA and H2O2 accumulation, CAP and POD activities
and decreased the membrane stability.

Valizadeh et al., 2018

Wheat 4◦C Cold stress reduced the leaf moisture contents, RWC, dry matter contents, photosynthetic, and
transpiration rates of wheat crop.

Bibi et al., 2017

DNT, day/night temperature.

TABLE 2 | Effect of melatonin application on growth and physiological and molecular attributes under cold stress.

Crop Cold stress MT application Effects References

Barley 5◦C 1 µM MT supplementation increases the germination, seedling growth, endogenous MT
concentration, chlorophyll and caroteniod contents, proline and soluble proteins
accumulation, and expression of HvCCA1 and HvTOC1 genes.

Chang T. et al., 2021

Watermelon 4◦C 150 µM The application of MT improves the endogenous MT contents and accumulation of
MeJA, chlorophyll fluoresces, expression of ClCBF1 and ClCBF2 genes.

Li et al., 2021

Pepper 25/20◦C DNT 5 µM MT foliar spray improves the leaf area, photosynthetic rate, stomatal conductance,
biomass production, water potential, proline contents, and fruit yield.

Korkmaz et al., 2021

Pistachio 25/20◦C DNT 0.5 µM MT supplementation improves the growth, chlorophyll and caroteniod and phenolic
contents, carbohydrate, proline, and GABA accumulation.

Barand et al., 2020

Wheat 20◦C 1 µM MT treatment improves the plant biomass production, root/shoot ratio, nitrogen uptake
and activities of nitrate reductase and glutamine synthetase.

Qiao et al., 2019

Wheat 10/4◦C DNT 1 mM MT application improves the stomatal conductance, photosynthetic efficiency and
expression of Cu/Zn SOD to confer cold tolerance.

Sun et al., 2018

Tea 25/20◦C DNT 500 µM MT foliar spray increases the photosynthetic rate, efficiency of PS-II, chlorophyll
contents and expression of stress proteins.

Li et al., 2018a

Bermudagrass 4◦C 100 µM MT supplementation increases the chlorophyll fluoresce and endogenous MT contents
to confer the cold tolerance.

Hu et al., 2016

Bermudagrass 4◦C 100 µM MT treatment increases the chlorophyll contents, chlorophyll fluoresce, endogenous MT
contents.

Fan et al., 2015

Maize 27/25◦C DNT 1 mM MT application improves the growth, chlorophyll contents, RWC and increased the
concentration of Fe, Mg, K, S, B, and Zn.

Turk and Erdal, 2015

DNT, day/night temperature.

reducing water loss and maintaining the higher RWC under cold
stress (Turk et al., 2014).

MELATONIN IMPROVES WATER AND
NUTRIENT UPTAKE UNDER COLD
STRESS

The potential water reduction is considered the fastest effect of
chilling stress. Cold stress diminishes the water influx through
plants roots due to increased water viscosity and a decrease in

membrane fluidity, which reduces the cell turgor pressure (Turk
et al., 2014). However, MT application improves the plant water
uptake under cold stress, which indicates that MT can reduce the
negative impacts of cold stress (Turk et al., 2014; Hussain et al.,
2018). Exogenous MT application increases the vapor pressure
deficit between the plant leaf surface and atmosphere, enabling
the plant roots to improve the water uptake (Pu et al., 2021).

Cold stress alters membrane structure by disturbing various
physiological and biochemical properties, disturbing multiple
processes, including nutrient and water uptake (Nayyar et al.,
2005). Optimum nutrient uptake and transportation is necessary
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for plants to maintain their physiological processes and structural
integrity under cold stress (Dumlupinar et al., 2011). MT
application significantly improved the nutrient uptake under cold
stress. Likewise, MT application causes a significant increase
in calcium (Ca) uptake under cold stress, which shows that
MT achieved its protective role on membranes under cold
by increasing the Ca uptake. Moreover, increased Ca uptake
following MT application protects the membranes and reduces
electrolyte leakage and MDA accumulation under cold stress
(Turk and Erdal, 2015). MT application also maintained higher
uptake of potassium (K), phosphorus (P), sulfar (S), boron (B),
copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), and
zinc (Zn), which improved the plant performance and confer the
cold tolerance (Turk and Erdal, 2015).

Cold stress also decreased the Mg uptake which in turn
decreased the chlorophyll synthesis owing to fact Mg is important
constituent of chlorophyll. However, MT treatment improves
the Mg uptake and ensures the better chlorophyll synthesis and
subsequent photosynthetic performance under cold stress (Turk
and Erdal, 2015). MT application also improved the N uptake and
maintained higher N contents in plant shoot under cold stress.
The increase in N uptake following MT application is attributed
to higher activities of nitrate reductase (NR) and glutamine
synthetase (GS) and resultantly improve the plant growth and
productivity (Qiao et al., 2019). Cold stress substantially reduced
the NPK however, MT application improved the NPK under
cold stress (Irshad et al., 2021). Cold stress reduced the N
uptake by reducing the root activities (Feng et al., 2011)
nonetheless, exogenous MT application upregulates nutrient
uptake by increasing root activity and enzymatic activities under
cold stress (Turk and Erdal, 2015; Irshad et al., 2021).

MELATONIN IMPROVES HORMONES
AND OSMO-LYTES ACCUMULATION TO
CONFER COLD TOLERANCE

Osmo-lytes accumulation is one of the most important
mechanisms used by plants to improve the stress tolerance
(Hassan et al., 2021). The formation of viscous among cells
is imperious to improve the cold tolerance; however, this
formation largely depends on carbohydrate contents. The
application of MT improved the carbohydrate contents which
in turn improve the cold tolerance in plants (Sarropoulou
et al., 2012; Turk et al., 2014). Amino acids and proteins
also play an imperative role in plants tolerance to cold
stress. The application MT substantially increased the MT
accumulation in plants which in turns improve the plant anti-
oxidant performance and confer the cold tolerance (Turk et al.,
2014). Melatonin application also maintained higher proline
contents under cold stress that keeps cell water contents,
maintain membrane stability and increases the anti-oxidant
activities to confer cold stress in plants (Turk et al., 2014).
The application of MT appreciably improved the synthesis
of proline enzymes including the 1-pyrroline-5-carboxylate
syntheses (P5CS) and ornithine aminotransferase (OAT) which
in turn improve the proline synthesis under cold stress and

confer the cold tolerance were (Madebo et al., 2021). Melatonin
application also improved the endogenous MT, glycine betaine
and soluble sugars accumulation and resulting in substantial
increase in anti-oxidant activities and subsequently in cold stress
(Irshad et al., 2021).

Different hormones including, auxins (IAA), abscisic acid
(ABA), gibberellins (GA3), and cytokinins (CK) play a significant
role in chilling tolerance (Khan et al., 2017). The response
of plants to various stresses are depends on the cross talk
among the hormonal signaling pathways (Verma et al., 2016).
The exogenous MT supplementation improved the IAA and
GA3 concentration while MT application reduced the ABA
accumulation under cold stress (Pu et al., 2021). ABA induces
stomata closing and reduced the photosynthetic rate under
cold stress (Lata and Prasad, 2011). Cold stress significantly
increases the ABA contents (Zhang et al., 2014), however,
MT application markedly reduced the ABA accumulation
in cold stress (Zhao et al., 2016). The reduction in ABA
accumulation under cold stress is attributed to re-opening of
stomata following MT application (Pu et al., 2021). Melatonin
application also induced significant increase in methyl jasmonate
(MeJA) that leads to an increase in H2O2 accumulation and
cold tolerance (Li et al., 2021). Nitric oxide (NO) maintains
cellular homeostasis under stress conditions by repairing the
stress induced oxidative damages (Zhao et al., 2007; Kaya et al.,
2020). The increase in NO following MT initiate the signaling
processes involved in maintenance of cellular redox homeostasis
that neutralize the adverse impacts of ROS and provide NO
induced defense against oxidative by improving anti-oxidant
activities, carotenoid contents and electron transport under cold
stress (Irshad et al., 2021).

MELATONIN IMPROVES
PHOTOSYNTHETIC PERFORMANCE
UNDER COLD STRESS

Photosynthesis is an imperative physiological process that occurs
in plants and it is considered as a basis of biological world,
however, this process is considered to be very sensitive to cold
stress (Dalal and Tripathy, 2012). Cold stress decreases the
plant photosynthetic pigments, destroy chloroplasts structure,
close stomata, and decreases photosynthetic rate and stomata
conductance (Fan et al., 2015; Cai et al., 2016; Han et al., 2017).
Melatonin supply alleviate the cold induce inhibition in plant
photosynthetic efficiency, maintain lower non-photochemical
quenching (NPQ) and protect the photosynthetic apparatus from
cold stress (Han et al., 2017). MT application also improves the
chlorophyll synthesis (Figure 3) by improving the anti-oxidant
activities and protecting the photosynthetic apparatus (Irshad
et al., 2021). MT supplementation improved the endogenous
MT contents that decreased the expression of oxygenase (PAO)
gene that is involved in chlorophyll degradation and senescence-
related hexokinase-1 (HXK1) gene (Wang et al., 2013; Weeda
et al., 2014). MT supply also improved the stomata conductance
and improve the plant photosynthetic efficiency by increasing the
carbon dioxide (CO2) absorption (Zhong et al., 2020).
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TABLE 3 | Effect of melatonin supplementation on different oxidative stress markers under cold stress.

Crop Cold stress MT application Effects References

Common sage 20/15◦C DNT 200 µM MT application significantly reduced the MDA and H2O2 accumulation under cold
stress.

Bidabadi et al., 2020

Sapota fruit 8◦C 90 µM MT application decreased electrolyte leakage, MDA contents, and production of H2O2,
and O2−.

Mirshekari et al., 2020

Tea 4◦C 100 µM MT application reduced the H2O2, and O2− and MDA accumulation under cold stress. Li et al., 2019

Peach 4◦C 100 µM MT foliar spray reduced the MDA accumulation and production of H2O2, and O2−. Cao et al., 2018

Tomato 5◦C 200 µM MT supplementation reduced the chilling injury, ion leakage, MDA accumulation and
H2O2, and O2−production.

Azadshahraki et al.,
2018

Tomato 4◦C 100 µM Exogenous MT reduced the electrolyte leakage, MDA H2O2, and O2− accumulation
under cold stress.

Ding et al., 2017

Pepper 15◦C 25 µM MT improved membrane stability and reduced the MDA and H2O2 accumulation. Korkmaz et al., 2017

Melon 12/6◦C DNT 400 µM MT application reduced the MDA contents and ROS production. Zhang et al., 2017

Bermudagrass 4◦C 100 µM Foliar MT supplementation reduced the electrolyte leakage, MDA accumulation and
ROS production.

Shi et al., 2015a

DNT, day night temperature.

FIGURE 3 | A proposed model for MT induced increase in photosynthetic under cold stress. MT supplementation protects photosynthetic apparatus, and maintains
genes expression linked with chlorophyll synthesis and improves the osmotic adjustment, carbon assimilation and anti-oxidant activities and resulting in significant
improvement in photosynthesis under cold stress.

Cold stress decreases the activities of enzymes involved
in photosynthesis and RuBisCo is considered as a most
important enzyme of photosynthetic process (Turk et al.,
2014). Cold stress inhibited RuBisCo activity, however; MT
maintained the higher RuBisCo activity and improves the
photosynthetic efficiency under cold stress owing to reduced

ROS production (Turk et al., 2014). The improvement in
photosynthetic efficiency with MT application under cold stress
is attributed to decreased ROS production, increase in light
perception and RuBisCo activity (Turk et al., 2014; Erland et al.,
2018; Yang et al., 2018). Additionally, MT also protects the
chlorophyll degradation addition, and delays the leaf senesces
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FIGURE 4 | A proposed model of MT medicated polyamines accumulation for improving cold tolerance in plants. MT application upregulates genes expression
linked with polyamines accumulation and genes linked with ABA synthesis and ABA catabolism. The application of MT improves polyamines accumulation and
increase the genes expression to for catabolism of ABA and resulting in significant improvement in photosynthetic efficiency and cold tolerance in plants.

which also leads to marked improvement in photosynthetic
efficiency under cold stress (Han et al., 2017; Ye et al.,
2020).

The exogenous application of MT also maintains the higher
Fv/Fm and reduced the MDA and H2O2 accumulation which
favors an increase in photosynthetic efficiency (Tan et al.,
2012; Bajwa et al., 2014; Li et al., 2018a). The effect of
MT on photosynthesis is concentration dependent. Since the
endogenous MT varies among the species, therefore, different
concentrations of exogenous MT may exert different effects
on plant photosynthetic efficiency (Lazar et al., 2013). The
photo-inhibition of photosystem-I (PS-I) is considered to
be more dangerous as compared to PS-II, however, MT
application protect the thylakoid membranes and recover the
photo-inhibition of PS-1 and PS-II and maintain the higher
photosynthetic efficiency under cold stress (Yang et al., 2018).

MELATONIN IMPROVES
ACCUMULATION OF SECONDARY
METABOLITES IN COLD STRESS

Phenolic compounds possess excellent anti-oxidant properties
and they accumulate in plants in response to different stress
conditions (Agati et al., 2007). Cold stress increased the
levels of phenolic compounds while exogenous application
of MT further enhanced the phenolic contents to confer the
cold tolerance (Szafranska et al., 2012; Turk et al., 2014).
Polyamines maintain enzymatic activities, membrane integrity

and protein structures by scavenging ROS and phospholipid
binding capacity (Aghdam et al., 2019). MT application
improves the cold stress defense mechanism by increasing
the concentration of polyamines (Figure 4) (Put, Spd, and
Spm) (Cao et al., 2016). Moreover, increased expression of
LeARG1 and LeARG2 encoding arginase genes, arginine
decarboxylase (LeADC) and ornithine decarboxylase (LeODC)
improved the chilling tolerance in plants (Zhang X. et al.,
2011). Additionally, MT pre-treatments increased the
accumulation of spermine, spermidine, and putrescine by
regulating the S-adenosylmethionine decarboxylase (SAMDC)
and tranglutaminase (TGase) activities and resulting in increase
in cold tolerance (Du et al., 2021).

The increase in zinc finger protein (Zat12) gene expression
involved in putrescine accumulation is also upregulated
by expression of ADC1 and ADC2 genes following MT
application that improved the cold tolerance in plants (Zhao
et al., 2017). Moreover, MT supplementation also increased
the enzymatic activities and encoding genes (CsADC and
CsODC) expression level which in turn improved the
polyamines accumulation and improved the cold tolerance
by increasing anti-oxidant activities (Madebo et al., 2021).
Gamma-aminobutyric acid (GABA) is a non-protein amino
acid which is found in most of organisms (Madebo et al.,
2021). The MT treatment improved the upregulation of
PpGAD expression and increases ascertain of GABA in
chilling stress (Cao et al., 2016). The increase in GABA
accumulation following MT application serves as H2O2
scavenger which protects the membranes and improved
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FIGURE 5 | A proposed model of MT mediated increase in anti-oxidant activities and osmolytes accumulation for conferring cold stress in plants. NO: nitric acid.

the plant performance under cold stress (Cao et al., 2016;
Wang et al., 2016).

MELATONIN STRENGTHENS
ANTIOXIDANT DEFENSE ACTIVITIES TO
CONFER COLD TOLERANCE

Cold stress induces certain changes in plant anti-oxidant
activities and these alterations are considered as mechanisms
to alleviate the adverse impacts of ROS (Barand et al., 2020).
MT application scavenges the ROS directly or indirectly by
raising the activities of anti-oxidant (Figure 5) enzymes (Li
et al., 2012; Arnao and Hernández-Ruiz, 2015a). APX, CAT
and glutathione peroxidase (GPX) are considered as (Table 4)
essential enzymes responsible for breaking the H2O2 into H2O
in plant cells (Mittler et al., 2004; Aamer et al., 2018). MT
application enhances the activities of aforementioned enzymes
and counters the deleterious impacts of various abiotic stresses
(Fan et al., 2015). MT application appreciably increased the APX,
CAT, POD, and SOD (Table 4) activities which is attributed to
drop in leaf temperature and increase in ROS accumulation in
plant leaves (Li et al., 2018c). The reduction in ROS production
by MT improved the plant performance under cold stress (Li
et al., 2018c). MT seed priming and foliar application upregulated
the APX and SOD activities which reduced the ROS production

and conferred the cold tolerance in barley (Li et al., 2016).
The exogenous MT application increased the expression of anti-
oxidant genes including Cu/Zn-SOD and Fe-SOD that increased
the SOD activities and improved the cold tolerance in MT treated
plants (Sun et al., 2018).

Melatonin also induced the accumulation of anti-oxidant
metabolism-related proteins and increases the potential of
anti-oxidant system to scavenge the ROS under cold stress
(Tan et al., 2012; Turk et al., 2014; Shi et al., 2015b). MT
application also increases the stress tolerance in different plant
species by inducing H2O2 as defense signaling (Shi et al.,
2015b; Li et al., 2016). Plants also have to maintain optimum
cellular redox homeostasis to continue normal functioning
under stress conditions (Kocsy et al., 2001). Glutathione being
a redox active compound maintains cellular homeostasis by
affecting the different biological pathways and maintain plant
performance under cold stress (Suzuki et al., 2012). MT
pretreatment maintains higher GSH:GSSG ratio and reduce the
ROS production under cold stress (Li et al., 2018a). Moreover,
MT application also improved the AsA activity in cold stress,
additionally, MT also improved GSH content by improving the
activity of c-glutamylcysteine enzymes involved in glutathione
(GSH) synthesis (Xu et al., 2010; Li et al., 2018a). All these
findings finding indicated that MT application upregulates the
activities both enzymatic and non-enzymatic anti-oxidant to
confer cold tolerance in plants.
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TABLE 4 | Effect of melatonin application on enzymatic and non-enzymatic activities under cold stress.

Plant species Stress conditions MT application Impact on anti-oxidant activities References

Maize 5◦C 50 µM ↑ APX, CAT, GPX, and SOD Kołodziejczyk et al., 2021

Wheat 12◦C 2000 µM ↑ APX and SOD Zhang H. et al., 2021

Pepper 10/5◦C DNT 5 µM ↑ CAT, POD, and SOD Korkmaz et al., 2021

Litchi Fruit 4◦C 0.5 mM ↑ APX, CAT, DHAR, MDHAR, GR, POD, and SOD Liu et al., 2021

Soybean 12◦C 5 µM ↑ APX, CAT, POD, and SOD Bawa et al., 2020

Pepper 20◦C 100 µM ↑ APX, CAT, POD, and SOD Kong et al., 2020

Tomato 4◦C 100 µM ↑ AsA, CAT, GSH, and SOD Wang et al., 2020

Maize 13◦C 100 µM ↑ APX, CAT, POD, and SOD Cao et al., 2019

Wheat 2◦C 1 mM ↑ APX, CAT, and SOD Sun et al., 2018

Tea −5◦C 500 µM ↑ APX, CAT, GR, and SOD Li et al., 2018b

Tomato 25/20◦C DNT 100 µM ↑ APX, CAT, GSH, POD, and SOD Ding et al., 2017

Bermudagrass 4◦C 1 mM ↑ APX, GPX, GST, and POD and SOD Hu et al., 2016

Cucumber 15/8◦C DNT 200 µM ↑ APX, AsA, GR, and MDHAR Zhao et al., 2016

Cucumber 10◦C 500 µM ↑ CAT, POD, GR, and SOD Marta et al., 2016

Wheat 5/2◦C DNT 1 mM ↑ APX, CAT, GPX, GR, and SOD Turk et al., 2014

DNT, day night temperature.

MELATONIN INCREASES THE
EXPRESSION OF STRESS RESPONSIVE
GENES TO CONFER COLD TOLERANCE

The increase in genes expression plays an imperious role to
mitigate the adverse impacts of cold stress. MT treatment
appreciably improved the genes expression and improved the
plant tolerance to cold stress. Likewise, MT seed treatment and
foliar spray considerably increased the expression of Cu/Zn
SOD, Fe/SOD gene and CAT genes which in turn improves
overall plant performance and anti-oxidant activities under cold
stress (Sun et al., 2018). MT markedly upregulate the expression
of C-repeat-binding factors (CBFs)/drought response element
binding factors (DREBs) and different cold responsive genes
(COR15a and CAMTA1) and anti-oxidant genes (ZAT10 and
ZAT12) that contributes to improved growth and cold tolerance
in plants (Bajwa et al., 2014). MT application increased the
IAA and jasmonic acid levels, however, it decreased the ABA
concentration in cold stress. This indicates that MT works
synergistically with IAA and jasmonic acid (JA) and anta-
agonistically with ABA to regulate the plant responses to cold
stress (Chang et al., 2020).

Cold stress also increased the expression of fatty acid
desaturase (FAD2), conversely MT treatment lower the FAD2
expression and consequently reduced the lipid per-oxidation
under cold stress (García et al., 2014; Barand et al., 2020).
MT treatment upregulates stress responsive gene (CsZat12)
and increases the accumulation of polyamines (Put, Spm,
Spd) by altering the activity of polyamine metabolic enzymes.
Moreover, MT also modulates the expression of ABA synthesis
genes (CsNCED1 and CsNCED2) and ABA catabolism genes
(CsCYP707A1 and CsCYP707A2) to confer cold tolerance
in plants (Zhao et al., 2017). The application of MT also
induces the RBOHD-dependent H2O2 generation in cold stress
and increase in H2O2 promotes Ca2+ accumulation that
sends signals for anti-oxidant activities and improve the cold

tolerance (Chang T. et al., 2021). MT application also upregulate
the expression of anti-oxidant genes (CsSOD, CsPOD, CsCAT,
and CsAPX) that increases the anti-oxidant activities of and
resultantly increased the ROS scavenging (Li et al., 2019).

ENGINEERING MELATONIN
BIOSYNTHESIS IMPROVES COLD
TOLERANCE

The efforts are being made to develop the transgenic plants with
improved MT bio-synthesis for ensuring the cold tolerance in
plants. For instance higher SNA (Serotonin N-acetyltransferase)
specific enzyme activities were noticed in transgenic plants,
and higher expression of SNA induces a significant increase in
MT biosynthesis and subsequent cold tolerance (Kang et al.,
2010). Likewise, over-expression of SNAT2 in rice lines increased
the MT biosynthesis, which improved plant tolerance to cold
stress (Hwang and Back, 2019). The oAANAT gene’s over-
expression plays a significant role in MT biosynthesis under stress
conditions. The increase in expression of the oAANAT gene
enhanced the MT contents and promoted the plant growth and
spike length of switchgrass under cold stress (Yuan et al., 2016).
In cotton crops, over-expression of GhM2H gene improved the
tolerance against heat and cold stress by increasing endogenous
MT contents and antioxidant activities and reducing ABA
accumulation (Zhang Y. et al., 2021).

The insertion of ClCOMT1 in transgenic watermelon
plants significantly increased the MT bio-synthesis. ClCOMT1
expression in watermelon was also substantially increased
under cold, drought, and salt stress following increased
MT accumulation. Therefore, ClCOMT1 over-expression is
considered a positive plant growth regulator in response to heat,
cold and drought stresses (Chang J. et al., 2021). Another group of
researchers identified that inserted the ASMT genes apple plant.
They noted that ASMT genes were significantly upregulated
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under cold, drought and heat stress. The expression of these genes
appreciably increased MT biosynthesis, which increased the plant
tolerance to cold, drought, and heat stresses (Wang et al., 2022).

CONCLUSION AND FUTURE
PERSPECTIVES

Melatonin application effectively modulates plant growth and
confers cold tolerance in plants. The exogenous MT application
improved the synthesis of photosynthetic pigments and
maintains membrane stability, plant water status, increasing the
nutrient and water uptake, which improved plant growth under
cold stress. Melatonin supplementation also alleviates the cold-
induced osmotic imbalance by increasing the accumulation of
different osmolytes, endogenous MT, hormones, and secondary
metabolites. Moreover, exogenous MT supply also helps the
cold-induced deleterious impacts by increasing the expression of
different defensive genes responsible for the higher antioxidant
activities under cold stress. The genes manipulation associated
with enhanced MT biosynthesis also appreciably improved
the cold tolerance in plants by favoring the antioxidant
activities, photosynthetic performance and accumulation of
different osmolytes.

Still, the role of MT in cold tolerance is not fully explored, and
more research is direly needed to uncover its potential benefits
under cold tolerance. The exact position of MT biosynthesis
in plants requires further investigation. MT is also an unstable
molecule; therefore, its transportation in plants organs under cold
stress must also be studied in future research programs. The role
of MT in improving root growth under cold stress is well studied;
however, its role in nutrient uptake is poorly studied. Therefore,
the role of MT in nutrient uptake and transportation must be
explored in future research studies.

Moreover, increased endogenous MT level in plants under
cold stress occurs by upregulation of MT bio-synthesis genes

or MT absorption from the exogenous MT application; both
mechanisms need more investigation to ensure better MT
biosynthesis in plants. The role of MT on pollen viability,
abscission and crop quality under cold stress must be explored
at the field level. Further studies are also direly needed to identify
the interaction of MT with other osmolytes and hormones under
cold stress. Recent improvements in genetic engineering have
provided clues to diverse complex gene-protein interactions and
interconnected networks. Therefore, genetic engineering will
enable us to understand better the interaction of MT with other
hormones under cold stress. The role of MT in stomatal signaling
under cold stress is also unknown; therefore, future research
direction on this aspect would also fascinate. Plant chloroplast
and mitochondria are e significant sites of ROS production. MT
works as signaling molecules; therefore, it would be fascinating
to explore the inter-organelle MT signaling under cold stress.
Additionally, molecular mechanisms of MT in increasing the
expression of antioxidant as stress-responsive genes must also be
examined under cold pressure in future research studies. All these
efforts will increase our understanding of the roles of MT as a
potential antioxidant to be used in cold stress conditions.
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