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Abstract
We study the minimization of a spectral functional made as the sum of the first eigenvalue of
the Dirichlet Laplacian and the relative strength of a Riesz-type interaction functional. We
show that when the Riesz repulsion strength is below a critical value, existence of minimizers
occurs. Then we prove, by means of an expansion analysis, that the ball is a rigid minimizer
when the Riesz repulsion is small enough. Eventually we show that for certain regimes of
the Riesz repulsion, regular minimizers do not exist.
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1 Introduction

Foreword

In this work we study the minimization under volume constraint of energies of the form

F(�) = S(�) +
ˆ

�

ˆ
�

dx dy

|x − y|N−α
,

where S is either the torsion energy E or the first eigenvalue of the Dirichlet-Laplacian λ1,
N ≥ 2 and α ∈ (0, N ).

It is well-known that both the torsion energy and the first eigenvalue of the Dirichlet-
Laplacian are minimized, among sets of fixed measure, by the ball. These results, obtained
with symmetrization arguments, can be summarized in a scale invariant form as

|�|− N
N+2 E(�) ≥ |B|− N

N+2 E(B), |�| 2
N λ1(�) ≥ |B| 2

N λ1(B),

where B is a generic ball and |�| denotes the Lebesgue measure in R
N of the set �. In the

literature, they are called Saint-Venant and Faber-Krahn inequalities, respectively. Both the
inequalities are rigid, that is equality holds if and only if � is a ball up to null capacity. We
refer to [22] for a comprehensive background about these problems.

In sharp contrast, the Riesz Energy functional

Vα(�) :=
ˆ

�

ˆ
�

dx dy

|x − y|N−α
,

which appears as the second addend in the definition of F , increases while symmetrizing
the set �, and it is uniquely (up to a negligible set) maximized by balls [28, Theorem 3.7],
leading to a competition while seeking to minimize F .

Motivation and background

In recents years the research of quantitative stability of various geometric, functional and
spectral inequalities received a great attention, and this gave a strong impulse to the develop-
ment of the field. In turn this led to a renewed interest in several variational models where a
competition between a cohesive term is balanced by a repulsive term. A non-exhaustive list
of papers in this field is [2,6,11,12,14–16,19,20,23,26,29,33].

Arguably the most famous instance of such variational models is the Gamow liquid drop
model introduced in [18] to describe the stability of nuclear matter. Such a model is made up
by the sum of a surface perimeter term and a Riesz energy term of a set � ⊂ R

3

J (�) := P(�) +
ˆ

�

ˆ
�

dx dy

|x − y| .
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The usual mathematical questions about this class of models are:

(1) To investigate existence and non existence of minimizers depending on the values of the
mass of competitors, that is, depending on the choice of the volume constraint.

(2) To study the regularity of minimizers, if existence holds.
(3) To characterize the ball as the unique minimizer as long as the mass is small enough.

In particular, regarding the liquid drop model, in [12] Choksi and Peletier conjectured1 that
there exists a critical threshold massm such that minimizers exist only if |�| ≤ m. Questions
(1) and (3) above, as well as such a conjecture, follow the intuitive idea that because of the
different scaling of the functionals, if the mass is small then the perimeter term is dominant,
while if the mass is large then the Riesz term dominates, and disconnected configurations
are favored. Since the Riesz energy decreases as the connected components of a set are
pushed away from each other, this leads to non-existence. In fact, one can show that if the
mass is approaching 0, then the problem reduces to the classical isoperimetric problem. The
Choksi-Peletier conjecture, although being still open in its generality, was partially solved
in [14,23,26] where the authors show that there are thresholds 0 < msmall < mbig such that
the ball is the unique minimizer for m < msmall and existence does not occur if m > mbig .
The scope of this paper is to begin this kind of analysis when the perimeter is replaced by a
spectral functional.

1.1 Main results

The main result of the paper is the following.

Theorem 1.1 Let N ≥ 2, α ∈ (1, N ). There exists ελ1 = ελ1(N , α) > 0 such that, for all
ε ≤ ελ1 , the ball of unitary measure is the unique minimizer for problem

min
{
λ1(�) + εVα(�) : � ⊂ R

N , |�| = 1
}
. (1)

In the case where S = E is the torsion energy, we obtain the following weaker result.

Theorem 1.2 Let N ≥ 2, α ∈ (1, N ). There exists R0 = R0(N ) such that for all R > R0

there exists εE = εE (N , α, R) such that, for all ε ≤ εE , the ball is the unique minimizer for
problem

min
{
E(�) + εVα(�) : � ⊂ R

N , |�| = 1, � ⊂ BR

}
. (2)

We stress that the value of the geometric constant R0 can be explicitly computed from our
proofs.

A remark concerning the mass constraint is in order.

Remark 1.3 A straightforward scaling argument shows that there exists a continuous positive
function ε(m) vanishing at the origin and diverging at infinity such that minimizing

λ1(�) + Vα(�), |�| = m

is equivalent to minimize the functional

λ1(�) + ε(m)Vα(�), |�| = 1,

1 The conjecture was formulated only for N = 3 but it is commonly extended to any dimension N ≥ 2
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as for all t > 0 we have

λ1(t�) + Vα(t�) = t−2
(
λ1(�) + t N+α+2Vα(�)

)
.

In particular requiring the mass of competitors m ≈ t N to be small is equivalent to require
ε ≈ t N+α+2 to be small.

Therefore, Theorem 1.1 states that for small masses the only minimizer of λ1 + Vα is
the ball, as long as α > 1, which is the analogous of the results obtained on the functional
P + Vα .

For the torsion energy the situation depends on the value of α. Indeed for any t > 0 one
has

E(t�) + Vα(t�) = t N+2 (E(�) + tα−2Vα(�)
)
,

so that small values of ε = tα−2 do correspond to small values of the mass only for α > 2.

The result stated in Theorem1.1 is the spectral analog of the existence results in [14,23,26].
On the other hand, when dealing with the torsion energy, the result needs the additional
assumption of equiboundedness of competitors. We believe such an hypothesis to be of
technical nature, but its removal seems a challenging task and we do not solve it in this paper.
We discuss this issue in the next remark.

Remark 1.4 Theproblemof proving the existence ofminimizers amonggeneric subsets ofRN

(instead of among equibounded sets) for spectral functionals has been a rather hot topic in the
last years. Regarding the eigenvalues of theDirichlet-Laplacian essentially two techniques are
available in literature: one developed byBucur in [9] is based on a concentration-compactness
argument mixed together with regularity results for inward minimizing sets; the other, pro-
posed by the first author and Pratelli in [31], is based on a De Giorgi type surgery argument.
Seemingly none of these techniques works while tackling the case of the functional E+εVα .
Even working with a more direct surgery-wise technique for the functional E as that used in
[8, Section 5] seems to fail in our setting. Hence we are not able to get rid of the equibound-
edness assumption in Theorem 1.2.

Restricting the class of Riesz energies to α ∈ (1, N ) seems a deep problem as well. In
fact to show Theorems 1.1, 1.2 we need a fine regularity analysis of minimizers (see the
discussion below) where the regularity of the Riesz potential

v�(x) :=
ˆ

�

dy

|x − y|N−α

plays a crucial role. If α ≤ 1, then v� is at most of class C0,γ , for some γ ∈ (0, 1], which is
not enough for our proof to work.

The third and last result we prove is the following, in which we show that for big values
of the mass, minimizers do not exist among sets satisfying uniform density constraints as
long as α ∈ (N − 1, N ).

Definition 1.5 We say that a set � has the internal δ−ball condition if for any x ∈ ∂� there
exists a ball Bδ ⊂ � tangent to ∂� in x . We call U(δ) the class of open sets � ⊂ R

N that
satisfy the internal δ-ball condition.

Theorem 1.6 Let α ∈ (N − 1, N ). Then there exists δ0 ∈ (0, 1) such that for any δ ∈ (0, δ0)
there exists εmax = εmax (α, N , δ) such that for ε ≥ εmax both problems

inf {E(�) + εVα(�) : � ∈ U(δ), |�| = 1} ,
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and

inf {λ1(�) + εVα(�) : � ∈ U(δ), |�| = 1} ,

do not admit a minimizer.

Remark 1 The limitationα ∈ (N−1, N ) in Theorem1.6 ensues because of the simple scaling
techniques we employ to prove it. Such a limitation appears even in the case of the Gamow
model, and the extension of such a result to α ∈ (N − 2, N ), see [26], is done by means of
surgery-like techniques. Apparently, these are not easily adaptable to spectral functionals.
Moreover, the extra assumption of internal density regularity (stated in this paper as uniform
internal ball condition to avoid useless technicalities) seems even more difficult to remove,
contrary to the case of the Gamowmodel where the presence of the perimeter entails uniform
density estimates.

1.2 Outline of the proof and structure of the paper

The proofs of the main results of the paper, Theorems 1.1 and 1.2, are articulated in two main
steps, which we briefly describe here below. First we discuss the proof of Theorem 1.2, which
covers most of the paper. Then we describe a (completely independent) surgery argument
for the functional λ1 + εVα . By putting together these two steps, Theorem 1.1 follows.

Strategy of the proof of Theorem 1.2 The proof of Theorem 1.2 is quite long and involved
and is inspired by ideas developed in [8,26].

First of all, we consider a problemwithout themass constraint. This step is needed because
the techniques from the free boundary regularity that we aim to apply do not work properly in
presence of a measure constraint as perturbations become more difficult to manage. Whence
we consider an auxiliary minimization problem of the form

min
{Gε,η(�) := E(�) + εVα(�) + fη(|�|) : � ⊂ BR

}
, (3)

where fη is a suitable piecewise linear function which acts as a sort of Lagrange multiplier.
This strategy in shape optimization problems was first proposed by Aguilera, Alt and Caf-
farelli in [1]. We point out that without the equiboundedness restriction, at least as long as
α < 2, minimizers of problem (3) do not exist (see Sect. 2), and the infimum of Gε,η diverges
toward minus infinity, which somewhat underlines one difficulty while trying to remove
the equiboundedness of competitors in Theorem 1.2. Unfortunately the desired equivalence
between (3) and (2) is not straightforward, and we first need to show existence of minimizers
of problem (3), and some mild regularity (finiteness of the perimeter and density estimates).
This permits us to show that for suitable values of η (again depending on R), theminimization
of Gε,η and the measure constrained minimization of E + εVα are indeed equivalent, for ε

small enough.
The next key point is therefore to prove a suitable regularity result on the free boundary

of an optimal set for (3). To get such a regularity we switch to the problem

min

{
1

2

ˆ
|∇u|2 −

ˆ
u + εVα(|{u > 0}|) + fη(|{u > 0}|) : u ∈ H1

0 (BR)

}
,

with the idea of exploiting the regularity theory for ∂{u > 0}∩ BR , where u is any minimizer
of the above problem. Such an analysis is done in the spirit of the seminal work on free
boundary regularity by Alt and Caffarelli [4] .
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The link between this regularity argument and the rigidity of the ball is then thequantitative
version of the Saint-Venant inequality, stating that for any � ⊂ R

N there exists a ball Br (x)
of measure |�| such that

|�|− N
N+2 E(�) − |B|− N

N+2 E(B) ≥ σN

( |� \ Br (x)|
|�|

)2

.

This deep result, recently shown in [8], together with several of the ideas of its proof, plays
a crucial role in our analysis. Indeed by comparing any candidate minimizer with a ball, we
show that for ε small, minimizers are close in L1−topology to the ball. Whence, exploiting
the free boundary regularity analysis, such an L1− proximity to a ball is improved to a nearly
spherical one, stating that the boundary of any minimizer is a small C2,γ −parametrization
on a sphere. At this point, a perturbative analysis in the class of nearly spherical sets yields
to the conclusion (again with the aid of the quantitative Saint-Venant inequality) that the
ball is the only minimizer. Beside proving Theorem 1.2, this argument, together with the
Kohler-Jobin inequality is enough to get the statement of Theorem 1.1 among equibounded
sets. At this point we only need to show that any minimizing sequence can be chosen to be
made up of equibounded sets. This, as mentioned above, is made by means of a surgery-wise
argument.

The surgery argument The strategy we follow is based on that proposed in [31] (see
also [10]) in order to prove existence of minimizers under measure constraint for the k−th
eigenvalue of the Dirichlet-Laplacian. Nevertheless some differences with respect to [31]
occur. On the one hand the presence of the repulsive Riesz energy term forces us to work
with connected sets. On the other hand we only deal with the first eigenvalue, thus we do
not need to take care of the further difficulty about the orthogonality constraint of the higher
eigenfunctions. Furthermore, up to choose ε small enough, we can deal with sets which are
close to the ball in the L1−topology which allows us to simplify the argument.

Plan of the paperThe paper is organized as follows: in Sect. 2 we give the basic definitions
and we prove or recall some preliminary results. In Sects. 3, 4, 5 and 6 we develop the proof
of Theorem 1.2, as described above. Section 8 is devoted to a surgery argument for the
functional λ1 + εVα . Finally, Sects. 9 and 10 contain the proof of Theorems 1.1 and 1.6,
respectively.

2 Setting, notations and some preliminary results

The ambient space in this work is RN , where N ≥ 2 is an integer. With � we denote an
open bounded set, unless otherwise stated. We write Br (x) to indicate the ball with radius r
centered in x , and just Br if the center is x = 0, while by B we denote just a generic ball,
unless otherwise stated. Moreover we set ωN the measure of the ball of unit radius in R

N

and the N -dimensional Lebesgue measure of a set D is denoted by |D|.

2.1 The functionals: definitions and properties

The problem we deal with is the minimization under volume constraint of the functional

Fα,ε(�) := E(�) + εVα(�).
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where E is the torsion energy

E(�) := min
u∈H1

0 (�)

1

2

ˆ
�

|∇u|2 −
ˆ

�

u,

and Vα is the Riesz potential energy defined for α ∈ (0, N ) as

Vα(�) :=
ˆ

�

ˆ
�

1

|x − y|N−α
dx dy.

Some features of these two functionals are in order. First, we remark that the minimum for
the torsion energy functional is attained by a function w�, the torsion function, as long as
� has finite measure. The Euler-Lagrange equation of the minimization problem defining E
reads as

−�w� = 1 in �, w� ∈ H1
0 (�).

The definition of E together with the equation satisfied by w� leads to the following repre-
sentation of the torsion energy

E(�) = −1

2

ˆ
�

w� ≤ 0.

By the Pólya-Szëgo inequality (see [34]) it follows that

E(�) ≥ E(B),

where B is a ball of RN of measure |�|, that is: the torsion energy E is minimized by balls
under volume constraint. Moreover the above inequality is rigid, in the sense that equality
holds if and only if � is a ball, up to sets of null-capacity. This inequality is addressed as
Saint-Venant inequality. The torsion energy E satisfies the following scaling law:

E(t�) = t N+2E(�), for all t > 0,

and it is non-increasing with respect to set inclusion, i.e.

�1 ⊂ �2 	⇒ E(�1) ≥ E(�2),

the inequality being strict as soon as |�2\�1| > 0. Thereforewe can rewrite the Saint-Venant
inequality in the scale invariant form

E(�)|�|− N+2
N ≥ E(B)|B|− N+2

N .

About the Riesz energy functional Vα , we note that it scales as

Vα(t�) = t N+αVα(�).

Moreover, we recall that by Riesz inequality (see [28, Theorem 3.7]) Vα is maximized by
balls, that is,

|�|− N+α
N Vα(�) ≤ |B|− N+α

N Vα(B).

Again the inequality is rigid, that is, equality holds if and only if� is a ball up to a negligible
set. It is immediate to see that the Riesz potential energy is non-decreasing with respect to
set inclusion, that is

�1 ⊂ �2, implies Vα(�1) ≤ Vα(�2),

123
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the inequality being strict if |�2 \ �1| > 0. Alongside the Riesz energy we define the Riesz
potential

v�(x) :=
ˆ

�

1

|x − y|N−α
dy = χ� ∗ 1

| · |N−α
(x),

so that

Vα(�) =
ˆ

�

v�(x) dx .

Notice that v�(0) satisfies

vt�(0) =
ˆ
t�

1

|y|N−α
dy = tα

ˆ
�

1

|z|N−α
dz = tαv�(0). (4)

The following result, which is a simple refinement of [26, Proof of Proposition 2.1] will be
used several times in the paper.

Lemma 2.1 Let α ∈ (0, N ), �, F ⊂ R
N be two measurable sets, with finite measure, such

that ��F ⊂ BR(0), for some R > 0. Then it holds

Vα(F) − Vα(�) ≤ C0|��F |
[
|�| α

N + |F | α
N

]
,

for some constant C0 = C0(N , α) > 1.

Proof First we compute

Vα(F) − Vα(�) =
ˆ
RN

ˆ
RN

χF (x)(χF (y) − χ�(y))

|x − y|N−α
dxdy

+
ˆ
RN

ˆ
RN

χ�(y)(χF (x) − χ�(x))

|x − y|N−α
dxdy

=
ˆ
F\�

(vF (x) + v�(x)) dx −
ˆ

�\F
(vF (x)

+ v�(x)) dx ≤
ˆ

��F
(vF + v�).

We can now observe that, as a consequence of Riesz inequality (see [17, Lemma 2.3]) and
the rescaling of v�(0), see (4), we getˆ

��F
v�(x) dx =

ˆ
��F

ˆ
�

1

|x − y|N−α
dy dx

≤
ˆ

��F

ˆ
B̃(x)

1

|x − y|N−α
dy dx

= |��F |
ˆ
B̃

1

|z|N−α
dz = |��F | |�| α

N

ˆ
B

1

|z|N−α
dz,

where B̃(x) and B̃ are balls of measure |B̃| = |B̃(x)| = |�| centered at x and at the origin
respectively, while B is the ball of measure one centered at the origin. The same computation
holds also for

´
��F vF dx . In conclusion we have

Vα(F) − Vα(�) ≤
ˆ

��F
(vF + v�) ≤ C0|��F |

[
|�| α

N + |F | α
N

]
,

where C0(N , α) := ´
B

1
|z|N−α dz < +∞ as α > 0.
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We conclude this subsection recalling one of the main tool we exploit to solve problem
(6): the sharp quantitative version of the Saint-Venant inequality, which was first proved as
a intermediate result in [8, Proof of the Main Theorem].

Theorem 2.2 There exists a constant σ = σ(N ), such that, for all open sets with finite
measure � ⊂ R

N , we have

E(�)|�|−1− 2
N − E(B)|B|−1− 2

N ≥ σA(�)2, (5)

for any ball B, where

A(�) := inf

{ |��B(x)|
|�| : x ∈ R

N , B(x) is a ball of measure |�|
}

,

is the Fraenkel asymmetry.

The last functional involved in our work is the first eigenvalue of the Dirichlet-Laplacian
acting on an open and bounded set � ⊂ R

N . We recall its variational definition given as the
minimum of the so-called Rayleigh quotient:

λ1(�) := min
ϕ∈H1

0 (�)\{0}

´
�

|∇ϕ|2´
�

ϕ2
,

we call u ∈ H1
0 (�) the function attaining the minimum, which is the eigenfunction corre-

sponding to λ1(�) and that solves the PDE
{

−�u = λ1(�)u, in �,

u ∈ H1
0 (�).

The monotonicity and scaling properties of the eigenvalue follow immediately from its def-
inition:

λ1(t�) = t−2λ1(�), for all t > 0,

�1 ⊂ �2 	⇒ λ1(�1) ≥ λ1(�2).

We finally recall the sharp quantitative Faber-Krahn inequality for the first eigenvalue of
the Dirichlet-Laplacian, that was first proved in [8, Main Theorem].

Theorem 2.3 There exists a positive constant σ̂ = σ̂ (N ) such that for all open set � ⊂ R
N

with finite measure we have

|�|2/Nλ1(�) − |B|2/Nλ1(B) ≥ σ̂A(�)2,

where B is a generic ball and A the Fraenkel asymmetry.

2.2 Quasi-open sets and theminimization problem

Let us recall the notion of capacity and of quasi-open set.

Definition 2.4 For every subset D of RN , the capacity of D in R
N is defined as

cap(D) := inf

{ˆ (|∇u|2 + |u|2) dx : u ∈ H1(RN ) ,

0 ≤ u ≤ 1LN -a.e. on R
N , u = 1LN -a.e. on an open set containing D

}
.
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114 Page 10 of 46 D. Mazzoleni, B. Ruffini

We say that a property P(x) holds cap-quasi-everywhere in D, if it holds for all x ∈ D
except at most a set of zero capacity, and in this case we write q.e. in D. A subset A of RN

is said to be quasi-open if for every ε > 0 there exists an open subset ωε of RN such that
cap(ωε) < ε and A ∪ ωε is open.

The notion of capacity is strictly related to spectral functionals such as the torsion energy
and the first eigenvalue of the Dirichlet-Laplacian. In particular, one can not consider to be
equivalent, a priori, two open (or quasi-open) sets which differ for a generic negligible set.
Indeed for any open set� it is possible to construct a sequence of subsets�n ⊂ � of measure
|�n | = |�| with E(�n) < 1/n for all n ∈ N. For example take � = (0, 1)N and let {ri }i∈N
be an enumeration of the rationals in (0, 1). Then, as cap((0, 1)N−1) > 0, it is possible to
find kn so that

�n = � \
{

(0, 1)N−1 ×
kn⋃
i=1

ri

}
, with E(�n) ≤ 1

n
,

and |�n | = |�|.

Definition 2.5 A function u : RN → R is said to be quasi-continuous if for every ε > 0
there exists an open subset ωε of RN with cap(ωε) < ε such that u

∣∣
RN \ωε

is continuous.

For every u ∈ H1(RN ), there exists a Borel and quasi-continuous representative ũ :
R

N → R of u and, if ũ and û are two quasi-continuous representatives of the same function
u, then we have ũ = û q.e. in R

N . From now on for every u ∈ H1(RN ), we consider only
its quasi-continuous representative. In this setting, we are able to provide a more general
definition of the space H1

0 (�), which coincide with the usual one as soon as � is open, but
that is suitable also for measurable sets (and quasi-open sets in particular).

Definition 2.6 If A is a quasi-open subset of RN , we set

H1
0 (A) :=

{
u ∈ H1(RN ) : u = 0 q.e. in R

N \ A
}

.

It is nowadays standard to perform the minimization of functionals such as Fα,ε in the
class of quasi-open sets. As it can be noted, in the definition of the torsion energy and of
the first eigenvalue of the Dirichlet-Laplacian, only the space H1

0 (�) was really needed and
therefore, once we have a definition which is suitable for quasi-open sets, we can work with
them with no additional worries. On the other hand, the Riesz energy is well defined even
for measurable sets, therefore there are no problems on its side.

As it is common in the Calculus of Variations, after finding a minimizer in the larger class
of quasi-open sets, we will try later to restore the regularity of minimizers (and in particular,
show that they are open).

We are now in position to properly define the problem we deal with in a large part of this

paper. Let R >
(

1
ωN

)1/N
, so that a ball of radius R has measure greater than 1. Then we

consider the problem

min
{
Fα,ε(A) : A ⊂ R

N , quasi-open, |A| = 1, A ⊂ BR

}
. (6)

From now on, we tacitly deal with quasi-open sets, unless otherwise stated.
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2.3 Some notions of geometric measure theory

We give here some measure theoretic notions which will be used throughout the paper.
Comprehensive references for this section are [3,30]. The measure theoretic perimeter (or
De Giorgi perimeter) of a measurable set E is the quantity

P(E) = sup

{ˆ
E

div ζ : ζ ∈ C1
c (R

N ,RN ), ‖ζ‖C0 ≤ 1

}
.

We say that E is a set of finite perimeter or Caccioppoli set if P(E) < +∞, that is if χE is
a function of bounded variation [3], and with ∇χE we indicate the distributional derivative
of χE . Notice that if E is Lipschitz regular, by divergence theorem,

P(E) = HN−1(∂E),

where Hk stands for the k−dimensional Hausdorff measure, k ∈ [0, N ].
For any Lebesgue measurable set E and t ∈ [0, 1] we define the quantities

Et =
{
x ∈ R

N : lim sup
r→0

|E ∩ Br (x)|
|Br (x)| = t

}
,

and the essential boundary of E as

∂M E := R
N \ (E0 ∪ E1).

Beside the essential boundary we call reduced boundary the set

∂∗E :=
{
x ∈ R

N : νE (x) := lim
r→0

´
Br (x)

∇χE´
Br (x)

|∇χE | exists and is a unit vector

}
.

The quantity νE (x) in the definition of ∂∗E is the measure theoretic normal of ∂E at the
point x , whenever it is well defined. By results of Federer and De Giorgi [30] for sets of finite
perimeter it holds

P(E) = HN−1(∂∗E) = HN−1(∂M E).

In particular for a set of finite perimeter we have ∂∗E ⊂ E1/2 ⊂ ∂M E and HN−1(∂M E \
∂∗E) = 0. Eventually, for any x ∈ ∂∗E the blow up of the boundary of E converges in L1

to an hyperplane orthogonal to νE (x), that is

E − x

r
→
{
y ∈ R

N : y · νE (x) ≥ 0
}

as r → 0.

3 An existence result for an auxiliary problem

Let η ∈ (0, 1) and consider the function

fη : R+ → R, fη(s) =
{

η(s − 1), if s ≤ 1,
1
η
(s − 1), if s ≥ 1.

It is easy to check that, for all 0 ≤ s2 ≤ s1, we have that

η(s1 − s2) ≤ fη(s1) − fη(s2) ≤ 1

η
(s1 − s2). (7)
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We introduce then the functional

Gε,η(�) := Fα,ε(�) + fη(|�|),
and, for R > ω

−1/N
N , the minimization problem

min
{Gε,η(�) : � ⊂ BR,� quasi-open

}
. (8)

In Sect. 5 wewill show that suchminimization problem and theminimization problem (6) are
equivalent. To do that we first have to prove existence and somemild regularity of minimizers
of Gε,η. We begin by showing a lower bound for Gε,η on equibounded sets.

Lemma 3.1 Let α ∈ (0, N ), R > ω
−1/N
N and η, ε ∈ (0, 1). Then, for all quasi-open� ⊂ BR,

we have

Gε,η(�) ≥ ω
N+2
N

N E(B)RN+2 − η ≥ ω
N+2
N

N E(B)RN+2 − 1,

where B is any ball of measure 1.

Proof Since � ⊂ BR , by the monotonicity of E , its scaling properties and the positivity of
Vα we get

E(�) + εVα(�) ≥ ω
N+2
N

N E(B)RN+2.

On the other hand, if |�| ≥ 1 then

fη(|�|) ≥ 0,

while if |�| < 1 then

fη(|�|) = η(|�| − 1) ≥ −η,

and the conclusion easily follows.

The following existence result for the unconstrained functional Gε,η is an adaptation of
[8, Lemma 4.6], which is in turn inspired by [9, Theorem 2.2 and Lemma 2.3].

Lemma 3.2 Let α ∈ (0, N ), η ∈ (0, 1), ε ∈ (0, 1) and let R > ω
−1/N
N . There exists a

minimizer in the class of quasi-open sets for problem (8). Moreover all minimizers have
perimeter uniformly bounded by a constant depending on N , R, η.

Proof Let (�n) ⊂ BR be a minimizing sequence, with

Gε,η(�n) ≤ inf
{Gε,η(�) : � ⊂ BR, quasi-open

}+ 1

n
.

Let un be the torsion function of �n , so that �n = {un > 0} and let tn = 1/
√
n. We define

�̃n := {un > tn}.
We have

Gε,η(�n) ≤ Gε,η(�̃n) + 1

n
,
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which, since the torsion function of �̃n is precisely (un − tn)+, reads as
1

2

ˆ
{un>0}

|∇un |2 −
ˆ

{un>0}
un + εVα(�n) + fη(|{un > 0}|)

≤ 1

2

ˆ
{un>tn}

|∇un |2 −
ˆ

{un>tn}
(un − tn)+ + εVα(�̃n) + fη(|{un > tn}|) + 1

n
.

Noting that ˆ
{un>0}

un −
ˆ

{un>tn}
(un − tn) ≤ tn |{un > 0}|, (9)

recalling the property (7) of fη and the monotonicity of Vα , the above inequality yields

1

2

ˆ
{0<un<tn}

|∇un |2 + η

2
|{0 < un < tn}| ≤ tn |{un > 0}| + 1

n
≤ tn |BR | + 1

n
. (10)

On the other hand, since η < 1, using coarea formula, the arithmetic geometricmean inequal-
ity and (10), we obtain

η

ˆ tn

0
P({un > s}) ds = η

ˆ
{0<un<tn}

|∇un | dx

≤ η

2

ˆ
{0<un<tn}

|∇un |2 dx + η

2
|{0 < un < tn}| ≤ tn |BR | + 1

n
.

Thanks to the choice of tn = 1/
√
n, we can find a level 0 < sn < 1/

√
n such that the sets

Wn := {un > sn} satisfy

P(Wn) ≤ 2η

ηtn

ˆ tn

0
P({un > s}) ds ≤ 2|BR |

η
+ 2

ηtnn
≤ C(N , R, η) + 2

η
√
n

.

It is easy to check that (Wn) is still a minimizing sequence for problem (8):

Gε,η(Wn)

= 1

2

ˆ
{un>sn}

|∇un |2 −
ˆ

{un>sn}
(un − sn) + εVα({un > sn}) + fη(|{un > sn}|)

≤ Gε,η(�n) + sn |{un > 0}| + fη(|{un > sn}|) − fη(|{un > 0}|)
≤ Gε,η(�n) + |BR |√

n
− η|{0 < un < sn}| ≤ Gε,η(�n) + |BR |√

n
,

(11)

where we have also used the monotonicity of Vα and property (9) with sn in place of tn .
Moreover, since the sets of the sequence (Wn)n∈N have equibounded perimeter, there exists
a Borel set W∞ such that (up to pass to subsequences)

Wn → W∞, in L1, P(W∞) ≤ C(N , R, η).

On the other hand, the torsion function of Wn , that is wn = (un − sn)+, is equibounded in
H1(BR). In fact, by Lemma 3.1, Gε,η is (uniformly) bounded from below and so

C(N , R) ≤ Gε,η(Wn) = −1

2

ˆ
Wn

|∇wn |2 + εVα(Wn) + fη(|Wn |),

which implies,

1

2

ˆ
Wn

|∇wn |2 ≤ −C(N , R) + εVα(BR) + 1

η
|BR |.
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Hence, up to subsequences, there is w ∈ H1
0 (BR) such that

wn → w, strongly in L2(BR) and weakly in H1
0 (BR).

We set W := {w > 0}, and recall that we are identifying w with its quasi-continuous
representative. Thus

χW (x) ≤ lim inf
n→∞ χWn (x) = χW∞(x), for a.e. x ∈ BR,

hence |W \ W∞| = 0, that is W ⊂ W∞ up to a negligible set. We now observe that Vα and
fη are continuous with respect to the L1 convergence of sets, while the first integral in the
torsion energy is lower semicontinuous with respect to the weak H1 and the second one with
respect to the strong L1 convergence. We can therefore pass to the limit in (11) and obtain

E(W ) + εVα(W∞) + fη(|W∞|) ≤ 1

2

ˆ
BR

|∇w|2 −
ˆ
BR

w + εVα(W∞) + fη(|W∞|)
≤ lim inf

n
Gε,η(Wn) = inf

�⊂BR
Gε,η(�) ≤ E(W ) + εVα(W ) + fη(|W |).

On the other hand, using again the monotonicity of Vα , we have

η|W∞ \ W | = η(|W∞| − |W |) ≤ fη(|W∞|) − fη(|W |) ≤ ε(Vα(W ) − Vα(W∞)) ≤ 0,

thus |W∞ \ W | = 0, which entails W = W∞ a.e. and this is the desired minimizer for
problem (8).

We conclude this section with a result concerning a property of the minimizers of Gε,η which
will be useful later.

Lemma 3.3 Let R > ω
−1/N
N , α ∈ (0, N ) and B a ball of measure 1. There exist a constants

ε0 = ε0(N , α) > 0 and η0 = η0(N , α) > such that, if η ≤ η0 and ε ≤ ε0, then for any
minimizer �̂ of problem (8) we have

E(�̂) ≤ E(B)

4
< 0.

Proof The existence of an optimal set �̂ follows from Lemma 3.2. If |�̂| ≥ 1, then we have,
calling B a ball of unit measure,

E(�̂) ≤ E(�̂) + εVα(�̂) + 1

η
(|�̂| − 1) ≤ E(B) + εVα(B) ≤ E(B)

4
< 0,

by minimality of �̂ and as soon as we take ε ≤ ε0 := −E(B)
4Vα(B)

.

On the other hand, if |�̂| < 1, using again the optimality of �̂ we have

E(�̂) + η(|�̂| − 1) ≤ E(�̂) + εVα(�̂) + η(|�̂| − 1) ≤ E(B) + εVα(B),

that is,

E(�̂) ≤ E(B) + εVα(B) + η ≤ E(B)

4
< 0,

as soon as ε ≤ ε0 and η ≤ η0 = −E(B)
4 .
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4 First regularity properties of minimizers of the unconstrained
problem

In this Section we essentially follow the approach of [8, Section 4], which is in turn based
on the seminal paper by Alt and Caffarelli [4], to prove density estimates, and Lipschitz
regularity of the torsion function of minimizers for Problem (8).

The keystone idea is that we can pass from a functional defined on the class of quasi-open
sets, to another defined on functions. In fact, for any� ⊂ BR quasi-open, calling u its torsion
function, we have that

Gε,η(�) = Gε,η({u > 0}).
Moreover, if �ε,η is optimal for problem (8), using the definition and minimality properties
of its torsion function uε,η, we have that, for all v ∈ H1

0 (BR),

1

2

ˆ
|∇uε,η|2 −

ˆ
uε,η + εVα({uε,η > 0}) + fη(|{uε,η > 0}|)

≤ 1

2

ˆ
|∇v|2 −

ˆ
v + εVα({v > 0}) + fη(|{v > 0}|).

(12)

Remark 4.1 In this section, we stress that instead of working on optimal sets for problem (8),
we focus on functions optimal for problem (12). Clearly if u is optimal for problem (12),
then it must be the torsion function of {u > 0}, therefore the two formulations are equivalent.

By Lemma 2.1 we get that uε,η behaves like a quasi-minimizer2 of a free boundary-type
problem, that is

1

2

ˆ
|∇uε,η|2 −

ˆ
uε,η + fη(|{uε,η > 0}|)

≤ 1

2

ˆ
|∇v|2 −

ˆ
v + fη(|{v > 0}|)

+ Cε|{uε,η > 0}�{v > 0}|
[
|{uε,η > 0}| α

N + |{v > 0}| α
N

]
,

(13)

for all v ∈ H1
0 (BR) and with a constant C depending only on N , α. Since v, uε,η ∈ H1

0 (BR),
from (13) ensues

1

2

ˆ
|∇uε,η|2 −

ˆ
uε,η + fη(|{uε,η > 0}|)

≤ 1

2

ˆ
|∇v|2 −

ˆ
v + fη(|{v > 0}|) + 2C |BR | α

N ε|{uε,η > 0}�{v > 0}|.
This quasi-minimality property does not provide any new information by itself and we

need to take advantage of the (smallness of the) parameter ε, since the volume term is not in
general of lower order. We also observe that if v ∈ H1

0 (BR) is such that

{v > 0} ⊂ {uε,η > 0},
then inequality (12) together with the monotonicity of Vα entails that

1

2

ˆ
|∇uε,η|2 −

ˆ
uε,η + fη(|{uε,η > 0}|)

≤ 1

2

ˆ
|∇v|2 −

ˆ
v + fη(|{v > 0}|),

(14)

2 This terminology is borrowed by the theory of quasi-minimizers for the perimeter, see [30, Chapter 3].
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and we stress the fact that the parameter α does not appear in this formulation. Therefore, it
should not be surprising that in the next Lemma 4.2 the constants (as for example K0, ρ0) do
not depend on α.

We continue our analysis of the regularity of minimizers with the following non-
degeneracy lemma. Its proof, which we provide for the sake of completeness, is basically a
rewriting of [8, Lemma 4.9], in turn inspired by [4, Lemma 3.4].

Lemma 4.2 Let α ∈ (0, N ), R > 0, η ∈ (0, 1), ε ∈ (0, 1) and � be an optimal set for the
problem

min
{
Gε,η(A) : A ⊂ BR, quasi-open

}
,

we call u ∈ H1
0 (�) its torsion function. For every κ ∈ (0, 1), there are positive constants

K0, ρ0 depending only on κ, η, N such that the following assertion holds: if ρ ≤ ρ0 and
x0 ∈ BR, then 

∂Bρ(x0)∩BR

u dHN−1 ≤ K0ρ 	⇒ u ≡ 0 in Bκρ(x0) ∩ BR . (15)

Proof Without loss of generality, we fix x0 = 0. We also extend u to zero outside BR , so that
it satisfies −�u ≤ 1 in R

N in weak sense. Then the function

x �→ u(x) + |x |2 − ρ2

2N

is subharmonic in Bρ . Thus, for every κ ∈ (0, 1), there exists c = c(κ, N ) such that

δρ := sup
B√

κρ

u ≤ c

( 
∂Bρ∩BR

u dHN−1 + ρ2

)
≤ c(K0ρ + ρ2). (16)

Let now w be the solution of
⎧⎪⎨
⎪⎩

−�w = 1, in B√
κρ \ Bκρ,

w = δρ, on ∂B√
κρ,

w = 0, on Bκρ.

(17)

By definition, w ≥ u on ∂B√
κρ , therefore the function

v =
{
u, in R

N \ B√
κρ,

min{u, w}, in B√
κρ,

satisfies

{v > 0} ⊂ {u > 0}, {v > 0} \ B√
κρ = {u > 0} \ B√

κρ.

Since v ∈ H1
0 (BR) inequality (14) gives

1

2

ˆ
B√

κρ

|∇u|2 −
ˆ
B√

κρ

u + fη(|{u > 0}|)

≤ 1

2

ˆ
B√

κρ

|∇v|2 −
ˆ
B√

κρ

v + fη(|{v > 0}|).
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We note that v = 0 in Bκρ , therefore, using also (7),

η

2
|{u > 0} ∩ Bκρ | ≤ η|({u > 0} \ {v > 0}) ∩ B√

κρ |
≤ fη(|{u > 0}|) − fη(|{v > 0}|).

Thanks to the two inequalities above and the definition of v, we can infer

1

2

ˆ
Bκρ

|∇u|2 −
ˆ
Bκρ

u + η

2
|{u > 0} ∩ Bκρ |

≤ 1

2

ˆ
Bκρ

|∇u|2 −
ˆ
Bκρ

u + fη(|{u > 0}|) − fη(|{v > 0}|)

≤ 1

2

ˆ
B√

κρ\Bκρ

(|∇v|2 − |∇u|2) −
ˆ
B√

κρ\Bκρ

(v − u)

≤
ˆ

(B√
κρ\Bκρ )∩{u>w}

(|∇w|2 − ∇u · ∇w) −
ˆ

(B√
κρ\Bκρ)∩{u>w}

(w − u).

(18)

On the other hand testing (17) with (u − w)+ and integrating over B√
κρ \ Bκρ , we obtain

ˆ
(B√

κρ\Bκρ )∩{u>w}
(|∇w|2 − ∇u · ∇w) −

ˆ
(B√

κρ\Bκρ )∩{u>w}
(w − u) =

ˆ
∂Bκρ

∂w

∂ν
u dHN−1,

(19)

where ν denotes the outer unit normal exiting from Bκρ and thanks to the fact that w = 0 on
∂Bκρ and w ≥ u on ∂B√

κρ . We now observe that, since the torsion function on an annulus
is explicit, with a direct computation one obtains

∣∣∣∣
∂w

∂ν

∣∣∣∣ ≤ β1
δρ + ρ2

ρ
, on ∂Bκρ,

for some β1 = β1(N , κ). We can now combine (18) and (19) to obtain

1

2

ˆ
Bκρ

|∇u|2 −
ˆ
Bκρ

u + η

2
|{u > 0} ∩ Bκρ | ≤ β1(N , κ)

δρ + ρ2

ρ

ˆ
∂Bκρ

u dHN−1.

Then, using the definition of δρ , the trace inequality in W 1,1 and the arithmetic geometric
mean inequality we obtain

ˆ
∂Bκρ

u dHN−1 ≤ C(N , κ)

(
1

ρ

ˆ
Bκρ

u +
ˆ
Bκρ

|∇u|
)

≤ β2

((
δρ

ρ
+ 1

2

)
|{u > 0} ∩ Bκρ | + 1

2

ˆ
Bκρ

|∇u|2
)

,
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for some β2 = β2(N , κ) > 0. Putting together the above estimates, recalling again (16) we
have, for all ρ ≤ ρ0

η

2

ˆ
Bκρ

|∇u|2 + η

2
|{u > 0} ∩ Bκρ |

≤ β1
δρ + ρ2

ρ

ˆ
∂Bκρ

u dHN−1 + δρ |{u > 0} ∩ Bκρ |

≤ β1(c(K0 + ρ) + ρ)

ˆ
∂Bκρ

u dHN−1 + c(K0ρ + ρ2)|{u > 0} ∩ Bκρ |

≤ β1β2(c(K0 + ρ) + ρ)

[(
δρ

ρ
+ 1

2

)
|{u > 0} ∩ Bκρ | + 1

2

ˆ
Bκρ

|∇u|2
]

+ c(K0ρ + ρ2)|{u > 0} ∩ Bκρ |

≤ β1β2(c(K0 + ρ) + ρ)

(
2c(K0 + ρ) + 1

2

)[ˆ
Bκρ

|∇u|2 + |{u > 0} ∩ Bκρ |
]

.

Eventually, by choosing K0, ρ0 such that

β1β2(c(K0 + ρ0) + ρ0)

(
2c(K0 + ρ0) + 1

2

)
≤ η/4,

we conclude that u ≡ 0 in Bκρ , for all ρ ≤ ρ0.

Remark 4.3 In literature, the property proved in Lemma 4.2 is called non-degeneracy. As it
was noted for example in [32, Remark 2.8], there are two other equivalent versions of this
result, where instead of the claim (15), one can consider

‖u‖L∞(Bρ(x0)) ≤ K0ρ 	⇒ u ≡ 0 in Bκρ(x0) ∩ BR,

or  
Bρ(x0)

u dx ≤ K0ρ 	⇒ u ≡ 0 in Bκρ(x0) ∩ BR,

up to possibly modify the constants K0, ρ0 (but not their dependence only on N , κ, η).

Remark 4.4 As it was first highlighted in [9], Lemma 4.2 holds for all sets that are optimal
for a torsion energy-type functional only with respect to inward perturbations. These sets are
referred to as shape subsolutions or inward minimizing sets and one can easily prove that if
� is optimal for problem (8), then it is a shape subsolution for the torsion energy. Thus the
non-degeneracy property of Lemma 4.2 follows from [9, Theorem 2.2]. Nevertheless we do
not follow this approach since for our scope we need finer regularity properties of optimal
sets that can not be deduced only by means of inward perturbations.

Remark 4.5 To obtain the regularity properties for minimizers we seek in this section, the
previous lemma has to be paired with Lemma 4.6 below. Its proof is, as for the previous
lemma, inspired by [8, Lemma 4.10], which is in turn based on [4]. One not completely
obvious difference is that, contrary to the setting of [8], the parameter η is not fixed in our
setting, thus we need to keep track of it in the proofs. This dependence on η will involve
a dependence on R, the radius of the ball containing all competitors in Theorem 1.2. In
particular the density estimates which ensue by the previous lemmata will depend on R, and
this is a main obstacle in order to remove the equiboundedness hypothesis on competitors in
(2).
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Lemma 4.6 Let α ∈ (0, N ), R, η, ε, � and u be as in Lemma 4.2. There exists a constant
M, depending only on N, α, R and η such that, for all x0 ∈ BR, if 

∂Bρ(x0)∩BR

u dHN−1 ≥ Mρ,

then u > 0 in Bρ(x0) ∩ BR.

Proof First of all, we can reduce to the case when Bρ(x0) ⊂ BR , up to take M (depending
only on N , R) big enough. We define v ∈ H1

0 (BR) as the solution to
{

−�v = 1, on Bρ,

v = u, in R
N \ Bρ(x0).

By maximum principle we have v > 0 in Bρ(x0) and therefore

{u > 0}�{v > 0} = {u = 0} ∩ Bρ(x0).

Using this information, the quasi-minimality condition (13) of u and the property of the
function fη, see (7), we obtain

1

2

ˆ
Bρ(x0)

|∇u|2 −
ˆ
Bρ(x0)

u ≤ 1

2

ˆ
Bρ(x0)

|∇v|2 −
ˆ
Bρ(x0)

v +
(
1

η
+ Cε

)
|{u = 0} ∩ Bρ(x0)|,

for some constant C = C(N , α, R). Now we can use the equation satisfied by v and the fact
that ε < 1 < 1/η, to show

1

2

ˆ
Bρ(x0)

|∇u − ∇v|2 ≤ C + 1

η
|{u = 0} ∩ Bρ(x0)|.

Then, as in [8, Proof of Lemma 4.10] or in [4, Proof of Lemma 3.2], one obtains

M2

2
|{u = 0} ∩ Bρ(x0)| ≤ C + 1

η
|{u = 0} ∩ Bρ(x0)|,

which by choosing M ≥ 2
√

C+1
η

entails that |{u = 0} ∩ Bρ(x0)| = 0, and the proof is

concluded.

The main consequence of Lemmas 4.2 and 4.6 is the following result, stated first in [4,
Section 3], see also [35, Section 3 and 5].

Lemma 4.7 Let α ∈ (0, N ), R, η, ε, � and u be as in Lemma 4.2. There exist constants
θ(N , α, R, η) and ρ0(N , α, R, η) such that

(i) u is Lipschitz continuous with constant L = L(N , α, R). In particular, � = {u > 0} is
an open set.

(ii) For every x0 ∈ ∂� and every ρ ≤ ρ0, we have

θ ≤ |� ∩ Bρ(x0)|
|Bρ | ≤ 1 − θ.

Remark 4.8 Notice that the constants determining the Lipschitz regularity and the density
estimates of the previous result do not depend on ε.

This last result is the starting point of the higher regularity we need, that we treat in Sect.
6.
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5 Equivalence between the constrained and the unconstrained
problem

In this section we show that unconstrained minima of Gε,η and volume constrained minima
of Fα,ε are actually the same. We begin by showing that for ε small, the minimizers of Gε,η

in BR are close to a ball in L∞. To do that, we first start with an estimate that assures the
L1−proximity of an optimal set for problem (8) to a ball with radius not too large.

Lemma 5.1 Let α ∈ (0, N ), R > ω
− 1

N
N and ε, η ∈ (0, 1). Let �ε,η be an optimal set for (8)

and Bε,η a ball of measure |�ε,η| such that

A(�ε,η) = |�ε,η�Bε,η|
|�ε,η| .

Then we have

|�ε,η�Bε,η| ≤ 2C0

σ
|�ε,η|1+ α−2

N ε,

where C0(N , α) > 0 is the constant appearing in Lemma 2.1 and σ = σ(N ) > 0 is the
geometric constant from the quantitative Saint Venant inequality, see (5).

Proof Using Lemma 2.1 and the definition of fη, we get

E(�ε,η) − E(Bε,η) ≤ ε(Vα(Bε,η) − Vα(�ε,η)) + ( fη(|Bε,η|) − fη(|�ε,η|))
≤ C0ε|Bε,η��ε,η|

[
|�ε,η| α

N + |Bε,η| α
N

]
.

On the other hand, thanks to the quantitative version of the Saint-Venant inequality (Theo-
rem 2.2), and since |�ε,η| = |Bε,η|, we have (up to translations) that

σ

( |�ε,η�Bε,η|
|�ε,η|

)2

≤ E(�ε,η)|�ε,η|−1− 2
N − E(Bε,η)|Bε,η|−1− 2

N

≤ 2C0ε|�ε,η|−1+ α−2
N |�ε,η�Bε,η|

so that

|�ε,η�Bε,η| ≤ 2C0

σ
|�ε,η|1+ α−2

N ε,

which proves the lemma.

A consequence almost immediate of the previous lemma is that the measure of the ball
Bε,η is not too large.

Lemma 5.2 Let α and R be as in the previous lemma. There exists η1 = η1(N , α, R) ≤ η0
such that for all ε ∈ (0, 1) and η ≤ η1, we have that any optimal set for problem (8) satisfies

|�ε,η| ≤ 2.

Proof Of course the statement of the lemma is trivial as long as |BR | ≤ 2. Thus we take R
large enough so that |BR | > 2. Let us suppose for the sake of contradiction that |�ε,η| > 2.
We are then going to reach a contradiction as long as

1/η ≥ Ca(N , α)RN+2 + Cb(N , α),
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for given constants Ca(N , α) and Cb(N , α) which will be precised later on in the proof.
Since the functional

ε �→ Gε,η(�ε,η),

is nondecreasing, we get

sup
ε∈(0,1)

Gε,η(�ε,η) = G1,η(�1,η) ≤ E(B) + Vα(B),

where B is a ball of unit measure. On the other hand, using the Saint-Venant inequality, the
positivity of Vα , the fact that �ε,η ⊂ BR and since |�ε,η| > 2 we have

E(B) + Vα(B) ≥ Gε,η(�ε,η) ≥ E(Bε,η) + 1

η
(|�ε,η| − 1) ≥ ω

N+2
N

N RN+2E(B) + 1

η
.

By letting Ca(N , α) = (−E(B))ω
N+2
N

N and Cb(N , α) = E(B) + Vα(B), and by choosing
η1 = η1(N , α, R) such that η1 ≤ η0 and

1

η1
> E(B) + Vα(B) + (−E(B))ω

N+2
N

N RN+2,

we reach the desired contradiction.

We note that in the above lemma, η1 depends on R and in particular η1 ≈ 1
RN+2 .

Corollary 5.3 In the assumptions of Lemma 5.1, there exists a positive constant c1 = c1(N , α)

such that, for all ε ∈ (0, 1) and η ≤ η1, we have

|�ε,η| ≤ 2, |�ε,η�Bε,η| ≤ c1ε. (20)

Proof It is a direct consequence of Lemmas 5.2 and 5.1.

Next we show that, for ε small, the boundary of any optimizer �ε,η is close to the one
of the corresponding optimal ball Bε,η in the definition of asymmetry, with respect to the
Hausdorff distance dH (see [5, Definition 4.4.9] for the definition and properties of the
Hausdorff distance).

Lemma 5.4 Under the assumptions of Corollary 5.3, for all δ > 0 there exists εδ =
εδ(δ, N , α, R) ∈ (0, ε0) such that for all ε ≤ εδ , we have

distH (∂�ε,η, ∂Bε,η) ≤ δ.

Proof By (20) we have that |�ε,η \ Bε,η| ≤ c1ε. We fix δ > 0 and call Bδ(Bε,η) := Bε,η + Bδ

the δ-neighborhood of Bε,η. If �ε,η \ Bδ(Bε,η) is empty, then there is nothing to prove.
Otherwise there exists x ∈ �ε,η \ Bδ(Bε,η) so that by point (i i) of Lemma 4.7 there exists
ρ0(N , R, α) such that for ρ ≤ ρ1 := min{ρ0(N , R, α), δ} it holds

ωN θρN ≤ |Bρ(x) ∩ �ε,η| ≤ |�ε,η \ Bε,η| ≤ c1ε.

Notice that the choice of ρ1 ≤ δ assures that |Bρ(x) ∩ �ε,η| ≤ |�ε,η \ Bε,η|. In conclusion
choosing ρ = ρ1, we have

ωN θρN
1 ≤ c1ε,

which is not possible as soon as

ε ≤ εδ := ωN θ

c1
ρN
1 .
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With the same argument, by using the density estimates for the exterior of �ε,η, we show
that Bε,η ⊂ Bδ(�ε,η) where Bδ(�ε,η) := �ε,η + Bδ . This concludes the proof.

It is worth noting that the constant εδ in the lemma above depends also on R. This is one of
the main difficulties in trying to get rid of the equiboundedness assumption of Theorem 1.2.

Remark 5.5 In view of the previous result, we fix ε1(N , α, R) as the εδ from Lemma 5.4 with
the choice of δ := 1/2.

If ε ≤ ε1, then in the proof of Theorem 5.7, we will be allowed to inflate a set while
remaining in a sufficiently big ball BR .

We can now show the equivalence between the constrained and the unconstrained prob-
lems. We will use the following elementary lemma.

Lemma 5.6 Let α ∈ [0, N ], P, Q > 0 be two positive real numbers and let u : [0, 1) → R

be the function defined by

u(t) = P(1 − t N+2) − Q(1 − t N+α)

1 − t N
.

Then there exists q = q(N , α, P) > 0 and C = C(N , α, P) > 0 such that inf [0,1) u ≥
C(N , α) for any Q < q.

Proof Let us write u(t) = P f (t) − Qg(t) where

f (t) = 1 − t N+2

1 − t N
g(t) = 1 − t N+α

1 − t N
.

Both f and g can be extended by continuity in 1 with the values, respectively, of f (1) = N+2
N

and g(1) = N+α
N . Since such extensions are continuous and strictly positive on [0, 1], they

admit strictly positive minimum and maximum in there. Let m f = min[0,1] f > 0 and
Mg = max[0,1] g. Then we get, for any t ∈ [0, 1), that

u(t) = P f (t) − Qg(t) ≥ Pm f − QMg.

We conclude the proof by observing that, as long as

Q <
Pm f

2Mg
:= q,

we have, for all t ∈ [0, 1),

u(t) ≥ Pm f − QMg ≥ Pm f − qMg = Pm f

2
=: C(N , α, P),

and the claim is proved.

Theorem 5.7 Let α ∈ (0, N ) and B be a ball of unit measure. There exists R0 = R0(N ) such
that, for all R ≥ R0, there exists ε2 = ε2(N , α, R) ≤ ε1 and η2 = η2(N , α, R) ≤ η1 such
that, for all η ≤ η2 and ε ≤ ε2, we have that

min
{Gε,η(�) : � ⊂ BR

}

≥ inf
{Fα,ε(�) : � ⊂ BR, |�| = 1

} =: μ(N , α, ε, R).

As a consequence, problems (6) and (8) are equivalent.
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Proof It is easy to check that

min
{Gε,η(�) : � ⊂ BR

} ≤ inf
{Fα,ε(�) : � ⊂ BR, |�| = 1

}
,

as the two functionals coincide on sets of measure 1. Then, if the first claim of the theorem
holds, it follows that on the set of minimizers (of the first or of the second problem) the two
functionals do coincide, that is, problems (6) and (8) are equivalent.

We prove the first claim of the theorem by contradiction. Let

�ε,η ⊂ BR, σε,η ∈ R, |�ε,η| = 1 + σε,η, Gε,η(�ε,η) < μ,

and we also note that, since for all � ⊂ BR it holds Fα,ε(�) ≤ εVα(B), then μ ≤ εVα(B).
We moreover assume, without loss of generality, that �ε,η are minimizers for problem (8).
We treat separately the case σε,η > 0 and σε,η < 0.

Case σε,η > 0. We first observe that σε,η → 0 as η → 0. Indeed

Gε,η(�ε,η) = Fα,ε(�ε,η) + 1

η
σε,η

and so

0 ≤ 1

η
σε,η = Gεη(�ε,η) − Fα,ε(�ε,η) ≤ εVα(B) − E(BR),

using the assumption Gε,η(�ε,η) ≤ μ ≤ εVα(B), the positivity of Vα and the fact that the
torsion energy is decreasing by inclusion. This implies that σε,η → 0 as η → 0.

Let now λε,η < 1 be such that |λε,η�ε,η| = 1, therefore

λε,η = 1 − σε,η

1

N (1 + σε,η)
+ Cσ 2

ε,η,

for some C = C(N ) ∈ R. Since the new set λε,η�ε,η is now admissible in the constrained
minimization problem (6), and since

Gε,η(�ε,η) = E(�ε,η) + εVα(�ε,η) + σε,η

η

< μ ≤ E(�ε,η)λ
N+2
ε,η + εVα(�ε,η)λ

N+α
ε,η

= E(�ε,η)

(
1 − σε,η

N + 2

N (1 + σε,η)
+ Cσ 2

ε,η

)
+ εVα(�ε,η)

(
1 − σε,η

N + α

N (1 + σε,η)
+ Cσ 2

ε,η

)
,

we deduce that

σε,η

η
< (−E(�ε,η))σε,η

N + 2

N (1 + σε,η)
− εVα(�ε,η)σε,η

N + α

N (1 + σε,η)
+ Cσ 2

ε,ηFα,ε(�ε,η)

≤ (−E(�ε,η))σε,η

N + 2

N (1 + σε,η)
+ Cσ 2

ε,ηεVα(B),

where we have again used the fact that εVα(B) bounds from above the functionalFα,ε. Thus

1

η
≤ C(N , α)(−E(�ε,η)) ≤ −C(N , α)E(BR),

which leads to a contradiction as soon as η2 < 1
C(N ,α)(−E(BR))

= C(N ,α)

RN+2 .
Case σε,η < 0. For this case let us call

ρε,η := (1 + σε,η)
−1/N ,
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so that |ρε,η�ε,η| = 1.
We recall from the previous sections that a minimizer �ε,η for Gε,η exists, and by

Lemma 5.4, up to take ε2 ≤ ε1 as in Remark 5.5, and η2 < η1 as in Lemma 5.2, the
rescaled set ρε,η�ε,η is still contained in BR , as soon as, for example, R0 > 6.

In fact, thanks to Lemma 3.3 and the Saint Venant inequality, we have

E(B) ≤ E(ρε,η�ε,η) ≤ ρN+2
ε,η

E(B)

4
, hence, ρN+2

ε,η ≤ 4, (21)

therefore, it is easy to check that ρε,η�ε,η ⊂ BR .
Let us define the function

g : [1, ρε,η] → R, g(r) = E(r�ε,η) + εVα(r�ε,η) + η(r N |�ε,η| − 1).

We want to show that the minimum of the function g is attained at r = ρ := ρε,η. This is
equivalent to show that for some η the inequality

g(r) ≥ E(ρ�ε,η) + εVα(ρ�ε,η), for all r ∈ [1, ρ],
holds true. Up to rearranging the terms, and by the homogeneity of the functionals E and Vα

such an inequality reads as

η

(
1 −

(
r

ρ

)N
)

≤ (−E(ρ�ε,η))

(
1 −

(
r

ρ

)N+2
)

− εVα(ρ�ε,η)

(
1 −

(
r

ρ

)N+α
)

.

Setting t := r
ρ

< 1, and observing that r N |�ε,η| = t N , the last inequality is equivalent to

η ≤ (−E(ρ�ε,η))(1 − t N+2) − εVα(ρ�ε,η)(1 − t N+α)

1 − t N
.

We recall now that Vα(ρ�ε,η) ≤ Vα(B) by the Riesz inequality, while E(ρ�ε,η) ≤
ρN+2 E(B)

4 ≤ E(B), by Lemma 3.3 and (21). Thus

(−E(ρ�ε,η))(1 − t N+2) − εVα(ρ�ε,η)(1 − t N+α)

1 − t N

≥ −E(B)(1 − t N+2) − εVα(B)(1 − t N+α)

1 − t N
.

Thus it is enough to show that for some η > 0 it holds

η ≤ −E(B)(1 − t N+2) − εVα(B)(1 − t N+α)

1 − t N
:= uε(t).

To conclude that uε > 0 in [0, 1) we directly apply Lemma 5.6 with uε in place of u,−E(B)

in place of P , and εVα(B) in place of Q. Up to choose ε2 small enough, depending only on
N and α, we can satisfy the requirement of the Lemma. This concludes the proof.

We highlight that, from now on, we can fix an η > 0 so that Theorem 5.7 holds true, and
therefore we have the equivalence of the constrained minimization problem for Fα,ε and the
unconstrained problem for Gε,η. It is then consistent to denote an optimal set for Gε,η or Fα,ε

by �ε (and uε its torsion function), dropping the dependence on η.
On the other hand, we stress that this choice of η does depend on R!
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6 Higher regularity of minimizers

In this section we show that the mild regularity proved in Sect. 4 can be improved to a higher
regularity of minimizers for Gε,η or, equivalently, Fα,ε. More precisely, we will show that
minimizers of Fα,ε are such that their boundary can be parametrized on the sphere so that
the C2,γ −norm of such a perturbation is arbitrarily small, up to choose ε small enough.

For this whole section, we fix R > R0 and ε ≤ ε2(N , α, R) so that Theorem 5.7 holds.
Then we denote�ε an optimal set for problem (8) and let uε be its torsion function, extended
to zero outside �ε . Hence uε is optimal for problem (12).

We begin with a simple geometric result, whose proof is just a rephrasing of Lemma 5.4,
since now we have the additional information that |�ε| = 1.

Lemma 6.1 With the notations above, the sequence �ε converges to B in L1 as ε → 0.
Moreover, for any δ > 0 there exists εδ > 0 such that if ε < εδ , then

∂�ε ⊂ ∂B + Bδ = {x ∈ R
N : dist(x, ∂B) < δ}.

To get the desired regularity of minimizers, we will apply results from [4], and techniques
developed in [8], and later on in [13].

We will need the following result [4, Theorem 4.5 and Theorem 4.8], [1, Theorem 2].

Theorem 6.2 Let ε ≤ ε2, �ε and uε be as above. The following facts hold true.

(i) There is a Borel function quε : ∂�ε → R such that, in the sense of the distributions, one
has

− �uε = χ�ε − quεHN−1�∂�ε, in BR . (22)

(ii) There exist constants 0 < c < C < +∞, depending on R, N, α, such that c ≤ quε ≤ C.
(iii) For all points x ∈ ∂∗�ε = ∂∗{uε > 0}, the measure theoretic inner unit normal νuε (x)

is well defined and, as ρ → 0,

�ε − x

ρ
→ {x : x · νuε (x) ≥ 0}, in L1(BR).

(iv) For HN−1 almost all x ∈ ∂∗{uε > 0} we have
uε(x + ρx)

ρ
−→ quε (x)(x · νuε (x))+, in W 1,p(BR) for every p ∈ [1,+∞).

(v) HN−1(∂�ε \ ∂∗�ε) = 0.

Remark 6.3 (On the meaning of quε ) For a regular set �, by means of a shape derivative
argument, one can show that quε (x) = |∂νuε|(x) for x ∈ ∂�ε = ∂{uε > 0}. The slightly
more complicated arguments that follow are due since we only know, for the moment, that
minimizers of problem (6) are open sets of finite perimeter. Namely, following ideas from
[4] and [1], in order to show some higher regularity we first need to show some regularity
results for quε . Formally it is possible to see that the first variation of Gε,η reads as

∣∣∣∣
∂uε(x)

∂ν

∣∣∣∣
2

−εv�ε (x) = �, x ∈ ∂�ε,

where uε is the torsion function of �ε , v�ε its Riesz potential and � some constant. Thus,
since quε stays far from zero and infinity (thanks to Theorem 6.2(ii)), then the regularity of
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quε =
∣∣∣ ∂uε

∂ν

∣∣∣ is the same as that of v�ε . Such relation on the other hand is not necessarily

true, because of the lack of regularity of ∂�, but will turn out to be true on ∂∗�, the reduced
boundary of �.

Before rigorously developing the argument described in the previous remark, we show a
simple regularity result for the Riesz potentials. This is rather standard, but we give a proof
for the sake of completeness.

Lemma 6.4 Let α ∈ (1, N ) and let A be a bounded open set. Then w := χA ∗ | · |α−N is of
class C1,γ (A) for some γ ∈ (0, 1).

Proof Let

wε(x) =
ˆ
A

dy

(|x − y| + ε)N−α
, for x ∈ A,

and

wi (x) =
ˆ
A

∂xi

(
1

|x − y|N−α

)
dy = (α − N )

ˆ
A

xi − yi
|x − y|N−α+2 dy,

for i = 1, . . . , N . Notice that, where |x − y| ≈ 0, then

xi − yi
|x − y|N−α+2 ≈ 1

|x − y|N−α+1 .

Since α > 1, then N − α + 1 < N so that the wi are well defined. It is also clear that wε is a
smooth function. We define A1

ε := {y ∈ A : |x − y| ≥ √
ε} and A2

ε = A \ A1
ε . Notice that

by absolute continuity of the Lebesgue integral, it holds
ˆ
A2

ε

xi − yi
|x − y|N−α+2 dy = oε(1) and

ˆ
A2

ε

∂xi
dy

(|x − y| + ε)N−α
= oε(1),

where oε(1) does not depend on x , but only on the measure |A2
ε |. Thanks to this, we have

that (for a constant C depending only on N , α),

|∂xi wε(x) − wi (x)|

=

∣∣∣∣∣∣∣
(α − N )

ˆ
A1

ε

xi − yi
|x − y|N−α+2

⎡
⎢⎣ 1(

1 + ε
|x−y|

)N−α+2 − 1

⎤
⎥⎦ dy

∣∣∣∣∣∣∣
+ oε(1)

≤ (N − α)(N − α + 2)
ˆ
A1

ε

1

|x − y|N−α+1

(
ε

|x − y| + o

(
ε

|x − y|
))

dy + oε(1)

≤ C
√

ε + oε(1) = oε(1).

Thus ∂xi wε(x) − wi (x) → 0 uniformly in R
N . Since wε converges pointwise to w, this

implies that w is derivable and that

∂xi w(x) = (α − N )

ˆ
A

xi − yi
|x − y|N−α+1 dy.

It is now easy to show that ∂xi w(x) is an Hölder continuous function. This concludes the
proof.
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In what follows we drop the subscript ε from �ε and uε as here ε is fixed and there is no
risk of confusion. The general strategy, and part of the details in the proof of the following
theorem are inspired by an argument first proposed in [1] and readapted later on in [8].

Theorem 6.5 Let R > R0, α ∈ (1, N ) and ε ≤ ε2, and let � be a minimizer for Gε,η, u be its
torsion function, v� = v = χ� ∗ | · |α−N be its Riesz potential and qu be as in Theorem 6.2.
Then the function x �→ q2u (x) − εv(x) is constant on ∂∗�.

Proof Let us assume, for the sake of contradiction, that there are x0, x1 ∈ ∂∗� such that

q2u (x0) − εv(x0) < q2u (x1) − εv(x1).

We construct a family of diffeomorphisms which preserves the volume at the first order by
deflating � around x0, and inflating it around x1. Let κ < 1 and ρ < 1 be two parameters.
Let ϕ ∈ C1

0 (B1(0)) be a non-null, radially symmetric function supported in B1(0). Then we
define, keeping in mind that νxi denotes the inner normal,

τρ,κ (x) = τ(x) = x +
∑

i∈{0,1}
(−1)iκρϕ

( |x − xi |
ρ

)
νxi χBρ(xi ).

The field τ is a diffeomorphism for ρ and κ small enough. Notice that τ(x) − x is null
outside Bρ(x0) ∪ Bρ(x1). A simple computation shows that

∇τ(x) = I d +
∑

i∈{0,1}
(−1)iκϕ′

( |x − xi |
ρ

)
x − xi
|x − xi | ⊗ νxi χBρ(xi ),

so that3

det(∇τ(x)) = 1 +
∑

i∈{0,1}
(−1)iκϕ′

( |x − xi |
ρ

)
x − xi
|x − xi | · νxi χBρ(xi ) + o(κ). (23)

We call �ρ = τ(�). We are going to show that for κ, ρ small enough it holds Gε,η(�ρ) <

Gε,η(�), contradicting the minimality of�. To do that we deal with the first variation of each
term of the sum defining Gε,η. We stress that the computations regarding the volume and the
torsion contributions are identical to those performed originally in [1] (see also [8] and [13],
where the same idea is applied). We add them for the sake of completeness.

Let us begin with the volume term. We claim that

fη(�ρ) − fη(�) = o(ρN ), as ρ → 0. (24)

To see that, thanks to (7) we only have to show that

1

ρN
(|�ρ | − |�|) → 0, as ρ → 0.

Using the Area formula and the change of variables x = xi + ρy, we have that

1

ρN
(|�ρ | − |�|) = 1

ρN

(ˆ
�ρ

1 dx −
ˆ

�

1 dx

)

= 1

ρN

∑
i∈{0,1}

(ˆ
χ�ρ∩Bρ(xi )(x) dx −

ˆ
χ�∩Bρ(xi )(x) dx

)

=
∑

i∈{0,1}

ˆ
χ(�−xi

ρ

)
∩B1(0)

(y) det(∇τ(xi + ρy)) − χ(�−xi
ρ

)
∩B1(0)

(y) dy.

3 We are using the formula det(I d + ξ B) = 1 + trace(B)ξ + o(ξ).
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We can then deduce by Theorem 6.2 point (iii) that �ρ−xi
ρ

→ {x · νxi ≥ 0} in L1(BR),
whence

lim
ρ→0

1

ρN
(|�ρ | − |�|) =

∑
i∈{0,1}

ˆ
{x ·νxi >0}∩B1(0)

(−1)iκϕ′(|y|)
(

y

|y|
)

· νxi dy = 0,

where the last equality is due to the radial symmetry of ϕ. Now that (24) is settled, we deal
with the torsion energy term. We claim that

1

ρN
(E(�ρ) − E(�)) ≤ κ(qu(x0)

2 − qu(x1)
2)C(ϕ) + oρ(1) + o(κ), (25)

where

C(ϕ) =
ˆ
B1(0)∩{y·ν=0}

ϕ(|y|) dHN−1(y) = −
ˆ
B1(0)∩{y·ν>0}

ϕ′(|y|) y · ν

|y| dy, (26)

and the last equality follows from the divergence Theorem, recalling that ν is a inner normal
and div(ϕ(|y|)ν) = ϕ′(|y|) y·ν|y| . Moreover, we note that ν can be any unit direction of RN :
changing direction does not affect the value of C(ϕ), thanks to the radial symmetry of ϕ. To
show (25) it suffices to prove that

1

ρN

(ˆ
�ρ

|∇ũρ |2 dx −
ˆ

�

|∇u|2 dx
)

= κ(qu(x0)
2 − qu(x1)

2)C(ϕ) + oρ(1) + o(κ),

(27)

where ũρ = u ◦ τ−1, and that
ˆ

�ρ

ũρ dx −
ˆ

�

u dx = o(ρN ), as ρ → 0. (28)

Indeed ũρ is a test function in the definition of E(�ρ) so that (27) and (28) imply directly
(25).

The computation of (27) is exactly as in [8, Proof of Lemma 4.15] (it is done also in [1,
Section 2] and [13]), hence we do not repeat it here. To show (28), we compute

1

ρN

(ˆ
�ρ

ũρ(z) dz −
ˆ

�

u(x) dx

)
= 1

ρN

ˆ
�

(
u ◦ τ−1(τ (x)) det(∇τ(x)) − u(x)

)
dx

=
∑

i∈{0,1}

ˆ
B1(0)∩

(
�−xi

ρ

)
(
u(xi + ρy) det(∇τ(xi + ρy)) − u(xi + ρy)

)
dy

=
∑

i∈{0,1}

ˆ
B1(0)∩

(
�−xi

ρ

) (−1)i
u(xi + ρy)

ρ
ρ κ ϕ′(|y|) y

|y| · νxi dy+o(κ) = oρ(1) + o(κ),

where we performed the change of variable x = xi + ρy, we exploited (23) and used
Theorem 6.2, points (i i i) and (iv).

Next we deal with the Riesz energy term Vα . We are going to show that

1

ρN

(
Vα(�ρ) − Vα(�)

) = κ(v(x1) − v(x0))C(ϕ) + o(k) + oρ(1), (29)

where C(ϕ) is the constant defined in (26). The proof of this variation is longer than the
previous ones. Let us denote by vρ(·) = χ�ρ ∗ | · |α−N the Riesz potential of �ρ , and by
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v(·) = χ� ∗ | · |α−N the Riesz potential of �. We have

1

ρN

(
Vα(�ρ) − Vα(�)

) = 1

ρN

(ˆ
�ρ

vρ(x) dx −
ˆ

�

v(x) dx

)

= 1

ρN

ˆ
�

(
vρ(τ (x)) det(∇τ(x)) − v(x)

)
dx

= 1

ρN

ˆ
�\(Bρ(x0)∪Bρ(x1))

(vρ(x) − v(x)) dx

+ 1

ρN

∑
i=0,1

ˆ
�∩Bρ(xi )

(
vρ(τ (x)) det(∇τ(x)) − v(x)

)
dx .

(30)

We compute the last two addends of the previous formula separately:

1

ρN

ˆ
�∩Bρ(x0)

(
vρ(τ (x)) det(∇τ(x)) − v(x)

)
dx

=
ˆ
B1(0)∩

(
�−x0

ρ

)
(
vρ(τ (x0 + ρy)) det(∇τ(x0 + ρy)) − v(x0 + ρy)

)
dy

=
ˆ
B1(0)∩

(
�−x0

ρ

)
(
vρ(τ (x0 + ρy))(1 + κ

y

|y| · νx0ϕ
′(|y|) + o(κ)) − v(x0 + ρy)

)
dy

=
ˆ
B1(0)∩

(
�−x0

ρ

)
(
vρ(τ (x0 + ρy)) − v(x0 + ρy)

)
dy

+
ˆ
B1(0)∩

(
�−x0

ρ

)
(
vρ(τ (x0 + ρy)) κ

y

|y| · νx0ϕ
′(|y|)

)
dy.

First of all we focus on the first term of the chain of inequalities above. By Lemma 6.4, and by
Ascoli-Arzelà Theorem, vρ uniformly converges in B1(0) to some function ṽ as ρ → 0, and,
since its pointwise limit is v, we have that ṽ = v. As a consequence, using also Lemma 6.4
and the dominate convergence Theorem, we haveˆ

B1(0)∩
(

�−x0
ρ

) |vρ(τ (x0 + ρy)) − v(x0 + ρy)| dy

≤
ˆ
B1(0)∩

(
�−x0

ρ

) |vρ(τ (x0 + ρy)) − vρ(x0 + ρy)| + |vρ(x0 + ρy) − v(x0 + ρy)| dy

≤
ˆ
B1(0)∩

(
�−x0

ρ

) |kρϕ(|y|)νx0 |1+γ dy + oρ(1) → 0,

as ρ → 0. Moreover, since χ
B1(0)∩

(
�−x0

ρ

) → χB1(0)∩{x ·νx0>0} (see Theorem 6.2 (iii)), we

have that

lim
ρ→0

ˆ
B1(0)∩

(
�−x0

ρ

)
(
vρ(τ (x0 + ρy)) κ

y

|y| · νx0ϕ
′(|y|)

)
dy

= v(x0)κ
ˆ
B1(0)∩{x ·νx0>0}

νx0 · y

|y|ϕ
′(|y|) dy = −κC(ϕ)v(x0),

as ρ → 0, where we have used (26), the fact that

|vρ(τ (x0 + ρy)) − v(x0)| ≤ |vρ(τ (x0 + ρy)) − vρ(x0)| + |vρ(x0) − v(x0)| → 0,
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uniformly on the compact sets and, again, the dominate convergence Theorem. A completely
analogous computation shows that

1

ρN

ˆ
�∩Bρ(x1)

(
vρ(τ (x)) det(∇τ(x)) − v(x)

)
dx → κC(ϕ)v(x1),

as ρ → 0.
We wish to show now that the first addend on the right-hand side of (30) converges to 0

as ρ → 0. To this aim, we compute

vρ(x) − v(x)

ρN
= 1

ρN

(ˆ
�ρ

dy

|x − y|N−α
−
ˆ

�

dy

|x − y|N−α

)

= 1

ρN

ˆ
�

(
det(∇τ(y))

|x − τ(y)|N−α
− 1

|x − y|N−α

)
dy

=
∑

i∈{0,1}

1

ρN

ˆ
�∩Bρ(xi )

(
det(∇τ(y))

|x − τ(y)|N−α
− 1

|x − y|N−α

)
dy

=
∑

i∈{0,1}

ˆ
B1(0)∩

(
�−xi

ρ

)
(

1

|x − τ(xi + ρy)|N−α
− 1

|x − (xi + ρy)|N−α

)
dy

+
∑

i∈{0,1}
(−1)i

ˆ
B1(0)∩

(
�−xi

ρ

)
κϕ′(|y|)νxi · y

|y|
|x − τ(xi + ρy)|N−α

dy + o(κ).

(31)

We remark that the last two addends converge to the same constant, with opposite sign. Thus
in the limit they elide themselves:

∑
i∈{0,1}

(−1)i
ˆ
B1(0)∩

(
�−xi

ρ

)
κϕ′(|y|) · νxi

y
|y|

|x − τ(xi + ρy)|N−α
dy → 0 as ρ → 0.

Now we notice that for any X , Y , Z ∈ R
N it holds that

1

|X − Y |N−α
− 1

|X − Z |N−α
≤ (N − α + 1)

min(1, |Y − Z |)
min(|X − Y |N−α, |X − Y |N−α+1)

.

Such an inequality can be proved easily by convexity, see for instance [17, formula (2.11)].
By applying such an inequality in the first two addends of the right-hand side of (31) with
X = x , Y = xi + ρy and Z = τ(xi + ρy) we get that

∑
i∈{0,1}

ˆ
B1(0)∩

(
�−xi

ρ

)
(

1

|x − τ(xi + ρy)|N−α
− 1

|x − (xi + ρy)|N−α

)
dy

≤ C(N , α)
∑

i∈{0,1}

ˆ
B1(0)∩

(
�−xi

ρ

)
min(1, |τ(xi + ρy) − (xi + ρy)|)

min(|x − (xi + ρy)|N−α, |x − (xi + ρy)|N−α+1)
dy

≤ C(N , α)‖ϕ‖C0ρ
∑

i∈{0,1}

ˆ
B1(0)∩

(
�−xi

ρ

)
1

min(|x − (xi + ρy)|N−α, |x − (xi + ρy)|N−α+1)
dy

≤ C(N , α, ϕ)ρ
∑
i=0,1

ˆ
B1(0)

1

|x − (xi + ρy)|N−α
dy +

ˆ
B1(0)

1

|x − (xi + ρy)|N−α+1 dy.

In the second inequality we used the fact that

min(1, |τ(xi + ρy) − (xi + ρy)|) ≤ ‖ϕ‖C0ρ.
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Since the last two integrals are finite, being α > 1, we get the desired claim, that is (29).
The conclusion now readily follows: by minimality of � and thanks to (24), (25) and (29)

we have that

0 ≤ Gε,η(�ρ) − Gε,η(�)

≤ κρNC(ϕ)
(
(qu(x0)

2 − qu(x1)
2) + ε(v(x1) − v(x0))

)
+ o(ρN ) + ρNo(κ).

Since from the assumptions we have (qu(x0)2 − qu(x1)2) + ε(v(x1) − v(x0)) < 0, by
choosing ρ and κ small enough, we get the desired contradiction. The proof is concluded.

An immediate consequence of Lemma 6.4 and Theorem 6.5 is the following.

Corollary 6.6 Let �, u and qu be as above. For some constant �ε > 0, we have

q2u (x) − εv�(x) = �ε, for x ∈ ∂∗�.

Moreover, qu ∈ C1,γ for some γ ∈ (0, 1) and

‖qu‖C1,γ ≤ C(N , α, R).

Finally, to prove that the boundary of �ε is locally the graph of a C2,γ function on the
boundary of a ball, we only need to implement the improvement of flatness technique from
[4, Section 7 and 8], which can be readapted with minimal changes to our setting as shown
in [21, Appendix].

Definition 6.7 Letμ± ∈ (0, 1] and k > 0. Aweak solution u of (22) is of class F(μ−, μ+, k)
in Bρ(x0) with respect to direction ν ∈ S

N−1 if

(a) x0 ∈ ∂{u > 0} and
u = 0, for (x − x0) · ν ≤ −μ−ρ, x ∈ Bρ(x0),

u(x) ≥ qu(x0)[(x − x0) · ν − μ+ρ], for (x − x0) · ν ≥ μ+ρ, x ∈ Bρ(x0).

(b) |∇u(x0)| ≤ qu(x0)(1 + k) in Bρ(x0) and oscBρ(x0)qu ≤ kqu(x0).

We note that if k = +∞, then condition (b) is automatically satisfied, that is, no bounds
on the gradient are required. The fact that our minimizers are nearly spherical sets of class
C2,γ is now a direct consequence of the following regularity result, which was first proved
in [4, Theorem 8.1] and [24, Theorem 2].

Theorem 6.8 Let u be a weak solution to (22) in BR and assume that qu is C1,γ for some
constant γ ∈ (0, 1) in a neighborhood of {u > 0}. Then there are constants μ and k,
depending only on N, α, R, max qu, min qu, ‖qu‖C1,γ such that:

If u is of class F(μ, 1,+∞) in B4ρ(x0) with respect to some direction ν ∈ S
N−1 with

μ ≤ μ and ρ ≤ kμ2, then there exists a C2,γ function f : RN−1 → R with ‖ f ‖C2,γ ≤
C(N , α, R, ‖qu‖C1,γ ) such that, calling

graphν f := {x ∈ R
N : x · ν = f (x − (x · ν)ν)},

then

∂{u > 0} ∩ Bρ(x0) = (x0 + graphν( f )) ∩ Bρ(x0).
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7 Proof of Theorem 1.2

In the last section we have shown that any minimizer for problem (2) has boundary close to
that of a ball (precisely, the ball which achieve the minimum in the definition of asymmetry),
and is locally C2,γ − regular. This, reasoning as in [8, Proof of Proposition 4.4], is enough
to show that such a minimum is a nearly spherical set, and to conclude the proof of Theorem
1.2.

Proof of Theorem 1.2 Thanks toTheorem5.7 andLemma3.2, for ε∗ small enough (depending
on N , α, R), there is a minimizer�ε for (2) and we can assumewithout loss of generality that
the barycenter of �ε is x�ε = 0. It is not difficult to show that the sequence of the translated
sets �ε with barycenter at the origin still converges in L1 to the ball B of unit measure and
centered at the origin, and thus the statement of Lemma 6.1 applies for them. We call uε the
torsion function of �ε , so that �ε = {uε > 0}. We claim that �ε is a C2,γ nearly spherical
set. To see this, let k, μ be as in Theorem 6.8 andμ < μ to be fixed later. Since ∂B is smooth,
there exists ρ(μ) ≤ kμ2 such that, for all ρ ≤ ρ(μ) and all x ∈ ∂B, we have

∂B ∩ B5ρ(x) ⊂
{
x : |(x − x) · νx | ≤ μρ

}
,

where hereafter νx is the inner unit normal to ∂B at x . By Lemma 6.1, up to take εE small
enough (depending possibly also on μ), there is a point x0 ∈ ∂�ε ∩ Bμρ(μ)(x) such that

∂�ε ∩ B4ρ(μ)(x0) ⊂ Bμρ(μ)

(
∂B ∩ B5ρ(μ)(x)

)
⊂
{
x : |(x − x0) · νx | ≤ 4μρ(μ)

}
.

We notice that, with the notation of Definition 6.7, the second condition of part (a) holds if
μ+ = 1, since uε ≥ 0. Therefore uε is of class F(μ, 1,+∞) in B4ρ(μ)(x0) in direction νx
and hence, by Theorem 6.8 and Corollary 6.6, we infer that ∂�ε ∩ Bρ(μ)(x0) is the graph of
a C2,γ function with respect to νx . So, up to further decrease μ, there are functions ϕx

ε with
C2,γ norm uniformly bounded such that

∂�ε ∩ Bρ(μ)(x) =
{
x + ϕx

ε (x)x : x ∈ ∂B
}
.

As the balls {Bρ(μ)(x)}x∈∂B cover ∂B, by compactness there is a function ϕε ∈ C2,γ (∂B)

with bounded C2,γ norm. Moreover, up to take εE small enough, by Lemma 6.1, we can
assume that ‖ϕε‖C2,γ ′ is as small as we wish. A direct application of [8, Theorem 3.3]
(recalling also that �ε has barycenter in the origin) entails that

E(�ε) − E(B) ≥ C(N )‖ϕε‖2H1/2(∂B)
≥ C(N )‖ϕε‖2L2(∂B)

.

Up to further decrease εE , by [26, equation (6.8)] we have

Vα(B) − Vα(�ε) ≤ C ′(N , α)‖ϕε‖2L2(∂B)
.

By minimality of �ε and the two bounds above, we have

C(N )‖ϕε‖2L2(∂B)
≤ E(�ε) − E(B) ≤ ε(Vα(B) − Vα(�ε)) ≤ C ′(N , α)ε‖ϕε‖2L2(∂B)

.

Since the constants C and C ′ are independent of ε, we can take εE small enough (depending
on N , α, R) so that, for all ε ≤ εE we have

E(�ε) = E(B),

and by the rigidity of the Saint-Venant inequality, we conclude.
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8 A surgery result for the functional involving the first eigenvalue

In this section we prove the following surgery result. Throughout this section, � is an open
set of unit measure, B is the ball of unit measure centered at the origin and we define

F̃α,ε(�) = λ1(�) + εVα(�).

Proposition 8.1 Let α ∈ (1, N ). There exist constants D(N , α), δ(N , α) < 1 and ε(N , α)

such that if ε ≤ ε(N , α) then for any open and connected set � ⊂ R
N of unit measure

satisfying λ1(�) − λ1(B) ≤ δ(N , α) there exists an open, connected set �̂ of unit measure
with diameter bounded by D and such that

F̃α,ε(�̂) ≤ F̃α,ε(�).

The proof of the proposition is quite technical and is mostly inspired by [31] (see also
[10]). We have skipped the proofs that are essentially identical, while we have detailed the
points where substantial changes need to be made.

Remark 8.2 On the analogies and differences with respect to [31]. The connectedness
assumption is a main difference with respect to the work in [31], though it does not change
much the argument. The reason forwhichweneed to impose it is the presence in our functional
of the repulsive Riesz potential energy. On the other hand this difficulty is compensated by
the fact that, by choosing ε small, we can arbitrarily impose that the sets we take into account
have small Fraenkel asymmetry. Moreover, dealing with only the first eigenvalue simplifies
many technical steps related to the orthogonality of the higher eigenfunctions.

Let us introduce some notation. Let� be a connected set such that with λ1(�)−λ1(B) ≤
δ(N , α), so that, by the quantitative Faber-Krahn inequality (see Theorem 2.3), up to trans-
lations we have

|��B| = A(�) ≤
(

δ

σ̂

)1/2

,

where σ̂ = σ̂ (N ).
From now on we fix � so that B is the ball of unit measure attaining the asymmetry and

we will no more translate it. By defining K = K (N ) := λ1(B) + 1 ≥ λ1(B) + δ(N , α) we
get immediately

λ1(�) ≤ K .

We then call t :=
(

1
ωN

)1/N
the radius of the ball B and note that

|� \ [−t, t]N | ≤ |��B| = A(�), for all t ≥ t .

Let m̂ ∈ (0, 1/4) be such that

(4m̂)
2
N

λ1(B)
K ≤ 1

2
.

Moreover, we choose δ(N , α) small enough so that

|� \ [−t̄, t̄]N | ≤ A(�) ≤
√

δ

σ̂
≤ m̂

22N
. (32)
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We first focus on the direction e1 and detail the construction in this case. We shall denote
z = (x, y) ∈ R × R

N−1 and by zi the i-th component of z ∈ R
N . For any t ∈ R, we define

�t :=
{
y ∈ R

N−1 : (t, y) ∈ �
}

,

and given any set � ⊆ R
N , we define its 1-dimensional projections for 1 ≤ p ≤ N as

πp(�) :=
{
t ∈ R : ∃ (z1, z2, . . . , zN ) ∈ �, z p = t

}
.

For every t ≤ −t̄ we call

�+(t) :=
{
(x, y) ∈ � : x > t

}
, �−(t) :=

{
(x, y) ∈ � : x < t

}
, ε(t) := HN−1(�t ) .

Observe that

m(t) := ∣∣�−(t)
∣∣ =

ˆ t

−∞
ε(s) ds ≤ 2m̂ . (33)

We call u the first eigenfunction on � with unit L2 norm. We define then also, for every
t ≤ t̄ ,

δ(t) :=
ˆ

�t

|∇u(t, y)|2 dHN−1(y) , μ(t) :=
ˆ

�t

u(t, y)2 dHN−1(y) ,

which makes sense since u is smooth inside �. It is convenient to give the further notation

φ(t) :=
ˆ

�−(t)
|∇u|2 =

ˆ t

−∞
δ(s) ds .

Applying the Faber–Krahn inequality inRN−1 to the set�t , and using the rescaling property
of eigenvalues on RN−1, we know that

ε(t)
2

N−1 λ1(�t ) = HN−1(�t )
2

N−1 λ1(�t ) ≥ λ1(BN−1) ,

calling BN−1 the unit ball in RN−1. As a trivial consequence, we can estimate μ in terms of
ε and δ: in fact, noticing that u(t, ·) ∈ H1

0 (�t ) and writing ∇u = (∇1u,∇yu), we have

μ(t) =
ˆ

�t

u(t, ·)2 dHN−1 ≤ 1

λ1(�t )

ˆ
�t

|∇yu(t, ·)|2 dHN−1 ≤ Cε(t)
2

N−1 δ(t).

We can now present two estimates which assure that u and ∇u can not be too big in �−(t).

Lemma 8.3 Let � ⊆ R
N be an open and connected set of unit volume and with λ1(�) ≤ K.

For every t ≤ −t̄ the following inequalities hold:ˆ
�−(t)

u2 ≤ C1ε(t)
1

N−1 δ(t) ,

ˆ
�−(t)

|∇u|2 ≤ C1ε(t)
1

N−1 δ(t) , (34)

for some C1 = C1(N ) (recalling that K for us is a precise constant depending only on N).

The proof of the above Lemma follows exactly as in [31, Lemma 2.3].
Let us go further into the construction, giving some additional definitions. For any t ≤ −t̄

and σ(t) > 0, we define the cylinder Q(t) as

Q(t) :=
{
(x, y) ∈ R

N : t − σ(t) < x < t, (t, y) ∈ �
}

= (
t − σ(t), t

)× �t ,
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where for any t ≤ −t̄ we set

σ(t) = ε(t)
1

N−1 .

We let also �̃(t) = �+(t) ∪ Q(t), and we introduce ũ ∈ H1
0

(
�̃(t)

)
as

ũ(x, y) :=
⎧
⎨
⎩
u(x, y) if (x, y) ∈ �+(t) ,
x − t + σ(t)

σ (t)
u(t, y) if (x, y) ∈ Q(t) .

The fact that ũ vanishes on ∂�̃(t) is obvious; moreover, ∇u = ∇ũ on �+(t), while on Q(t)
one has

∇ũ(x, y) =
(
u(t, y)

σ (t)
,
x − t + σ(t)

σ (t)
∇yu(t, y)

)
.

A simple calculation allows us to estimate the integrals of ũ and ∇ũ on Q(t).

Lemma 8.4 For every t ≤ −t̄ , one has
ˆ
Q(t)

|∇ũ|2 ≤ C2ε(t)
1

N−1 δ(t) ,

ˆ
Q(t)

ũ2 ≤ C2ε(t)
3

N−1 δ(t) ,

for a suitable constant C2 = C2(N ).

The proof of the above Lemma follows as [31, Lemma 2.4].
Another simple but useful estimate concerns the Rayleigh quotients of the functions ũ on

the sets �̃(t).

Lemma 8.5 There exists a constant C3 = C3(N ) such that for every t ≤ −t̄ , one has

λ1(�̃(t)) ≤ R(̃u, �̃(t)
) ≤ λ1(�) + C3ε(t)

1
N−1 δ(t) .

The proof of the above Lemma follows as in [31, Lemma 2.5], but it is actually simpler
since in our setting only the first eigenfunction is involved and we do not need to take care
of orthogonality constraints.

We can now enter in the central part of our construction. Basically, we aim to show that
either � already has bounded left “tail” in direction e1, or some rescaling of �̃(t) has energy
lower than that of �.

Lemma 8.6 Let � be as in the assumptions of Lemma 8.3, and let t ≤ −t̄ . There exist
ε = ε(N , α) and C4 = C4(N , α) > 2 such that, for all ε ≤ ε exactly one of the three
following conditions hold:

(1) max
{
ε(t), δ(t)

}
> 1;

(2) (1) does not hold and m(t) ≤ C4
(
ε(t) + δ(t)

)
ε(t)

1
N−1 ;

(3) (1) and (2) do not hold and one has that λ1(�̂(t)) ≤ λ1(�) and

F̃α,ε

(
�̂(t)

)
< F̃α,ε(�),

where for t ≤ −t̄ we set �̂(t) := ∣∣�̃(t)
∣∣− 1

N �̃(t).
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Proof Assume (1) is false. Then it is possible to apply Lemma 8.5, to get

λ1
(
�̃(t)

) ≤ λ1(�) + C3ε(t)
1

N−1 δ(t) . (35)

By the scaling properties of the eigenvalue and the fact that
∣∣�̂(t)

∣∣ = 1, we know that

λ1
(
�̂(t)

) = ∣∣�̃(t)
∣∣ 2N λ1

(
�̃(t)

)
.

By construction,
∣∣�̃(t)

∣∣ = ∣∣�+(t)
∣∣+ ∣∣Q(t)

∣∣ = 1 − m(t) + ε(t)
N

N−1 ,

hence the above estimates and (35) lead to

λ1(�̂(t)) =
(
1 − m(t) + ε(t)

N
N−1

) 2
N
λ1
(
�̃(t)

)

≤
(
1 − 2

N
m(t) + 2

N
ε(t)

N
N−1

)(
λ1(�) + C3ε(t)

1
N−1 δ(t)

)

≤ λ1(�) − 2λ1(B)

N
m(t) + 2K

N
ε(t)

N
N−1 +

(
2C3 + 2

N

)
ε(t)

1
N−1 δ(t) .

At this point, defining C4 := max { 2(K+1)
N + 2C3, 2}, if

m(t) ≤ C4
(
ε(t) + δ(t)

)
ε(t)

1
N−1 ,

then condition (2) holds true. Otherwise, we immediately have that

λ1(�̂(t)) ≤ λ1(�) −
(
2λ1(B)

N
− 1

)
m(t) = λ1(�) − C5(N )m(t), (36)

for a constant C5 > 0, therefore the first part of the third claim is verified.
Moreover, we can compute, using Lemma 2.1, the Riesz inequality and noting that

|���̃(t)| ≤ m(t) + ε(t)
N

N−1 ,

Vα(�̂(t)) ≤ Vα(�̃(t))
(
1 − m(t) + ε(t)

N
N−1

)− N+α
N ≤

(
1 + 2

N + α

N
m(t)

)
Vα(�̃(t))

≤
(
1 + 2

N + α

N
m(t)

)(
Vα(�) + C0(N )|���̃(t)|

[
|�| α

N + |�̃(t)| α
N

] )

≤ Vα(�) + 2
N + α

N
Vα(B)m(t) + 2C0(m(t) + ε(t)

N
N−1 ) + 8C0

N + α

N
m(t)

≤ Vα(�) + 2
N + α

N
Vα(B)m(t) + 2C0(1 + 1

C4
)m(t) + 8C0

N + α

N
m(t)

= Vα(�) + C6(N , α)m(t).

(37)

Then, putting together (36) and (37), we deduce

λ1(�̂(t)) + εVα(�̂(t))

≤ λ1(�) + εVα(�) − (C5 − εC6)m(t)

≤ λ1(�) + εVα(�) − C5

2
m(t),

up to take ε ≤ ε(N , α) <
C5
2C6

, so that in this case condition (3) holds and the proof is
concluded.
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Lemma 8.7 Let α ∈ (1, N ). For every ε ≤ ε(N , α), and for any open and connected set
� ⊆ R

N of unit volume, with λ1(�) ≤ K and

|� ∩ {(x, y) ∈ R × R
N−1 : x < −t̄}| ≤ m̂,

there exists another open, connected set U−
1 ⊆ R

N , still of unit volume, such that

(1) λ1(U
−
1 ) ≤ λ1(�) and F̃α,ε(U

−
1 ) ≤ F̃α,ε(�),

(2) U−
1 ⊂

{
(x, y) ∈ R × R

N−1 : x > −2C7 − 4 − 2t̄
}
,

(3) |U−
1 \ [−2t̄, 2t̄]N | ≤ m̂

22N−1 ≤ m̂.

Proof. Let us start defining

t̂ := sup
{
t ≤ −t̄ : condition (3) of Lemma 8.6 holds for t

}
,

with the usual convention that, if condition (3) is false for every t ≤ −t̄ , then t̂ = −∞. We
introduce now the following subsets of (t̂,−t̄),

A : =
{
t ∈ (t̂,−t̄) : condition (1) of Lemma 8.6 holds for t

}
,

B : =
{
t ∈ (t̂,−t̄) : condition (2) of Lemma 8.6 holds for t

}
,

and we further subdivide them as

A1 :=
{
t ∈ A : ε(t) ≥ δ(t)

}
, A2 :=

{
t ∈ A : ε(t) < δ(t)

}
,

B1 :=
{
t ∈ B : ε(t) ≥ δ(t)

}
, B2 :=

{
t ∈ B : ε(t) < δ(t)

}
.

We aim to show that both A and B are uniformly bounded. Concerning A1, observe that

∣∣A1
∣∣ ≤

ˆ
A1

ε(t) dt =
∣∣∣
{
(x, y) ∈ � : x ∈ A1

}∣∣∣ ≤ ∣∣�∣∣ = 1 ,

so that |A1| ≤ 1. Concerning A2, in the same way and also recalling that λ1(�) ≤ K , we
have

∣∣A2
∣∣ ≤

ˆ
A2

δ(t) dt =
ˆ
A2

ˆ
�t

∣∣∇u(t, y)
∣∣2 dHN−1(y) dt ≤

ˆ
�

∣∣∇u
∣∣2 ≤ K ,

so that |A2| ≤ K . Summarizing, we have proved that
∣∣A∣∣ ≤ 1 + K . (38)

Let us then pass to the set B1. To deal with it, we need a further subdivision, namely, we
write B1 = ∪n∈NBn

1 , where

Bn
1 :=

{
t ∈ B1 : m̂

2n
< m(t) ≤ m̂

2n−1

}
. (39)

We note that it is possible that some of the Bn
1 are empty, in particular this happens for

n < 2N − 1, because m(t) ≤ |� \ [−t̄, t̄]N | ≤ m̂
22N

, but this does not affect our argument.
Keeping in mind (33), we know that t �→ m(t) is an increasing function, and that for a.e.
t ∈ R one has m′(t) = ε(t). Moreover, for every t ∈ B1 one has by construction that

m(t) ≤ C4
(
ε(t) + δ(t)

)
ε(t)

1
N−1 ≤ 2C4 ε(t)

N
N−1 .
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As a consequence, for every t ∈ Bn
1 one has

m′(t) = ε(t) ≥ 1

C
m(t)

N−1
N ≥ 1

C
m̂

N−1
N

1
(
2

N−1
N
)n .

This readily implies

1

C
m̂

N−1
N

1
(
2

N−1
N
)n
∣∣Bn

1

∣∣ ≤
ˆ
Bn
1

m′(t) ≤ m̂

2n
,

which in turn gives
∣∣Bn

1

∣∣ ≤ Cm̂
1
N
(
2− 1

N
)n

.

Finally, we deduce

∣∣B1
∣∣ =

∑
n∈N

∣∣Bn
1

∣∣ ≤ Cm̂
1
N
∑
n∈N

(
2− 1

N
)n = Cm̂

1
N

2
1
N

2
1
N − 1

. (40)

Concerning B2, we can almost repeat the same argument: in fact, thanks to (34), for every
t ∈ B2 we have

φ(t) =
ˆ

�−(t)
|∇u|2 ≤ C1 ε(t)

1
N−1 δ(t) ≤ C1 δ(t)

N
N−1 , with δ(t) = φ′(t) .

which is the perfect analogous of the above setting with δ and φ in place of ε and m respec-
tively. Since as already observed φ(t̄) ≤ ´

�
|∇u|2 ≤ K , in analogy with (39) we can define

Bn
2 :=

{
t ∈ B2 : K

2n+1 < φ(t) ≤ K

2n

}
,

thus the very same argument which leads to (40) now gives

∣∣B2
∣∣ =

∑
n∈N

∣∣Bn
2

∣∣ ≤ C
(
K
) 1
N
∑
n∈N

(
2− 1

N
)n = C

(
K
) 1
N

2
1
N

2
1
N − 1

. (41)

Putting (38), (40) and (41) together, we find
∣∣A∣∣+ ∣∣B∣∣ ≤ C7 = C7(N , α) . (42)

We need now to distinguish two cases for �.
Case I. One has t̂ = −∞. If this case happens, then condition (3) of Lemma 8.6 never holds
true, i.e., for every t ≤ −t̄ either condition (1) or (2) holds. Recalling the definition of A and
B and (42), we deduce that, choosing simply U−

1 = �,

U−
1 ⊂

{
(x, y) ∈ R × R

N−1 : x > −C7 − t̄
}

⊂
{
(x, y) ∈ R × R

N−1 : x > −2C7 − 4 − 2t̄
}

Therefore, the remaining parts of the claim of Lemma 8.7 is immediately obtained, noting
that clearly

|U−
1 \ [−2t̄, 2t̄]N | ≤ |� \ [−t̄, t̄]N | ≤ m̂

22N
≤ m̂

22N−1 .

Case II. One has t̂ > −∞. In this case, let us notice the connectedness of � assures that it
must be m(t̂) > 0, hence (t̂,−t̄) ⊆ A ∪ B and thus by (42) t̂ ≥ −t̄ − C7. Let us now pick
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some t� ∈ [t̂ − 1, t̂] for which condition (3) holds, and define U−
1 := �̂(t�). By definition,

U−
1 has unit volume, and

λ1(U
−
1 ) ≤ λ1(�), F̃α,ε(U

−
1 ) < F̃α,ε(�),

being condition (3) true for t�.
Observe now that by definition, for every 2 ≤ p ≤ N , one has πp

(
�̃(t�)

) = πp
(
�+(t�)

)
,

hence

diam
(
πp(U

−
1 )
) = diam

(
πp
(
�̂(t�)

)) = diam
(
πp

(∣∣�̃(t�)
∣∣− 1

N �̃(t�)
))

≤ 2 diam
(
πp
(
�̃(t�)

))

= 2 diam
(
πp
(
�+(t�)

)) ≤ 2 diam
(
πp(�)

)
,

where we have used that
∣∣�̃(t�)

∣∣ ≥ 1/2. On the other hand, it is clear from the construction
that

U−
1 = |�̃(t�)|− 1

N �̃(t�) ⊂ 2�̃(t�) ⊂
{
(x, y) ∈ R × R

N−1 : x > 2t� − 2
}
.

As a consequence, being t� ≥ t̂ − 1 ≥ −t̄ − C7 − 1, we deduce

U−
1 ⊂

{
(x, y) ∈ R × R

N−1 : x > −2t̄ − 2C7 − 4
}
.

Concerning the last part of the claim, recalling again that

U−
1 = |�̃(t�)|− 1

N �̃(t�) ⊂ 2�̃(t�),

we infer that

|U−
1 \ [−2t̄, 2t̄]N | ≤ 2|� \ [−t̄, t̄]N | ≤ m̂

22N−1 ,

so the proof is concluded also in this case.

In order to conclude our surgery result, we need to iterate Lemma 8.7. First, we apply it
to U−

1 , in direction e1 for t ≥ 2t̄ =: t+1 . Then we will recursively apply it to the new set that
we obtain, in order to get a uniform boundedness in all the other N −1 coordinate directions.
We need to take care that, while rescaling, the diameter of the projections in the directions
we already dealt with remains bounded.

For the first step, dealing with U−
1 in direction e1 for t ≥ t+1 , Lemma 8.6 can be repeated

analogously with a suitable change of notation, for t ≥ t+1 ≥ t̄ :

�+(t) =
{
(x, y) ∈ � : x < t

}
, �−(t) =

{
(x, y) ∈ � : x > t

}
,

ε(t) = HN−1(�t ), m(t) =
ˆ +∞

t
ε(s) ds ≤ 2m̂,

φ(t) =
ˆ

�−(t)
|∇u|2 =

ˆ +∞

t
δ(s) ds.

We can then prove the following Lemma.

Lemma 8.8 Let α ∈ (1, N ). For every ε ≤ ε(N , α), given U−
1 the set from Lemma 8.7, there

exists another open, connected set U+
1 ⊆ R

N , still of unit volume, such that

(1) λ1(U
+
1 ) ≤ λ1(U

−
1 ) ≤ λ1(�) and F̃α,ε(U

+
1 ) ≤ F̃α,ε(U

−
1 ) ≤ F̃α,ε(�),
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(2) U+
1 ⊂

{
(x, y) ∈ R × R

N−1 : −4C7 − 8 − 4t+1 < x < 2C7 + 4 + 2t+1
}
, and therefore

diam(π1(U
+
1 )) ≤ C+

1 (N , α) := 6C7 + 12 + 6t+1 ,

(3) |U+
1 \ [−2t+1 , 2t+1 ]N | ≤ m̂

22(N−1) ≤ m̂.

Proof We argue exactly as in the proof of Lemma 8.7, noting that, since λ1(U
−
1 ) ≤ λ1(�),

the set still satisfies the condition λ1(U
−
1 ) ≤ K and moreover

|U−
1 ∩ {(x, y) ∈ R × R

N−1 : x > t+1 = 2t̄}| ≤ m̂.

This clearly gives that

U+
1 ⊂ {(x, y) ∈ R × R

N−1 : x < 2C7 + 4 + 2t+1 }.
Concerning the other bound, it is enough to observe, as in the proof of Lemma 8.7, that

U+
1 ∩ {(x, y) : x < t+1 } ⊂ 2(U−

1 ∩ {(x, y) : x < t+1 }).

We can now iterate the argument in all the other coordinate directions to prove Proposi-
tion 8.1.

Proof of Proposition 8.1 First of all, we note that K (N , α) ≥ λ1(B) + δ and we set δ as
in (32), ε(N , α) as in Lemma 8.6. Let us fix � ⊂ R

N an open (smooth) set of unit volume
with λ1(�) ≤ K . Thanks to Lemma 8.7 and Lemma 8.8, we have found a new open and
connected set of unit measure U+

1 with

λ1(U
+
1 ) ≤ λ1(�), F̃α,ε(U

+
1 ) ≤ F̃α,ε(�),

and moreover

diam(π1(U
+
1 )) ≤ C+

1 (N , α), |U+
1 \ [−2t+1 , 2t+1 ]N | ≤ m̂

22(N−1)
.

We now iterate the argument in all the remaining directions. Let us show it for e2. We call
first t−2 := 2t+1 = 4t̄ and repeat Lemma 8.7 to U+

1 in direction e2 for z2 ≤ −t−2 so that we
can find a new open and connected set of unit measure U−

2 such that

λ1(U
−
2 ) ≤ λ1(U

+
1 ), F̃α,ε(U

−
2 ) ≤ F̃α,ε(U

+
1 ),

diam(π1(U
−
2 )) ≤ 2C+

1 (N , α), U−
2 ⊂ {z ∈ R

N : z2 > −2C7 − 4 − 2t−2 },
|U−

2 \ [−2t−2 , 2t−2 ]N | ≤ m̂

22(N−1)−1
.

Then we call t+2 = 2t−2 and repeat Lemma 8.8 to U−
2 in direction e2 for z2 ≥ t+2 in order to

find a new open and connected set of unit measure U+
2 such that

λ1(U
+
2 ) ≤ λ1(U

−
2 ), F̃α,ε(U

+
2 ) ≤ F̃α,ε(U

−
2 ),

diam(π1(U
+
2 )) ≤ 22C+

1 (N , α), diam(π2(U
+
2 )) ≤ C+

2 (N , α),

|U+
2 \ [−2t−2 , 2t−2 ]N | ≤ m̂

22(N−2)
,

where we can take C+
2 (N , α) := 6C7 + 12 + 6t+2 . We note that the last condition

|U−
2 \ [−2t+2 , 2t+2 ]N | ≤ m̂

22(N−2)
≤ m̂,
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is needed so that we can restart the cutting procedure in direction e3 knowing that |U+
2 ∩{z3 ≤

−2t+2 }| ≤ m̂, which is the condition required for Lemma 8.3. Iterating this procedure other
N − 2 times, we obtain in the end an open and connected set of unit measure U+

N such that

λ1(U
+
N ) ≤ λ1(�), F̃α,ε(U

+
N ) ≤ F̃α,ε(�),

diam(πp(U
+
N )) ≤ 22(N−p)C+

p (N , α), for p = 1, . . . , N ,

whereC+
p (N , α) := 6C7+12+6t+p and t+p = 22p−1 t̄ for all p = 1, . . . N . Clearly �̂ = U+

N
is a good choice for proving the claim.

9 Proof of Theorem 1.1

As outlined in the introduction, the proof of Theorem 1.1 can be obtained as the juxtaposition
of two independent results. Hence, we divide the section in two parts. In the first one, we
prove the minimality of the ball for the functional F̃α,ε among equibounded sets. Then we
use the surgery argument of Sect. 8 to conclude the proof of Theorem 1.1.

9.1 Rigidity of the ball in the class of equibounded sets

We aim to prove the following result.

Proposition 9.1 Let α ∈ (1, N ) and R > R0. There is εRλ1 = εRλ1(N , α, R) such that, for all

ε ≤ εRλ1 , the unit ball is the unique minimizer for problem

min
{
λ1(�) + εVα(�) : � ⊂ BR, |�| = 1

}
. (43)

The previous result is an easy consequence of Theorem1.2 and theKohler-Jobin inequality
[7,27], which we recall.

Lemma 9.2 (Kohler-Jobin inequality) For every open set � ⊂ R
N of finite measure, it holds

the following scale invariant inequality

λ1(�)

λ1(B)
≥
(

(−E(B))

(−E(�))

) 2
N+2

, (44)

where B ⊂ R
N is any ball in R

N . Equality holds if and only if � is a ball up to sets of null
capacity.

Proof of Proposition 9.1 We follow here a smart and easy technique proposed in [8]. Let
� ⊂ BR be an (open) set with |�| = 1 and we call B a ball of unit measure centered for the
sake of simplicity in the origin, as BR . By rewriting (44) as

λ1(�)

λ1(B)
− 1 ≥

(
(−E(B))

(−E(�))

)ϑ

− 1, with ϑ = 2

N + 2
, (45)

and since ϑ ∈ (0, 1), by concavity we have

tϑ − 1 ≥ (2ϑ − 1)(t − 1), for all t ∈ [1, 2].
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If E(B) ≥ 2E(�), then we have, using (45),

λ1(�)

λ1(B)
− 1 ≥ cϑ

(
(−E(B))

(−E(�))
− 1

)
,

with cϑ = 2ϑ − 1. The above inequality implies that

λ1(�) − λ1(B) ≥ cϑλ1(B)
(E(�) − E(B))

(−E(�))
≥ cϑλ1(B)

(−E(B))
(E(�) − E(B)),

where we have used also the Saint-Venant inequality.
Since, by Theorem 1.2 for all ε ≤ εE (N , α, R), the ball of unit measure is the only

minimizer for the functional

� �→ E(�) + εVα(�), for � ⊂ BR, |�| = 1,

we deduce that,

λ1(�) − λ1(B) ≥ cϑλ1(B)

(−E(B))
(E(�) − E(B)) ≥ ε

cϑλ1(B)

(−E(B))
(Vα(B) − Vα(�)).

On the other hand, if E(B) < 2E(�), we can still obtain from (45)

λ1(�)

λ1(B)
− 1 ≥ 2ϑ − 1 ≥ 2ϑ − 1

(−E(B))
(E(�) − E(B)) ≥ 2ϑ − 1

(−E(B))
ε(Vα(B) − Vα(�)).

In conclusion, we have proved that, for all

ε ≤ εRλ1 = εE
cϑλ1(B)

(−E(B))
,

we have that

λ1(�) + εVα(�) ≥ λ1(B) + εVα(B), for all � ⊂ BR, |�| = 1,

and the proof is concluded.

9.2 Conclusion of the proof of Theorem 1.1

We are now in position to prove the main result of the paper.

Proof of Theorem 1.1 First of all, as it is standard when dealing with quantitative inequalities,
we can perform the minimization only in the class of sets with λ1(A)−λ1(B) ≤ δ(N , α). In
fact, it is clearly enough to take ελ1 < δ/Vα(B): in the other case when λ1(A) − λ1(B) > δ,
and ε ≤ ελ1 we have

λ1(A) + εVα(A) ≥ λ1(B) + δ + εVα(A) ≥ λ1(B) + εVα(B),

thus the claim holds for free.
Clearly one can take a minimizing sequence (An)n∈N made of smooth sets. We show that

the elements of the minimizing sequence (An) can be chosen to be also connected. Let us
take a smooth open set of unit measure A, which is made of an at most countable number of
connected components,

A = ∪k∈NAk .
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For all ϑ > 0, we consider the segment Sk connecting the components Ak and Ak+1 and we
consider Tk,ϑ = ∪x∈Sk Bζ (x), choosing ζ so that |Tk,ϑ | ≤ ϑ

2k
. We call now

Aϑ := ∪k∈NTk,ϑ ∪ A ⊃ A, Âϑ := |Aϑ |−1/N Aϑ ,

and note that

|Aϑ | ≤ 1 + ϑ, | Âϑ | = 1.

By monotonicity and scaling of the eigenvalue, we immediately deduce

λ1(Aϑ) ≤ λ1(A), λ1( Âϑ) ≤ |Aϑ |2/Nλ1(A) ≤
(
1 + 2

N
ϑ

)
λ1(A).

On the other hand, by Lemma 2.1 and scaling of the Riesz energy,

Vα( Âϑ) = |Aϑ |− N+α
N Vα(Aϑ) ≤ Vα(A) + C(N , α)ϑ.

All in all, we have that, for all ϑ > 0,

F̃α,ε( Âϑ) ≤ F̃α,ε(A) + C(N , α)ϑ,

and by arbitrariety of ϑ , applying this procedure to all the elements of the minimizing
sequence, we deduce that assuming all elements of the sequence to be connected is not
restrictive.

At this pointwe can take (An)n∈N aminimizing sequence for problem (1),made of smooth,
connected sets of unit measure. Up to take ελ1 ≤ ε, for all n, we can apply Proposition 8.1
to An and we find a new open and connected set, Ân , of unit measure and with

F̃α,ε( Ân) ≤ F̃α,ε(An), diam( Ân) ≤ D(N , α).

Hence, ( Ân)n∈N is still a minimizing sequence for problem (43), made by sets with uniformly
bounded diameter. It is eventually enough to restrict the minimization problem to a ball
BR with R = D(N , α), and we can find that the unit ball is the unique optimal set for
problem (43), thanks to Proposition 9.1. We note that, since now R has been fixed equal to
D(N , α), then the constant εRλ1 now depends only on N , α and we conclude taking ελ1 =
min{εD(N ,α)

λ1
, ε, δ/Vα(B)}.

10 The non-existence results

In this section we show Theorem 1.6.

Proof of Theorem 1.6 We give the proof just for the case of the torsion energy, since the other
one is analogous. Notice that any set in U(δ) is bounded. Moreover any minimizer must be
connected. Otherwise, if � is made up by the union of two disjoint open sets �1 and �2

we have that E(�) does not change by sending toward infinity �1 while keeping �2 fixed,
while Vα under such a translation strictly decreases, contradicting the minimality. Now, any
connected open set lying in U(δ) has bounded diameter, with a bound depending only on δ

and N :

diam(�) ≤ d(δ), for all � ∈ U(δ).
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By choosing an horizontal open necklace-type set of k = kδ = �δ−N �4 tangent balls of
radius c(N , δ)δ disposed on a line, one finds that there is a geometric constant C(N ) such
that d(δ) ≤ C(N )δ1−N . Here c(N , δ) = δ−N /�δ−N � ∈ (1, 2) is so that the necklace-type
set has total measure 1. Therefore, for all � ∈ U(δ), we can compute the following lower
bound on Fα,ε:

Fα,ε(�) = E(�) + εVα(�) ≥ E(B) + ε
1

d(δ)N−α
≥ E(B) + εC(N )δ(N−1)(N−α),

(46)

where we have used the Saint-Venant inequality.
We now construct a disconnected set with energy lower than the right-hand side of (46),

as long as N − α < 1. This will immediately entail non-existence of minimizers. Let k =
kδ ∈ N and d(δ) be the parameters defined above. We define the set �̃ := ⋃k

i=1 Br (xi ),
with |Br (xi )| = 1

k for all i ∈ {1, . . . , k} and where xi ∈ R
n are chosen so that the balls are

mutually disjoint. By construction �̃ ∈ U(δ). We set

q = min
{
|xi+1 − xi | : i = 1, . . . , N − 1

}
.

Notice that we can choose q as large as we want, up to change the values of the points xi
(which can be arbitrarily mutually distant). Letting B be the ball of unit measure, by scaling
we have

Fα,ε(�̃) = k− 2
N E(B) + εk− α

N Vα(B) + ε
∑
i �= j

ˆ
Br (xi )

ˆ
Br (x j )

1

|x − y|N−α
dxdy

≤ c0(N )

(
k− 2

N E(B) + εk− α
N Vα(B) + k(k − 1)ε

k2qN−α

)

≤ c0(N )

(
k− 2

N E(B) + εk− α
N Vα(B) + ε

qN−α

)

≤ c1(N )
(
E(B)δ2 + εVα(B)δα + εqα−N

)

≤ 2c1(N )
(
E(B)δ2 + εVα(B)δα

)
,

(47)

where c0(N ), c1(N ) are geometric constants and the last inequality holds by choosing q
big enough. Hence, by combining (46) and (47), setting c(N ) := 2c1(N ) we contradict the
minimality as soon as

E(B) + εδ(N−1)(N−α) > c(N )
(
E(B)δ2 + εVα(B)δα

)
,

that is if

(−(E(B))
(
1 − c(N )δ2

) ≤ ε
(
C(N )δ(N−1)(N−α) − c(N )Vα(B)δα

)
:= εuα,N (δ)

Since α > N − 1, then (N − 1)(N −α) < α so that there exists 1 > δ0(N , α) > 0 such that
for all 0 < δ < δ0 it holds

uα,N (δ) = C(N )δ(N−1)(N−α) − c(N )Vα(B)δα > 0, and 1 − c(N )δ2 ≥ 1

2
.

4 For any x ∈ R, we denote �x� the integer part of x .
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Thus the contradiction follows as long as

ε ≥ εmax (α, N , δ) := (−(E(B))
(
1 − c(N )δ2

)

2uα,N (δ)
.

This concludes the proof.
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