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RSS-based Localization of Multiple Radio
Transmitters via Blind Source Separation

Enrico Testi, Student Member, IEEE, Andrea Giorgetti, Senior Member, IEEE

Abstract—This letter proposes a methodology for counting
and locating the nodes of an uncooperative wireless network
using power measurements collected by sensors. The approach is
blind, allowing the detection and localization of the nodes without
knowing the network’s specific features (i.e., the number of nodes,
modulation type, and medium access control (MAC)). Because the
signals captured by the radio-frequency (RF) sensors are addi-
tively mixed, blind source separation (BSS) is used to separate
transmitted power profiles. Then, received signal strength (RSS)
is extracted from the reconstructed signals and localization is
performed through conventional least square (LS) and maximum
likelihood (ML) techniques. Numerical results reveal that the
BSS-ML approach reaches a rather low localization error in mild
shadowing regimes, even when the ratio between the number of
RF sensors and nodes, ρ, is close to 1. Finally, it is shown how
the performance degradation introduced by the imperfect BSS is
slight and that the root mean square error (RMSE) approaches
the Cramér–Rao lower bound (CRLB) when increasing ρ.

Index Terms—Blind source separation, principal component
analysis, received signal strength, localization, maximum likeli-
hood estimation, least squares estimation.

I. INTRODUCTION

LOCATION-AWARE technologies are deemed to enhance
wireless network capabilities and pave the way to new

unforeseen applications. Let us consider a scenario in which a
wireless network periodically senses the radio-frequency (RF)
spectrum collecting simple over-the-air power samples and
detecting and localizing all the transmitters in the area. Such
information can then be used to make intelligent decisions for
dynamic spectrum access [1]. Furthermore, in the context of
defense operations, understanding the structure of the enemy’s
network may increase spectrum awareness. In this sense, a
network of RF sensors can be spread within an unknown
environment to detect and collect helpful information about the
adversarial network structure [2], [3], [4]. An unusual condition
of such applications is that they imply that the detection and
localization of unknown network nodes are performed without
having the chance to be part of it.

There have been several fundamental contributions on local-
ization over the past decade exploiting different technologies,
such as WiFi and ultrawide band (UWB) [5], [6], [7], [8].
Furthermore, the problem of multi-target localization using
groups of cooperating sensors has also been widely investigated
[9], [10], including an original framework that ensure scalability
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and distributed implementation [6]. However, all the above
works assume that the targets can exchange information with
the anchors, thus contributing to the localization process. In
[11], the authors propose a particle simulation algorithm for
the localization of wireless transmitters leveraging on a large
number of RF sensors distributed on a grid.

This letter proposes a novel methodology for counting and
locating the nodes of a packet-based non-collaborative wireless
network using over-the-air power profiles captured by RF
sensors. In particular, the sensors do not have access to the
target network and ignore its main features (i.e., the number of
nodes, modulation type, and medium access control (MAC)).
Hence, the RF sensors can only measure the aggregate power
received by the nodes. Then, a fusion center processes the
power measurements to estimate the number and position of
the nodes. This problem is challenging because nodes may
transmit simultaneously in the same frequency band, sensors
can be placed in an unfavorable geometrical configuration, and
sensing is hindered by path-loss, shadowing, and measurement
noise. Regarding the first challenging aspect, the RF sensors
receive a mixture of signals, so blind source separation (BSS)
is used to separate traffic patterns.

The processing chain depicted in Fig. 1 shows the stages of
the algorithm, while an example of a typical scenario is shown
in Fig. 3. Firstly, a BSS is performed to count the number of
targets and reconstruct the power profiles transmitted by each
of them. Then, through a non-linear filtering procedure, the
received signal strength (RSS) associated with each sensor-
target couple is extracted. After this filtering step, the sensors
can localize the target nodes separately using any conventional
positioning technique based on RSS. For instance, in this
work, localization is performed through least square (LS) and
maximum likelihood (ML) techniques. In the numerical results,
the performance of the methodology is derived in different
shadowing regimes and varying the sensors’ spatial density,
and it is compared with the solution proposed in [11].

The remainder of this letter is organized as follows. Section II
describes the scenario, the system model, and the proposed
framework. In Section III the adopted localization algorithms
are briefly introduced. Numerical results are shown in Sec-
tion IV. Throughout the paper, lowercase bold letters denote
vectors, capital boldface letters denote matrices, the transpose
operator is represented by (·)T, and || · ||p is the lp-norm. With
vi,j and vi we represent, respectively, the element and the
ith row of the matrix V. The shorthand N (µ, σ2) is used to
denote a real Gaussian distribution with mean µ and variance
σ2, while 1{A} is the indicator function equal to one when A
is true and zero otherwise.
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Fig. 1. Block scheme of the complete methodology: target nodes (T1, T2, . . . ), RF sensors (S1,S2, . . . ), node counting (principal component analysis (PCA)),
received power profiles separation (fast independent component analysis (F-ICA)), transmitted power profile reconstruction (RSS extraction), and localization.

II. BLIND SOURCE SEPARATION

Let us consider a set T of target nodes of a wireless
network at unknown positions and a set S of RF sensors
at known locations. Let T and S be the cardinality of T and
S, respectively.

Due to the packet-based communication, the transmission
power of a node calculated over short time intervals (called
bins) of duration Tb is a random on/off process representing
the transmission power profile of that node. Let us arrange
such profiles as rows of a matrix P ∈ RT×K whose element
pt,k indicate the transmit power of node t at time bin k with
t = 1, 2, . . . , T and k = 1, 2, . . . ,K, where K is the number
of samples collected over a period of time Tob = KTb (namely
the observation time).

The sensors S gather the power received from the nodes
and sample it through an energy detector (ED), consisting of
a bandpass filter with bandwidth W , followed by a square-law
device and an integrator with finite integration time Tb [12],
[13]. The result of this operation is a matrix R ∈ RS×K of
received powers, rs,k, related with P by1

R = HP + N (1)

where H ∈ RS×T is the matrix of channel power gains,
hs,t, and N ∈ RS×K is the matrix of noise power samples,
ns,k, at the sensors, due to thermal noise. The channel gain
between target node t and sensor s consists of two terms
hs,t = h′s,te

σgs,t , where h′s,t accounts for path-loss and
gs,t ∼ N (0, 1) is a random variable (r.v.) to model log-normal
shadowing with intensity σ [14].2 The path-loss model is of
power-law type with channel gain h′s,t = h0( d0

ds,t
)ν where

ν is the path-loss exponent, h0 is the channel gain at the
reference distance d0, and ds,t is the distance between sensor
s and node t. The power noise samples ns,k are independent,
identically distributed (i.i.d.) central chi-squared r.v.s with a
number of degrees of freedom Ndof = 2WTb. When Ndof � 1
by the central limit theorem ns,k ∼ N (σ2

n, 2σ
4
n/Ndof), where

σ2
n = 2N0W [12].
To localize the nodes T using a RSS-based method, it is

thus necessary to recover the transmitted power profiles P from
the mixture R observed by sensors S (see (1)). Since we can
only observe over-the-air power received by the RF sensors,
we propose BSS to extract the sources from the mixtures.

1Assuming the received signals and noise are uncorrelated.
2Without loss of generality the r.v.s gs,t are considered independent.

A. Whitening and Source Counting

Before separating the sources, it is necessary to know
their number, T , and pre-process the data R to reduce its
dimensionality (from S to T ) and get T mixtures centered
and whitened. Since the features of the target network are
unknown, it is required to estimate the number of nodes, T .
Both the estimation of the number of nodes and dimensionality
reduction can be performed by principal component analysis
(PCA).

The first pre-processing operation is centering, which refers
to subtracting the mean from the data. In practice, the row-
wise mean is removed from the matrix of the mixed signals R.
Then, by performing eigenvalue decomposition of the sample
covariance matrix Σ = 1

KRRT = UΛUT, the matrix of the
eigenvectors U, and the diagonal matrix of the eigenvalues
Λ are obtained. The eigenvalues Λi, with i = 1, 2, . . . , S, are
thus sorted in descending order along with the corresponding
eigenvectors. The number of sources generating the mixture is
given by the number of significant eigenvalues, i.e.,

T̂ =

S∑
i=1

1{Λi>Λ̄} (2)

with Λ̄ = w · (Λ1 − ΛS), where w ∈ [0, 1] is the eigenvalue
selection parameter chosen, e.g., according to the scree plot
approach [15].

To decorrelate the data in preparation of the subsequent sep-
aration, a linear transformation named whitening, is prformed
by the whitening matrix Q

Q = Λ−
1
2 UT. (3)

Retaining only the T̂ largest eigenvalues and the corresponding
eigenvectors in (3), a reduced projection matrix, Q̃, is obtained.
Therefore, the mixed signals can be projected onto a subspace
whose dimensionality is reduced from S to T̂ by

R̃ = Q̃R. (4)

B. Independent Component Analysis

Independent component analysis (ICA) is a method to
find a linear representation of non-Gaussian data so that the
components are statistically independent. Here we apply ICA
to unmix the transmitted power profiles (implicitly contained
in P). In particular, ICA allows us to estimate the unmixing
matrix W ∈ RT̂×T̂ such that

Y = WTR̃ (5)
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Fig. 2. The RSS extraction process for two non-collaborative transmitters.

where Y ∈ RT̂×K is the matrix of the separated temporal
power profiles. If BSS were ideal, the matrix Y would coincide
with the transmitted power profiles P as if we were able to
tap the signals directly from the transmitting antennas. In this
work, we propose using F-ICA, an iterative algorithm based
on two constituents: kurtosis to measure non-Gaussianity, and
Gram-Schmidt orthogonalization to perform decorrelation [16].

C. RSS Extraction

Although the F-ICA technique applied in the power-domain
suits this scenario, it presents a relevant issue. The reconstructed
signals are scaled and do not preserve the original power. For
this reason, another processing stage is necessary to perform
the RSS-based localization.

Let us normalize the reconstructed power profiles Y such
that Ỹ has elements ỹt,k = 1 if node t is transmitting in the
k-th bin, and ỹt,k = 0 otherwise. Such normalization can be
performed via thresholding, i.e„

ỹt,k = 1{yt,k≥λt} (6)

where λt = q ·maxk{yt,k} is a normalization threshold chosen
as a fraction q ∈ [0, 1] of the maximum power of the transmit
profile of target node t. Thus, each row ỹt can be seen as a mask
that, multiplied element-wise by the s-th row of R, rs, forces
to zero all the power samples received by sensor s that have not
been transmitted by node t. Fig. 2 depicts the procedure with
an example of two partially overlapped transmissions, where
the normalized reconstructed power profile ỹ1, when multiplied
element-wise by, e.g., r1, forces to zero all the power samples
received by sensor S1 that have not been transmitted by node
T1. Then, the received signal strength between the target node
t and the sensor s, RSSs,t, is obtained by averaging over the
non-zero entries of the result of the element-wise product. Such
process can be expressed in a compact form as

RSSs,t =

∑K
k=1 rs,k ỹt,k
||rs � ỹt||0

s = 1, . . . , S t = 1, . . . , T, (7)

where � stands for the element-wise product. The averaging
ensures that the RSS is estimated within a time frame of
duration Tob.

III. LOCALIZATION

The position estimation is obtained through a two-
dimensional RSS-based localization algorithm.3 Let us assume
the targets are located at unknown coordinates (xt, yt) with
t = 1, . . . , T and the RF sensors are at known positions (x̃s, ỹs)
with s = 1, . . . , S. In this work, two well-known solutions for
the localization of single targets (the generic node t in the
following) are considered.

Least Squares Localization. Let us build a matrix B, that
contains RSS measurements obtained through (6)-(7) and the
sensors position, with rows bs = (2x̃s, 2ỹs,RSS

−1/ν
s,t ,−1) for

s = 1, . . . , S, and a vector q = (x̃2
1 + ỹ2

1 , . . . , x̃
2
S + ỹ2

S)T.
Let us also define the two unknowns, D2 = x2

t + y2
t and

P = (Ptxh0)
1
ν , where Ptx is the transmit power of the nodes.

By ordinary LS method the solution is [17]

p̂ = arg min
p∈R4

{||Bp− q||22} = (BTB)−1BTq (8)

where p = (xt, yt, P,D
2)T.

Maximum Likelihood Localization. Without any prior sta-
tistical knowledge about the transmit power and location, the
ML estimation of the t-th target location is given by [18], [17]

(x̂t, ŷt) = arg min
(xt,yt)∈R2{

S∑
i=1

(
ln (RSSi,td

2ν
i,t)−

1

S

S∑
j=1

ln (RSSj,td
2ν
j,t)
)2
}

(9)

where di,t =
√

(xt − x̃i)2 + (yt − ỹi)2. The objective func-
tion (9) is differentiable with respect to (xt, yt), hence it is
possible to find the minimum in closed form or via the gradient
descent method. However, if the target nodes are arranged in
an unfavorable configuration, there can be several local minima.
For this reason, the monitored area has been discretized into a
two-dimensional grid, and the grid point that gives the minimum
value of (9) is chosen. The finer the grid, the more accurate the
estimation is at the cost of an increased computational burden.

IV. NUMERICAL RESULTS

In this section, the performance of the proposed methodology
is evaluated in realistic scenarios accounting for the random
deployment of nodes and sensors, sensor spatial density, and
channel impairments. All the results are obtained through an
ad-hoc network simulator developed for the ns3 platform.

A. Parameter Setting and Simulation Setup

Both the target and the sensor nodes are deployed within a
square area of side L = 50 m. The target nodes belong to an ad-
hoc network operating at f0 = 2.412 GHz compliant with the
IEEE 802.11s standard and all of them use the same frequency
channel. The RF sensors have bandwidth of W = 20 MHz
and continuously sense the spectrum, with an ED integration
time of Tb = 10µs.4 The antennas at both the sensors and the

3For simplicity, height differences between nodes and sensors are considered
negligible with respect to the distance between them.

4Note how the number of degrees of freedom, Ndof = 2WTb = 400, is
considerably high in this configuration.
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TABLE I
PROBABILITY OF CORRECT ESTIMATION OF THE NUMBER OF

TRANSMITTERS, T̂ , AS A FUNCTION OF ρ AND σ.

ρ→
σ(dB) ↓

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

1 0.83 0.98 0.98 0.99 1 1 1 1 1 1

3 0.78 0.97 0.98 0.99 0.99 1 1 1 1 1

5 0.69 0.91 0.94 0.95 0.99 1 1 1 1 1

7 0.57 0.73 0.87 0.91 0.94 0.97 0.98 0.99 1 1

9 0.37 0.48 0.72 0.75 0.83 0.83 0.86 0.88 0.94 0.95

target nodes are omnidirectional and the channel parameters
are ν = 3, d0 = 1 m, and h0 = −60.1 dB [19]. The transmit
power is the same for all nodes and equal to Ptx = 10 dBm,
while the noise power is σ2

n = −93 dBm for both nodes and
sensors. The shadowing parameter σ is expressed in deciBel
as σ(dB) = 10σ/ ln 10. Two types of packets are present
in the target network, data packets with size 1024 Byte, and
ACK packets of 112 Byte. Each node has an offered traffic of
1 Mb/s. Regarding the node counting process, the eigenvalue
selection parameter is set to w = 10−4 via scree plot [15],
which ensures the best accuracy in the specific scenario, while
in the RSS extraction phase, the threshold parameter is set to
q = 0.7. The observation time is Tob = 1 s, which corresponds
to K = 100 ·103 power samples.5 For grid-based search in the
ML algorithm, the area is split into equal square cells of side
0.01 m. The parameters of the particle simulation algorithm
where set to h = 0.1 and Niterations = 500 according to [11].

All the results reported in this section are extracted by the
simulations of Nnet = 2000 different wireless networks where
the position of the nodes and the sensors is random within the
area with the only constraint that the nodes and sensors are
spaced apart by at least 5 m. Fig. 3 shows an example of a
simulation scenario with a network of T = 5 nodes and S = 8
sensors. The clouds of grey circles are position estimates of
the nodes at different Monte Carlo (MC) instances using the
proposed methodology with ML location estimation.

For each MC run, the localization error, defined as the
Euclidean distance between the actual target position and the
estimated one, and its root mean square error (RMSE) have
been recorded.6 Since both the sensors’ and the nodes’ spatial
configuration significantly influence the position estimate, the
localization error may deviate considerably from its average.
Therefore, besides the average, 80-th and 20-th percentiles,
standard deviation, and RMSE of the location error are also
considered. The number of MC iterations for each network
realization is 1000.

B. Number of Sensors and Shadowing

Our purpose is to study the effect of the number of sensors
and the shadowing parameter on BSS and the localization
performance. To make the results more understandable, we
define the ratio ρ = S/T . In particular, in the simulations T ∈
{3, . . . , 10} and S is selected accordingly. The performance of
the node counting is shown in Table I. In particular, the table
reports the probability of correct counting, calculated as the

5We can estimate and update the target nodes position every Tob = 1 s.
6The RMSE for each MC simulation has been calculated over 200

independent realizations of shadowing.

Fig. 3. An example of scenario with T = 5, S = 8, and σ = 3 dB. The red
circles are the nodes of the network (or targets), the blue triangles are the RF
sensors and the grey circles represent the estimate of the position of the nodes
through the BSS-ML methodology.

ratio between the number of MC instances where the number
of nodes is estimated correctly and the total number of MC
instances, varying ρ and σ. As expected, the accuracy of the
estimation degrades when the shadowing intensity σ increases,
but such degradation can be counteracted by increasing the
number of sensors.

The following results on localization performance are
obtained considering 1000 MC instances with the correct node
count. Fig. 4(a) shows the average value and the standard
deviation of the localization error for the two proposed
localization approaches and the solution based on particle
simulation presented in [11], varying the ratio ρ. As it can
be evinced, when ρ increases, the error decreases, showing
that a larger number of sensors has a positive influence on
the localization performance. Notably, the particle simulation
algorithm requires a larger ρ to reach the same performance
of the BSS-ML approach. Moreover, Fig 4(b) shows how
increasing the shadowing parameter σ, the quality of the
location estimation degrades significantly. Is it also shown
how the ML approach can compensate the error due to the
presence of strong shadowing with a further increase in
ρ. Considering a mild shadowing regime with σ = 1 dB,
and ρ = 4, the average localization error drops down to
1 m when the proposed methodology is combined with ML
estimation. Instead, considering a strong shadowing scenario
with σ = 7 dB, the error reaches 9 m with ρ = 1.8 and 5 m with
ρ = 4. In general, the BSS-ML approach performs better in all
the scenarios, proving to be less sensitive to shadowing with
respect to the BSS-LS and the particle simulation approach,
and presenting an acceptable error for a RSS-based localization
methodology.

It is also important to note that increasing ρ and decreasing
σ the performance of the BSS improves with benefits on the
localization step. As proof of this behavior, Fig. 4(c) compares
the performance with the case of ideal separation (IS), i.e.,
considering a hypothetical BSS that perfectly reconstructs the
transmitted power profiles. As can be noticed, increasing ρ, the
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(a) (b) (c)

Fig. 4. (a) Comparison between the mean and the standard deviation of the localization error of the three algorithms (BSS-LS, BSS-ML and particle simulation
(denoted as PS)) varying the ratio between the number of sensors and nodes, ρ, in a mild shadowing regime with σ = 1 dB. (b) The 20-th and 80-th percentiles
and the mean localization error, for both BSS-ML and particle simulation, varying the shadowing parameter σ(dB) for ρ = 1.8 and ρ = 4. (c) The 20-th and
80-th percentiles and the RMSE of BSS-ML localization with the proposed BSS compared with the ideal BSS (denoted as IS) varying ρ with σ = 5 dB. The
CRLB is used as a benchmark to assess the asymptotical improvement of the localization performance.

error introduced by the BSS decreases, and the performance
obtained coincides with the ideal one. Moreover, in Fig. 4(c)
the performance of the BSS-ML approach is compared to the
CRLB [20, eq. (11)]. As expected, the proposed solution tends
to approach the CRLB as ρ increases. For example, for T = 1
and ρ = 50 the RMSE deviates from the CRLB by 0.07 m.

Regarding the computational complexity, that of the particle
simulation algorithm is O(STNiterations), while, e.g., that of
our ML-based methodology is O(STNgrid) where Ngrid is
the number of grid points. Thus, the complexities of the
two algorithms are comparable despite presenting different
localization performances.

V. CONCLUSION

This work proved that it is possible to localize nodes of a
non-collaborative packet-based wireless network using only
over-the-air power profiles captured by RF sensors. The novel
framework combines RF sensing, BSS, RSS extraction, and
RSS-based localization. The results confirmed the satisfactory
performance of the proposed solution, showing how BSS
combined with ML outperformed a state-of-the-art algorithm in
realistic channels with noise and shadowing. Furthermore, we
found that in a mild shadowing regime, even with relatively few
sensors, i.e., ρ ≈ 1, the localization error can be small when
ML position estimation is adopted. Finally, we showed that the
performance degradation due to BSS is tolerable considering
that it offers the ability to locate multiple transmitters.
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