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In type IIB Fibre In�ation models the in�aton is a Kähler modulus which is kinetically coupled
to the corresponding axion. In this setup the curvature of the �eld space induces tachyonic isocur-
vature perturbations normal to the background in�ationary trajectory. However we argue that the
associated instability is unphysical since it is due to the use of ill-de�ned entropy variables. In
fact, upon using the correct relative entropy perturbation, we show that in Fibre In�ation axionic
isocurvature perturbations decay during in�ation and the dynamics is essentially single-�eld.

I. INTRODUCTION

A class of well-studied string in�ationary models is Fi-
bre In�ation (FI) whose name originates from the fact
the in�aton is a type IIB Kähler modulus controlling the
size of a K3 or T 4 �bre over a P1 base. These mod-
els have been built with the framework of Large Volume
Scenarios [1, 2]. The in�aton is a leading order �at direc-
tion whose potential can be generated by di�erent com-
binations of perturbative corrections: 1-loop open string
Kaluza-Klein (KK) and winding e�ects [3], 1-loop KK
corrections and higher order α′ terms [4], or 1-loop wind-
ing contributions and α′ corrections [5].
Besides moduli stabilisation, these models features sev-

eral promising properties, including an approximate shift
symmetry for the in�aton potential [6, 7], global Calabi-
Yau orientifold constructions with chiral matter [8�10],
and a detailed understanding of the post-in�ationary
evolution. In particular, preheating e�ects turn out to
be negligible [11] while standard perturbative reheating
[12, 13] can lead to an epoch of radiation domination
with initial temperature which is low enough to avoid
any decompacti�cation due to �nite-temperature e�ects
[14]. Together with Standard Model particles, the in�a-
ton decay produces also ultra-light bulk axions behaving
as extra relativistic species which contribute to Neff .
Interestingly, the potential of FI models resembles

Starobinsky in�ation [15] and supergravity α-attractors
[16, 17] since it features a trans-Planckian plateau fol-
lowed by a steepening at large in�aton values that can
produce a CMB power loss at large scales [18�20] and
primordial black hole dark matter [21]. Moreover the
extra-dimensional geometry constrains the in�aton �eld
range to values of O(5) in Planck units [22]. This, in
turn, translates in a tensor-to-scalar ratio r . 0.01. A
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recent work [23] determined the values of the micro-
scopic parameters of FI models which give the best �t
to most recent cosmological data, �nding at 68% CL
ns = 0.9696+0.0010

−0.0026, r = 0.00731+0.00026
−0.00072 and Neff =

3.062+0.004
−0.015 (for Planck 2018 temperature and polarisa-

tion data only).

Despite all these interesting features, it has been re-
cently pointed out [24, 25] that FI models might be
plagued by a geometrical instability [26, 27]. More pre-
cisely, isocurvature perturbations associated to one of the
two ultra-light axions typical of FI models, experience a
growth during in�ation triggered by the curvature of the
underlying �eld space. At �rst sight, this e�ect might
seem dangerous since it would bring the system away
from the perturbative regime. However, as already no-
ticed in [25], the background trajectory remains stable.

In this paper we shall resolve this paradox by exploit-
ing the analysis performed in [28] that clari�ed which
is the correct entropy variable that should be used to
match the evolution of the isocurvature modes between
in�ation and radiation dominance. In fact, we shall show
that the geometrical instability of FI models is just ap-
parent since it is an artifact of the decomposition of a
generic perturbation into modes tangent and orthogonal
to the in�ationary trajectory. The spurious nature of the
instability resides in the fact that the normal unit vector
diverges, while no tachyonic mass for the cosmological
perturbations is seen when using the original �eld basis.
According to the analysis performed in [28], we therefore
used the proper variable, the relative entropy perturba-
tion, which is both gauge invariant and �nite, and found
that isocurvature perturbations indeed decay during in-
�ation, in full agreement with the fact that the back-
ground dynamics is stable and essentially single-�eld.

We therefore conclude that FI models are not plagued
by any geometrical destabilisation e�ect, satisfy current
isocurvature perturbation bounds, and the in�ationary
evolution of the system remains always in the regime
where perturbation theory works very well.

This paper is organised as follows. In Sec. II we �rst
review the main features of FI models and the origin
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of the apparent destabilisation e�ect. In Sec. III we
then show the absence of any instability by studying the
evolution of the relative entropy perturbation. We �nally
present our conclusions in Sec. IV.

II. A GEOMETRICAL INSTABILITY IN FIBRE

INFLATION?

A. Basics of Fibre In�ation

All FI models are qualitatively very similar, and so,
without loss of generality, we will focus on the origi-
nal formulation [3] which involves type IIB Calabi-Yau
orientifold compacti�cations with �uxes, D3/D7-branes,
O3/O7-planes and h1,1 = 3 Kähler moduli Ti = τi + iθi,
i = 1, 2, 3. The internal volume looks like:

V = α(τb
√
τf − λsτ3/2

s ) , (1)

where α and λs are O(1) constants (which depend on the
intersection numbers), τs is a blow-up mode, τb is the
base modulus and τf controls the volume of the �bre K3
or T 4 divisor. In a large volume expansion, the moduli
potential receives contributions at 3 di�erent orders: (i)
at leading order, Ts-dependent non-perturbative e�ects
and O(α′3) corrections stabilise V, τs and θs at V � 1
giving them a mass larger than the Hubble scale during
in�ation; (ii) at subleading order KK and winding 1-loop
open string e�ects develop the in�ationary potential for
τf ; (iii) the two axions θb and θf are almost massless and
much lighter than τf since they become massive only via
highly suppressed V-dependent non-perturbative e�ects.
The in�ationary potential in terms of the canonically

normalised in�aton φ reads (setting the reduced Planck
mass Mp = 1):

Vinf = V0

[
3− 4 e

− φ√
3 + e

− 4φ√
3 +R

(
e

2φ√
3 − 1

)]
, (2)

with:

V0 =
g

1/3
s W 2

0A

8πλ2V10/3
and R = 16g4

s

AC

B2
, (3)

where, following the notation of [13], gs is the string
coupling, W0 is the �ux-generated O(10 − 100) super-
potential, A, B and C are O(1) �ux-dependent coe�-
cients of the string loop corrections, and λ = (4A/B)2/3.
The best �t analysis of [23] found R < 4.80 × 10−6 and
1011 V0 = 6.76+0.25

−0.49 for Planck data alone at 68% CL.

Given that for R < 4.80 × 10−6, horizon exit occurs al-
ways in the plateau region where the term proportional to
R is negligible, in what follows we shall simply set R = 0
(which would imply no power loss at large angular scales).
In this case the relation between the scalar spectral index
ns and the tensor-to-scalar ratio r can approximated as
r ' 6(ns − 1)2 which reproduces rather well the best �t
values ns = 0.9696+0.0010

−0.0026 and r = 0.00731+0.00026
−0.00072 found

in [23]. Notice that such a large value of r could be tested
by the next generation of cosmological observations.
The reheating temperature from the in�aton decay

Trh can be written as Trh = 3 γ · 1010 GeV where

γ = 2λαvisg
4/3
s V2/3 (with αvis = g2/(4π)) controls the

branching ratio for the in�aton decay into visible sector
gauge bosons and the ultra-light axions θb and θf which
yield extra relativistic degrees of freedom parametrised
by ∆Neff . Given that the number of efoldings of in�a-
tion N depends on Trh, γ determines both N and ∆Neff

as [13]:

N = 52 +
1

3
ln γ and ∆Neff =

0.6

γ2
, (4)

where the best �t for Planck data alone is 7.41 < γ . 20
(which implies N ' 52) and Neff = 3.062+0.004

−0.015 at 68%
CL [23]. It is straightforward to check that all these ob-
servational constraints, combined with the requirement of
having an e�ective �eld theory under control, can be sat-
is�ed for rather natural choices of the underlying param-
eters W0, A, B and C, together with 0.065 . gs . 0.125
and 2500 . V . 9000.

B. Unstable isocurvature modes?

The �elds V, τs and θs are heavier than the in�a-
ton during in�ation, and so remain �xed at their min-
ima. On the other hand, the two ultra-light axions θb
and θf source isocurvature perturbations. These axionic
�elds are kinetically coupled to the in�aton since the La-
grangian contains terms of the form [24]:

L ⊃ 1

2
h2(φ) ∂µθb∂

µθb +
1

2
f2(φ) ∂µθf∂

µθf , (5)

where:

h(φ) =
α
√
c

V2/3
e

1√
3
φ

and f(φ) =
e
− 2√

3
φ

√
2cV2/3

, (6)

with c = g
4/3
s λ. These kinetic couplings correspond to

a curved �eld space which induces a tachyonic entropy
perturbation δs associated to θf [24], as we now brie�y
review. The entropy perturbation variable δs has been
introduced in [29] and corresponds to perturbations or-
thogonal to the background in�ationary trajectory. Con-
sidering the 2D (φ, θf ) subspace obtained by keeping the
axion θb �xed at its minimum, δs is de�ned as:

δs = Nφ δφ+Nf δθf , (7)

where Nφ and Nf are the components of the normal unit

vector ~N given by [30, 31]:

~N =

(
Nφ
Nf

)
=

f√
φ̇2 + (fθ̇f )2

(
−θ̇f
φ̇

)
. (8)
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When θb is massless, the e�ective mass-squared of δs
evaluated on the background attractor trajectory receives
contributions from the metric connection and the Ricci
scalar of the �eld manifold R = −8/3 which give [25]:

m2
δs ' −

2√
3

(
∂φVinf +

2√
3
φ̇2

)
< 0 . (9)

This mass is clearly tachyonic since ∂φVinf > 0. Notice
that the isocurvature perturbation associated to θb would
have instead a positive mass-squared due to the di�erent
sign in the exponent of the corresponding kinetic cou-
pling, as can be seen from (6). The geometrical insta-
bility associated to θf might seem very dangerous since
it induces an exponential growth of isocurvature modes
that could bring the system away from the perturbative
approximation, as can be seen from Fig. 1.
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FIG. 1. Super-horizon evolution of curvature (PR) and

isocurvature (PS̃) power spectra (in terms of S̃ ≡ δs/
√
2ε)

for modes exiting the horizon 60 e-foldings before the end of
in�ation. While θb entropy modes decay, the isocurvature per-
turbations associated to θf experience an exponential growth.

This consideration appears however to be in contradic-
tion with the analysis of [24] which showed that, regard-
less of the choice of initial conditions, the system quickly
approaches a single �eld dynamics where the in�ationary
trajectory has a vanishing turning rate and the ultra-light
axions are frozen with zero velocity. In Sec. III we shall
shed light on this paradox, arguing that in this case δs

is an ill-de�ned variable since the exponential growth is
hidden in the Nf component of the normal vector.

Before showing that FI models are stable, let us stress
that mδs would be tachyonic also when considering a
massive θf axion. The scalar potential for θf is generated
by non-perturbative e�ects and looks like:

Vf (φ, θf ) = Λ e
2√
3
φ
e−k e

2√
3
φ

cos

(
2π

n
θf

)
, (10)

where (setting the prefactor of non-perturbative e�ects
to unity):

Λ =
8πcW0

nV4/3
and k =

2πc

n
V2/3 . (11)

The total potential now becomes:

Vtot = Vinf(φ) + Vf (φ, θf ) , (12)

where Vinf is given by (2) and we need to require
Vf (φ, θf ) � Vinf(φ) to prevent any modi�cation of the
FI dynamics. Due to the double exponential suppres-
sion in (10), this condition implies that Vf can make m2

δs
positive only locally in �eld space but not throughout
the whole trans-Planckian in�aton range, ∆φ ' O(5).
In fact, [25] has shown that m2

δs < 0 for any choice of the
microscopic parameters which keeps Vf (φ, θf )� Vinf(φ)
for the whole in�ationary epoch. Fig. 2 shows how the
hierarchy between Vf (φ, θf ) and Vinf(φ) varies as a func-
tion of Λ and n.
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FIG. 2. Hierarchy between the in�ationary potential (2) with
V0 = 2 × 10−10 and R = 0 (denoted by the black line) and
the potential for θf (10) with c = 0.04 which gives 〈τf 〉 = 4
(corresponding to φ = 0) and 〈τb〉 = 500 (for α = 1). The
vertical line denotes the maximum in�aton value compatible
with a controlled e�ective �eld theory which we choose to be
τb > τb,min = 1 corresponding to φ < φmax =

√
3 ln〈τb〉 '

10.8. The dashed lines correspond to di�erent values of W0

and n as follows: n = 1 and W0 = 0.25 (yellow); n = 1 and
W0 = 25 (green); n = 2 and W0 = 0.25 (red); n = 2 and
W0 = 25 (violet); n = 4 and W0 = 0.25 (brown).
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III. STABILITY OF FIBRE INFLATION AND

DECAYING ISOCURVATURE MODES

A. Physical entropy variable

The quantity constrained by Planck observations is the
primordial isocurvature fraction βiso = PSiγ/[PR+PSiγ ],
where PR is the curvature power spectrum while Siγ is
the relative entropy perturbation between photons and
a di�erent i-th species (cold dark matter, baryons or
neutrinos), with βiso < O(0.1 − 0.01) depending on the
species involved [32]. Thus in order to compare the pre-
dictions of FI models with observations, one would need
to focus on the super-horizon evolution of the relative
entropy perturbation between φ and θf de�ned as [33]:

Sφθf = −3H

(
δρφ
ρ̇φ
−
δρθf
ρ̇θf

)
, (13)

where ρi are the energy densities of the two �elds.
Thanks to the detailed analysis of reheating performed
in [13], one should then derive Siγ from Sφθf . However,
as pointed out in [28] (see also [34]), in FI models Sφθf
is an ill-de�ned quantity (despite being gauge invariant
even for a curved �eld space) since ρ̇θf → 0 given that the
energy density of the ultra-light axions vanishes. Thus,
similarly to δs, also Sφθf would yield an unphysical di-
vergence of isocurvature perturbations.
As explained in [28], the correct physical, i.e. both

gauge invariant and �nite, entropy variable which should
be used in this case is the relative entropy perturbation
Srel which can be de�ned starting from the notion of total
entropy perturbation S:

S =
H

Ṗ
δPnad , (14)

where δPnad is the non-adiabatic pressure perturbation
which can be obtained from the total pressure perturba-
tion δP as δPnad = δP − c2sδρ with c2s = Ṗ /ρ̇.
The relative entropy perturbation Srel is then obtained

by subtracting the intrinsic entropy perturbation Sint

from the total one, Srel = S − Sint, where Sint is given
by the sum of the entropies associated to each �uid Sint,i

[33]:

Sint =
∑
i

Sint,i =
∑
i

H

Ṗ

(
δPi − c2i δρi

)
, (15)

with c2i = Ṗi/ρ̇i denoting the sound speed of each scalar
cosmological �uid. Using δP =

∑
i δPi and δρ =

∑
i δρi,

the relative entropy perturbation hence becomes (focus-
ing on the FI case with two �elds, φ and θf ):

Srel =

(
c2θf − c

2
φ

)
3ρ̇Ṗ

ρ̇φρ̇θfSφθf . (16)

This quantity is now well-behaved since its denominator
is independent on the vanishing quantity ρ̇θf . The pre-

scription of [28] is to study the evolution of Srel from in-
�ation to radiation dominance after reheating, and then
to infer from (16) Siγ and the �nal prediction for βiso.

B. Decaying isocurvature perturbations

We shall now focus on FI models and show that the
power spectrum of isocurvature modes associated to Srel

decays on super-horizon scales during in�ation. We start
by rewriting (16) in a form which is easier to evaluate
analytically:

Srel =
H

Ṗ

[(
c2φ − c2s

)
δρφ +

(
c2θf − c

2
s

)
δρθf

]
. (17)

The energy and pressure of the two �elds can be written
as:

ρφ =
1

2
φ̇2 + Vinf , ρθf =

1

2
(fθ̇f )2 + Vf ,

Pφ =
1

2
φ̇2 − Vinf , Pθf =

1

2
(fθ̇f )2 − Vf , (18)

where this split does not have a clear physical mean-
ing since Vf (φ, θf ). It is however useful to evaluate Srel

and to reduce to a single �eld dynamics since we will
see that for Vf (φ, θf ) � Vinf(φ) the system very quickly
approaches an attractor background trajectory charac-
terised by (fθ̇f )→ 0 and ρθf → 0.
The total sound speed of the system is given by:

c2s = 1 +
2

3H

φ̇ ∂φVtot + θ̇f ∂θfVf

φ̇2 + (fθ̇f )2
, (19)

while the sound speeds of the �uid components are:

c2φ = 1 +
2 ∂φVinf

3Hφ̇− f∂φf θ̇2
f + ∂φVf

,

c2θf = 1 +
2
(
∂θfVf θ̇f + ∂φVf φ̇

)
θ̇2
f

(
3Hf2 + f∂φfφ̇− ∂φVf φ̇θ̇−2

f

) , (20)

where we used the equations of motion given by:

φ̈ = −3Hφ̇+ f∂φfθ̇
2
f − ∂φVtot , (21)

f2θ̈f = −3Hf2θ̇f − 2f∂φfφ̇θ̇f − ∂θfVf . (22)

To compute the energy density �uctuations, we use per-
turbation theory at linear order in the spatially �at gauge
(since Srel is gauge invariant), obtaining:

δρφ = −Φφ̇2 + φ̇δφ̇+ ∂φVinfδφ , (23)

δρθf = (fθ̇f )2

(
∂φf

f
δφ+

δθ̇f

θ̇f
− Φ

)
+ ∂φVfδφ+ ∂θfVfδθf ,

where the lapse function Φ reads:

Φ =
1

2H

(
φ̇δφ+ f2θ̇fδθf

)
. (24)
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In order to obtain simple analytic results, we now con-
sider the case with Vf = 0 which gives a very good ap-
proximation of the generic behaviour of the system since
Vf � Vinf (we have however performed a numerical anal-
ysis also for Vf 6= 0 whose results we present below).
The quantities derived above have to be evaluated on

the in�ationary trajectory. As derived in [24], the equa-
tion of motion (22) admits a slow-roll solution which
looks like (prime denotes a derivative with respect to N):

(fθ′f ) ' (fθ′f )(0) e−3N → 0 , (25)

which implies that during in�ation the ultra-light axion
θf very quickly gets frozen. It is easy to realise that
in this limit (c2φ − c2s) → 0 and δρθf → 0, while both

(c2θf − c
2
s) and δρφ remain �nite (in particular c2θf → 1).

Moreover H/Ṗ → −1/
(
6εH2 + 2∂φV

√
2ε
)
, and so also

this ratio is �nite. Thus both terms in (17) vanish and
Srel → 0 in the attractor in�ationary trajectory.
Isocurvature modes associated to the relative entropy

perturbation Srel are therefore negligible in FI models.
The geometrical destabilisation found in [24] and re-
viewed in Sec. II is thus a spurious e�ect due to the
use of an ill-de�ned entropy variable. We conclude that
the dynamics of FI models is stable and essentially single-
�eld, begin characterised by decaying isocurvature modes
which give rise to a negligibly small βiso in full agreement
with Planck data.
We have con�rmed this analytic result via a numeri-

cal analysis (including non-zero axionic potentials) whose
results are presented in Fig. 3 which shows the super-
horizon evolution of di�erent power spectra associated
to S, Sint and Srel given respectively by (14), (15) and
(16). Clearly the contribution coming from the relative
entropy perturbation is strongly subdominant for both
ultra-light axions. The total entropy perturbation is in-
stead just given by the intrinsic contribution coming from
the in�aton that coincides with the single �eld result.

IV. CONCLUSIONS

It is fair to say that FI represents one of the best
approaches to derive in�ation from string theory from
both the theoretical and the observational point of view
since this class of constructions features controlled mod-
uli stabilisation with an e�ective approximate shift sym-
metry, explicit Calabi-Yau embeddings with D-branes,
O-planes and chiral matter, and an in�ationary poten-
tial of Starobinsky-like type which gives so far the best
�t to Planck data.
However FI models have been claimed to be plagued by

a dangerous geometrical destabilisation e�ect due to the
curvature of the underlying �eld space [24]. Starting from
the general discussion of entropy perturbation variables
performed in [28], in this paper we have argued that FI
models are actually free from any geometrical destabili-
sation and the in�ationary dynamics is essentially single-

nad
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0 10 20 30 40 50 60
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nad
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i
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FIG. 3. Time evolution of di�erent entropy perturbations
for modes exiting the horizon 60 e-foldings before the end
of in�ation for the 2-�eld systems (φ, θb) and (φ, θf ). The
choice of initial conditions and microscopic parameters are:
φ = 6.14, φ′ = 0, θi = 1 and θ′i = 0.1 for i = b, f , W0 =
25, n = 4 for θb, and n = 1 for θf (green line in Fig. 2).
Notice that the results are in practice independent on the
axionic initial conditions since Vb(φ, θb) can reach at most
Vb ∼ 10−4 Vinf at the beginning of in�ation, while Vf (φ, θf )
can go at most up to Vb ∼ 10−30 Vinf at the end of in�ation.
In both cases the only relevant contribution comes from the
intrinsic entropy perturbation of the in�aton that coincides
with the single �eld contribution Ssf .

�eld with a negligible production of isocurvature �uc-
tuations. In fact, we have shown that the exponential
growth of isocurvature modes associated to perturbations
orthogonal to the background trajectory noticed in [24]
is just an unphysical artifact due to the use of an en-
tropy variable which in this case becomes ill-de�ned due
to the anomalous behaviour of the normal unit vector.
When studying the evolution during in�ation of isocur-
vature modes associated to the correct physical quantity,
the relative entropy perturbation Srel, we found instead
that the corresponding power spectrum decays on super-
horizon scales.

We believe that this results holds not just for FI models
but more in general also for any in�ationary model where
the in�aton is kinetically coupled to ultra-light axion-like
�elds, a situation which can emerge rather naturally in
supergravity and string theory e�ective setups.
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