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Two-Dimensional Z2 Lattice Gauge Theory on a Near-Term Quantum Simulator:
Variational Quantum Optimization, Confinement, and Topological Order
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We propose an implementation of a two-dimensional Z2 lattice gauge theory model on a shallow quan-
tum circuit, involving a number of single- and two-qubit gates comparable to what can be achieved with
present-day and near-future technologies. The ground-state preparation is numerically analyzed on a small
lattice with a variational quantum algorithm, which requires a small number of parameters to reach high
fidelities and can be efficiently scaled up on larger systems. Despite the reduced size of the lattice we
consider, a transition between confined and deconfined regimes can be detected by measuring expectation
values of Wilson loop operators or the topological entropy. Moreover, if periodic boundary conditions
are implemented, the same optimal solution is transferable among all four different topological sectors,
without any need for further optimization on the variational parameters. Our work shows that variational
quantum algorithms provide a useful technique to be added in the growing toolbox for digital simulations
of lattice gauge theories.
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I. INTRODUCTION

Platforms for quantum computation are undergoing
steady development and, nowadays, several architectures
for the implementation of quantum circuits up to a few tens
of qubits are available. In most of these platforms, qubits
are considerably noisy, with coherence times that enable
the application of only a few layers of unitary gates before
losing quantum correlations. Therefore, for a successful
use of these quantum computers, the task of efficiently
initializing the system in a target state becomes of the
uttermost importance.

Variational quantum algorithms (VQAs) [1,2] are a
promising technique to exploit noisy quantum hardware
with shallow circuits. Among such methods, the quantum
approximate optimization algorithm [3–5] (QAOA) is a

*wauters@nbi.ku.dk

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license. Fur-
ther distribution of this work must maintain attribution to the
author(s) and the published article’s title, journal citation, and
DOI.

popular strategy for preparing the ground state of a tar-
get many-body Hamiltonian ̂Htarg. Starting from a product
state, usually the ground state of a simple mixing Hamilto-
nian ̂Hmix, it applies a series of unitary evolution operators
generated alternately by ̂Htarg and ̂Hmix. The correspond-
ing evolution times are treated as variational parameters to
be optimized via a classical minimization of the energy.
QAOA has been studied extensively for solving classi-
cal optimization problems [3,5,6], ground-state approxi-
mation of quantum spin systems [4,7–10], and has been
shown to be computationally universal [11,12]. Moreover,
it has been successfully implemented on a trapped-ions
quantum simulator [13] and on superconducting quantum
circuits [14,15].

When considering current quantum computers based
on superconducting qubits, typical platforms are com-
prised of qubits arranged in two-dimensional arrays
[16,17]. These systems allow us to manipulate the qubits
via single- and two-qubit gates and, in most cases, two-
qubit gates are local, i.e., they can be applied on neigh-
boring qubits only. These platforms are usually initialized
starting from simple product states, while the efficient cre-
ation of
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complex entangled states is a nontrivial challenge. Despite
the limitations of the noisy hardware currently available,
these architectures open the path to various applications.
One of the most important is the implementation of error-
correcting codes and, to this purpose, considerable atten-
tion has been devoted to the realization of surface codes
[18], and thus to the preparation via local gates of states
displaying topological order. In this context, the first exper-
imental realization of the ground state of a surface code
has been successfully achieved [19] and it allowed for the
study of the main topological properties of its anyonic
excitations. Another strategic application is the simula-
tion of interacting quantum many-body problems that are
intrinsically hard to simulate with classical computers [20].

In this framework, lattice gauge theories (LGTs)
emerged as a paradigmatic research subject. They consti-
tute the backbone of particle physics, and many of their
important features display a nonperturbative nature, there-
fore requiring advanced numerical techniques to be stud-
ied. Furthermore, some of the simplest two-dimensional
(2D) LGTs share the same topological properties of surface
codes that, indeed, can be seen as the extreme decon-
fined limit of systems with Z2 gauge symmetry. In the last
decade, the application of quantum technologies to LGT
became a lively field of research [21–26], progressing both
on the development of several technologies and algorithms
to tackle the complexity of LGTs and on the study of LGTs
themselves.

One of the tasks that can be addressed through quantum
simulation of LGTs is the study of their static properties.
To this purpose, a key step is an efficient initialization
of their ground states, allowing the investigation of their
phase diagrams at low temperatures.

In this work, we explore the possibility of studying
the ground state of a 2D pure lattice gauge theory within
the framework of quantum circuits and digital quantum
simulations. Indeed, the recent developments of quantum
simulations provide complementary approaches to other
quantum many-body approximation techniques such as
tensor networks [23,27–31], which are challenging to
implement in two dimensions with current technologies,
in particular for what regards quantum dynamics. We
focus on the 2D Z2 LGT, which is known to display
a confinement-deconfinement phase transition between
a trivial (confined) phase and a topologically ordered
(deconfined) phase, matching the topological features of
surface codes. As we show, most of the interesting ground-
state properties linked to topological order, which are
usually described in the thermodynamic limit, can be
characterized even with small lattices.

Our approach to realize the ground states of a 2D LGT
is based on single- and two-qubit gates only, and it is
amenable to experimental implementations with limited
resources, in particular with a number of qubits and fan-out
already accessible to present-day hardware or near-future

devices. We apply QAOA to prepare the ground state at
arbitrary values of the coupling and we show that the
algorithm reaches high fidelities within a very small num-
ber of variational parameters, corresponding to a shallow
quantum circuit. To reliably find optimal or quasioptimal
minima, we employ a two-step local optimization proce-
dure [32], which provides regular schedules that can be
efficiently transferred to larger systems.

Targeting the ground state in the confined phase, where
there is no long-range entanglement, can always be per-
formed efficiently and our numerical simulations suggest
that QAOA can be scaled up to larger sizes without
increasing the circuit depth. Concerning the preparation of
states in the deconfined phase, instead, it is known that
topologically ordered states cannot be obtained exactly
with circuits of fixed depth for growing system size. In
particular, for the ground states of the toric code, the
required circuit depth scales linearly with the system width
[19,33–36]. This is also a general property of QAOA,
where long-range correlation and perfect control on the
system is attained only with an extensive number of layers
[4,37,38].

As a consequence, when targeting states in different
phases, we compare two strategies: either we directly apply
the QAOA evolution on a trivial product state or we first
build exactly the toric code state and then apply the varia-
tional circuit from that starting point. The two approaches
offer optimal results for targeting states in the confined
or deconfined phase, respectively. They also display sim-
ilar performances for the small system sizes we consider,
except for the required overhead of the second approach.

The ground states prepared with QAOA are then
used to characterize the crossover from the confined-
topologically trivial phase to the deconfined-topologically
ordered one. In particular, we focus on the behavior of
Wilson loop operators and of the topological entropy.
We also discuss the possibility of exploring the ground-
state degeneracy when the lattice has periodic bound-
ary conditions. Remarkably, all these indicators of a
topological phase transition display very small devia-
tions from their expected behavior in the thermody-
namic limit despite the reduced size of our lattices.
The successful implementation of 2D Z2 LGT and the
correct description of this nontrivial crossover—with
very limited resources in terms of qubit numbers and
circuit depth—provides a proof of principle of the
feasibility of quantum simulations of deconfined and
topological phases of lattice gauge theories in gen-
eral.

The rest of this article is organized as follows. In Sec. II
we describe the Z2 lattice gauge theory model, introducing
the main properties that characterize its topological order.
In Sec. III we describe the implementation of QAOA for
this model and how to represent the relevant unitary oper-
ators in terms of single- and two-qubit gates. The main
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numerical analysis is presented in Sec. IV, where we focus
on the performance of QAOA, its scalability to larger sys-
tems, and the characterization of the topologically ordered
phase. Finally, we summarize our main results and some
future perspectives in Sec. V.

II. Z2 LATTICE GAUGE THEORY

In this work, we consider a pure Z2 gauge theory model
on a regular square lattice. The discretized gauge fields are
represented by qubits on the links of the lattice. Using a
lattice of size L × L, there are 2L2 qubits if periodic bound-
ary conditions are imposed. The Hamiltonian we use is the
sum of two competing terms

̂H = ̂HE + ĥHB, (1)

which represent “electric” and “magnetic” noncommut-
ing contributions. Their structure comes from an analogy
with the QED Hamiltonian, where both space and the
gauge group U(1) are discretized: the real space becomes
a lattice, and U(1) is discretized to Zn. Here we focus
on the smallest discrete group n = 2, which is naturally
encoded in terms of qubits. The electric contribution to the
Hamiltonian is

̂HE =
∑

l

(1 − σ̂ x
l ), (2)

where the index l runs over all the links in the lattice
and the Pauli matrices are denoted σ̂ αl , with α = x, y, z.
This specific choice of ̂HE is motivated by the QED anal-
ogy, since the electric field enters the Hamiltonian via �E2

and our term is positive definite. A spin in the eigenstate
σ̂ x

l |+〉l = |+〉l brings no contribution to the electric energy
and corresponds to a vanishing electric field. The state |−〉l
indicates instead the presence of a Z2 electric excitation on
the link l, with energy cost assigned by ̂HE . The magnetic
term reads

̂HB = −
∑

p

Bp = −
∑

p

σ̂ z
p1
σ̂ z

p2
σ̂ z

p3
σ̂ z

p4
, (3)

where p labels the plaquettes of the lattice and the pla-
quette operator Bp involves the product of the four spin
variables σ̂ z around the four links p1, . . . , p4 of the pth
plaquette (see Fig. 1). In particular, Bp = −1 represents a
magnetic flux through the pth plaquette, and the interaction
term ĥHB assigns an energy 2h to each of these excitations.
The electric Hamiltonian ̂HE effectively provides a kinetic
energy to the magnetic fluxes. The local gauge constraint
is the analog of Gauss’s law and it selects the physically
relevant sector of the Hilbert space. For each vertex v of
the lattice, physical states must be left invariant by gauge

FIG. 1. Representation of a star operator Av (in red) and a pla-
quette operator Bp (in blue), with the corresponding qubits on the
links (solid circles).

transformations, thus satisfying

Av|ψ〉phys =
∏

l∈v
σ̂ x

l |ψ〉phys = |ψ〉phys, (4)

where the star operator Av is the product of the spin oper-
ators σ̂ x on the four links connected to the vertex v, as
represented in Fig. 1.

The Hamiltonian in Eq. (1) has two well-known limits,
for h → 0 and h → ∞. When only HE is present (h → 0),
the electric ground state is a trivial product state with all
spins aligned along the x direction |�E〉 = ⊗

l |+〉l, which
satisfies the local gauge constraints in Eq. (4) and corre-
sponds to the absence of any electric field excitation. In
the opposite limit h → ∞ only the magnetic term remains,
the system behaves like a surface code [18,39,40] and dis-
plays topological order. In this case, the number of ground
states depends on the boundary conditions. The ground
states of ̂HB are the simultaneous eigenstates of all plaque-
tte and star operators with eigenvalue 1 and correspond to
the absence of magnetic fluxes.

In the case of open and smooth boundaries [18], there
is a single magnetic ground state that can be expressed
as an equal amplitude linear superposition of all possible
contractible electric flux loops �:

|�B〉 = N
∑

�

W�|�E〉 =
∏

p

(

1 + Bp√
2

)

|�E〉. (5)

Here N is a normalization factor and W� the Wilson
loop operator associated to a closed path �, defined as the
product of σ̂ z matrices on the links belonging to �:

W� =
∏

l∈�
σ̂ z

l . (6)

Since σ̂ z|±〉 = |∓〉, Wilson loops applied to the electric
ground state |�E〉 create closed lines of electric field exci-
tations. The second form of |�B〉 in Eq. (5) expresses it as
the normalized product of the projectors on the eigenstate
of each plaquette operator with eigenvalue 1.
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The magnetic coupling h drives the system across a
topological phase transition, occurring at hc, between the
electric and the magnetic phases, which are distinguished
by different behaviors of the expectation values of the Wil-
son loop operators. From the definitions of the limiting
ground states |�〉E , |�〉B, it follows that in the two limits
h = 0 and h → ∞ we have, for all paths �,

〈�E|W�|�E〉 = 0 and 〈�B|W�|�B〉 = 1.

At a finite value of h, the expectation value of Wilson loops
on the ground state decreases exponentially in the size of
�, with a leading contribution given by [41,42]

〈W�〉 = e−χ(h)A�−δ(h)P� , (7)

where A� and P� are the area enclosed by the loop � and
its perimeter, respectively, while χ and δ are two positive
functions. For h < hc, the system is in a phase dominated
by the electric term ̂HE , χ(h) > 0, and 〈W�〉 decays with
an “area law.” This means that large loops of electric
excitations are strongly suppressed, which is a signature
of confinement [43,44]. In the opposite deconfined phase,
where h > hc and the dominant term is ̂HB, χ(h) → 0, and
the behavior of large Wilson loops follows a “perimeter
law.”

When periodic boundary conditions (PBCs) are consid-
ered in both directions, the Hamiltonian acquires an extra
Z2 × Z2 symmetry related to noncontractible ’t Hooft
loops. Consider a closed path C in the dual lattice. The path
C crosses orthogonally a sequence of links of the direct lat-
tice that we denote schematically by 	 ∩ C. The ’t Hooft
loop operator

τC =
∏

l∩C
σ̂ x

l (8)

commutes with Hamiltonian (1) for any closed loop C.
However, if C is contractible, τC can always be expressed
as a product of star operators Av, so that [τC , Ĥ ] = 0 does
not provide any additional information that is not already
contained in the gauge invariance of the Hamiltonian.
Considering PBCs, the lattice becomes a torus and there
are indeed two inequivalent noncontractible loops, whose
corresponding ’t Hooft operators τh and τv provide new
symmetries. Figure 2 shows examples of ’t Hooft loop
operators.

In the trivial limit h → 0, the expectation values of τh
and τv on the electric ground state |�E〉 are +1. Switch-
ing on strings of electric excitations, one sees that τh and
τv measure the winding numbers of electric field lines in
the vertical and horizontal directions, respectively. With
PBCs, we can construct two noncontractible Wilson loop
operators Wh and Wv , which commute with ̂HB and Av ,

FIG. 2. The two noncontractible ’t Hooft loops τh, τv and a
simple example of how a contractible ’t Hooft loop operator τC
is written as a product of star operators. The dotted link indicates
a cancelation due to (σ̂ x

l )
2 = 1.

but vary the electric field winding numbers since they
respectively anticommute with τv and τh:

[Wh, τh] = [Wv , τv] = 0,

{Wh, τv} = {Wv , τh} = 0.

In the topological limit h → ∞, when [Wh, Ĥ ] =
[Wv , Ĥ ] = 0, we get four degenerate ground states char-
acterized by different eigenvalues of the ’t Hooft loops,
corresponding in the basis |τh, τv〉 to

|++〉 = |�B〉,
|+−〉 = Wh|�B〉,
|−+〉 = Wv|�B〉,
|−−〉 = WhWv|�B〉.

At finite values of h > hc, the perfect degeneracy between
these four states gets lifted by an energy splitting vanishing
exponentially with L.

The phase transition occurs at hc = 3.044 38(2) [45] and
it can be understood by considering the duality between
the Hamiltonian in Eq. (1) and the two-dimensional
transverse-field (quantum) Ising model (2D TFIM). When-
ever the lattice has PBCs, the gauge symmetry Av|ψ〉phys =
|ψ〉phys is imposed at each vertex, and the Hilbert space
is restricted to the τh = τv = +1 sector [46]. Indeed, we
can define new Pauli spin variables Xp and Zp on the
dual lattice, where p denotes the plaquette centers, by
identifying

Xp = Bp ,

ZpZp ′ = σ̂ x
l(p ,p ′),

(9)

where p and p ′ are neighboring plaquettes and l(p , p ′) is
the link shared by p , p ′. With the mapping in Eq. (9), the
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Hamiltonian becomes a transverse-field Ising model on the
dual lattice:

̂H =
∑

〈p ,p ′〉
(1 − ZpZp ′)− h

∑

p

Xp . (10)

One can check that the algebra generated by the new opera-
tors is the same as the original one, confirming the unitary
equivalence of the two models. Note that the number of
degrees of freedom is now halved: L2 qubits (one for each
plaquette), instead of 2L2 (one for each link). This is an
effect of the gauge symmetries, which are now automati-
cally incorporated into the model. Finally, it is important
to mention the fact that this duality fixes the global Z2
symmetry of the Ising model: in the original representa-
tion, the product of all plaquette operators is the identity
∏

p Bp = 1. In the 2D TFIM, this is reflected in the condi-
tion

∏

p σ̂
x
p |ψ〉 = |ψ〉, which means that the physical states

must be invariant under a global spin flip.
In this work, we employ both the original formulation

of Eq. (1) and its dual model in Eq. (10). The dual Ising
model will be exploited to speed up our numerical analysis
of the Z2 LGT and, in particular, to verify the scalability
of QAOA between different system sizes.

III. QAOA AND CIRCUIT IMPLEMENTATION

A. Ground-state preparation with QAOA

To prepare the ground state of the LGT Hamiltonian
in Eq. (1), we use QAOA [3]. Although QAOA was ini-
tially proposed as a tool to look for approximate solutions
to classical combinatorial optimization problems, it can be
easily generalized to construct the ground state of many-
body quantum Hamiltonians. Considering the two terms
̂HB and ̂HE in the LGT Hamiltonian, QAOA consists in
constructing the variational ansatz

|ψP(γ , β)〉 = ̂U(γP,βP) · · ·̂U(γ1,β1)|ψ0〉, (11)

where β = β1, . . . ,βP and γ = γ1, . . . , γP are 2P free real
parameters, and the unitary operators ̂U(γm,βm) for m =
1, . . . , P evolve the state according to ̂HB and ̂HE , in an
alternating fashion. More precisely, the initial state |ψ0〉
can either be the electric ground state |�E〉 or the magnetic
one |�B〉 = |++〉, and, depending on the choice of |ψ0〉,
we define the operator ̂Um = ̂U(γm,βm) in Eq. (11) as [47]

̂Um =
{

e−iβm̂HE e−iγm̂HB if |ψ0〉 = |�E〉,
e−iγm̂HBe−iβm̂HE if |ψ0〉 = |�B〉. (12)

For a given choice of the coupling h, which identifies a tar-
get Hamiltonian ̂Htarg(h) = ̂HE + ĥHB, an approximation
of the associated ground state is found using a classical

minimization of the variational energy

EP(γ , β) = 〈ψP(γ , β)|̂Htarg(h)|ψP(γ , β)〉 (13)

in this 2P-dimensional energy landscape.
The optimal energy at the global minimum EP(γ

∗, β∗)
is a monotonically decreasing function of P. However,
exactly determining the global minimum is, in general, not
a trivial task [5], since local optimization routines tend to
get trapped in one of the many local minima of the 2P-
dimensional search space. We discuss below an effective
strategy to search for optimal (or quasioptimal) solutions
by a two-step QAOA procedure that starts from a linear
schedule for the parameters, in the spirit of a digitized
quantum annealing [48].

B. Circuit implementation of the QAOA ansatz

The QAOA variational wavefunction in Eq. (11) is
obtained by applying P layers of local unitary operators,
by alternating the time evolutions generated by plaquette
and electric field interactions. In what follows, we describe
how to implement the operations involved in each layer
of the variational circuit by using only single- and two-
qubit gates. Since we focus on a single application of
the unitary operations e−iβm̂HE and e−iγm̂HB , the index m
will be dropped from the parameters. The electric term of
Eq. (2) is a sum of single-qubit operators, and therefore
the evolution it generates can be realized as a product of
single-qubit rotations around the x axis by the angle β, up
to an irrelevant global phase. The computational basis we
adopt hereafter is the σ̂ z eigenbasis. Therefore, we employ
Hadamard gates to diagonalize ̂HE , and we reproduce the
electric evolution during a single QAOA step by simul-
taneously applying operators Up(β) = eiβσ̂ z

to all qubits,
i.e., a global rotation of angle β around the z axis [49]. A
schematic representation of the single-qubit gates required
is sketched in Fig. 3(b).

The implementation of the time evolution associated
with plaquette operators is less trivial [50–52], but it can
be realized in a local way as a combination of single- and
two-qubit gates. Figure 3(a) shows that a single-plaquette
unitary operator eiγBp is obtained by a suitable combi-
nation of controlled-NOT (CNOT) gates and a single-qubit
rotation Up(γ ) applied to the fourth qubit of the plaque-
tte. The fourth qubit is the target of all CNOT gates and it
is restored to its initial logical state by the last three CNOT
gates, such that Up(γ ) successfully applies the phase γBp
only. An alternative technique based on ancillary qubits is
presented in Refs. [53–55].

For a lattice composed of several plaquettes, the circuits
in Fig. 3(a) cannot be simultaneously run on all of them,
since two neighboring plaquettes share a qubit: as shown
in Fig. 3(c), qubit 4 not only acts as the target for the
left plaquette but also as one of the controls for the right
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(a)

(b) (c)

FIG. 3. (a) Circuit implementation of the operator e−iγ̂HB act-
ing on a single plaquette, with a target and three control qubits.
The states |pi〉 are expressed in the σ̂z eigenbasis and Up(γ ) =
eiγ σ̂ z

is a single-qubit rotation around the z axis. (b) Implemen-
tation of the single-qubit operations that describe e−iβ̂HE . (c)
Example of the sequential implementation of the operator e−iγ̂HB

on two neighboring plaquettes. The qubit |p4〉 is used first as
the target qubit for the first plaquette and afterwards as a control
qubit for the second.

plaquette. The time evolution of the plaquette operators,
however, can still be efficiently parallelized. For the sake
of simplicity, we first consider systems with an even num-
ber of columns (for an even number of rows, the situation
is formally equivalent). In this case, we can decompose
the whole lattice into sets of two neighboring horizontal
plaquettes, each set with the same structure as depicted
in Fig. 3(c). We focus on a single set, which corresponds
to our basic unit. We show in Fig. 4 the corresponding
quantum circuit that will be run in parallel for all such
sets. Neighboring pairs of plaquettes share qubits at their
boundary: this can be understood by ideally replicating the
pair in Fig. 3(c), to build a lattice. For instance, qubits 3
and 6 of our set also correspond to qubits 2 and 5 of the
set above the one in exam. Similarly, qubits 2 and 5 are
homologous with qubits 3 and 6 for the set below, whereas
qubit 7 matches qubit 1 of the plaquette pair lying on the
right of the one depicted, and so on.

The algorithm defined in Fig. 4 performs the rotation of
both plaquettes in 12 steps and it can be run in parallel for
all plaquette pairs. This procedure is based on applying the
phase gates Up(γ ) on qubits 4 and 7 (thus on all the qubits
of the lattice lying on the vertical links) to implement the
plaquette rotation. The gates partially depicted in green
are related to the simultaneous realization of the same
algorithm for the neighboring plaquettes. All the qubits
lying on the vertical links are required to be connected
via CNOT gates to the four neighboring qubits, whereas the
horizontal qubits are just connected to two neighbors each.
As a result of the previous scheme, each of the P steps
of the QAOA can be realized with a circuit of depth 13

FIG. 4. Algorithm to implement the plaquette operator eiγB on
the two plaquettes depicted in Fig. 3(c). The labeling of the qubit
lines emphasizes that all the boundary qubits are shared with the
neighboring plaquette pairs. The partially depicted green gates
(dashed lines) are related to the simultaneous implementation
of the same algorithm on a couple of neighboring plaquettes.
They connect the displayed qubits with qubits belonging to the
surrounding lattice sites, based on suitable translations of the
two-plaquette unit.

on systems with open boundaries, or systems with closed
boundaries and an even number of rows or columns. In this
work, we focus most of the numerical investigation on a
lattice with 3 × 3 plaquettes and periodic boundary con-
ditions. Its implementation on actual quantum hardware
requires some additional care due to the boundary condi-
tions and, in that case, each QAOA step can be realized
with a circuit of depth 18 (see Appendix A).

To evaluate the scaling of the preparation of a target
ground state of the Z2 LGT, it is also important to con-
sider the preparation of the initial states |ψ0〉, which will
subsequently be modified by the QAOA layers. The elec-
tric ground state |�E〉 is a trivial product state and it can
be prepared by applying Hadamard gates on all qubits, to
rotate them into the eigenstate |+〉 of the σ̂ x operator.

The toric code (magnetic) ground state |�B〉 displays
instead topological order and long-range entanglement
[34]. To initialize this state, we follow the technique
adopted in Ref. [36]: assuming that each qubit is initially
in the eigenstate |↑〉 of σ̂ z, in each plaquette we first apply
three Hadamard gates on the control qubits and then three
CNOT gates targeting the fourth [56]. This procedure is sim-
ilar to the first three-CNOT sequence of the circuit depicted
in Fig. 3(a), with the addition of Hadamard gates on the
qubits |p1〉, |p2〉, and |p3〉.

These operations can be performed in parallel on pla-
quettes belonging to a single row and then repeated L times
to cover the whole lattice. Operations on different columns
(or rows), however, cannot be parallelized because in each
plaquette the CNOT gates must be applied before using
one of the control qubits as the target for the neighboring
column (row). If we consider Fig. 3(c), the plaquette oper-
ations must start from the rightmost column, in such a way
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that the qubit |p4〉 is used as a control before becoming the
target of the plaquette on the left.

This is an important difference with respect to the appli-
cation of the gate e−iγ̂HB : despite the fact that the prepara-
tion of the ground state of ̂HB on a single plaquette requires
a smaller number of gates, for large systems, the initializa-
tion of |�B〉 requires a deeper circuit than the Hamiltonian
gate, which, instead, can be run in parallel on all the
even or odd columns (rows). This reflects the necessity of
having a circuit with depth O(L) to prepare a state with
long-range entanglement, such as |�B〉, which has been
well studied in the literature [33–35]. In conclusion, when
we compare the QAOA results with different choices of the
initial state |ψ0〉, we need to take into account the overhead
required for preparing |�B〉.

The construction of the QAOA layers we have presented
so far was restricted to the case of an Abelian Z2 LGT.
We stress, however, that the same procedure can be gen-
eralized to pure 2D LGTs with arbitrary discrete gauge
groups. In particular, by suitably extending the Hilbert
space associated with each link of the square lattice, it is
possible to implement the time evolution steps of both the
electric and magnetic Hamiltonians based on local unitary
operators [52].

In this respect, the simplest generalization is provided
by Zn LGTs (see, for instance Refs. [54,57–63]). In this
case, a gauge degree of freedom is encoded into an n-
dimensional Hilbert space, as common in quantum clock
models with Zn symmetries [64,65]. The electric field
indeed assumes n different values, which may be repre-
sented by suitable qudits (or by embedding each degree
of freedom in a set of qubits). The electric Hamilto-
nian ̂HE remains a local Hamiltonian, whose time evo-
lution can be performed in a parallel way over all
links.

As in the case of the Z2 theory, for Zn symmetries,
there is also a suitable unitary transformation mapping the
eigenstates of the electric Hamiltonian into the eigenstates
of the magnetic operators adopted to build the plaquette
terms (the so-called connection operators). Such unitary
transformations generalize the Hadamard gates we adopted
and correspond to a quantum Fourier transform. Addi-
tionally, the plaquette term maintains the same four-body
interaction form through a suitable replacement of σ̂z with
quantum clock operators. The implementation of the pla-
quette operator thus requires generalizing the CNOT gates
to controlled Zn clock gates. Again, the phase diagram of
pure 2D Zn LGT models presents a deconfined and topo-
logical phase at large h, whose topological order matches
the Zn generalization of the toric code [66,67], and a con-
fined phase whose ground state becomes a trivial product
for h = 0.

By following the Kogut-Susskind Hamiltonian con-
struction, a further generalization can be implemented to
investigate ground states of discrete non-Abelian 2D LGTs

(see, for example, Refs. [52,68,69]). In this case, the gauge
degrees of freedom can be represented either in an eigen-
basis associated with the irreducible representations of
the group, which is diagonal in the electric term of the
Hamiltonian, or in an eigenbasis associated with the group
elements, which is diagonal in the magnetic term of the
Hamiltonian. The general structure of a quantum algorithm
for implementing the QAOA steps in this case is analogous
to the previous one and can be based on the construction in
Ref. [52]. Given the non-Abelian nature of the group, how-
ever, the implementation of the magnetic time evolution
requires a further technical generalization. In this case the
irreducible representations are not one dimensional and,
correspondingly, the connection operators acquire a tensor
form; therefore, the gauge-invariant plaquette terms must
be written in terms of their trace [43], requiring, in turn, to
extend the rotation operators Up(γ ) to more general single-
link gates, which apply phases given by the traces of gauge
group matrices.

IV. NUMERICAL RESULTS

In this section we analyze the QAOA performance on
our LGT model, showing that the ground state can be pre-
pared through shallow circuits with good fidelity both in
the confined and in the topological phases. Unless oth-
erwise stated, the numerical analysis is performed on a
lattice with 3 × 3 plaquettes (18 qubits) and implemented
through the PYTHON package Qiskit [70], using the cir-
cuit sketched in Sec. III B. Simulations of larger systems
(L = 4, 5), instead, exploit the mapping onto the 2D TFIM
to reduce the Hilbert space dimension and allow for the
exact evaluation of the QAOA ansatz.

A. Energy landscape

The first feature we are interested in is the structure of
the energy landscape, because it determines whether the
classical optimization of the variational parameters can
be performed efficiently or not [2]. Indeed, the presence
of rugged energy landscapes is a common problem that
severely affects the classical optimization loop of VQAs
by making it prone to remaining stuck in local minima,
some of which might be far from the ground-state energy.
To characterize the energy landscape and to quantify the
quality of the optimized variational ansatz |ψP(γ

∗, β∗)〉,
we use either the residual energy or the fidelity. Given a tar-
get Hamiltonian ̂Htarg(h), we denote with |ψtarg〉 its ground
state and with EGS the corresponding energy, both obtained
with exact diagonalization. The residual energy is simply
the difference between the minimized variational energy
E(γ ∗, β∗), defined in Eq. (13), and EGS, while the fidelity
follows the usual definition

FP(γ
∗, β∗) = |〈ψP(γ

∗, β∗)|ψtarg〉|2. (14)
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FIG. 5. Infidelity versus residual energy rescaled over the
magnetic coupling h for h = 5, 4, 3. Data refer to 100 local opti-
mizations on a system with linear dimension L = 3, an initial
random guess of the QAOA parameters, and circuit depth P = 5.
The initial state is |ψ0〉 = |�E〉.

In this work, we use the fidelity as a precise estimate of
the accuracy of the approximation of the target state, even
though, in an actual experiment, it is hardly accessible
because it requires an exponential number of measure-
ments. The energy, instead, is easily estimated: the mag-
netic contribution is diagonal in the computational basis,
while the electric contribution is obtained by applying a
basis rotation on each qubit, i.e., a set of Hadamard gates,
before the measurement.

In the Z2 LGT model, the energy landscape emerging
from the QAOA ansatz is characterized by many local min-
ima covering a wide energy interval, making random-start
local optimization impractical. This effect is particularly
severe if the target state is in a phase different from the ini-
tial one |ψ0〉. This is illustrated in Fig. 5, where we show
the residual energy and the infidelity 1 − FP(γ

∗, β∗) for
100 different random-start local optimizations with P = 5
QAOA layers and three different values of the magnetic
coupling, around or above the topological phase transi-
tion. The initial state is the product state |�E〉 in the
extreme confined limit (h = 0) and the local minimiza-
tions are performed with the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [71]. Although there is a clear
concentration of data in the corner corresponding to
successful optimizations, where both the infidelity and the
residual energy tend to zero, there are many local min-
ima far from the ground state, suggesting that more refined
optimization techniques are needed for this model.

However, the clear correlation between the energy and
the fidelity is reassuring since the absence of low-energy
minima with small projection on the ground state guaran-
tees that any scheme that allows for a reliable minimization
of the energy will also lead to a good approximation of the
target state. This correlation is intuitively justified by the

existence of a gap in the topological phase. Indeed, the
construction in Eq. (11) cannot mix different topological
sectors of the model and, for each topological sector, there
is only one ground state. Away from the critical point the
ground state is protected by a finite gap, such that the cor-
relation between infidelity and residual energy must hold
below this energy scale. Close to the critical point, other
orthogonal low-energy states may appear and spoil the
correlation. This, however, seems not to be the case. Its
resilience is not surprising for small system sizes in which
the gap does not close even at hc. However, we observe
that the correlation between infidelity and residual energy
also holds when we increase the linear dimension L of
the lattice, and it actually appears to be even sharper, as
shown in Appendix B 3. The variational energy is there-
fore a reliable figure of merit for the optimization, it can be
efficiently measured in experiments, and the procedure is
still effective when the system size is scaled up. All these
represent positive factors for the feasibility of the imple-
mentation of QAOA on the Z2 LGT model in near-term
quantum devices.

B. Heuristic local optimization: two-step QAOA

Because of the large number of suboptimal minima
present in the energy landscape, it is important to adopt an
efficient strategy in order to reliably find a good approxi-
mation of the true ground state of the target Hamiltonian.
This is, indeed, a crucial task for QAOA and VQAs in gen-
eral, where the classical optimization outer loop is often
the main computational bottleneck and several strategies
have been proposed that go beyond a local search from a
random start. These strategies range from problem-specific
methods to general iterative techniques, based on observed
patterns in the optimal schedules [5,72–74].

We adopt here a simple two-step minimization protocol
inspired by a digitized quantum annealing [4,48] turn-
ing on of one of the two terms of the Hamiltonian. The
idea behind the two-step optimization is to leverage on
the formal analogy between QAOA and digitized quantum
annealing (QA) [4]: for depth-P QAOA, we first optimize
the total run time of a digitized linear QA [48] of the same
depth, and then fine-tune the variational parameters around
this schedule. This approach can be effectively used when
the system is initialized either in the electric state |�E〉
or in the magnetic one |�B〉. For generic applications, the
confined electric ground state |�E〉—a uniform superposi-
tion of all possible states in the computational (magnetic)
basis—is a standard choice for initializing the variational
circuit, because it is easy to prepare. However, this choice
is nonoptimal when we target states with long-range entan-
glement in the deconfined and topological phase, since
a circuit of local unitary gates with bounded depth can-
not create states with topological order beyond a certain
system size [34].
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When the initial state is set to be |�E〉, an adiabatic turn-
ing on in a time τ of the magnetic coupling through ̂H(t) =
̂HE + (t/τ)ĥHB suggests—after digitization by Trotter
decomposition of e−i
t̂H(tm) ≈ e−i
t̂HE e−i(m
t/P)ĥHB , with
tm/τ = m/P—setting γ 0

m = (m
t/P)h and β0
m = 
t in the

state in Eq. (11). In our first QAOA step, these linear-
schedule parameters are optimized by searching for the
optimal digitized QA [48]
t∗—a simple one-dimensional
minimization—which leads to setting

γ DQA
m = m
t∗

P
h, βDQA

m = 
t∗. (15)

The second step in our QAOA procedure is to perform ten
local BFGS optimizations in the 2P-dimensional parame-
ters space, starting from (γ DQA, βDQA)+ ε, where ε is a
small 2P-dimensional vector with random numbers uni-
formly distributed in the interval [−0.025, 0.025), keep-
ing the best outcome out of these local optimizations.
Schematically,

(γ DQA, βDQA)+ ε
best BFGS−→ (γ �, β�). (16)

The toric code ground states |�B〉, corresponding to the
extreme deconfined limit h → ∞, provide a better initial
state |ψ0〉 when targeting ground states in the topologi-
cal phase: they can be exactly prepared with local circuits
whose depth scales with the width of the system [19,36].
Proceeding once again with an adiabatic turning on, now
of the electric part of the Hamiltonian, through ̂H(t) =
h[̂HB + (t/hτ)̂HE], suggests—after digitization by Trot-
ter decomposition of e−i(
t/h)̂H(tm) ≈ e−i
t̂HBe−i(m
t/hP)̂HE ,
with tm/τ = m/P—setting γ 0

m = 
t and β0
m = m
t/hP in

the state in Eq. (11). Once again, these can be optimized by
searching for the optimal digitized QA
t∗, which leads to

γ DQA
m = 
t∗, βDQA

m = m
t∗

hP
. (17)

The second step in our QAOA procedure is identical to the
previous case, as schematically indicated in Eq. (16).

Two noteworthy features of the QAOA minima obtained
by applying our two-step QAOA procedure are the smooth-
ness of the schedules (γ �, β�), illustrated in Appendix
B 2, and the closely related transferability of such smooth
schedules from a smaller to a larger L′ > L sample, dis-
cussed in Sec. IV C. We benchmarked our heuristic two-
step QAOA approach against a computationally expensive
global optimization, finding comparable quality results in
terms of ground-state fidelity, both in the confined and in
the deconfined phases: we illustrate this in Appendix B 1.

In the following, we compare the performance of our
two-step QAOA for systems prepared either in the electric
ground state |�E〉, or in the toric code ground state |�B〉 =
|++〉. For a fair comparison, a remark is in order: while
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FIG. 6. Infidelity versus the number of QAOA layers P for
L = 3 and several values of the magnetic coupling h. The ini-
tial state is the electric ground state |�E〉; thus, the convergence
towards the exact ground state is faster for smaller values of h.
We show the best result out of ten local BFGS minimizations
following the heuristic two-step optimization method.

|�E〉 is trivially prepared with one layer of single-qubit
Hadamard gates, for the preparation of |�B〉, one should
include an overhead circuit with O(3L2) gates, organized
in L layers applied sequentially. As explained in Sec. III,
although no optimization is necessary for this preliminary
step, it is still required to apply three CNOT gates for each
plaquette.

The QAOA results obtained from the initial product
state |�E〉 are reported in Fig. 6, where we show the infi-
delity 1 − FP(γ , β) as a function of the circuit depth P for
several values of the magnetic coupling, both in the con-
fined phase (h � 3) and in the deconfined one (h � 3). As
expected, the variational ansatz converges faster to states
in the same phase (e.g., h = 1, 2) but QAOA can reach
very good fidelity 1 − FP < 10−3, when P ≥ 5, for all the
couplings we consider.

With the “reversed” protocol, starting from the toric
code ground state |�B〉 = |++〉, we obtain an overall
behavior similar to that observed for |ψ0〉 = |�E〉 [see
Fig. 7(a)] with the important difference that now the opti-
mization converges faster when targeting the deconfined
phase. Indeed, only P = 3 QAOA layers are now needed to
reach 1 − FP < 10−3 when h > hc (see the data for h = 4
or h = 5), while confined states require more QAOA layers
to reach comparable accuracy.

For both choices of initial state, we observe that the
infidelity decreases exponentially with the circuit depth;
the only exceptions for P = 5, 6 can be ascribed to the
algorithm remaining stuck in a (high-quality) local mini-
mum, when the target state is very close to the initial one
(see Appendix B 2). However, if we focus on the min-
imal resources to approximate the target state within a
certain fidelity threshold, we can further reduce the number
of parameters required. Figure 7(b) shows a comparison
of QAOA performance with the two possible choices of
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(a)

(b)

FIG. 7. (a) Infidelity versus the number of QAOA layers P for
L = 3 and several values of the magnetic coupling h. Data cor-
respond to the best out of ten results obtained in the two-step
optimization, performed on a state initially prepared in the toric
code ground state |�B〉; hence, the convergence is now faster
for larger couplings h. (b) Comparison between two-step QAOA
performance by starting from the electric and magnetic ground
states: we plot the fidelity versus magnetic coupling h at fixed
values of P. Here P only takes into account the number of QAOA
layers with parameterized gates, while it does not include the
computational overhead for the preparation of |�B〉, compared
to preparing |�E〉.

the initial state, for P = 2 and P = 3, by looking at the
best fidelity reached by the two-step optimization as a
function of the coupling h. Remarkably, such shallow vari-
ational circuits are enough to prepare with high fidelity
the ground states in the confined and deconfined phases,
provided the initial state is selected in the same phase
as the target ground state. Unsurprisingly, the region that
requires a larger number of parameters, i.e., a deeper vari-
ational circuit, corresponds to the crossover between the
two regimes, where 2 � h � 3.

We finally observe that the choice of the initial state
based on the target value of h plays a role analogous to
the choice of the electric or magnetic representation of
the LGT Hamiltonians applied in the quantum simulation
protocols presented in Refs. [75,76].

C. Schedule transferability

A promising route to reduce the computational cost
of the outer-loop classical optimization in VQAs is the
transferability of the optimal parameters from small to
large instances of the same model. Indeed, as empirically
observed or proven in specific applications of VQAs, if you
consider two instances of the same model and a fixed vari-
ational circuit depth P, the optimal parameters obtained for
the small system of size L may serve as a very good warm
start (or educated guess) for a local optimization for the
L′-size model (L′ > L) [77–79].

Classical numerical simulations soon become unfeasible
even for modest sizes, often hindering a more systematic
analysis on this issue: for our LGT model, which requires
2L2 quantum spins, even sizes as small as L = 4, 5 can
be extremely challenging to simulate exactly. To partially
overcome the size limitation, we exploit the mapping onto
the 2D TFIM, explained in Sec. II, which involves only L2

spins on a square lattice, by taking advantage of the restric-
tions imposed by the gauge constraints. This allows us to
simulate exactly the variational optimization for L = 4, 5.
To study the schedule transferability, we first perform the
two-step QAOA on the system with L = 3, as described in
Sec. IV B. The optimal angles (γ �, β�) found for L = 3 are
then used as warm-start points for a local optimization on
larger sizes. In particular, we keep the best run out of ten
BFGS optimizations on the larger systems, each of them
starting in the neighborhood of (γ �, β�)L=3, similarly to
the strategy used in the second part of the two-step QAOA
protocol. This procedure is repeated for different values of
the coupling.

The results obtained are reported in Fig. 8, where we
compare the fidelity FP(γ

∗, β∗) versus h for circuit depth
P = 6—which allows us to prepare the ground state for
arbitrary h with an error 1 − FP(γ

∗, β∗) < 10−3 for L =
3—and both possible initial states: |ψ0〉 = |�E〉 (filled
symbols) and |ψ0〉 = |�B〉 (open symbols). The transfer-
ability of the parameters is almost perfect when the initial
and target states are in the same topological phase, leading
to very high fidelities both in the small and large mag-
netic coupling regimes. Even when we target a ground
state in a different phase than the initial one—for instance,
|ψ0〉 = |�E〉 and h > hc ∼ 3.0—the final fidelity is still
large, allowing us to characterize the topological properties
of the final state. The poorer fidelity observed for L = 5,
when targeting a state in the opposite phase than |ψ0〉, is
due only to the reduced ratio between the circuit depth P
and the size L (particularly relevant when crossing a topo-
logical phase transition [34]) and not to the size of the
system on which the original schedule has been optimized
(L = 3). Indeed, transferring the schedule from L = 4 to
L = 5, or from L = 3 to L = 5, leads to the same final
performance.

Interestingly, the warm-start initialization provided by
the L = 3 optimal parameters leads to a successful local
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FIG. 8. Fidelity versus the magnetic coupling h. The data are
obtained by using the two-step optimal schedules for L = 3 as
an initial guess for ten local BFGS optimizations performed on
the larger systems L = 4, 5 (we fixed P = 6). Here, we report
the best result out of the ten runs. The filled and open symbols
respectively correspond to |ψ0〉 = |�E〉 and |ψ0〉 = |�B〉.

minimum search for L = 4, 5, with an accuracy close to
what can be achieved with a full global minimization,
discussed in Appendix B 1. Moreover, the number of iter-
ations needed for the local optimization is rather small
(Niter � 50), confirming the benefit of the transferability of
optimal solutions: once the L = 3 two-step solution is pro-
vided, only a small overhead in computation resources is
required to fine-tune the parameters for larger sizes. Hence,
transferability provides a speed advantage over starting
from scratch a two-step optimization: even though the
fidelity reached is comparable, the latter requires more runs
of the quantum circuit, making it less efficient when the
optimal schedule for a smaller system is already known.

This transferability evidence may be linked to the obser-
vation of the smooth schedules we found with the two-step
optimization, as shown in Appendix B 2. It is also impor-
tant to remark that the schedule transferability is not a
general property of any minimum in the energy landscape,
but it is associated with the smooth solution found with
the two-step protocol. For instance, a global optimization
yields slightly better results on the L = 3 system, but it
often represents a poor choice as an educated guess to ini-
tialize a local minimum search on larger sizes, as discussed
in Appendix B 1: this phenomenon is similar to overfit-
ting in machine learning [80]. In this respect, the two-step
scheme appears to outperform an extensive global search.

D. Ground-state characterization

In the following, we turn our attention to the prop-
erties of the approximate ground states we prepare with
QAOA. Despite the finite size limitations of our simu-
lations, the states obtained through QAOA display most
of the main features associated with the appearance of
topological order and the crossover from a confined to
a deconfined phase as h increases. The main observables

FIG. 9. Cruetz ratio χ(l, l), defined in Eq. (18), for two dif-
ferent loops in a system with L = 5. Inset: expectation value of
Wilson operators Wl,l, corresponding to the data in the main plot,
versus the coupling strength h. The vertical dashed line indi-
cates the critical value of the coupling hc. All data refer to the
best energy out of 20 BFGS local optimizations, with P = 6 and
|ψ0〉 = |�E〉, |�B〉, performed on a system of linear size L = 5
and initialized with the optimal parameters found for L = 3.
Open symbols in the inset are data obtained with |ψ0〉 = |�E〉.

to distinguish these two regimes are the Wilson loops, as
defined in Eq. (6). We consider in particular Wilson loops
Wlx ,ly defined over rectangles of size lx × ly .

As explained in Sec. II, it is known that the deconfined
phase is characterized by an exponential decay of 〈Wlx ,ly 〉
with the perimeter P of the loop, whereas the confined
phase displays a decay dictated by the area A of the loop
[42]. In particular, the magnetic ground states |�B〉 are
such that 〈Wlx ,ly 〉 = 1, while in the electric ground state
|�E〉 Wilson loops always present vanishing expectation
values. Recalling Eq. (7), the overall behavior of a Wilson
loop can be approximated by 〈W〉 ∝ e−χA−δP. Indeed, if
χ > 0, the exponential decay with the area dominates for
large loops, while if instead χ = 0, the decay is dictated by
the perimeter law only. To extract information about the χ
coefficient, we estimate the so-called Creutz ratio [44]

χ(l, l) = − log
〈Wl,l〉〈Wl−1,l−1〉
〈Wl,l−1〉〈Wl−1,l〉 . (18)

This ratio is indeed built to cancel the perimeter contri-
bution to the decay of the observables and approximate
the coefficient χ , which is recovered for large l. Figure 9
displays the Creutz ratio in a system with L = 5 and peri-
odic boundary conditions for states obtained with P = 6
QAOA steps applied either to the state |�E〉 (for h < 3)
or to |�B〉 (for h ≥ 3). The optimization on the L = 5 sys-
tems is initialized with the best result obtained with the
two-step protocol for L = 3, on top of which we perform
20 local minimum searches, out of which we consider the
most successful outcome.

Analogously to other LGT studies on small lattices
[31,81,82], the finite size effects in our computation are
strong. When considering a Wilson loop of width 3, its
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opposite sides lay at distance 2. This implies that what we
observe in Fig. 9 may provide a quantitative estimate of the
behavior in thermodynamic systems only if the correlation
length is sufficiently smaller than this distance, and thus
only sufficiently far from the phase transition. Despite this
limitation, the Creutz ratio χ(3, 3) presents a behavior that
clearly distinguishes the confined phase (χ > 0) and the
deconfined phase (χ → 0) appearing for h � 3, although
a quantitative identification of hc is beyond the possibilities
of these small systems and loops.

The inset of Fig. 9 reports the expectation value of
the Wilson loop operators corresponding to the Creutz
ratios shown in the main plot. It clearly shows a crossover
between the trivial, confined state with 〈W�〉 → 0 and the
topologically ordered, deconfined limit 〈W�〉 → 1. With
the chosen scheme, i.e., starting from |�E〉 or |�B〉 depend-
ing on the target state, they perfectly match the results from
exact diagonalization (not shown) as expected from the
high fidelity reached; see Fig. 8. We emphasize that the
possibility of obtaining a reliable estimate of the expec-
tation value of the Wilson loops yields further important
implications: Paulson et al. [76] indeed showed that, in a
U(1) LGT, even the expectation value of the single plaque-
tte operator can be used to extract the running coupling of
the model, which is a fundamental quantity related to its
renormalization.

If we chose to always start from the electric ground state,
the deviation from exact results would become larger in
the deconfined phase, as also expected from the fidelity
drop observed in Fig. 8. However, the results obtained in
this nonoptimal case still provide an acceptable scaling
of the Wilson loop for the deconfined regime (open sym-
bols in Fig. 9): even without perfect reconstruction of the
target state, it is still possible to identify the deconfined
phase. This is, indeed, useful for experimental investiga-
tion, where realistic setups are limited to shallow circuits
and noise would decrease the quality of the approximated
ground state.

Another observable that marks the onset of topological
order is the topological entropy [83,84]. Given a connected
subsystem A ∪ B ∪ C of the whole lattice, we define its
topological entropy as

Stopo = SA + SB + SC − SAB − SBC − SAC + SABC. (19)

Here SX is the von Neumann entanglement entropy of a
generic subsystem X , obtained by tracing out all degrees
of freedom in the complement of X with respect to the
whole system, and {A, B, C} is a tripartition of the region
of which we compute the topological entropy. In the toric
code state |�B〉, the topological entropy of any subsystem
is Stopo = − ln 2 and the total entanglement entropy is

SABC = Nv ln 2 + Stopo = (Nv − 1) log 2, (20)

(a)

(b)

FIG. 10. (a) Graphical representation of the subsystem used to
compute the topological and entanglement entropy, with the tri-
partition A, B, C highlighted. Note that a total of Nv = 5 vertices
are cut by the outer edge of A ∪ B ∪ C. Open circles indicate the
presence of PBCs in the lattice, thus identifying the upper edge
with the lower one and the right edge with the left one. (b) Entan-
glement and topological entropy as a function of the coupling h.
Note that we plot −Stopo to make it positive.

where Nv is the number of vertex operators Av cut by the
edge of the bipartition X [19,85]. In a product state, such
as |�E〉, we expect both quantities to be zero, while for
generic values of h, the entropy should interpolate between
the two limits. To compute the entropy, we choose a sub-
system X with six qubits, as depicted in Fig. 10(a), and
we divide it into three further regions A, B, and C with
two qubits each. We compute the entanglement entropy of
all the subsets used in Eq. (19) by tracing out explicitly
their complements and obtain the data plotted in Fig. 10(b).
Despite the small dimension of the lattice and its sub-
system, our results agree perfectly with the theoretical
prediction: in the deconfined phase, the total entanglement
entropy is Sent = 4 ln 2, since the partition ABC cuts five
vertices and the topological entropy approaches Stopo =
− ln 2.

Finally, we show that it is possible to manipulate
the state constructed with QAOA to change its sym-
metry sector when the system has PBCs. Let |++〉P
denote the approximate ground state constructed with a
QAOA circuit of P layers. We then construct approx-
imate candidate ground states in the other topological
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FIG. 11. Four lowest energy states in different symmetry sec-
tors of the noncontractible ’t Hooft loop operators versus cou-
pling strength h. All data refer to the best solution found for
L = 3, P = 6, and |ψ0〉 = |�E〉. States different from |++〉P are
obtained by acting with noncontractible Wilson loops after the
unitary evolution, while the subscript P indicates that they are
obtained by QAOA and are thus not exact eigenstates. The solid
lines correspond to the five lowest eigenvalues obtained with
exact diagonalization: the fifth eigenvalue, corresponding to the
first excited state, is shown to highlight the topological gap in the
deconfined phase. Only four lines are visible because |+−〉 and
|−+〉 are exactly degenerate, as their approximations obtained
with QAOA.

sectors by applying noncontractible Wilson loops Wv/h,
i.e., |+−〉P = Wh|++〉P, |−+〉P = Wv|++〉P, |−−〉P =
WhWv|++〉P. (The subscript label P is here used to dis-
tinguish the states obtained via QAOA from the exact
eigenstates of the Hamiltonian.) Noncontractible Wilson
loops Wv/h are immediately implemented via L single-
qubit gates σ̂ z acting on a vertical or horizontal line. By
doing so, however, we introduce an extra error on top
of the finite accuracy of the QAOA state: indeed, choos-
ing a specific vertical or horizontal Wilson loop to change
the symmetry sector of the system breaks the translational
invariance of the constructed state, producing a small exci-
tation. This effect is visible in Fig. 11, where we show the
energies of the state approximated with QAOA, denoted by
|++〉P, and of the other three states obtained by applying
Wh and Wv on |++〉P. For comparison, we also plot the
low eigenvalues obtained by exact diagonalization (drawn
with solid blue lines). For large h, the four lowest energy
levels should be almost degenerate and, indeed, the exact
diagonalization results are almost indistinguishable for h ≥
4. In the same region, the excess energy of the approximate
states |τh, τv〉 is instead clearly visible, although well below
the topological gap with the first proper excited state.

An alternative procedure to explore the different topo-
logical sectors in the deconfined regime is to first apply
the relevant Wilson loop on |�B〉 and then the QAOA uni-
taries. In such a way, the initial state Wh/v|�B〉 is exactly
degenerate with |�B〉. We find that the optimal schedule

(γ ∗, β∗) used to prepare the state | + +〉P also minimizes
the expectation value of the energy in the other topological
sectors, so no further optimization is required. However,
the picture presented in Fig. 11 remains valid and small
excitations are created in the other topological sectors. In
other words, by inverting the order of application of the
operators Wh/v and ̂U(γ ∗, β∗), we observe nearly irrel-
evant changes on the expectation value of the energy;
̂U(γ ∗, β∗) is the QAOA evolution operator with optimal
parameters for the state |++〉P.

The expectation value of the ’t Hooft loops τh and τv ,
which distinguish the different topological sectors, is per-
fectly reconstructed by the algorithm. This last feature is,
however, independent from the specific values of h and
P, since the QAOA evolution respects the global Z2 × Z2
symmetry and τh/v always anticommutes with Wv/h.

V. CONCLUSIONS

In this article, we presented a method to study the
ground-state properties of a two-dimensional Z2 lattice
gauge theory using the quantum approximate optimization
algorithm. With this method, we are able to get good qual-
ity variational approximations while keeping circuits with
a small depth. Hence, this allows us to prepare the target
state with a number of standard single-qubit rotations and
CNOT gates comparable with the realistic expectations for
near-term quantum technologies.

We focused on the minimal resources needed for an
accurate description of the ground state in a quantum cir-
cuit setup, to show that interesting physics can indeed be
observed despite the small size. In particular, we showed
that both the behavior of Wilson loops and the entan-
glement entropy clearly distinguish the trivial and the
topological phases, and they characterize the confinement-
deconfinement transition as well. To reliably find good
approximations of the ground state, we proposed a two-
step protocol for QAOA, which produces regular optimal
schedules that can be successfully transferred to larger
sizes. In this respect, the two-step protocol outperforms a
resource-costly global minimum search, as well as other
local optimization strategies that are prone to remaining
trapped in “bad” local minima.

However, the role of the noise brought by measure-
ments and gates has been neglected, even though it will
inevitably appear in a realistic implementation of our pro-
posal. In general, the effect of noise on VQAs is still an
important open question [2] and thus the study of the
robustness of our proposal is worthy of further investiga-
tion. In the worst-case scenario, where noise prevents an
accurate reconstruction of the cost function EP(γ , β) for
optimization purposes, one might still use a “simulated”
QAOA to infer good variational parameters to be provided
to the actual quantum circuit, which will be used mainly
for measuring physical properties.
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We emphasize that the QAOA technique we propose
can be easily combined to extend several proposals for
the study of 2D LGTs through digital quantum simula-
tions [52–54,69,76,86–89]. Digital quantum simulations of
LGTs on small systems have already been implemented
in trapped ion experiments [90,91] and superconducting
qubit platforms [92–95]. These experiments inspired sev-
eral theoretical studies aimed at investigating the dynamics
of the most important LGT excitations [82,96–99]. Our
results provide a tool to efficiently initialize the ground
states of LGTs, which, in turn, make it possible to engi-
neer in a controlled way several of the excited states
studied to explore the dynamical and topological proper-
ties of LGTs, including, for example, flux excitations and
mesons. The system we considered can be regarded as
a surface code perturbed by onsite interactions that pro-
vide a kinetic energy to its plaquette excitations [100,101].
Hence, the study of its dynamics delivers information on
the resilience of topological quantum memories in which
anyons acquire a nontrivial dispersion. Furthermore, the
topological order of the Z2 LGT is the same as the most
common topological quantum spin liquids, and our QAOA
approach can be extended, for instance, to the study of
quantum dimer models based on plaquette interactions,
such as the Rokhsar Kivelson model [102], which dis-
plays these kinds of topological phases and transitions on
suitable lattices [46].

More generally, our variational quantum optimization
successfully enables us to explore the properties of Hamil-
tonians with nontrivial four-body interactions, which rep-
resent not only an essential element for designing topologi-
cal phases but also a useful tool for encoding classical opti-
mization problems [50,51,103,104]. Such interactions are
compatible with the native geometry and qubit gate con-
nectivity of several recently developed quantum computa-
tion platforms, encompassing both two-dimensional super-
conducting architectures, such as the Google Sycamore
array [16,19], and programmable arrays of Rydberg atoms
[105–108]. In these systems, no additional overhead would
be needed to map logical into physical qubits and mea-
surements would give direct information on the addressed
models, as in the case of the Z2 LGT.

In conclusion, the combination of QAOA, initializa-
tion of the excitations, and digital quantum simulation of
their time evolution opens the path to study many aspects
of the dynamics of the confined and deconfined phases
in LGTs as well as the anyonic excitations appearing in
topologically ordered phases.
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FIG. 12. (a) A stripe of the 3 × 3 lattice with periodic bound-
ary conditions. (b) Quantum circuit to implement the plaquette
operator eiγB on all three plaquettes. The labeling of the qubit
lines emphasizes that all the boundary qubits are shared with the
plaquette stripes above and below. The partially depicted green
CNOT gates are related to the simultaneous implementation of the
same algorithm on the neighboring stripes: qubits 2, 3, 5, 6, 8, 9
also act as controls for the circuit in neighboring plaquettes.
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APPENDIX A: REALIZATION OF THE
PLAQUETTE ROTATION IN THE 3 × 3 TORUS

When considering a system with periodic boundary con-
ditions and an odd number of rows and columns, some
further detail must be considered when implementing the
two-plaquette rotation.

In Fig. 12 we depict a circuit that generalizes that shown
in Sec. III to the case of the 3 × 3 system considered
throughout most of the paper. To this end, we consider
a stripe of three plaquettes, as depicted in panel (a). The
operator eiβBp is applied to all three plaquettes through the
algorithm displayed in Fig. 12(b), and thus with a circuit
of depth 17.
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When considering larger systems with periodic bound-
aries and an odd number of rows and columns, a suitable
combination of the schemes presented in Figs. 4 and 12
allows us to perform each QAOA step with a circuit of
depth 18 involving only CNOT gates between neighboring
qubits and single-qubit rotations.

APPENDIX B: DETAILS ON THE QAOA
IMPLEMENTATION

In this appendix we discuss additional details regarding
our two-step implementation of QAOA for the problem
under investigation. In particular, we focus on a benchmark
of our heuristic approach against a global minimum search,
which, remarkably, yields similar-quality results for both
phases, in terms of ground-state fidelity, offering a good
numerical validation of our scheme.

In addition, we comment on the transferability of the
optimal schedules, obtained by either two-step or basin
hopping, to larger system sizes, a strategy that could pro-
vide an educated guess to lower the computational cost for
a new optimization.

Finally, we observe some patterns for optimal QAOA
variational parameters obtained with the two-step scheme,
in particular their smoothness as a function of m =
1, . . . , P, similarly to other results for different QAOA
applications [4,5,13].

1. Global optimization versus the two-step scheme

In order to prove the effectiveness of the two-step opti-
mization protocol, we compare it with a global minimum
search, based on the basin hopping method [109] from the
scipy.optimize PYTHON library. In the latter algorithm, we
allow up to 500 local minimizations, each of them initial-
ized in the proximity of a previously found local minimum.
The parameter space is explored with an effective temper-
ature chosen to allow jumps between typical low-energy
minima. To reliably find the absolute minimum we run the
basin hopping optimization 100 times and take the best
result.

Figure 13 shows a comparison between the fidelity
obtained with the global and the two-step optimizations,
as a function of h for fixed P = 6. The initial state is
|ψ0〉 = |�E〉. For h < 3, the two-step approach can match
the global optimization performance and it yields the same
results, while for h ≥ 3, it finds a suboptimal local min-
imum. However, we stress that, even in this case, the
final fidelity is almost one: the difference in the accuracy
between the two methods is much lower than a realistic
experimental resolution. Moreover, the two-step protocol
has the clear advantage of requiring only a single local
optimization—on top of a modest computational overhead
for the one-dimensional optimal 
t grid search—to be
compared with 500 × 100 local optimizations for the basin
hopping method. Consequently, the two-step heuristics

0 1 2 3 4 5
h

0.9998

0.9999

1.0000

F

two steps, L = 3
global, L = 3

FIG. 13. Comparison of the accuracy with respect to the mag-
netic coupling h between global optimization (open squares) and
the two-step approach (filled squares) described in the text. The
data refer to P = 6 and |ψ0〉 = |�E〉.

certainly requires drastically fewer function evaluations
and is therefore a better candidate to be implemented on a
realistic quantum device and also much faster to simulate
on a classical computer.

Regarding the transferability of the optimal schedules
to larger system sizes, we use the optimal angles obtained
for L = 3, either with basin hopping or with a two-step
optimization, as an initial guess for local optimizations of
larger system sizes L = 4, 5. Specifically, for each value
of h, we compare the best fidelity out of ten BFGS local
search runs, each of them initialized with the optimal 2P
parameters previously found for L = 3, plus a small noise
to facilitate the exploration of the energy landscape.

Our results are reported in Fig. 14(a), where we compare
local minimizations starting from the L = 3 two-step opti-
mal schedules (star symbols), local searches starting from
to the L = 3 global minimum (circles), and the two-step
process applied directly on the larger system (squares).
We find that the optimal angles returned by the two-step
algorithm provide a better guess for larger systems, result-
ing in higher fidelity than a local search initialized with
the global minimum for L = 3. This may be linked to the
existence of some patterns in the optimal parameters found
with the two-step scheme, in particular their smoothness
as a function of m = 1, . . . , P, as summarized in Appendix
B 2. The performance of the two-step optimization applied
directly on the target system L = 4 or L = 5 is instead
comparable with the transfer of the schedule from L = 3,
although the latter is slightly better at large magnetic fields.

However, once the optimal schedule for a given system
size is known, it is convenient to leverage on that result to
initialize the QAOA search for larger systems, instead of
running a new two-step optimization from scratch. In fact,
although the performances in terms of final fidelity are sim-
ilar, the schedule transfer requires less iterations than the
two-step optimization. This is shown in Fig. 14(b), where
we compare the number of BFGS iterations required in the
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(a)

(b)

FIG. 14. (a) Comparison of the two-step versus global sched-
ules for L = 3 as an educated guess for optimization on larger
system sizes L = 4, 5. The data refer to the best out of ten
local BFGS minimizations, run by starting close to the opti-
mal two-step schedule (blue stars) or optimal global-schedule
(green circles). The plot also shows the fidelity of the optimal
two-step schedule (orange squares) for L = 4, 5. (b) Number of
iterations required for the convergence of the final BFGS opti-
mization; comparison between transferring the schedule from
L = 3 to L = 5 (blue stars), transferring from L = 4 to L = 5 (red
triangles), and two-step optimization directly on L = 5 (orange
squares). All data refer to P = 6 and |ψ0〉 = |�E〉.

final local minimum search on a system with L = 5 for dif-
ferent optimization strategies: schedule transferring from
L = 3 to L = 5 and from L = 4 to L = 5, and the two-step
protocol directly on L = 5. The latter requires in general
a larger number of iterations and its overall cost must be
added to the resources required for the optimization of the
time step 
t.

2. Smooth schedules

In the Z2 LGT we studied in this paper, we found that
the two-step optimization scheme produces smooth pro-
tocols for the optimal variational parameters more easily
than other heuristic methods present in the literature, such
as the standard application of iterative schemes based on
parameter interpolation or Fourier component optimiza-
tion [4,5]. Moreover, it provides a minimum (γ ∗, β∗) for
a chosen circuit depth P without requiring the solution

for shallower circuits with P′ < P, contrarily to both the
iterative methods just mentioned.

The presence of regular patterns in the optimal param-
eters suggests a comparison with a digitized quantum
annealing scheme, such as those adopted to initialize the
two-step QAOA. In Sec. IV B we defined two possible
annealing protocols, depending on the choice of the ini-
tial state. If |ψ0〉 = |�E〉, we construct the time-dependent
Hamiltonian

̂H(t) = ̂HE + h
t
τ

̂HB, (B1)

while if |ψ0〉 = |�B〉, we use

̂H(t) = h
(

t
hτ

̂HE + ̂HB

)

. (B2)

In both cases, t ∈ [0, τ ] and at the end of the protocol
̂H(t = τ) = ̂Htarg. The corresponding parameters γm and
βm of a digitized quantum annealing are reported in Eqs.
(15) and (17), respectively.

For a graphical representation of smooth optimal two-
step schedules and a direct comparison with digitized
quantum annealing, it is useful to consider the following
more general protocol, as customary in adiabatic quantum
computation [110]:

̂H(s) = (1 − s)̂HE + ŝHB. (B3)

Here s(t) ∈ [0, 1] is a monotone time-dependent parameter
that interpolates between ̂HE and ̂HB. With this notation,
we can identify Eq. (B1) with a process starting from
s(0) = 0 and ending in s(τ ) = sf , with sf = h/(h + 1);
Eq. (B2), instead, corresponds to a process with s(0) = 1,
ending again in s(τ ) = sf (both identifications are valid
modulo an overall multiplicative factor).

A digitized quantum annealing process [4] consists in
choosing a discretization of the time interval [0, τ ] into
P small time steps 
tm, such that

∑

m
tm = τ . Corre-
spondingly, the continuous schedule s(t) is discretized into
a sequence of short-time evolutions generated by ̂H(sm),
where

sm = s0 + (sf − s0)
m
P

(B4)

with m = 1, . . . , P. The resulting expression can be fur-
ther simplified with a first-order Trotter split up, neglecting
quadratic terms in 
tm. Thus, the final state is written as
the variational ansatz in Eq. (11), with fixed parameters
given by

sm = γm

γm + βm
,


tm = γm + βm.
(B5)

Once we have found optimal smooth QAOA parameters
γ �, β� with our two-step QAOA scheme discussed in Sec.
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(a) (b)

(c) (d)

FIG. 15. Variational parameters associated with the best result out of ten local minimum searches, following the two-step optimiza-
tion procedure. In each panel, the black dashed line corresponds, through Eq. (B5), to the linear annealing schedule defined by Eq.
(15), with the corresponding value of h and P = 6 steps. The quantum circuit is initially prepared in the electric ground state |�E〉.

IV B, we can extract the corresponding digitized schedule
s∗

m and compare it with the linear digitized quantum anneal-
ing protocol sDQA

m that we used as an educated guess for the
local minimization.

As examples of typical smooth QAOA optimal param-
eters, we report in Figs. 15(a)–15(d) the schedules s∗

m
corresponding to four different values of the coupling h,
both below and above the “topological transition,” with
P ≥ 3 and initial state |ψ0〉 = |�E〉. The dashed black
lines correspond to the linear annealing schedule of Eq.
(15) we used as a starting point for the local minimiza-
tions, with P = 6. In all four cases, it appears evident
that, as P increases, the parameters gradually approach a
smooth continuous behavior, with the possible exception
of a single localized irregularity, which seems to appear
in Fig. 15(a) for P = 5, 6. This is not surprising, however,
since we are preparing a state very close to the initial one.
Thus, a large value of P could “overfit” the target state
and many different parameter choices, usually nonsmooth,
could yield similar accuracy. A comparison with Fig. 6 for
the case h = 1 clearly shows a degradation of performance
(almost flat curve) of the infidelity versus P, exactly for

P = 5, 6: this irregularity can thus be interpreted as a local
lower-quality minimum or a saturation of the numerical
precision of the algorithm.

For larger values of the coupling h, we instead observe
a clear continuity in the optimal schedule s∗

m, as we change
both P and h. This leads to the interesting consequence that
the optimal schedule for a given ̂Htarg and circuit depth P
could be used as a seed to initialize the optimization for dif-
ferent values of h, requiring only a small fine-tuning of the
parameters to adapt the schedule to the new target ground
state.

A similarly smooth pattern is observed when we ini-
tialize the system in the magnetic ground state |�B〉, as
reported in Figs. 16(a)–16(d). The dashed black lines cor-
respond here to the schedules sDQA

m extracted from Eq. (17),
with P = 6. The main difference is that the smoothness
now is more easily lost when targeting the deconfined
phase [see panel(d)], which is closer to the initial state.
Similar comments on this irregularity apply as for the pre-
vious case, by comparing with Fig. 7(a). On a side note, we
note that the evident irregularity in panel(d) for P = 5, 6
involves a single point with a numerical value smaller than
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(a) (b)

(c) (d)

FIG. 16. Variational parameters associated with the best result out of ten local minimum searches, following the two-step optimiza-
tion procedure. In each panel, the black dashed line corresponds, through Eq. (B5), to the linear annealing schedule defined by Eq. (17),
with the corresponding value of h and P = 6 steps. The quantum circuit is initially prepared in the magnetic ground state |�B〉.

0.4: this is not a significant feature, and it could easily be
eliminated by an appropriate smoothing procedure with a
likely improvement in performance.

Unsurprisingly, the two-step optimization might get
trapped in a (high-quality) local minimum even when we
target the opposite phase: this is seen, e.g., for the out-
lier set of h = 1 and P = 5 in Fig. 16(a), which might be
associated with a suboptimal minimum. This observation
is once again consistent with the corresponding data in
Fig. 7(a), where the curve for h = 1 shows a small spike
in correspondence to P = 5.

Regarding the comparison with the linear digitized
quantum annealing protocol sDQA

m (dashed black lines), in
both Figs. 15 and 16, the overall monotonicity of optimized
s∗

m is the same as the original schedule, i.e., an increasing
function of m when |ψ0〉 = |�E〉, and a decreasing func-
tion when |ψ0〉 = |�B〉. However, when targeting states
in a phase that differs from the initial one, the optimal
schedule deviates more and more from the original ansatz,
highlighting the importance of the local optimization of the
parameters.

3. Energy landscape

In the Z2 LGT model, the energy landscape associated
with the QAOA ansatz is characterized by the presence of
many local minima, as discussed in Sec. IV A. This makes
the employment of a clever optimization strategy, such as
the two-step protocol or schedule transferability, a neces-
sity to target reliably low-energy minima. However, for
general variational problems, it might happen that there
exists a deep minimum in the energy landscape, associ-
ated with a state with small or no overlap with the target
one. This is not the case for the problem under investiga-
tion, where there is a clear correlation between the fidelity
and the variational energy for the minima in the energy
landscape; see Fig. 5 in the main text.

Here, we show that this correlation also holds for the
larger systems considered in this paper, L = 4 and L = 5,
corresponding to 32 and 50 qubits, respectively. We repeat
the analysis of Sec. IV A: focusing on |ψ0〉 = |�E〉, we
perform 100 QAOA runs with random initial parameters,
targeting states in the deconfined phase h ≥ 3. In Fig. 17
we plot the infidelity 1 − FP versus the residual energy
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FIG. 17. Infidelity versus residual energy for 100 minima in
the energy landscape found with random initialization of local
BFGS searches, with |ψ0〉 = |�E〉 and P = 6. Panel (a) cor-
responds to the lattice with 4 × 4 plaquettes and panel (b) to
5 × 5 plaquettes. We only show the data that fall in the interval
(EP − EGS)/h ∈ [0, 4.2].

of the minima found with this procedure, for both L = 4
[panel (a)] and L = 5 [panel (b)] and a circuit depth of
P = 6. Interestingly, it appears that increasing the sys-
tem size leads to a sharper correlation between energy and
fidelity, compared to the data presented in Fig. 5.
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