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Abstract—Deployment of modern TinyML tasks on small
battery-constrained IoT devices requires high computational
energy efficiency. Analog In-Memory Computing (IMC) using
non-volatile memory (NVM) promises major efficiency improve-
ments in deep neural network (DNN) inference and serves as
on-chip memory storage for DNN weights. However, IMC’s
functional flexibility limitations and their impact on performance,
energy, and area efficiency are not yet fully understood at the
system level. To target practical end-to-end IoT applications,
IMC arrays must be enclosed in heterogeneous programmable
systems, introducing new system-level challenges which we aim
at addressing in this work. We present a heterogeneous tightly-
coupled clustered architecture integrating 8 RISC-V cores, an in-
memory computing accelerator (IMA), and digital accelerators.
We benchmark the system on a highly heterogeneous workload
such as the Bottleneck layer from a MobileNetV2, showing 11.5×
performance and 9.5× energy efficiency improvements, compared
to highly optimized parallel execution on the cores. Furthermore,
we explore the requirements for end-to-end inference of a full
mobile-grade DNN (MobileNetV2) in terms of IMC array re-
sources, by scaling up our heterogeneous architecture to a multi-
array accelerator. Our results show that our solution, on the end-
to-end inference of the MobileNetV2, is one order of magnitude
better in terms of execution latency than existing programmable
architectures and two orders of magnitude better than state-of-
the-art heterogeneous solutions integrating in-memory computing
analog cores.

Index Terms—In-memory computing, RISC-V, Heterogeneous
computing architecture, MobileNetV2

I. INTRODUCTION

Analog in-memory computing (AIMC) performs data pro-
cessing in situ within memory arrays. Matrix-vector multipli-
cation (MVM) operands can be mapped on the cross-bars of a
non-volatile (NV) memory array and the dot product operation
is performed entirely in the analog domain, making IMC
devices promising candidates to accelerate DNN workloads,
and overcome the well-known memory bottleneck affect-
ing traditional AI digital accelerators [1]. Both charge-based
memory technologies (e.g. SRAM, DRAM, and flash) and
resistance-based memory technologies (e.g. RRAM, PCM, and
STT-MRAM) can serve as elements for such computational
units [2].

This work was supported by the EU Horizon 2020 Research and Innovation
projects WiPLASH (g.a. no. 863337) and European Pilot (g.a. 101034126).

Several demonstrations of AIMC-based architectures have
appeared in the field of Deep Neural Network (DNN) inference
acceleration, showing outstanding peak energy efficiency in
the order of hundreds of TOPS/W [1], [2]. Industry interest in
this technology is growing [3], [4]. From a research perspec-
tive, several prototypes claimed tens to hundreds of TOPS/W
by exploiting many different approaches, with a quite diverse
set of choices in terms of numerical precision and underlying
memory technologies [1], [2].

However, several fundamental challenges are still open to
achieve the claimed levels of efficiency at full-application
scale: the intrinsic variability of analog computing both in the
charge-based and resistive domain [2]; difficulties in dealing
with low-precision computations that are often the only ones
supported by AIMC-based architectures [2]; the necessity of
specialized training [5]. Most prominently, a key issue is the
limited flexibility of IMC arrays, which are extremely efficient
on MVM or similar vector operations, but they are not flexible
enough to sustain other types of workloads. To tackle this limi-
tation, a prominent solution is to couple either general-purpose
processors [6] or specialized digital accelerators [7] with
analog in-memory computing cores. This allows extending
the functionality of In-Memory Accelerators (IMA), creating
heterogeneous analog/digital computing fabrics, connected to
the system bus [6]. However, this integration poses severe
concerns at the system level, mainly on two aspects: bandwidth
and flexibility.

First, IMC acceleration moves the challenge towards ensur-
ing efficient data movement within the system. In the case of
volatile technologies, such as SRAM-based IMC, the weights
of the DNN must be stored in non-volatile memory (external
or internal to the system). This requires additional energy and
time to move the data that must be stored into the cells of
the IMA, anytime the cross-bar is programmed [1]. When
considering non-volatile technologies, such as Flash, ReRAM
or PCM-based IMC arrays, weights are directly stored into the
cross-bar, with no need for marshaling operations. However,
previous concerns continue to affect the activations that must
be moved at the boundaries of the IMC array, to perform
MVMs. Taking this into account, efficient integration of IMC
into heterogeneous systems requires an optimized interface
design between the highly parallel IMC inputs/outputs, the
programmable cores, and the rest of the system: low bandwidth
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and high communication latency between the processor and
the IMA might create a major bottleneck [6].

Second, as a consequence of Amdahl’s effect, accelerating
MVM operators with an IMA moves the performance bot-
tleneck on all the other computation needed to accomplish a
certain task, which must be performed on the digital part of
the system. Complex real-world neural networks mix MVMs
with other workloads such as residuals, activation functions, or
depth-wise convolutions; coupling the IMA with a single core,
as has recently been proposed [6], will likely hit Amdahl’s
effect caused by the single-core bottleneck, hindering the
whole computation performance.

In this work, we address the system-level challenges of
analog IMC by exploiting extreme heterogeneity. The main
contributions of this paper are the following:

• We design a heterogeneous tightly-coupled shared-
memory cluster that integrates 8 fully programmable
RISC-V processors, an analog in-memory comput-
ing accelerator (IMA), and a dedicated digital block
to accelerate depth-wise convolutions; we present a
post place&route silicon-ready implementation targeting
GlobalFoundries 22nm FDX technology;

• We optimize the interfaces between the analog IMA
and the rest of the system to match the computing and
IO requirements of the IMA, achieving performance as
high as 958 GOPS on MVMs, more than 90% of its
peak theoretical throughput, surpassing by one order of
magnitude other approaches where the IMA is connected
through a low-bandwidth, high-latency system bus [6];

• We benchmark the system on a bottleneck layer, represen-
tative of modern DNNs exploiting heavily heterogeneous
layers such as point-wise, depth-wise convolutions and
residuals, in terms of performance and energy efficiency.
The analog/digital synergistic approach demonstrates full
mitigation of Amdahl’s effect, showing 2.6× better per-
formance and 2.8× better energy efficiency compared to
executing the layers on our previous work that integrates
only 8 programmable cores and the IMC analog array [8];

• We scale up the proposed system to analyze the chal-
lenges and the hardware resources necessary to enable
end-to-end inference of a MobileNetV2. Our architectural
paradigm executes inference in 10ms with an energy
of 482µJ , improving upon fully digital state-of-the-
art solutions (SoA) [9] by 10× in latency, reducing
the energy consumption by 2.5×. Compared to SoA
analog/digital architectures [6], our solution shows two
orders of magnitude improvements in terms of execution
latency.

The manuscript is organized as follows: in Sec. II we review
the state-of-the-art; in Sec. III we outline the background, and
in Sec. IV we present the heterogeneous cluster architecture.
Then, in Sec. V and Sec. VI we report the experimental results,
discussions, and explorations. Finally in Sec. VII we compare
with state-of-the-art solutions. Sec. VIII concludes the paper.

II. RELATED WORK

Charge-based memory technologies (e.g. SRAM [10],
DRAM, Flash) and non-volatile (NV) resistive memory tech-

nologies [11] (e.g. ReRAM [12] PCM [2] and MRAM [13])
both serve as computing substrates for analog in-memory
computing. In this section, we review the State-of-the-Art
(SoA) advancements in in-memory computing technology,
circuits, and systems.

1) IMC Arithmetic: Low-bit-width integer computation is
widely adopted in edge Artificial Intelligence (AI) applica-
tions, because of its higher efficiency and lower hardware cost
than floating-point. In the IMC domain, the advantages are
even more evident. Low bit-width data representation results
in less area and power costs to design analog to digital (ADCs)
and digital to analog (DACs) converters, which are predomi-
nant in IMC arrays [1], [2]. The adoption of heavily quantized
integer arithmetic (8-bit or less), especially for DNNs, is fully
justified by the fact that Quantized Neural Networks (QNNs)
show a negligible drop-in Top-1 accuracy compared to the full
floating-point precision model, on many AI-enhanced edge
applications [14]. Also, noise-robust networks are an active
research field for IMC deployment [15].

2) SRAM technology: The SRAM technology is the most
mature one, optimized for decades to be used as volatile
memory storage for digital computing architectures. SRAMs
are used to perform MVM operations both in the digital and
analog domains. In the digital domain, the computation is
performed coupling SRAM cells with additional near-memory
logic, such as elementary gates, full adders, or adder trees,
building up a digital accelerator [16]. In the analog domain,
SRAMs can map MVMs by exploiting capacitive charge
redistribution mechanisms along the bit-lines of the memory
array [2]. Compared to the analog approach, SRAM-based
digital IMC provides higher robustness to noise and process,
voltage, and temperature (PVT) variations, but significantly
less advantages in terms of energy efficiency [17].

Most SoA academic SRAM-based IMC arrays operate in
the analog domain [18]. One of the first prototypes appeared
in 2018 [10], targeting binary-weight Neural Networks and
demonstrating top-1 accuracy comparable with software ac-
curacy on the MNIST dataset (∼98%). SRAM-based IMC
has been demonstrated for binary/ternary DNNs achieving 403
TOPS/W and software accuracy on ternary networks trained on
the CIFAR-10 dataset [19], as well as for reconfigurable bit-
precision MVM operations showing80 TOPS/W [20]. Other
SRAM-based IMC architectures have been proposed, achiev-
ing similar accuracy and efficiency [21]. The major challenge
at the circuits level, which is actively being investigated in
the literature, remains the computation noise that limits the
signal-to-noise ration, mainly due to the sensitivity to PVT
variations [2], and non-linearities [1].

3) Resistive Memory technology: A new generation of IMC
accelerators targets emerging resistive memory technology,
driven by the much higher density scaling factor that these
technologies offer compared to the SRAM [22]. Moreover, re-
sistive memories such as Resistive RAM (ReRAM), magnetic
RAM (MRAM), and phase-change memory (PCM), show
other important advantages: non-volatility (NV), low power
envelope, and multi-level storage [12]. IMC based on NV
memories suffers from similar precision issues as SRAM-
based IMCs, compounded by additional challenges coming
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from memristive devices, such as write variability and con-
ductance variations (temporal and temperature-induced) [23].

From a system-level perspective, resistive memories serve
not only as IMC primitives, but also as non-volatile storage
blocks for DNN weights. This avoids moving weights across
the system memory hierarchy, which is instead necessary
for SRAM-based IMC. Contrarily to SRAM, re-programming
the memristive cross-bars with new data during the network
model execution is not affordable, due to the high latency
and power consumption associated with re-writes of non-
volatile memory cells, as well as their limited endurance
(for ReRAM and PCM). This forces rethinking architectures
as memory-centric, with additional digital logic around to
perform ancillary operations, as is the focus of this work.

Considering ReRAM-based IMC, Chen et al. [12] demon-
strate significant computing parallelism, performing 8k MAC
operations simultaneously. Other works show ReRAM-based
IMC arrays as dense as 2Mb [24] or 4Mb [25], with peak
energy efficiencies in the range of 120-200 TOPS/W within
a power envelope of few milliwatts, suitable for tiny edge AI
devices. Moreover, the IMC array in [24], integrated within a
PCB hosting also an FPGA, runs a ResNet-20 trained on the
CIFAR-10 dataset with 90% top-1 accuracy.

For the MRAM technology, Doevenspeck et al. [13] present
a SOT-MRAM-based IMC macro and demonstrate for the
first time that resistive MRAM devices can be used for DNN
applications. They claim software-like accuracy on a network
targeted to the MNIST dataset.

PCM-based IMC arrays have been applied in mixed-
precision in-memory iterative computing, combining a com-
putational memory unit to perform the bulk of a computa-
tional task, with a von Neumann machine, which implements
a backward method to iteratively improve the accuracy of
the solution. This approach has been demonstrated to solve
linear equations [26] and in DNN inference and even training
tasks [23], showing limited error in the computation and much
higher efficiency compared to traditional approaches [2].

Khaddam-Aljameh et al. [27] recently presented a state-
of-the-art 256×256 PCM-based IMC core targeting DNN
inference, fabricated in 14nm, showing energy efficiency of
10.5 TOPS/W and performance density of 1.59 TOPS/mm2

on inference tasks of multi-layer perceptrons and ResNet-
9 models trained on MNIST and CIFAR-10 datasets, with
comparable accuracies as software baseline. In this work, we
adopt the PCM-based IMC presented in [27].

4) Architectures and Systems: As discussed, there are sev-
eral challenges related to technology that affect both charge-
based and resistive IMC circuits currently under scrutiny from
researchers. However, provided that these issues can be solved,
another essential challenge is the integration of in-memory
computational primitives into heterogeneous systems. In this
work, we focus in particular on this aspect.

IMC cores primarily target matrix-vector multiplications
(MVMs) or other similar vector operations, showing incredible
throughput and efficiency. Although MVM operations are pre-
dominant in modern DNNs, they still represent only a subset
of the DNN computation [1], which also includes residual
connections, pooling layers, non-linear activation functions,

softmax, etc.. Increasing the throughput of MVMs with IMC
moves the performance bottleneck to all the other layers,
which can not be easily mapped on IMC arrays. From a
broader application perspective, an edge-computing system
might incur workloads characteristically different than MVMs,
such as data management and control tasks that are performed
together with neural tasks [28]. It is necessary, for a complete
architecture, to address this computation in a programmable
way. This reasoning strongly motivates the integration of
the IMC with other specialized accelerators and software
programmable cores in heterogeneous architectures [1].

To the best of our knowledge, not many works specifically
focused on the integration of IMC arrays in heterogeneous
analog/digital systems have been presented in literature so far.
Dazzi et al. [29] propose more advanced IMC multi-core ap-
proaches with very carefully staged core-to-core dataflow, but
the focus is mostly on convolutions and there are no provisions
for heterogeneous computing nor for computations that do not
map efficiently on the AIMC arrays. Houshmand et al. [30]
explore co-optimization strategies of IMC array size, memory
hierarchy and data-flows to avoid efficiency degradation when
the IMC core is integrated into a processing infrastructure
including also memory buffers and small control units, but
they do not investigate complex scenarios like heterogeneous
systems.

Zhou et al. [7] propose a PCM-based IMC array modeled
in 14nm technology, complemented with additional digital
logic that performs activation and pooling operations. A small
SRAM memory acts then as a layer-to-layer intermediate
buffer, followed by a hardware block that handles IM2COL
transformations. The proposed solution shows a peak 112
TOPS/W on MVMs and has been demonstrated on the exe-
cution of a custom DNN model, with 95.6% of accuracy, at a
performance of 7.7 inf/s with 8.22 µJ/inf . However, this type
of architecture is not flexible enough to support heterogeneous
workloads, since it does not feature programmable cores.

Jia et al. [31] propose a 4×4 array of cores consist-
ing of charge-based IMC cross-bars extended with a pro-
grammable near-memory-computing (NMC) digital acceler-
ator that performs single-instruction-multiple-data (SIMD)
computing, shifting, pooling, and activation functions. On 8-
bit MVMs, the prototype in 16nm shows 3 TOPS of peak
performance with 30 TOPS/W of efficiency. Coupled with off-
chip FPGA and MCU that handle communication with a host
PC and control flows, the prototype has been demonstrated
on a ResNet-50 model with 4-bit weights and activations,
achieving a peak performance of 3.4 TOPS.

The silicon prototype presented in [6] integrates a charge-
domain compute-in-memory unit supporting 1to8-bit×1to8-
bit matrix-vector multiplications, into a tiny RISC-V CPU
enriched with a direct memory access controller (DMA) and a
set of peripherals. It shows a peak efficiency of 400 TOPS/W
on the end-to-end inference of a binarized ten-layers network
trained on CIFAR-10. However, also in this case the architec-
ture can not afford complex heterogeneous computation: the
core delivers only a few million operations per second and it
can only be used for control tasks such as programming DMA
transfers, not being capable of performing compute-intensive
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Fig. 1. Overview of the PULP cluster architecture, integrating the IMA and the digital depth-wise accelerator. Each accelerator is enclosed into a Hardware
Processing Engine (HWPE) subsystem, depicted on the right.

functions with sufficient performance level.
The limits of the above-mentioned systems are mainly two:

the integration of the IMC accelerator (IMA) is loosely-
coupled, with the IMA connected with other cores through
a low bandwidth, high latency system bus; the presented
heterogeneous systems are demonstrated either on neural
networks model of few layers (trained on datasets such as
CIFAR-10 or MNIST) or on custom NN models built ad-hoc
to fit the requirements of the architecture. Neither approach
is representative of modern DNN models widely used in
classification and detection tasks at the edge of the IoT.

In this manuscript, we extend the work we presented in [8]
by coupling the IMA with a novel design of a digital accel-
erator to improve the efficiency of depth-wise kernels, inte-
grated into the heterogeneous system and we fully implement
the cluster in the GlobalFoundries 22nm FDX technology.
Furthermore, we scale up the architecture and explore the
resources necessary to enable the end-to-end inference of a
full MobileNetV2 network, a much more realistic benchmark
for the class of networks that an ultra-low-power IoT end-node
could target.

III. BACKGROUND

A. PCM-based In-Memory Accelerator
In this paper, we use the SoA In-Memory Computing array

presented in [27] which is based on a Phase-Change Memory
(PCM) cross-bar. In this architecture, the memory devices are
resistors with programmable conductance placed at the cross-
points of a 2D array with one terminal connected to horizontal
wires called word-lines and the other terminal connected to
vertical wires called bit-lines, enabling the execution of several
computational primitives concurrently.

To perform the product of a matrix A by a vector x,
the PCM devices are programmed with conductance values
proportional to the values Aij of A, with a precision of
4-bit (signed). Then the word-lines are driven with voltage
pulses, whose duration are proportional to xj , using a set of
digital-to-analog converters (DACs) with 8 bits of precision
(signed). By Ohm’s law, each PCM device contributes a
current proportional to Aij · xj on the i-th bit-line, resulting
in a total integrated current proportional to the dot product
yi =

∑
j Aij · xj . At the end of each bit-line, there is an

analog-to-digital converter (ADC) used to sample the bit-line
current and convert it into an 8-bit digital value (signed).

For DNN inference, the A matrix can be used to store the
weights of the linear part of a Fully Connected, Convolu-
tional, or Depthwise Convolutional layer. Note that typically
2 PCM devices are used to denote a signed weight [32].
In conventional digital architectures, the dot product of 4-bit
weights and 8-bit input activations requires a high-precision
intermediate representation (often, 32 bits) that is subject to
scaling, clipping, and quantization to produce a vector of 8-
bit output activations [33]. In the IMC cross-bar, instead, the
intermediate representation is an analog current, while scaling,
clipping, and quantization are performed directly by the bit-
line ADCs by setting appropriate current limits.

B. The PULP Cluster

Highly parallelizable workloads such as DNNs are a good
fit for high core count heterogeneous systems that can integrate
specialized accelerators. The PULP cluster [9] we assume
as a reference, depicted in Fig. 1, incorporates 8 RISC-V
cores, each featuring a 4-stage in-order single-issue pipeline
and implementing the RISC-V RV32IMCXpulpV2 Instruction
Set Architecture (ISA). XpulpV2 is a custom extension to
the RISC-V ISA [34] meant to accelerate arithmetic intensive
kernels.

The cores of the baseline cluster communicate through a
shared and word interleaved memory called Tightly Coupled
Data Memory (TCDM), referred to as L1 memory. The size of
the memory is parametrizable and, in this context, is 512 kB,
divided on 32 banks. The cores access the memory through
a low latency logarithmic interconnect (LIC), that serves the
memory accesses in one cycle. The cluster workload can be
offloaded to accelerators, integrated into the cluster through a
standardized interface [35], discussed in Sec. IV-A.

The cluster communicates with a micro-controller system
that handles input/output peripherals, through an AXI inter-
face. Moreover, it is served with a DMA controller dedicated
to the data transfers between the TCDM and the second
level of memory, hosted by the micro-controller system,
which also contains the program instructions for the cluster
cores. Each core fetches the instructions from a hierarchical
instruction cache organized on two levels (the first private to
each core, the second shared) to optimize the hit rate. The
cluster is also supported by a Hardware Synchronization Unit
that manages synchronization and thread dispatching, enabling
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low-overhead and fine-grained parallelism, thus high energy
efficiency: each core or accelerator waiting for a barrier, or
more in general for a custom event, is brought into a fully
clock gated state.

IV. HETEROGENEOUS SYSTEM

In this section, we present the analog in-memory accelerator
(IMA), the depth-wise digital accelerator, and their integration
into the PULP cluster through a standardized interface called
Hardware Processing Engine.

A. Hardware Processing Engines

To improve the performance and the energy efficiency of
the accelerators in data movement operations, and to ease their
integration into the cluster, each of the two accelerators pre-
sented here is incorporated as a Hardware Processing Engine
(HWPE) using a standardized interface1. HWPEs expose a
control and a data interface towards the rest of the cluster.
The control interface allows the cluster’s cores to access the
registers of the targeted accelerator for configuration. The data
interface is connected to the TCDM memory through multiple
master ports on the logarithmic interconnect, similarly to what
happens with the cores of the cluster. The width of this bus is
a design-time parameter and can be chosen depending on the
required bandwidth of the accelerator.

Fig.1 shows the heterogeneous cluster with two distinct
HWPE interfaces encapsulating the IMA (namely IMA subsys-
tem) and the depth-wise accelerator (namely DW subsystem).
To avoid a large increase in the area of the logarithmic
interconnect and in the latency of its arbitration scheme, the
data interface of the IMA subsystem and the DW subsystem are
statically multiplexed towards the TCDM, sharing the same
physical ports on the interconnect. The two accelerators are
used in a time-interleaved fashion, allowing one accelerator to
full access the TCDM at a time. This choice does not cause
any performance degradation, since in our DNN computing
model the depth-wise accelerator and the IMA can not be
active concurrently. However, they can be programmed inde-
pendently and in parallel by the cores of the clusters. Each
accelerator has its own programming bus and the configuration
registers are mapped in different regions of the cluster memory
map. To ease the programming phase of the accelerators,
we expose to the programmer a set of hardware-abstraction-
layer (HAL) functions that can be inferred directly into the C
code through their explicit invocations. To reduce the power
consumption of the cluster on jobs deployed to HWPEs, the
latter expose an end-of-computation signal towards the cluster.
After programming the HWPE and triggering its execution, the
cluster cores can enter a low-power clock-gated sleep mode.
Once the HWPE notifies an end of computation signal, the
core can be woken up by the cluster Event Unit.

From the inside, HWPEs consist of three main blocks: the
Controller, the Engine, and the Streamer. The Controller con-
tains a memory-mapped latch-based register file used to store
the configuration of the execution of the accelerator, and the

1https://hwpe-doc.readthedocs.io/en/latest/
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main Finite-State-Machine (FSM) of the HWPE system, that
coordinates the other blocks. The Controller can be targeted
by the cores of the cluster in a memory-mapped fashion via
the control interface introduced above. The semantic and the
number of registers as well as the FSM are customized to
accommodate the requirements of the enclosed accelerator.
The Engine contains the data path of the accelerator and
the specific FSM that coordinates the execution flow. It is,
therefore, highly dependent on the specific accelerator design.

The Streamer contains the blocks necessary to move inputs
and results in and out of the accelerator through its master
port of the data interface and transform the memory accesses
into coherent streams to feed the accelerator Engine. The
streams are organized in two separated modules, namely
source for incoming streams and sink for the outgoing ones.
Both source and sink include address generators capable to
generate three-dimensional access patterns in TCDM with
configurable strides. They also include a re-aligner module to
form word-aligned streams from non-word-aligned memory
accesses, without constraining the memory system outside the
HWPE to support misaligned accesses. The memory accesses
generated by the two streams are dynamically multiplexed
towards the data interface. Such a choice avoids the duplication
of the data interface ports while not causing any performance
overhead; eventual contentions are efficiently solved by an
arbiter featuring a round-robin arbitration policy. Intermediate
FIFOs in both directions are used to decouple the streams from
memory contentions stalls and reduce the pressure on timing
closure of the tightly-coupled system.

B. IMA Subsystem Architecture

Fig. 2 shows the integration of the IMC cross-bar within the
HWPE. The width of the IMA data interface is sized to sustain
the bandwidth requirements of the analog core, as shown in
Sec. V-B. The Engine contains both the digital and analog parts
of the IMA data path. The digital part is composed of buffers
for ADCs and DACs and of control circuitry; the analog
core encloses the PCM devices (including PCM programming
circuitry), and the ADCs and DACs themselves.

The IMA works on input data stored in L1 with the
HWC format, i.e., with consecutive data elements encoding
pixels that are adjacent in the channel dimension. Fig. 3
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shows how a CNN layer is mapped on the IMA array. For
a standard convolution, the streamers can directly perform a
virtual IM2COL transformation [36], enabling to remap the
computation to matrix-vector products of the form discussed in
Sec. III-A. As a consequence, the PCM array computes Cout

channels of one output feature map pixel from a complete
input volume of Cin × K × K pixels in a single operation
(that we call job), where Cin, Cout indicate the number of
input and output channels, and K is the filter size.

The configuration sequence of the IMA starts when a core
acquires a lock over the accelerator by reading a special
ACQUIRE register through the control interface. After that, the
core can interact with the IMA by programming the PCM
devices with the weights of one or multiple layers; reading the
conductance value of a PCM device; configuring a job setting
the address of input and output data in TCDM and the ADC
configuration. When the configuration ends, the execution can
be started by writing to a special TRIGGER register. To min-
imize the IMA configuration and synchronization overhead,
multiple jobs can be pipelined by setting the register file with
the correct strides. In this way, a whole layer can be executed
with only one configuration phase.

We propose two execution models for back-to-back job
operations of the IMA: a simpler one, sequential, and a more
optimized pipelined execution model. The relative timelines
are shown in Fig. 3. The sequential model splits the execution
of the single job into three phases operated sequentially.
STREAM-IN: fetch data from the TCDM that is then streamed
to the engine’s internal DACs buffers; COMPUTATION: analog
computation on the crossbar and writing of the ADCs buffers;
STREAM-OUT: stream data from buffers back to the TCDM.
In Sec. V-B, we study how this model quickly becomes a
bottleneck for the IMA’s peak performance.

In the pipelined execution model, the three aforementioned
phases of different jobs can overlap each other at the cost
of additional hardware resources: we add two pipeline reg-
isters before and after the DACs and ADCs buffers and we
extend the Engine FSM with additional states to control the
overlapping phases: during the computing phase of the i− th
job (if not the last one to compute), the engine FSM sets
the streamer to start a new memory transaction to fetch the
inputs for the successive (i+1)−th job. When such stream-in

(a)

(b)

Fig. 4. (a) Architecture overview of the Depth-wise digital accelerator,
enclosed in the HWPE. (b) Execution flow of the depth-wise operation.

for K in range(0, NbChannels, step=16):
for i_wgt in range(0, 3): # preload weight buffer

for j_wgt in range(0, 3):
load(weight_buf <- w[i_wgt, j_wgt, K:K+16])

for j in range(0, OutputWidth):
for i_pre in range(0, 3): # preload window buffer

for j_pre in range(0, 3):
load(window_buf[i_pre, j_pre] <- x[i_pre, j+j_pre, K:K+16])

for i in range(0, OutputHeight):             # vertically sliding window
for t in range(0, 4):                      # LD-MAC-ST pipeline

# load 3 pixels along 16 channels for next window
if t<3:

load(window_buf[3, t] <- x[i+3, j+t, K:K+16])
# perform MAC on groups of 4 channels at a time
T = t*4
out_buf[T:T+4] = act(sum(weight_buf*window_buf[0:3, 0:3, T:T+4]))
# store 1 pixel along 16 channels from out buffer & slide window
if t==3:
store(y[i, j, K:K+16] <- out_buf)
window_buf[0:3] = window_buf[1:4]

LD

MAC

ST

LD LD LD
MAC MAC MAC MAC

ST

LD LD LD
MAC MAC MAC MAC

ST
t

0 1 2 3 0 1 2 3
i

0 1

a)
b)

Fig. 5. (a) Pseudo-Python code describing the operation of the depth-wise
accelerator datapath. (b) Detail of the LD - MAC - ST pipeline.

phase has finished, if there are the results of the previous job
(i− 1)− th to stream-out, the engine FSM can configure the
stream, as shown in Fig. 3. If we consider only the digital logic
of the accelerator around the IMA, the pipelined approach
increases the area by about 40%, due to the doubled number of
input/output registers needed to enable the pipeline. However,
this overhead reduces to 5% if we consider the total area of the
accelerator (digital logic and analog IMC cross-bar), compared
to the sequential approach.

C. Dedicated Depth-Wise Digital Accelerator

Depth-wise (DW) convolutions have been introduced in
SoA DNNs such as MobileNetV2 to shrink the model size
of the neural networks ( by 7 to 10×) and their computa-
tional cost, with negligible accuracy drop [37]. Due to their
lower connectivity compared to standard convolutions (each
output channel depends only on a single corresponding input
channel), DW layers are generally inefficient to map on IMC
arrays, as we show in Sec. V-B on the Bottleneck use-case.
Moreover, a pure software execution of such kernels easily
becomes a performance bottleneck for computation [8]. To
speed up the execution of the depth-wise layers, we therefore
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(a) (b)

Fig. 6. (a) Placed and Routed design of the heterogeneous cluster. (b) Area breakdown of the system.

designed a specialized digital accelerator and integrated it into
the heterogeneous cluster.

The accelerator we propose in this work is capable of
processing depth-wise kernels on 8-bit signed input tensors
and weights, accumulating the results in intermediate 32-
bit registers and performing non-linear activation functions
such as ReLU plus a set of ancillary functions (i.e. shifting
and clipping) to bring back the final result into the 8-bit
precision. Fig. 4 shows the general architecture of the proposed
accelerator, enclosed in the dedicated HWPE interface.

The depth-wise accelerator employs a weight-stationary data
flow and targets 3x3 depth-wise layers – the ones most com-
monly encountered in DNNs. The weights from 16 different
filters, assumed to be 8-bit signed elements, are loaded from
the TCDM memory at the beginning of the computation,
sign-extended, and stored into a weight buffer that features
3x3x16 registers. The weights reside in the buffer until they
have been used over the full input image. Input tensors are
scanned by the accelerator using a vertically sliding window
on the spatial dimensions, considering in each iteration 16
channels data stored in HWC layout (i.e., the same layout used
by the IMA). The vertically sliding window is implemented
utilizing a window buffer of 4x3x16 8-bit registers: 3 rows to
host the current window, plus 1 row of inputs being loaded
concurrently with the current window computation. Other than
the two buffers, the data path of the accelerator consists of
a network of Multiply-and-Accumulate (MAC), and ancillary
blocks to compute ReLu, shifting and clipping operations, as
shown in Fig. 4. The MAC unit consists of 36 multipliers and
a reduction tree that operate on a 3×3×4 block of the window
buffer, passed through the ReLu and shifting&clipping blocks,
and stored in an output buffer. Fig. 5a shows the details of
the depth-wise accelerator datapath operation in the form of
Python-like pseudocode. For a given block of 16 channels, the
operation starts by preloading weights. At the start of each
output column, the window buffer is loaded with the content
of the first 3x3 window; then, the operation of the datapath is
organized in three pipelined stages, active over an inner loop
of 4 cycles as shown in Fig. 5a and Fig. 5b. In the first three
cycles of the inner loop, the LD stage is active: one input
pixel across 16 channels is loaded to fill the fourth row of the
window buffer. The MAC stage is active in all cycles of the
inner loop, working on 4 channels at a time. Finally, the ST

stage is active only in the fourth cycle: during this stage, the
content of the output buffer produced in the previous three
cycles and the current one is streamed out of the datapath,
and the window buffer slides one pixel down. In this way,
during the main body of the computation, the accelerator fully
exploits the available memory bandwidth of 16 Bytes per cycle
and the HWC layout of data, which is advantageous because
it is the same layout used by the IMA. Overall, the execution
of a depth-wise layer on the dedicated accelerator improves
by 26× over a pure software implementation, achieving an
average performance of 29.7 MAC/cycle.

V. EXPERIMENTAL RESULTS

This section evaluates the proposed heterogeneous cluster.
From a physical viewpoint, we analyze area, power and
timing costs of the system. From a performance and energy
efficiency viewpoint, we report the results of benchmarking
hetereogeneous DNN layers, such as the Bottleneck.

A. Physical Implementation

To characterize the system in terms of area, power, and per-
formance, we implement the cluster using the GlobalFoundries
22nm FDX technology node. We synthesize the heterogeneous
cluster with Synopsys Design Compiler-2019.12 and we per-
form a full place&route flow using Cadence Innovus 20.12,
targeting the worst-case corner (SS, 0.72V, -40°/125°). The
floorplan of the system is reported in Fig. 6. The analog
IMC accelerator models, validated on silicon and modeled
through silicon characterization of 14 nm prototypes, are fed
into technology libraries (.lef, .db, and .lib) integrated into
the front-end and back-end flows of the system. The area, the
timing, and the power consumption of the IMC accelerator are
extrapolated from the on-chip measurements reported in [27],
properly scaled to the 22nm technology node. The power
scaling is done according to the classical scaling theory under
constant frequency, scaling power by a · b2, where a denotes
the dimensional scaling and b is the voltage scaling factor.
The area scaling follows the dimensional scaling. We assume
that the IMA latency will remain constant. The total area of
the heterogeneous cluster is 2.5 mm2, partitioned among the
several hardware blocks as shown in Fig. 6(b). As expected,
the IMA sub-system and the 512 kB of TCDM memory
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Fig. 7. Roofline plot of the IMA heterogeneous system. The compute roof of the IMA is a diagonal line, quadratically dependent on operation intensity, not
on cluster frequency. The intersection of a bandwidth line with the compute roof defines a region where performance points can lay for that configuration. In
(a) and (b) cluster runs at 500MHz and 250MHz, with sequential execution of IMA. In (c) it runs at 250 MHz with a pipelined execution model for the IMA.

occupy the major part of the total area (∼1/3 IMA, ∼1/3
TCDM, 1/3 the rest of the cluster), while the depth-wise
accelerator has a negligible impact (2.1 %). The maximum
operating frequency achievable by the final design is 500 MHz.

To perform power measurements we run parasitics-
annotated gate-level netlist simulations of the digital part of the
system in the typical corner (TT, 25C) at the operating voltage
of 0.8V, executing DNN layers introduced above. The VCD
simulation traces are analyzed with the Synopsys PrimeTime
tool and the extracted power is integrated with the power
extrapolated for the IMC accelerator [27]. Hence, the results
presented in this section and in the following ones include
the overheads (i.e. timing, area, power) caused by the clock
tree implementation, accurate parasitic models extraction, cell
sizing for setup fixing, and delay buffers for hold fixing. We
emphasize that neglecting these factors would cause significant
underestimations in the clock tree dynamic power.

B. IMC Accelerator Performance

First, we analyze the peak performance achievable by the
IMA. An important point to stress is that, in contrast with
digital accelerators, the maximum performance of the IMC
array is only related to its MVM operation latency and its size
(256×256 in the context of this work). The peak throughput
is 1.008 TOPS, given by the maximum number of operations
(256 × 256 × 2 OPs) that can be executed in its latency of
130ns [27]. The real throughput achievable is typically scaled
by the utilization factor of the array: only if we map a 256
output-channel / 256 input-channel point-wise layer we can
achieve the maximum utilization rate and, thus, throughput.
Another factor that limits the performance of the IMA sub-
system is the memory bandwidth that the heterogeneous clus-
ter can sustain to feed the IMA with new input data and to store
the IMA results into the TCDM memory. If the computation
is too fast compared to the stream-in and stream-out time, we
lose performance because we are limited by the bandwidth of
the system.

The PULP cluster potentially offers high memory bandwidth
towards the TCDM thanks to the tightly-coupled interconnect
scheme, at the cost of increased interconnect area (linearly
scaling with the bit-width of the system bus), power and
timing. To find the width of the system bus able to sustain

the IO requirements of the IMA at the lowest area overhead,
we benchmark synthetic point-wise layers with different uti-
lization rates of the IMC array (from 5% to 100%), varying
the width of the IMA sub-system bus from 32- to 512-bit.

In Fig. 7 we report the outcomes of our exploration as
a roof-line plot [38]. The computing latency of the IMA
does not depend on the cluster frequency, leading to two
considerations: first, the compute roof of the IMA is a diagonal
line proportional to the operation intensity (in other words,
to the utilization factor of the IMA cross-bar) and not a
line parallel to the x-axis, as is typically the case for digital
systems; second, since the IMA computing latency is fixed,
its memory bandwidth requirement change as we reduce
or increase the cluster clock frequency. We investigate two
operating frequencies, the maximum achievable one by the
system when operating at high-voltage (500 MHz at 0.8V)
and the maximum one achievable at low-voltage (250 MHz
at 0.65V), and we compare the sequential and the pipelined
execution models of the IMA.

In Fig. 7(a) the cluster is running at 500 MHz and we adopt
the sequential execution model for the IMA. We observe that
only with a 32-bit wide bus we are memory bound and a
64-bit wide data interface of the IMA subsystem is sufficient
to fulfill the computing and IO requirements of the IMA.
However, analyzing the performance at any of the system
bus configurations above 32-bit we notice a gap between the
compute roof and the real throughput, suggesting that we are
under-utilizing the bandwidth of the system. The reason is
that in the sequential model, as discussed in Sec. IV-B, 8%
to 40% (depending on the size of the layer considered) of the
total execution cycles are spent in stream-in and stream-out
phases. In the rest of the execution, when the IMA is in the
computing phase, the system bus is not used.

Analyzing the scenario where the cluster runs at 250 MHz,
Fig.7(b), we observe that higher bus-width (i.e. 128-bit) is
necessary to preserve the peak performance of the IMA.
However, also in this case the sequential execution model is
quite far from reaching the computing roof of the IMA.

Despite the unavoidable area overhead compared to the
sequential execution model (which, however, is limited to
5% if we consider the whole IMA sub-system, including the
analog macro), Fig.7(c) shows that the pipelined solution guar-
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Fig. 8. Parameters of the Bottleneck layer and mapping structure of the
depth-wise on the PCM crossbar. Gray rectangles are padding required for
computing more than 1 channel per job.

antees full utilization of the bandwidth. At the system level,
the optimal configuration is with a 128-bit wide system bus:
using a narrower system bus, throughput is memory-bound,
while using a wider one, performance does not improve, as
computation is in a compute-bound region. In the optimal
system configuration, the IMA can achieve a peak of 958
GOPS at 250 MHz, only 10% less than the theoretical peak
performance at the compute roof, due to the programming
overhead to configure the accelerator and start the execution.

C. Case Study: The Bottleneck Layer

To highlight the advantages, the trade-off, and the chal-
lenges of IMC on realistic use cases for edge computing
and to assess the benefits of the presented heterogeneous
system, we benchmark the Bottleneck layer of a MobileNetV2
DNN. We analyze three different computation mappings that
are possible on the analog/digital system, compared to the
baseline, which executes all the layers of the Bottleneck on
the software cores using optimized software libraries [36].
The parameters of the selected Bottleneck layer are reported
in Fig. 8: this configuration is chosen so that all the weights
and activations fit the on-cluster TCDM (512 kB), without
requiring any activation data tiling [33], the in-depth study of
which is beyond the scope of this work.

The first possible execution mapping is to offload all the
layers of the Bottleneck to the IMA accelerator, except for the
residual connection, which is always offloaded to the cluster’s
cores. To map the weights of the layers on the IMC cross-
bar, we adopt the IM2COL approach [36]. Mapping point-wise
layers is straightforward: each 1 × 1 × Cin filter is mapped
across the height of the cross-bar (one column), more filters are
mapped across the columns. If the layer parameters did not fit
the size of the array, we would have to split the weights over
multiple IMAs. We postpone the analysis of more complex
scenarios, such as these, to Sec. VI and we focus on the
baseline case of a fully fitting layer here.

Contrarily to the point-wise layer, the depth-wise one is
very inefficient to map on the IMA cross-bar. In depth-wise
convolutions, each output channel depends only on the corre-
sponding input channel: to make them suitable for mapping
on the cross-bar array, a K×K kernel with C in/out channels
must be expanded into a dense form, with all the weights
out of a diagonal set to zero (padding), as shown in Fig. 8.
Assuming a hypothetical IMC array large enough to fit all the

weights and padding of the layer, out of K2 × C2 crossbar
locations programmed with weights or zeros, only K2×C of
them would concur to the kernel computation.

To reduce the useless occupancy of crossbar cells (i.e.
programmed with zeros), a different approach is to split the
computation of Cout pixels, that normally would be computed
in a single operation (what we call job), over multiple jobs,
each of which computes Cjob < Cout pixels. As a trade-off,
this leads to a smaller amount of operations per job, reducing
the overall performance. The advantage of this method is
that the total number of crossbar elements required to map
the depth-wise kernel is Nxbar = K2 × C × Cjob, reducing
the number of the overall programmed cells (with zeros and
weights) by a factor of Cout/Cjob compared to the previous
approach, at the cost of additional Njobs = Cout/Cjob jobs
per output pixel to complete the execution of the kernel (note
that in the previous case 1 job per Cout pixels is possible only
on ideal infinite sized cross-bar).

Mapping all the layers of the targeted Bottleneck following
the first approach is not feasible on the 256×256 cross-
bar array we use: we would require 23× more cross-bar
locations than the real number of weights, running out of
IMC resources. Hence, we analyze the costs of separating
the depth-wise in multiple jobs, considering two parameters:
Cjob = 8 and Cjob = 16, which translates to an increase
of 25% and 54% in the number of devices, respectively.
Empirically, we consider these configurations as a reasonable
trade-off between performance and occupancy of the cross-
bar. The two configurations are referred to as IMA cjob8 and
IMA cjob16, respectively.

The second mapping we analyze executes the point-wise
layers on the IMA and the depth-wise kernels on the 8 RISC-
V cores of the cluster. The software kernels for the depth-wise
are derived from an optimized parallel software library tailored
on PULP-based clusters [36]. Since such kernels require the
input data to be in Channel-Height-Width (CHW) layout and
since the output from the point-wise layer (from the IMA) is
in Height-Width-Channel (HWC) layout, additional execution
cycles are needed for on-the-fly data marshaling operations.
The output is generated in the HWC format instead and can
be forwarded to the IMA with no additional overhead. This
configuration is referred to as HYBRID and requires the storage
of depth-wise weights in the TCDM, instead of in the IMA
crossbar. This is a reasonable trade-off since the depth-wise
weights usually account for no more than 10% of the total of a
depth-wise based neural network [37] (∼ 4% in the considered
Bottleneck layer).

The third mapping solution, indicated as IMA+DW, runs
the point-wise layers on the IMA, the depth-wise layers on
the dedicated digital accelerator, and the residual layer on the
cores. The digital accelerator accepts input data and weights in
HWC format and produces outputs in HWC format, requiring
no additional data marshaling operations during the Bottleneck
layer execution.

Benchmarking results are provided in Fig. 9 for all the
solutions discussed above, in terms of performance, energy
efficiency, and area utilization efficiency. The width of the
system bus is 128-bit and we adopt the pipelined execution
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(a) (b) (c)

Fig. 9. (a) Performance (in GOPS), (b) Energy Efficiency (in TOPS/W), and (c) Area Utilization Efficiency (in GOPS/mm2) of the Bottleneck layer running
on the cluster at 500 MHz with 128-bit wide system-bus. The area efficiency is related to the effective area of the PCM arrays utilized to implement the
Bottleneck (including padding necessary to map the depth-wise on the IMA).

Fig. 10. Normalized Performance, compared to full software implementation
(CORES), of point-wise (left) and Bottleneck (right) layers. For the right-side
analysis, the impact of each layer on the execution of the whole Bottleneck
is shown, considering the different computing mapping solutions enabled by
the heterogeneous cluster.

model for the IMA; as demonstrated in Secion V-B, this
configuration maximizes performance. The cluster operates at
500 MHz at 0.8V, in typical operating conditions (TT, 0.8V,
25C).

We can notice that despite a significant area utilization
of the IMC array, the performance of IMA cjob16 and IMA
cjob8 are only 2.27× and 1.23× higher than a pure software
execution of the Bottleneck. Efficiency is even worse: 1.23×
lower energy efficiency and the same area efficiency of IMA
cjob8, and comparable energy and area efficiency of IMA
cjob16 compared to the CORES demonstrate that IMC arrays
are not efficient to host sparse layers like the depth-wise.
The HYBRID solution instead achieves 4.6× better perfor-
mance and 3.4× better energy efficiency than the CORES
configuration. Despite software-based execution of depth-wise
layers, this solution surpasses the cjob16 configuration by
2× in terms of performance, by 2.3× in terms of energy
efficiency, and by 2.1× in terms of area efficiency. The
peak performance is achieved in the IMA+DW configuration,
improving by 2.6× and 11.5× over the HYBRID and CORES
solutions, respectively. By offloading point-wise layers to the
IMA and depth-wise layers to the dedicated digital accelerator,
we fully exploit the potential of the two hardware blocks, while
the cores handle their configuration, the workload dispatching,
and ancillary aggregation operations, such as the residual
connection. This synergistic approach, enabled by the fact
that cores, IMA, and depth-wise accelerator all share the
same memory at L1, stands out also as the most efficient
one, achieving 2.7× and 9.2× improvements with respect to
the HYBRID and CORES configurations, in terms of energy

efficiency, and by 2.5× and 10.2× the same configurations in
terms of area efficiency.

Fig. 10 shows the execution breakdown of the Bottleneck
layer. In a pure software execution scenario, the point-wise
layers dominate the computation (CORES). The IMA shows
significant acceleration in such dense MVM-based operations
(left-sided Fig. 10), moving the performance bottleneck on
other layers like the depth-wise. However, the IMA itself is not
capable of mitigating this Amdahl’s effect, since the execution
of the depth-wise on the IMA is not efficient and dominates the
total execution cycles (IMA cjob8 and IMA cjob16). Execution
of depth-wise convolutions on the cores (HYBRID) improves
execution time, but this block remains by far the slowest
one. On the other hand, offloading the depth-wise layer to
the digital accelerator (IMA+DW) eliminates the performance
bottleneck as the execution time of the depth-wise layer is
comparable to the other components of the Bottleneck, such
as point-wise layers and residuals.

VI. END-TO-END MOBILENETV2 INFERENCE

Algorithm 1 Full-Network Tile&Pack algorithm
1: function TILE&PACK(n,h,w, S, nima) . n,h,w are name, height,

width of all layers, S is the size of each IMA (default 256), nima is the
number of available IMAs

2: Tiles← [ ]
3: for all n, (h,w) ∈ n, (h,w) do . Create tiles
4: ntile,w ← bw/Sc ; wrem ← w mod S
5: ntile,h ← bh/Sc ; hrem ← h mod S
6: for i ∈ [0, ntile,h − 1] do
7: for j ∈ [0, ntile,w − 1] do
8: Tiles[n+ “ tile i j”]← (S, S)
9: end for

10: end for
11: for j ∈ [0, ntile,w − 1] do
12: Tiles[n+ “ tilentile,h j”]← (hrem, S)
13: end for
14: for i ∈ [0, ntile,h − 1] do
15: Tiles[n+ “ tile i ntile,w”]← (S,wrem)
16: end for
17: Tiles[n+ “ tilentile,h ntile,w”]← (hrem, wrem)
18: end for
19: for all n, (h,w) ∈ Tiles do . Remove 0-sized tiles
20: if h = 0 or w = 0 then remove(Tiles[n])
21: end if
22: end for;
23: Bins← BINBESTFIT(Tiles)
24: IMA Mapping← MAXRECTSBSSF(Bins)
25: return IMA Mapping
26: end function
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In this section, we study the scalability of the heterogeneous
system (in terms of challenges and hardware resources) to
enable end-to-end inference of the MobileNetV2 [37]. To build
the model of the scaled-up architecture, we start from the
physical measurements carried out in the previous sections,
introducing the following considerations: the PCM-based IMC
cross-bar we use in this work does not support cell re-
programming, during the execution of the Neural Network
model, due to the high latency of the operation. An iterative
flow is necessary to program each cell of the PCM cross-
bar: first, pulses are sent to the cell, then the conductance is
read-out and compared with the expected value. The outcome
discrepancy is used to modulate the successive pulses to repeat
the procedure until convergence. The programming of the IMA
is done in a diagonal [27] or row-wise [39] fashion, therefore
takes considerably larger time (20× to 30× higher) than
merely performing a parallel MVM. As a direct consequence,
to map layers bigger than the cross-bar size we need to split
the weights and the layer’s execution on multiple IMAs, at the
cost of additional area. However, having multiple IMAs allows
reducing the occupancy of the generic memory of the system
to store the weights, being them hosted by the cross-bar itself.

For this analysis, we integrate the IMC cross-bars into
a single heterogeneous cluster of the same type presented
in the previous sections. Specifically, multiple cross-bars are
integrated into the same IMA sub-system, fully sharing the
same data and control interface. They can be activated one at
a time through a static multiplexing scheme. One multiplexer
collects the data interfaces of the IMAs and redirects them into
a 128-bit wide bus connected to the logarithmic interconnect
of the cluster. However, they can all be programmed before
the start of the computation, since we assume to replicate
the configuration registers (mapped in different portions of
the cluster memory map). Fig. 11 shows an overview of the
architecture.

We adopt a sequential execution model for the layer-to-layer
inference of the network, with the additional condition that all
the input activations reside in the L1 memory of the cluster.
In our analysis, we do not directly consider the overhead
in terms of time and energy to access activation data from
on-chip memory hierarchies. Double buffering and activation
data tiling have been shown to be effective at hiding the time
overhead [33] and minimizing the energy one [9] in such cases,
and we expect this effect to hold also in the case we analyze
here. In the case of the considered MobileNetV2 we map only
the point-wise layers on the IMA cross-bars, while the depth-
wise ones are executed on the digital accelerator. As reported
in Sec. V-C, this solution leads to the highest performance and
efficiency of the system.

Only the first layers of the MobileNetV2 fit a single
256×256 cross-bar, while the others (starting from the Bottle-
neck 3) require to be split over multiple IMA tiles. Therefore,
we develop a TILE&PACK strategy, outlined in Alg. 1, to tile
all layers and pack their contributions in the smallest number
of IMAs. Tiling splits a layer over multiple IMAs only when it
does not fit the size of the cross-bar; we do not allow tiling to
fill unfilled IMA locations, aiming at the highest utilization
area of the cross-bar on a per-tile basis. Packing is based
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Fig. 11. Overview of the scaled-up heterogeneous architecture. Only one
IMC cross-bar can be active at a time.

on the Maximal Rectangles Best Short Side Fit bin fitting
algorithm2. Fig. 12(b) shows the result of the application of the
TILE&PACK algorithm to the weights of MobileNetV2. From
this analysis, we conclude that to map all the Bottleneck layers
of the MobileNetV2 we need 34 IMA cross-bars. As can be
seen in Fig. 12(b), the TILE&PACK algorithm achieves 100%
of utilization of the cross-bar cells on most IMA cross-bars,
with only the final one showing a utilization below 84%.

The system with 34 IMAs would require a minimum area
of ∼30 mm2, since the area of the single IMA is 0.83
mm2. Despite this might represent a drawback, it is worth
noticing that weights need anyway to be stored into a non-
volatile memory inside or outside the system, such as a Flash.
In principle, the non-volatility of PCM-based IMAs allows
eliminating this Flash memory from the system.

Each layer or layer tile considered in this study is bench-
marked in terms of execution latency and energy individually,
on the heterogeneous system analyzed in Sec. V-C (which
incorporates only one IMA). We argue that, for this study
which aims to be a guideline for further digital/analog sys-
tems explorations, this is a good approximation, since the
benchmarked results include input/output fetch/storage from/to
the L1 memory of the system and the instructions of the
cores to configure and start the execution of the accelerators
(this reasoning holds for point-wise, depth-wise and residual
connection layers).

The results are shown in Fig. 12(a), whereas in Fig. 12(c)
we report the energy and the latency breakdown (among the
several hardware blocks involved in the computation) of the
conv-2d and Bottleneck layers. We notice higher execution
latency and lower efficiency for point-wise layers with fewer
parameters that operate on larger inputs – typically, the ones
from layers appearing early on in the network. In these cases,
the major part of the energy is spent in digital logic, as these
layers require more input and output streams to move the
activations to be processed. The most efficient layers are the
last two, where the IMA is utilized best, showing a peak
of efficiency higher than 5 TOPS/W. Overall, the proposed
architecture executes the end-to-end inference in 10.1ms of
latency, consuming 482 µJ .

2We employ the open-source rectpack Python library, available at
https://github.com/secnot/rectpack [40], to implement the BINBESTFIT and
MAXRECTSBSSF functions.

https://github.com/secnot/rectpack
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INPUT 
(H/WxC) #PARAMS MMAC Latency [ms] Energy [mJ] GMAC/s/W

CONV - 2D 2D_0 224 x 3 864 10.84 1.63 0.042 255.6
000 - PW 112 x 32 1024 12.85 1.63 0.051 251.6
DW 112 x 32 288 3.61 0.24 0.006 626.3
001 - DW 112 x 32 512 6.42 1.63 0.044 147.4
100 - PW 112 x 16 1536 19.27 1.63 0.076 254.7
DW 112x96 864 2.71 0.18 0.004 626.3
101 - PW 56x96 2304 7.23 0.41 0.017 437.1
110 - PW 56x24 3456 10.84 0.41 0.025 431.3
DW 56x144 1296 4.06 0.27 0.006 626.3
111 - PW 56x144 3456 10.84 0.41 0.020 540.4
ADD 56x24 # 0.08 0.18 0.006 12.1
200 - PW 56 x 24 3456 10.84 0.41 0.025 431.3

DW 56x144 1296 1.02 0.07 0.002 626.3
201 - PW 28x144 4608 3.61 0.10 0.005 684.7
210 - PW 28x32 6144 4.82 0.10 0.008 612.8

DW 28x192 1728 1.35 0.09 0.002 626.3
211 - PW 28x192 6144 4.82 0.10 0.006 780.6

ADD 28x32 # 0.03 0.06 0.002 12.1
220 - PW 28x32 6144 4.82 0.10 0.008 612.8

DW 28x192 1728 1.35 0.09 0.002 626.3
221 - PW 28x192 6144 4.82 0.10 0.006 780.6

ADD 28x32 # 0.03 0.06 0.002 12.1
300 - PW 28x32 6144 4.82 0.10 0.008 612.8

DW 28x192 1728 0.34 0.02 0.001 626.3
301 - PW 14x192 12288 2.41 0.03 0.002 1325.5
310 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
311 - PW 14x384 24576 4.82 0.05 0.004 1325.5

ADD 14x64 # 0.01 0.03 0.001 12.1
320 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
321 - PW 14x384 24576 4.82 0.05 0.004 1325.5

ADD 14x64 # 0.01 0.03 0.001 12.1
330 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
331 - PW 14x384 24576 4.82 0.05 0.004 1325.5

ADD 14x64 # 0.01 0.03 0.001 12.1
400 - PW 14x64 24576 4.82 0.05 0.004 1117.6

DW 14x384 3456 0.68 0.05 0.001 626.3
401 - PW 14x384 36864 7.23 0.05 0.004 1727.3
410 - PW 14x96 55296 10.84 0.08 0.007 1540.6

DW 14x576 5184 1.02 0.07 0.002 626.3
411 - PW 14x576 55296 10.84 0.08 0.006 1727.3

ADD 14x96 # 0.02 0.05 0.002 12.1
420 - PW 14x96 55296 10.84 0.08 0.007 1540.6

DW 14x576 5184 1.02 0.07 0.002 626.3
421 - PW 14x576 55296 10.84 0.08 0.006 1727.3

ADD 14x96 # 0.02 0.05 0.002 12.1
500 - PW 14x96 55296 10.84 0.08 0.007 1540.6

DW 14x576 5184 0.25 0.02 0.000 626.3
501 - PW 7x576 92160 4.52 0.02 0.002 2280.4
510 - PW 7x160 153600 7.53 0.03 0.003 2409.0

DW 7x960 8640 0.42 0.03 0.001 626.3
511 - PW 7x960 153600 7.53 0.03 0.003 2583.6

ADD 7x160 # 0.01 0.02 0.001 12.1
520 - PW 7x160 153600 7.53 0.03 0.003 2409.0

DW 7x960 8640 0.42 0.03 0.001 626.3
521 - PW 7x960 153600 7.53 0.03 0.003 2583.6

ADD 7x160 # 0.01 0.02 0.001 12.1
600 - PW 7x160 153600 7.53 0.03 0.003 2409.0

DW 7x960 8640 0.42 0.03 0.001 626.3
601 - PW 7x960 307200 15.05 0.05 0.006 2583.6

CONV - 2D 2D_1 7x320 409600 20.07 0.06 0.008 2464.6

TOTAL 2190784 281.65 10.06 0.48 583.9
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Fig. 12. End-to-end execution of MobileNetV2 on the scaled-up heterogeneous cluster. (a) shows the parameters of each layer, the execution latency (ms),
energy (mJ) and efficiency (GMAC/s/W). (b) Tiling algorithm of the layers on the 34 IMAs. (c) Latency and energy breakdown of Bottleneck layers.

VII. COMPARISON WITH THE STATE-OF-THE-ART

Tab. I reports the comparison of our scaled-up system with
fully digital and mixed-signal state-of-the-art solutions. The
solution we propose is superior compared to the others, as it
provides full hardware support for a wide range of workloads
both in analog and digital domains, enabling de facto effi-
cient end-to-end execution of complex neural network models
such as the MobileNetV2. Compared to Vega [9], which is
an architecture based on the same RISC-V cluster without
integrating analog IMC cores nor dedicated accelerators for the
depth-wise, we show 10× and 2.5× improvements in terms of
inference latency and energy, respectively, when considering
the end-to-end inference of the MobileNetV2.

We compare favorably also with [6], which consists of
a tiny RISC-V core and a charge-based IMC array inte-
grated into the system through a loosely-coupled scheme.
In theory, the presence of a programmable core potentially
enables the execution of a reasonably sized network such as
MobileNetV2. However, the only processing model possible
on this architecture is to offload the point-wise layers to
the IMC array and the depth-wise and residual layers to the
tiny RISC-V processor, which is not capable of performing
compute-intensive functions with a reasonable performance
level. This would create a major performance bottleneck for
the heterogeneous workload. For these reasons, our solution

shows at least two orders of magnitude improvement on the
end-to-end execution of the DNN. Despite the higher area
of our system that might represent a drawback, it is worth
noticing that the charge-based IMA integrated into [6] requires
extending the architecture with a Flash memory to store the
weights of the DNN (with non-negligible area costs). In our
architecture, weights can be stored directly on the non-volatile
IMAs, without having to consider an external Flash.

The system presented in [7] consists of a PCM-based IMC
array extended with digital logic that performs only activation
and pooling operations, while a small SRAM memory acts as
a layer-to-layer intermediate buffer. The higher peak perfor-
mance and efficiency on MVMs they show compared to us is
due to the bigger array size they used (1024×512 compared
to 256×256), being the in-memory macro based on the same
prototype [27], while a loss as little as 10% of the peak is
attributable to the integration of the IMA into a complex
system like the one we propose, as we show in Sec. V-C.
However, the architecture in [7] is too limited to execute
the end-to-end inference of the MobileNetV2 for two main
reasons: first, a single IMC array can not host all the layers
weights of the MobileNet; second, there are no programmable
cores to handle residual connections and control operations.
Despite a more complex data-path compared to [7], including
a cluster of 4×4 computing in memory units and a network-
on-chip for communication which delivers outstanding perfor-
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TABLE I
COMPARISON WITH THE STATE-OF-THE-ART.

[9] [7] [31] [6] This
Work

Tech.
node 22nm 14nm 16 nm 65nm 22nm

Area
[mm2] 12 3.2 25 13.5 ∼30

Cores
(ISA)

9x
RV32
IMCF
Xpulp

None None
1

RV32
IMC

8x
RV32
IMC

Xpulp
Analog
IMC None 1x

PCM
16x

charge
1x

charge
34x

PCM
Array
Rows None 1024 1152 2304 256

Array
Columns None 512 256 256 256

Digital
acc.

HWCE
(stand.
conv.)

ReLu,
activ.,
im2col

Activ.,
scaling,
pooling

Activ.,
scaling,
pooling

Depth-
wise

Peak
Perf.
[TOPS]

0.032
(ML 8b)

2
(8b-4b)

3
(8b-8b)

0.068 1

(8b-4b)
0.958

(8b-4b)

Peak
Eff.
[TOPS/W]

0.61
(8b-8b)

13.5
(8-4b)

30
(8b-8b)

12.5 1

(8b-4b)
6.39

(8b-4b)

MobileNetV2 inference

Perf.
[inf./s] 10 n/a n/a 0.232 99

Energy
[mJ] 1.19 n/a n/a n/a 0.482

1 Scaled from 1b-1b MVMs performance as explained in [6].
2 Point-wise latency estimated from the peak performance on 8-bit×4-
bit MVMs. Latency of 8-bit×8-bit depth-wise conv. estimated from our
benchmarking results on the cluster’s cores, scaled considering that: due to
improved ISA, our core is ∼10× faster on a per-core basis [34]; additional
∼7× improvement factor due to the cluster parallelism [36].

mance and efficiency on MVMs, also the architecture shown
in [31] is not viable to map heterogeneous workloads such
as the MobileNetV2, due to the absence of a programmable
processor.

Finally, to better highlight the contribution of this work,
we abstract the specific System-on-Chip implementations de-
scribed in Tab. I to four categories representative of the
state-of-the-art, as shown in Fig. 13. We can highlight four
different processing models: i) analog cores extended with
fixed-function digital logic [7], [31] (IMA+ DIG. ACC.), ii)
analog cores controlled by simple MCU-subsystems [6] (IMA+
MCU), iii) IMAs integrated into tightly-coupled clusters of
programmable processors [8] (SW+ IMA), and iv) the paradigm
proposed in this work, where we exploit heterogeneity both
in terms of analog and digital computing and in terms of
programmable cores and lightweight tightly coupled digital
acceleration (SW+IMA+ DIG. ACC.).

Fig. 13 shows the results of the exploration, highlighting
that for the MobileNetV2 workload, the computational model
proposed in this work delivers significantly better performance
compared to all the models exploiting programmable processor
to sustain flexibility bottlenecks of IMC arrays. On the other
hand, architectures only mixing specialized digital hardware
with AIMC can only deal with DNN models for which they
are designed, not being able to adapt to different models for
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Fig. 13. Performance of the MobileNetV2, on four IMC-based computing
models. On the IMA+ASIC it is not possible to deploy the network model,
due to architectural limitations.

which they were not intended before fabrication.
We argue that this concept, only demonstrated for Mo-

bileNetV2 DNN in Fig. 13 can be easily extended to more
complex computer vision pipelines in the embedded domain,
where AI workloads are often coupled to more traditional lin-
ear algebra algorithms such as Principal Component Analysis
(PCA), Fast Fourier Transform, Filtering Functions or Inverse
Kinematics [41]. We believe that the approach proposed in
this work is a viable way to tackle the performance and
flexibility requirements of rapidly evolving modern computer
vision pipelines.

VIII. CONCLUSION

Analog in-memory computing (IMC) promises outstanding
improvements in energy efficiency on MVM operations. How-
ever, to target practical IoT applications IMC arrays must be
enclosed in programmable heterogeneous systems, introducing
new system-level challenges.

In this work, we explore these challenges by presenting a
full implementation of a heterogeneous tightly-coupled clus-
tered architecture integrating 8 RISC-V processors, a non-
volatile PCM-based IMC accelerator, and a depth-wise digital
accelerator, targeting the GlobalFoundries 22nm FDX tech-
nology. Benchmarked on a highly heterogeneous workload
such as the Bottleneck layer, our solution overcomes software
execution of the layer by 11.5× and 9.5× in terms of per-
formance and energy efficiency. We scaled up our system to
investigate the challenges and the resources of enabling end-to-
end inference of real-world DNNs such as the MobileNetV2,
demonstrating execution 10× faster within 2.5× lower energy
than fully digital solutions and more than two orders of
magnitude faster than existing state-of-the-art analog/digital
heterogeneous solutions.
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