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ABSTRACT
The AI Act has been recently proposed by the European Commis-
sion to regulate the use of AI in the EU, especially on high-risk
applications, i.e. systems intended to be used as safety components
in the management and operation of road traffic and the supply of
water, gas, heating and electricity. On the other hand, IEC 61508,
one of the most adopted international standards for safety-critical
electronic components, seem to mostly forbid the use of AI in such
systems. Given this conflict between IEC 61508 and the proposed
AI Act, also stressed by the fact that IEC 61508 is not an harmonised
European standard, with the present paper we study and analyse
what is going to happen to industry after the entry into force of the
AI Act. In particular, we focus on how the proposed AI Act might
positively impact on the sustainability of critical infrastructures
by allowing the use of AI on an industry where it was previously
forbidden. To do so, we provide several examples of AI-based so-
lutions falling under the umbrella of IEC 61508 that might have
a positive impact on sustainability in alignment with the current
long-term goals of the EU and the Sustainable Development Goals
of the United Nations, i.e., affordable and clean energy, sustainable
cities and communities.
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1 INTRODUCTION
Harnessing the full potential of AI could lead our society to more
efficient and thus sustainable energy production, storage and trans-
portation, in accordance with many of the Sustainable Development
Goals of the United Nations [1], including: affordable and clean
energy (goal 7), industry, innovation and infrastructure (goal 9), sus-
tainable cities and communities (goal 11), responsible consumption
and production (goal 12), climate action (goal 13). Indeed, AI can be
used to optimally recognise, predict, detect, identify, determine, con-
trol, generate, and classify [37] in a wide range of tasks, sometimes
also achieving or exceeding human performance in problems such
as strategy games [22, 44], image and object recognition [24, 41], etc.
Nonetheless, the adoption of AI-based technological solutions for
more sustainable energy (e.g., for decreasing the carbon emissions
of coal-fired thermal power plants [45]) has been held back in the
last decades by conservative international standards (i.e., IEC 61508
[46]: a standard that regulates safety-critical electronic components
and that practically forbid AI in many critical infrastructures).

∗Both authors contributed equally to this research.

Despite this, in 2021, the European Commission published a
proposal of AI Act1 [12] that is expected to become a legally binding
regulation to all the Member States of the EU by 2024. Importantly,
the objective of the AI Act is to set a common regulatory and legal
framework for AI that applies to all sectors (except for military),
and to all types of artificial intelligence, including (high-risk) AI
for the management and operation of critical infrastructure.

Considering that one of the goals of the proposed AI Act is
to regulate the use of AI also on those systems covered by IEC
61508, i.e. ‘systems intended to be used as safety components in the
management and operation of road traffic and the supply of water,
gas, heating and electricity’ (see Annex III, point 2.a), the research
questions we are trying to answer with the present paper are the
following:

• Will the AI Act be disruptive with respect to IEC 61508?
• What will happen to those industries currently regulated by
IEC 61508?

In fact, we believe that answering these has the potential to help
both industry and academia to quickly seize the opportunities of-
fered by the new European policies enshrined in the AI Act.

In order to answer these questions, we analyse the main dif-
ferences between IEC 61508 and the proposed AI Act. Then, we
identify significant and concrete examples of technical solutions
that could increase sustainability and energy efficiency but which,
at the moment, are not feasible due to IEC 61508. Furthermore,
we also study how such new technological solutions might impact
industry, trying to understand how disruptive the AI Act could be
by loosening the tight laces of IEC 61508 on AI. Hence, we try to
align our findings to the medium- and long-term objectives of the
EU on sustainability and support for innovation.

This paper is structured as follows. Section 2 discusses the
adopted methodology. In Section 3 we give enough background
to understand IEC 61508 and its implications for industry. While,
in Section 4 we analyse the position of the AI Act on IEC 61508
and other standards, providing in Section 5 our understanding of
how AI could improve sustainability and energy efficiency whilst
maintaining safety. Finally, in Section 6 we try to give a conclusive
answer to each research question, discussing the consequences of
our findings as well as some possible issues.

2 METHODOLOGY
The adopted methodology employed for analysing the proposed
AI Act and answering the aforementioned research questions is

1https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
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as follows. First of all, we start from the identification of climate-
neutrality (by 2050) as one of the main and most actual objectives of
the EU. In particular, we refer to the European Green Deal2 and the
EU’s commitment to global climate action under the Paris Agree-
ment, considering them as interpretative keys for the proposed AI
Act. Hence, we study how articles such as article 54.1.a, interpreted
under the lenses of the European Green Deal, may impact on the
adoption of new AI-based technologies in industrial contexts cur-
rently regulated by non-harmonised technical standards (i.e., IEC
61508) that practically forbid the use of AI. We do it by looking
at how the AI Act may help to improve the sustainability of our
society, thanks to state-of-the-art advancements in AI that cannot
currently be deployed.

3 BACKGROUND
With this section we provide a minimal amount of information
about safety, AI, the IEC 61508 standard and the proposed AI Act.

3.1 The safety standard IEC 61508
IEC 61508 [28] is an international standard describing how to design,
deploy and maintain an Electrical or (Programmable) Electronic
safety-related system. Examples of safety-related systems to which
IEC 61508 can be applied are: emergency shut-down systems, re-
mote monitoring, operation or programming of a network-enabled
process plant, information-based decision support tool where erro-
neous results may affect safety. In particular, programmable elec-
tronic safety-related systems typically incorporate programmable
controllers, programmable logic controllers, microprocessors, appli-
cation specific integrated circuits, or other programmable devices
(e.g., ‘smart’ devices such as sensors/transmitters/actuators). The
focus is in particular on safety functions and on the relative level of
risk reduction that they provide. Those levels are grouped in four
Safety Integrity Levels (SILs), the higher the Safety Integrity Level
the greater the risk of failure.

Notice that it is expected3 that IEC 61508 can be published as
EN 61508, an European standard, but it does not have the status
of a harmonized European standard in relation to any EC product
directive and it is not therefore listed in the EC Official Journal.
However, this does not prevent compliance with relevant parts of
EN 61508 being used to support a declaration of conformity with
an EC product directive, if that is appropriate. In any cases, IEC
61508 is followed worldwide4.

3.2 Safety vs AI
Quoting [47]: ‘ There is no such thing as zero risk. This is because
no physical item has zero failure rate, no human being makes zero
errors, and no piece of software design can foresee every operational
possibility ’. Thus, perfect safety, i.e., the absence of catastrophic
consequences on the user(s) and the environment [5], is out of
reach. During the last decades, several standards on how to develop
hardware and software artefacts in safety critical contexts have
been defined. These standards crystallize lessons learned, common
practices and scientific research into concrete guidelines. Each

2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN
3https://www.iec.ch/functional-safety/faq
4https://www.iec.ch/national-committees

industry sector has its own standard, but the idea behind all of
them is the same: a risk-based approach that characterize the entire
product life-cycle.

With respect to Artificial Intelligence (AI), at row 5 in Tables
A.2 and C.2, Part 3, of IEC 61508 [28], it is clearly stated that AI is
not recommended for Safety Integrity Level 2 or above because it
may complicate the achievement of one or more of the following
properties: correctness with respect to software safety requirements
specification, freedom from intrinsic design faults, simplicity and
understandability, related with the observability-in-depth principle,
aimed at avoiding as much as possible a false sense of safety due
to lack of information, predictability of behaviour, verifiable and
testable design.

IEC 61508 has influenced other standards [47], here called ‘sec-
ond tier standards’, that are as rigid as IEC 61508 Part 3 with respect
to AI. Among those, examples are software for train EN 50128 [15],
process industry [29] and machinery IEC 62061 [30]. Parallel to
the family of standards originated from IEC 61508, other really
important examples where AI is banned, for high Safety Integrity
Level, from computer-based systems employed in nuclear power
plants, IEC 60880 [27], and avionic, DO-178 C [3].

To the best of the authors’ knowledge, the only safety standard
that allows the employment of AI (because it does not mention it,
and then it is not ‘not recommended’) is ISO 26262 for the automo-
tive industry sector [19, 25, 43].

3.3 The Proposed AI Act
The AI Act [12] is a proposed European law on AI. Differently from
other domains, this act is specific to AI systems and requires an
ad hoc discussion rather than the framing of these systems in the
discussion of other legal domains. This is because AI technologies
are not placed within an existing legal framework (e.g., banking),
but the whole legal framework (i.e., the proposed AI Act) is built
around AI technologies.

The proposed AI Act assigns applications of AI to three risk cat-
egories. First, applications and systems that create an unacceptable
risk, such as government-run social scoring of the type used in
China, are banned. Second, high-risk applications, such as a CV-
scanning tool that ranks job applicants, are subject to specific legal
requirements. Lastly, applications not explicitly banned or listed as
high-risk are largely left unregulated.

Examples of high-risk AI are given by the proposed AI Act in
Annex III, as they broadly include applications for: biometric iden-
tification and categorisation of natural persons, management and
operation of critical infrastructures, etc. In particular, for all those
applications defined as ‘high-risk’, the AI Act provides several limi-
tations and safety assurance procedures including: a risk manage-
ment system (art. 9), appropriate data governance and management
practices (art. 10), detailed technical documentation (art. 11).

Finally, the AI Act defines in Annex I what are the AI techniques
and approaches referred by the proposal. Among them we have:
machine learning approaches (e.g., neural networks), logic- and
knowledge-based approaches (e.g., inductive logic programming),
and statistical approaches (e.g., Bayesian estimation).

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2019:640:FIN
https://www.iec.ch/functional-safety/faq
https://www.iec.ch/national-committees
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4 ANALYSIS OF THE POSITION OF THE AI
ACT ON IEC 61508 AND OTHER
STANDARDS

It is crystal clear from the European Green Deal and the EU’s
commitment to global climate action under the Paris Agreement
that one of the big goals of the EU is to be climate-neutral by 2050.
Citing the words of the European Commission: ‘The EU can lead the
way [to climate-neutrality] by investing into realistic technological
solutions, empowering citizens and aligning action in key areas
such as industrial policy, finance and research, while ensuring social
fairness for a just transition.’ The reason why we are citing these
statements is that we are going to use them as interpretative key for
the proposed AI Act, especially with respect to the importance of
article 54.1.a, stating that ‘innovative AI systems shall be developed
for safeguarding substantial public interest in [...] a high level of
protection and improvement of the quality of the environment’.

In fact, the AI Act is (as mentioned in Section 3) regulating a vast
range of AI applications, with due focus on those listed as high-risk
in Annex III. In particular, it covers, among others, the AI applica-
tions for the ‘management and operation of critical infrastructure’,
i.e. the ‘AI systems intended to be used as safety components in the
management and operation of road traffic and the supply of water,
gas, heating and electricity.’ But, considering that many critical in-
frastructures are currently following a non-harmonized IEC 61508
standard that is de facto excluding the involvement of any AI, we
can see a non-alignment of it to the proposed AI Act.

Indeed, according to article 40 only the ‘harmonised standards
or parts thereof the references of which have been published in
the Official Journal of the European Union’ are considered to be in
conformity with the requirements set out in the proposed AI Act
for high-risk AI systems (see Chapter 2 of Title III). In other words,
article 40, together with the ExplanatoryMemorandum, article 54.1.a
and the fact that IEC 61508 is a non-harmonised standard, make
us understand that the intent of the proposed AI Act is to promote
innovative AI systems also for the ‘management and operation of
road traffic and the supply of water, gas, heating and electricity’. As
consequence, we envisage that the proposed AI Act, without further
modifications, can have a disruptive effect in the industry of critical
infrastructures. This effect can be disruptive in a positive way, by
opening to new technological solutions that have the potential
to improve even further our quality of life, reducing costs and
increasing efficiency. Nonetheless, it can be disruptive also in a
negative way, by ceding the control of critical infrastructures to
automatic decision makers that are possibly opaque, greedy, unfair
and non-transparent in a way that would not allow to understand
where the responsibility lies.

Although, despite the fact that IEC 61508 is a non-harmonized
standard, thus not covered by article 40, we can see that the pro-
posed AI Act shares several and important similarities with it, sug-
gesting that it is not the intent of the EU Commission to fully upset
existing standards.

Overall, we see that the intent of the proposed AI Act is to
modernize existing critical infrastructures, to make them more sus-
tainable. To do so, the AI Act does not ignore or try to eliminate the
currently adopted standards, although it wants them harmonised

with the EU’s policies. This is why the CEN-CENELEC has estab-
lished a joint technical committee on AI5 and defined a road map
for AI standardization [2] that includes the harmonization of IEC
61508 and other standards. In fact, according to article 2(1)(c) of
Regulation (EU) No 1025/2012, the CEN-CENELEC is the European
Union (EU) authority for standards. Nonetheless, we can see also
that European countries start producing guidelines and roadmaps
[48] on this subject.

So, given the very clear position of the proposed AI Act with
respect to the possibility of using AI systems in particular criti-
cal infrastructures, we believe that the CEN-CENELEC, together
with IEC will adapt IEC 61508, eventually opening to a safe use of
AI systems also in critical infrastructures. Importantly, the CEN-
CENELEC [2] has already identified article 41 as a possible source
of uncertainty in industry, given that it would explicitly cut out
any non-harmonized IEC standard (i.e., IEC 61508). In fact, article
clearly 41.1 says that: ‘Where harmonised standards referred to in
Article 40 do not exist or where the Commission considers that the
relevant harmonised standards are insufficient or that there is a
need to address specific safety or fundamental right concerns, the
Commission may, by means of implementing acts, adopt common
specifications in respect of the requirements set out in Chapter 2 of
[Title III]. Those implementing acts shall be adopted in accordance
with the examination procedure referred to in Article 74(2).’

Consequently, given all the aforementioned facts, we see an
harmonization of IEC 61508 or its replacement by 2024, and this will
open to at least one of two scenarios. In the first scenario, we will
have an opening to the use of AI systems in the context of critical
infrastructures, whereas they can improve sustainability whilst
guaranteeing safety. While in a second scenario a very strict policy
against AI systems in critical infrastructures will be maintained.

Again, as consequence of the analysis presented in this Section,
we believe that this very first scenario is the most likely. If that is
correct, we envisage that a new stream of research on AI for critical
infrastructures will be opening by the end of 2024, paving the way
for AI systems to improve the sustainability of our society. Nonethe-
less, it is important to stress that the use of AI does not come free
of problems related to safety, fairness, transparency and sometimes
even sustainability. For this reason, in the following section we will
discuss and classify existing AI techniques, to analyse their impact
on sustainability and safety and to understand which AI-based so-
lutions are likely to be allowed by a future harmonization of IEC
61508.

5 CLASSIFICATION AND DISCUSSION OF
THE IMPACT OF AI ON SUSTAINABILITY
AND SAFETY

Asmentioned in Section 3.3, the techniques and approaches covered
by the proposed AI Act include both symbolic (e.g., logic-based) and
non-symbolic (e.g., neural networks, statistics) techniques. Nonethe-
less, each different type of AI may have its own characteristics,
impacting on safety differently from others. Indeed, as suggested by
Mohseni et al. in their taxonomy of machine learning safety [36],
the decisions of state-of-the-art machine learning techniques can be,

5https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/artificial-
intelligence

https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/artificial-intelligence
https://www.cencenelec.eu/areas-of-work/cen-cenelec-topics/artificial-intelligence
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Table 1: AI Act vs IEC 61508: AI Act is centred on transparencywhile IEC 61508 on safety. This table shows how the proposedAI
Act and IEC 61508 address the same process for risk-assessment, analysis, development and document production in different
ways.

Differences
IEC 61508 Proposed AI Act

Risk-based approach, in particular to es-
tablish the belongings to a predefined cat-
egory

Quantitative (hazard analysis, risk assess-
ment and identify the Safety Integrity
Level)

Qualitative (one of the alternatives: no risk,
application listed in Annex III, AI not ap-
plicable)

Normalised life cycle, with focus on ac-
countability

V-shape development (focus on modular-
ity and decomposability)

Clear definition of datasets (focus on data
management, in particular for training the
AI and how to use the product)

Ex-ante and ex-post analysis Statistical methods (hardware), study of
qualitative techniques (hardware and soft-
ware) and structured testing campaigns

Declarative (identify high level character-
istics, provide general description of com-
ponents behaviour)

Document production Assessment performed by an external in-
stitution

Fill a form in EU database, part of the in-
formation is of public domain (focus on
transparency)

in some cases, completely unexplainable, non-transparent, biased
and non-robust. On the other hand, the automatic decisions of fully
symbolic approaches can be explainable by design but not as good
as those of a state-of-the-art neural network [26]. Therefore, given
such a trade-off between explainability and performance, being
able to foresee and analyse the impact of AI on safety is not trivial,
forcing us to analyse it differently for different types of applications.

This is why in the present paper we will study the impact of
AI, on the safety and sustainability of critical infrastructures, by
using as reference point the 4 Safety Integrity Level defined by IEC
61508. In fact, for each safety level we will show concrete examples
of technological solutions based on AI that have the potential for
significantly improving sustainability, analysing what is the trade-
off between sustainability and safety and how important that is.

5.1 Examples of "Forbidden" AI-based
Solutions that Could Improve
Sustainability in Safety-Critical Systems

Safety-critical subsystems of cyber-physical systems6 compliant
with IEC 61508 are required to have the properties listed in section
3.1 and these normally do not include AI. Nonetheless, few examples
can illustrates how impactful can be AI on safety-critical systems,
considering that in scientific and technical literature are available
several studies that directly address the issue or propose promising
approaches that well fit the kind of data relevant for safety-critical
functions. In table 2 we show these examples aligned to the Safety
Integrity Level of IEC 61508.

Safety Integrity Level 4 systems compliant to IEC 61508 are
quite rare. Nevertheless, the nuclear power plants industry offers
examples of such systems [33]. Here, AI is envisioned to have a
great impact in the relatively close future, in particular for safeguard
and surveillance (filter and identify signatures of nuclear materials),
monitoring and diagnosis of severe accidents or nuclear power plant

6A cyber-physical system comprises physical mechanisms that are monitored and/or
controlled by Information and Communication Technologies.

transients [13]. All these actions are crucial to avoid environmental
consequences of accidents and lives lost [23, 38].

For Safety Integrity Level 3 consider the railway industry, and
in particular those systems for which energy efficiency is crucial,
with focus on the heating system for rail-road switches [11]. This
is a critical subsystem, responsible for keeping the switches free
from snow and ice, necessary to guarantee the correct operation
of the switches and so the correct train routing (always turned on
increases safety). Depending on the climate conditions of the place
where the railway system operates, the energy consumed by this
heating system can be very relevant, i.e. the heating always turned
on implies greater ambient impact and cost. To provide concrete
examples, in [40] it is reported that the cost for heating the 6800
switches and crosses in Sweden can amount to 10−15 Million Euros
per year. In Germany, Deustche Bahn (DB) alone has 64000 switches
heated with electrical resistance and gas heaters, a combined power
of 900 MWwhich consume up to 230 GWh/year [39]. AI is expected
to empower this subsystem with snow or ice prediction/detection
and by making the turning on/off algorithm more responsive.

Regarding Safety Integrity Level 2 and 1, [7] shown concrete ex-
amples in the process industry, where the second tier standard IEC
61511 [29] apply, that can be generalized to the chemical industry.
The chemical industry is one of the most energy-intensive manufac-
turing industries and a major source of greenhouse gas emissions.
Besides that, chemical production often involves hazardous mate-
rials and high-pressure/high-temperature conditions, which may
lead to fire, explosion, and other types of chemical accidents. Those
chemical accidents could cause casualties, financial and social losses
[34]. According to a survey conducted by Accenture [4], most of
the companies in the chemical and advanced materials industry
expect an industry-wide digitisation, and AI plays an essential role
in enabling the digital revolution [17]. In particular, fault detection
and diagnosis is crucial to both safety and sustainability. As an
example, consider fault detection for a Tennessee Eastman process
(chapter 8 of [16]) with few modes, where unit operations include
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Table 2: AI on Safety-Critical Environments: This table shows examples of possible applications of AI on some safety-critical
contexts. For each context we identify its Safety Integrity Level (SIL) and possible tasks where AI can be deployed to improve
sustainability.

SIL Context Use of AI

4 Nuclear power plant [23] • Anomaly detection [8, 9]
• In-core full management [38]

3 Railway, station management [39, 40] • Turning on/off switch heaters [11]
• Fault detection of sensitive components [6]

2 & 1 Chemical industry [4, 17] • Predicting chattering alarms [49]
• Plant health diagnosis [51]

a reactor, a condenser, a recycle compressor, a vapour-liquid sepa-
rator and a stripper [51]. Notice that the adoption of AI is not ‘not
recommended’ for Safety Integrity Level 1 in IEC 61508.

Indeed, AI has the potential to cope with high dimensional data,
being able to generalise, handling novel inputs and incomplete
knowledge [32]. These features are expected [50] to greatly im-
pact the way goals and targets in the 2030 Agenda for Sustainable
Development are addressed.

Overall, we can say that AI may be critical to anomaly detection,
for taking timely countermeasures, being able to find patterns in
data that do not conform to expected behaviour [10].

5.2 Discussion
Even though several metrics for AI performance and robustness
appeared in literature and have been tested in several contexts [52],
only preliminary ones have been defined specifically to address
safety or sustainability (e.g., [18, 20]), and are yet to be tested ex-
tensively before some AI can become amenable for safety critical
applications (where quantification has a central role). Thus, it is
expected that those AI for which will be available reliable metrics
will be the first to be employed in safety functions or safety critical
systems.

It is desirable that interpretable or explainable-by-design AI [35]
are the first to be employed, in particular for handling tabular data
[42]. This is indeed expected to cover, at least in part, simplicity,
understandability and observability-in-depth (section 3.2).

The heart of the problem is that AI is difficult to be framed in
safety standards because of the way it fails. Deterministic software
fails systematically, whereas hardware fails randomly [47]. Safety
standards recommend to address hardware failures through statis-
tical methods and mitigate/tolerate deterministic software failures
employing qualitative techniques. In some standards, statistical
methods for quantifying software failures are allowed (e.g., sug-
gestions are provided in Part 7 of IEC 61508 [28]) in others (e.g.,
DO-178 C [3]) are not recommended. After about forty years of dis-
cussions, in industry and academia, no consensus has been reached,
and strong opinions continue to emerge [14].

Among those listed as AI in Annex I of the proposed AI Act, some
(e.g., statistical models or neural networks) are intrinsically non-
deterministic [31], and then does not fit current safety standards
framework. Seen from a different perspective, though, this removes
many of the assumptions that prevent the use of statistical methods,
opening up new ways to address AI failures. Indeed, a positive by-
product of the discussions on statistical methods for deterministic

software is the huge body of knowledge that is available but not
enough explored for addressing non-deterministic software.

6 CONCLUSIONS
First of all, with this paper we performed an analysis of how the
proposed AI Act might impact on the sustainability and safety of
critical systems (e.g., power plants). We did it by looking at the
differences, incompatibilities and similarities of the AI Act with
IEC 61508, one of the most important non-harmonised standards
for safety-critical infrastructures. Importantly, among the main
differences, we show the incompatibility of IEC 61508 with the use
of any AI in systems requiring a Safety Integrity Level greater than
1, pointing to the disruptive effect that the proposed AI Act might
have on that part of industry aligned with IEC 61508. Then, we
identified examples of AI-based solutions falling under the umbrella
of IEC 61508 with a Safety Integrity Level greater than 1 that might
have a positive impact on sustainability in alignment with the
current long-term goals of the EU and the proposed AI Act.

Eventually, we collected enough material to answer our initial re-
search questions and foresee a future where critical infrastructures
may harness the full potential of AI to improve both sustainability
and safety in accordance with the following Sustainable Develop-
ment Goals of the United Nations [1]: affordable and clean energy
(goal 7), industry, innovation and infrastructure (goal 9), sustain-
able cities and communities (goal 11), responsible consumption
and production (goal 12), climate action (13). To be more precise,
in accordance with the analysis we carried out in this paper, we
believe that the AI Act will eventually soften the position of IEC
61508 with respect to AI, leading to a new generation of critical
infrastructures harmonised with the European vision embodied by
the proposed AI Act. This would clearly open to new research and
technological solutions on this topic by the end of 2024.

Overall, with this paper, our focus was exclusively on those
safety-critical contexts where AI is expected to enhance eco-
nomic/environmental aspects of sustainability but is not employed
yet because considered not enough mature or potentially in conflict
with safety or technical aspects of sustainability, as per IEC 61508.
Nonetheless, despite the promises made by state-of-the-art AI we
can sceptically argue that using AI in safety-critical systems does
definitely come with a risk. This risk is posed by the fact that ceding
control to machines might lead to new unregulated unethical and
immoral behaviours as well as a dangerous lack of transparency and
accountability. Importantly, with respect to this specific issue, there
are several flourishing discussions in literature and among policy
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makers, also taking into account that similar issues are addressed in
other contexts as well [21]. This gives us hope that the technology
of the future will be able to cope with such urgent problems to give
us solutions based on AI capable of addressing the sustainability
goals that have been set for the future. For this reason, we argue
that any forthcoming harmonised version of IEC 61508 is unlikely
to completely close to application of AI in safety-critical systems
with a Safety Integrity Level greater than 1. This is why we are
all waiting for the CEN-CENELEC and its technical commission to
give us a final answer to our research questions in the form of new
harmonised standards.

REFERENCES
[1] 2016. The Sustainable Development Goals Report. Technical Report.

United Nations. https://unstats.un.org/sdgs/report/2016/The%20Sustainable%
20Development%20Goals%20Report%202016.pdf

[2] 2020. Road Map on Artificial Intelligence (AI). https://www.standict.eu/sites/
default/files/2021-03/CEN-CLC_FGR_RoadMapAI.pdf

[3] RTCA (Firm). SC 167. 1992. Software considerations in airborne systems and
equipment certification. RTCA, Incorporated.

[4] Accenture. 2016. Global Digital Chemistry - Survey quantitative find-
ings. https://www2.deloitte.com/content/dam/Deloitte/de/Documents/
consumer-industrial-products/Deloitte%20Global%20Digital%20Chemistry%
20Survey2016Extract.pdf

[5] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. 2004.
Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans.
Dependable Secur. Comput. 1, 1 (2004), 11–33. https://doi.org/10.1109/TDSC.2004.2

[6] Raul Barbosa, Stylianos Basagiannis, Georgios Giantamidis, H. Becker, Enrico
Ferrari, J. Jahic, A. Kanak, Mikel Labayen Esnaola, Vanessa Orani, David Pereira,
Luigi Pomante, Rupert Schlick, Ales Smrcka, Ahmet Yazici, Peter Folkesson, and
Behrooz Sangchoolie. 2020. The VALU3S ECSEL Project: Verification and Vali-
dation of Automated Systems Safety and Security. In 23rd Euromicro Conference
on Digital System Design, DSD 2020, Kranj, Slovenia, August 26-28, 2020. IEEE,
352–359. https://doi.org/10.1109/DSD51259.2020.00064

[7] D. Barone and A. Damiani. 2016. Esperienza pratica nella applicazione delle
analisi SIL (IEC 61508/61511) relative ai sistemi di sicurezza ad alta affidabilità,
per uno stabilimento a rischio di incidente rilevante. (2016). http://conference.
ing.unipi.it/vgr2016/images/papers/133.pdf Valutazione e Gestione del Rischio
negli Insediamenti Civili ed Industriali.

[8] Roger Boza. 2019. Subtle Process Anomalies Detection using Machine Learning
Methods. Technical Report. U.S. Department of Energy, Office of Nuclear En-
ergy. https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Subtle_
Process-Anomalies_Detection_Using_Machine-Learning_Methods.pdf

[9] Francesco Calivá, Fabio De Sousa Ribeiro, Antonios Mylonakis, Christophe De-
mazière, Paolo Vinai, Georgios Leontidis, and Stefanos D. Kollias. 2018. A Deep
Learning Approach to Anomaly Detection in Nuclear Reactors. In 2018 Interna-
tional Joint Conference on Neural Networks, IJCNN 2018, Rio de Janeiro, Brazil,
July 8-13, 2018. IEEE, 1–8. https://doi.org/10.1109/IJCNN.2018.8489130

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:
A Survey. ACM Comput. Surv. 41, 3, Article 15 (jul 2009), 58 pages. https:
//doi.org/10.1145/1541880.1541882

[11] Silvano Chiaradonna, Giulio Masetti, Felicita Di Giandomenico, Francesca
Righetti, and Carlo Vallati. 2021. Enhancing sustainability of the railway in-
frastructure: Trading energy saving and unavailability through efficient switch
heating policies. Sustain. Comput. Informatics Syst. 30 (2021), 100519. https:
//doi.org/10.1016/j.suscom.2021.100519

[12] European Commission. 2021. Proposal for a Regulation of the European Parlia-
ment and of the Council laying down harmonised rules on Artificial Inteligence
and amending certain union legislative acts. https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A52021PC0206

[13] European Commission, Joint Research Centre, J Tanarro Colodron, K Simola,
A Liessens, G Joanny, G Renda, J Colle, J Griveau, S Vigier, H Gerbelova, D
Vanleeuw, M Cihlar, and A Cambriani. 2022. Horizon scanning for nuclear safety
and security yearly report 2021 : creating an anticipatory capacity within the JRC.
Publications Office of the European Union. https://doi.org/doi/10.2760/645368

[14] D. Daniels and N. Tudor. 2022. Software Reliability and the Misuse of Statistics.
Safety-Critical Systems eJournal 1, 1 (2022). https://scsc.uk/journal/index.php/
scsj/article/view/8

[15] European Committee for Electrotechnical Standardization 2020. Railway applica-
tions - Communication, signalling and processing systems - Software for railway
control and protection systems. European Committee for Electrotechnical Stan-
dardization.

[16] Richard D. Braatz Evan L. Russell, Leo H. Chiang. 2000. Data-driven Methods for
Fault Detection and Diagnosis in Chemical Processes. https://doi.org/10.1007/978-
1-4471-0409-4

[17] World Economic Forum. 2017. Digital transformation initiative chemistry
and advanced materials industry. http://reports.weforum.org/digital-
transformation/wp-content/blogs.dir/94/mp/files/pages/files/white-paper-dti-
2017-chemistry.pdf

[18] Mohamad Gharib and Andrea Bondavalli. 2019. On the Evaluation Measures
for Machine Learning Algorithms for Safety-Critical Systems. In 15th European
Dependable Computing Conference, EDCC 2019, Naples, Italy, September 17-20,
2019. IEEE, 141–144. https://doi.org/10.1109/EDCC.2019.00035

[19] Mohamad Gharib, Paolo Lollini, Marco Botta, Elvio Gilberto Amparore, Susanna
Donatelli, and Andrea Bondavalli. 2018. On the Safety of Automotive Systems
Incorporating Machine Learning Based Components: A Position Paper. In 48th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops, DSN Workshops 2018, Luxembourg, June 25-28, 2018. IEEE Computer
Society, 271–274. https://doi.org/10.1109/DSN-W.2018.00074

[20] Mohamad Gharib, Tommaso Zoppi, and Andrea Bondavalli. 2021. Understanding
the properness of incorporating machine learning algorithms in safety-critical
systems. In SAC ’21: The 36th ACM/SIGAPP Symposium on Applied Computing,
Virtual Event, Republic of Korea, March 22-26, 2021, Chih-Cheng Hung, Jiman
Hong, Alessio Bechini, and Eunjee Song (Eds.). ACM, 232–234. https://doi.org/
10.1145/3412841.3442074

[21] M. Ghassemi, L. Oakden-Rayner, and A. L. Beam. 2021. The false hope of current
approaches to explainable artificial intelligence in health care. The Lancet, digital
health 3 (2021), E745–E750. Issue 11.

[22] Elizabeth Gibney et al. 2016. Google AI algorithm masters ancient game of Go.
Nature 529, 7587 (2016), 445–446.

[23] Mario Gomez-Fernandez, Kathryn Higley, Akira Tokuhiro, Kent Welter, Weng-
Keen Wong, and Haori Yang. 2020. Status of research and development of
learning-based approaches in nuclear science and engineering: A review. Nuclear
Engineering and Design 359 (2020), 110479. https://doi.org/10.1016/j.nucengdes.
2019.110479

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision. 1026–1034.

[25] Jens Henriksson, Markus Borg, and Cristofer Englund. 2018. Automotive Safety
andMachine Learning: Initial Results from a Study onHow toAdapt the ISO 26262
Safety Standard. In 1st IEEE/ACM International Workshop on Software Engineering
for AI in Autonomous Systems, SEFAIAS@ICSE 2018, Gothenburg, Sweden, May
28, 2018, Reinhard Stolle, Stephan Scholz, and Manfred Broy (Eds.). ACM, 47–49.
https://doi.org/10.1145/3194085.3194090

[26] Andreas Holzinger. 2018. From Machine Learning to Explainable AI. In 2018
World Symposium on Digital Intelligence for Systems and Machines (DISA). 55–66.
https://doi.org/10.1109/DISA.2018.8490530

[27] International Electrotechnical Commission 2006. Nuclear power plants – Instru-
mentation and control systems important to safety – Software aspects for computer-
based systems performing category A functions. International Electrotechnical
Commission.

[28] International Electrotechnical Commission 2010. Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. International Elec-
trotechnical Commission.

[29] International Electrotechnical Commission 2016. Functional safety - Safety in-
strumented systems for the process industry sector. International Electrotechnical
Commission.

[30] International Electrotechnical Commission 2021. Safety of machinery - Functional
safety of safety-related control systems. International Electrotechnical Commis-
sion.

[31] Bonnie Johnson. 2022. Metacognition for artificial intelligence system safety
– An approach to safe and desired behavior. Safety Science 151 (2022), 105743.
https://doi.org/10.1016/j.ssci.2022.105743

[32] Zeshan Kurd, Tim Kelly, and Jim Austin. 2007. Developing artificial neural
networks for safety critical systems. Neural Comput. Appl. 16, 1 (2007), 11–19.
https://doi.org/10.1007/s00521-006-0039-9

[33] Jussi Lahtinen, Mika Johansson, Jukka Ranta, Hannu Harju, and Risto Nevalainen.
2010. Comparison between IEC 60880 and IEC 61508 for Certification Purposes
in the Nuclear Domain. In Computer Safety, Reliability, and Security, 29th In-
ternational Conference, SAFECOMP 2010, Vienna, Austria, September 14-17, 2010.
Proceedings (Lecture Notes in Computer Science), Erwin Schoitsch (Ed.), Vol. 6351.
Springer, 55–67. https://doi.org/10.1007/978-3-642-15651-9_5

[34] M. Liao, K. Lan, and Y. Yao. 2022. Sustainability implications of artificial intelli-
gence in the chemical industry: A conceptual framework. Journal of industrial
ecology 26, 1 (2022), 164–182.

[35] RicardsMarcinkevics and Julia E. Vogt. 2020. Interpretability and Explainability: A
Machine Learning Zoo Mini-tour. CoRR abs/2012.01805 (2020). arXiv:2012.01805
https://arxiv.org/abs/2012.01805

[36] S. Mohseni, H. Wang, Z. Yu, C. Xiao, Z. Wang, and J. Yadawa. 2021. Taxonomy of
Machine Learning Safety: A Survey and Primer. https://arxiv.org/abs/2106.04823

https://unstats.un.org/sdgs/report/2016/The%20Sustainable%20Development%20Goals%20Report%202016.pdf
https://unstats.un.org/sdgs/report/2016/The%20Sustainable%20Development%20Goals%20Report%202016.pdf
https://www.standict.eu/sites/default/files/2021-03/CEN-CLC_FGR_RoadMapAI.pdf
https://www.standict.eu/sites/default/files/2021-03/CEN-CLC_FGR_RoadMapAI.pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/consumer-industrial-products/Deloitte%20Global%20Digital%20Chemistry%20Survey2016Extract.pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/consumer-industrial-products/Deloitte%20Global%20Digital%20Chemistry%20Survey2016Extract.pdf
https://www2.deloitte.com/content/dam/Deloitte/de/Documents/consumer-industrial-products/Deloitte%20Global%20Digital%20Chemistry%20Survey2016Extract.pdf
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/DSD51259.2020.00064
http://conference.ing.unipi.it/vgr2016/images/papers/133.pdf
http://conference.ing.unipi.it/vgr2016/images/papers/133.pdf
https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Subtle_Process-Anomalies_Detection_Using_Machine-Learning_Methods.pdf
https://lwrs.inl.gov/Advanced%20IIC%20System%20Technologies/Subtle_Process-Anomalies_Detection_Using_Machine-Learning_Methods.pdf
https://doi.org/10.1109/IJCNN.2018.8489130
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.suscom.2021.100519
https://doi.org/10.1016/j.suscom.2021.100519
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://doi.org/doi/10.2760/645368
https://scsc.uk/journal/index.php/scsj/article/view/8
https://scsc.uk/journal/index.php/scsj/article/view/8
https://doi.org/10.1007/978-1-4471-0409-4
https://doi.org/10.1007/978-1-4471-0409-4
http://reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/files/pages/files/white-paper-dti-2017-chemistry.pdf
http://reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/files/pages/files/white-paper-dti-2017-chemistry.pdf
http://reports.weforum.org/digital-transformation/wp-content/blogs.dir/94/mp/files/pages/files/white-paper-dti-2017-chemistry.pdf
https://doi.org/10.1109/EDCC.2019.00035
https://doi.org/10.1109/DSN-W.2018.00074
https://doi.org/10.1145/3412841.3442074
https://doi.org/10.1145/3412841.3442074
https://doi.org/10.1016/j.nucengdes.2019.110479
https://doi.org/10.1016/j.nucengdes.2019.110479
https://doi.org/10.1145/3194085.3194090
https://doi.org/10.1109/DISA.2018.8490530
https://doi.org/10.1016/j.ssci.2022.105743
https://doi.org/10.1007/s00521-006-0039-9
https://doi.org/10.1007/978-3-642-15651-9_5
https://arxiv.org/abs/2012.01805
https://arxiv.org/abs/2012.01805
https://arxiv.org/abs/2106.04823


Foreseeing the Impact of the Proposed AI Act ICEGOV 2022, October 4–7, 2022, Guimarães, Portugal

[37] Mark Munro, Jacob Whiton, and Robert Maxim. 2019. What jobs are affected by
AI? (2019).

[38] Ephraim Nissan. 2019. An Overview of AI Methods for in-Core Fuel Management:
Tools for the Automatic Design of Nuclear Reactor Core Configurations for
Fuel Reload, (Re)arranging New and Partly Spent Fuel. Designs 3, 3 (2019).
https://doi.org/10.3390/designs3030037

[39] International Union of Railways. [n.d.]. Technologies and Potential Devel-
opments for Energy Efficiency and CO2 Reduction in Rail Systems. https://
uic.org/IMG/pdf/_27_technologies_and_potential_developments_for_energy_
efficiency_and_co2_reductions_in_rail_systems._uic_in_colaboration.pdf
Online; accessed 15 January 2019.

[40] A. Parida P. Norbbin, J. Lin. 2016. Energy efficiency optimization for railway
switches & crossings: a case study in Sweden. InWCRR 2016, 11th World Congress
on Railway Research. SPARK knowledge sharing portal. https://www.diva-
portal.org/smash/get/diva2:1010747/FULLTEXT01.pdf

[41] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta,
Tony Duan, Daisy Ding, Aarti Bagul, Curtis Langlotz, Katie Shpanskaya, et al.
2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep
learning. arXiv preprint arXiv:1711.05225 (2017).

[42] Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 5
(2019), 206–215. https://doi.org/10.1038/s42256-019-0048-x

[43] Rick Salay, Rodrigo Queiroz, and Krzysztof Czarnecki. 2017. An Analysis of
ISO 26262: Using Machine Learning Safely in Automotive Software. CoRR
abs/1709.02435 (2017). arXiv:1709.02435 http://arxiv.org/abs/1709.02435

[44] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. 2020. Mastering atari, go, chess and shogi by planning with

a learned model. Nature 588, 7839 (2020), 604–609.
[45] T Sivageerthi, Bathrinath Sankaranarayanan, Syed Mithun Ali, and Koppiahraj

Karuppiah. 2022. Modelling the Relationships among the Key Factors Affecting
the Performance of Coal-Fired Thermal Power Plants: Implications for Achieving
Clean Energy. Sustainability 14, 6 (2022), 3588.

[46] David J Smith and Kenneth GL Simpson. 2020. The Safety Critical Systems
Handbook: A Straightforward Guide to Functional Safety: IEC 61508 (2010 Edition),
IEC 61511 (2015 Edition) and Related Guidance. Butterworth-Heinemann.

[47] David J. Smith and Kenneth G. L. Simpson (Eds.). 2020. The Safety Critical Systems
Handbook (fifth edition ed.).

[48] DKE standards. 2020. German standardization roadmap on ar-
tificial intelligence. https://www.din.de/resource/blob/772610/
e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf

[49] Nicola Tamascelli, Nicola Paltrinieri, and Valerio Cozzani. 2020. Predicting
chattering alarms: A machine Learning approach. Comput. Chem. Eng. 143 (2020),
107122. https://doi.org/10.1016/j.compchemeng.2020.107122

[50] Ricardo Vinuesa, Hossein Azizpour, Iolanda Leite, Madeline Balaam, Virginia
Dignum, Sami Domisch, Anna Felländer, Simone Langhans, Max Tegmark, and
Francesco Fuso Nerini. 2019. The role of artificial intelligence in achieving the
Sustainable Development Goals. CoRR abs/1905.00501 (2019). arXiv:1905.00501
http://arxiv.org/abs/1905.00501

[51] Hao W. and Jinsong Z. 2020. Fault detection and diagnosis based on transfer
learning for multimode chemical processes. Computers & Chemical Engineering
135 (2020), 106731.

[52] T. Wu, Y. Dong, Z. Dong, A. Singa, X. Chen, and Y. Zhang. 2020. Testing Artificial
Intelligence System Towards Safety and Robustness: State of the Art. International
Journal of Computer Science 47, 3 (2020).

https://doi.org/10.3390/designs3030037
https://uic.org/IMG/pdf/_27_technologies_and_potential_developments_for_energy_efficiency_and_co2_reductions_in_rail_systems._uic_in_colaboration.pdf
https://uic.org/IMG/pdf/_27_technologies_and_potential_developments_for_energy_efficiency_and_co2_reductions_in_rail_systems._uic_in_colaboration.pdf
https://uic.org/IMG/pdf/_27_technologies_and_potential_developments_for_energy_efficiency_and_co2_reductions_in_rail_systems._uic_in_colaboration.pdf
https://www.diva-portal.org/smash/get/diva2:1010747/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1010747/FULLTEXT01.pdf
https://doi.org/10.1038/s42256-019-0048-x
https://arxiv.org/abs/1709.02435
http://arxiv.org/abs/1709.02435
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf
https://www.din.de/resource/blob/772610/e96c34dd6b12900ea75b460538805349/normungsroadmap-en-data.pdf
https://doi.org/10.1016/j.compchemeng.2020.107122
https://arxiv.org/abs/1905.00501
http://arxiv.org/abs/1905.00501

	Abstract
	1 Introduction
	2 Methodology
	3 Background
	3.1 The safety standard IEC 61508
	3.2 Safety vs AI
	3.3 The Proposed AI Act

	4 Analysis of the Position of the AI Act on IEC 61508 and Other Standards
	5 Classification and Discussion of the Impact of AI on Sustainability and Safety
	5.1 Examples of "Forbidden" AI-based Solutions that Could Improve Sustainability in Safety-Critical Systems
	5.2 Discussion

	6 Conclusions
	References

