
Curry and Howard Meet Borel
Melissa Antonelli

Università di Bologna, Italy
melissa.antonelli2@unibo.it

Ugo Dal Lago
Università di Bologna, Italy

ugo.dallago@unibo.it

Paolo Pistone
Università di Bologna, Italy
paolo.pistone2@unibo.it

ABSTRACT
We show that an intuitionistic version of counting propositional
logic corresponds, in the sense of Curry and Howard, to an expres-
sive type system for the probabilistic event λ-calculus, a vehicle
calculus in which both call-by-name and call-by-value evaluation of
discrete randomized functional programs can be simulated. In this
context, proofs (respectively, types) do not guarantee that validity
(respectively, termination) holds, but reveal the underlying proba-
bility. We finally show how to obtain a system precisely capturing
the probabilistic behavior of λ-terms, by endowing the type system
with an intersection operator.

CCS CONCEPTS
• Theory of computation→ Type theory; Proof theory; Prob-
abilistic computation.

KEYWORDS
Curry-Howard Correspondence, Probabilistic Computation, Count-
ing Logic, Termination, Intersection Types
ACM Reference Format:
Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone. 2022. Curry andHoward
Meet Borel. In 37th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS) (LICS ’22), August 2–5, 2022, Haifa, Israel. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3531130.3533361

1 INTRODUCTION
Among the many ways in which mathematical logic influenced
programming language theory, the so-called Curry-Howard corre-
spondence is certainly one of the most intriguing and meaningful
ones. Traditionally, the correspondence identified by Curry [15] and
formalized by Howard [35] (CHC in the following) relates propo-
sitional intuitionistic logic and the simply-typed λ-calculus. As is
well-known, though, this correspondence holds in other contexts,
too. Indeed, in the last fifty years more sophisticated type systems
have been put in relation with expressive logical formalisms: from
polymorphism [27, 29] to various forms of session typing [13, 55],
from control operators [48] to dependent types [41, 53].

Nevertheless, there is a class of programming languages and type
systems for which a correspondence in the style of CHC has not
yet been found. We are talking about languages with probabilistic
effects, for which type-theoretic accounts have recently been put
forward in various ways, e.g. type systems based on sized types [17],

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9351-5/22/08.
https://doi.org/10.1145/3531130.3533361

intersection types [11] or type systems in the style of so-called
amortized analysis [59]. In all the aforementioned cases, a type
system was built by modifying deterministic, standard ones without
being guided by logic, and instead incepting inherently quantitative
concepts from probability theory into the system. So, one could
naturally wonder if there is any logical system behind all this, and
what kind of logic could possibly play the role of propositional
logic in suggesting meaningful and expressive type systems for a
λ-calculus endowed with probabilistic choice effects.

A tempting answer is to start from modal logic, which is known
to correspond, in the Curry-Howard sense, to staged computation
and algebraic effects [14, 20, 63]. Nevertheless, there is one aspect
of randomized computation that modal logic fails to capture,1 that
is the probability of certain events, typically termination. In many
of the probabilistic type systems mentioned above, for example, a
term t receives a type that captures the fact that t has a certain
probability q, perhaps strictly smaller than 1, of reducing to a value.
This probability is an essential part of what we want to observe
about the dynamics of t and, as such, has to be captured by its type,
at least if one wants the type system to be expressive. Moreover,
several other properties, as reachability and safety, can be reduced
to termination (see, e.g., the discussion in [38]).

Recently, the authors have proposed to use counting quantifiers
[2, 3] as a means to express probabilities within a logical language.
These quantifiers, unlike standard ones, determine not only the
existence of an assignment of values to variables with certain char-
acteristics, but rather count how many of those assignments exist.
Recent works show that classical propositional logic enriched with
counting quantifiers corresponds toWagner’s hierarchy of counting
complexity classes [58] (itself intimately linked to probabilistic com-
plexity), and that Peano Arithmetics (PA, for short), enriched with
analogous measure quantifiers, yields a system capable of speaking
of randomized computation in the same sense in which standard
PA models deterministic computation [3]. One may now wonder
whether all this could scale to something like a proper CHC.

The aim of this work is precisely to give a positive answer to
the aforementioned question, at the same time highlighting a few
remarkable consequences of our study of probabilistic computation
through the lens of logic. More specifically, the contributions of
this paper are threefold:
• First of all, we introduce an intuitionistic version of Antonelli

et al.’s counting propositional logic [2], together with a Kripke-
style semantics based on the Borel σ -algebra of the Cantor
space and a sound and complete proof system. Then, we iden-
tify a “computational fragment” of this logic for which we de-
sign a natural deduction system in which proof normalization
simulates well-known evaluation strategies for probabilistic
programs. This is in Section 3.

1With a few notable exceptions, e.g. [25].

https://doi.org/10.1145/3531130.3533361
https://doi.org/10.1145/3531130.3533361

LICS ’22, August 2–5, 2022, Haifa, Israel Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

• We then show that proofs can be decorated with terms of the
probabilistic event λ-calculus, a calculus for randomized com-
putation introduced by Dal Lago et al. in [18]. This gives rise
to a type-system called Cλ{}→. Remarkably, the correspondence
scales to the underlying dynamics, i.e. proof normalization re-
lates to reduction in the probabilistic event λ-calculus. This is
in Section 4 and Section 5.

• We complete the picture by giving an intersection type as-
signment system, derived from Cλ{}→, and proving that it pre-
cisely captures the normalization probability of terms of this
λ-calculus. This is in Section 6.

Space limits prevent us from being comprehensive, but full details
can be found in a long version of this paper [4].

2 FROM LOGIC TO COUNTING AND
PROBABILITY: A ROADMAP

In this section we provide a first overview of our probabilistic CHC,
at the same time sketching the route we will follow in the rest of
the paper.

2.1 Randomized Programs and Counting
Quantifiers

The first question we should ask ourselves concerns the kind of
programs we are dealing with. What is a probabilistic functional
program? Actually, it is a functional program with the additional
ability of sampling from some distributions, or of proceeding by
performing some form of discrete probabilistic choice.2 This has
a couple of crucial consequences: program evaluation becomes an
essentially stochastic process, and programs may satisfy a given
specification up to a certain probability. As an example, consider
the λ-term,

Ξhalf := λx .λy.x ⊕ y

where ⊕ is a binary infix operator for fair probabilistic choice.When
applied to two arguments t and u, the evaluation of Ξhalf results in
either t , with probability one half, or u, again with probability one
half.

But now, if we try to takeΞhalf as a proof of some logical formula,
we see that standard propositional logic is simply not rich enough
to capture the behavior above. Indeed, given that Ξhalf is a function
of two arguments, it is natural to see it as a proof of an implication
A → B → C , namely (following the BHK interpretation) as a
function turning a proof of A and a proof of B into a proof of C .
What isC , then? Should it be A or should it be B? Actually, it could
be both, with some degree of uncertainty, but propositional logic
is not able to express all this. At this point, our recent work on
counting quantifiers in propositional logic [2] comes to the rescue.

Another way to look at discrete probabilistic programs is as
programs which are allowed to sample an element ω from the
Cantor space 2N. For example, a probabilistic Turing machine M
can be described as a 2-tape machine where the second tape is
read-only and sampled from the Cantor space at each run. Similarly,
the execution of Ξhalf applied to programs t and u can be described
as the result of samplingω and returning either t oru depending on

2Here we are not at all concerned with sampling from continuous distributions, nor
with capturing any form of conditioning.

some read value, e.g. ω(0). Crucially, for each input x and possible
output y of a probabilistic program f , the set Sx,y of elements in
2N, making f (x) produce y, is a measurable set (indeed, a Borel
set), so it makes sense to say that the probability that f (x) yields y
coincides with the measure of Sx,y .

Yet, what has all this to do with logic and counting? The funda-
mental observation is that also the formulas of classical proposi-
tional logic provide ways of denoting Borel sets. Let x0,x1, . . . in-
dicate a countable set of propositional variables (which can be seen
as i.i.d. and uniformly distributed random variables xi ∈ {0, 1});
each variable xi can be associated with the cylinder set (indeed, a
Borel set of measure 1

2) formed by all ω ∈ 2N such that ω(i) = 1
(i.e., in logical terms, such that ω ⊨ xi). Then, any propositional
formula b, c, . . . formed built using the connectives ¬,∧,∨ can
be associated with the Borel sets {ω ∈ 2N | ω ⊨ b} which can
be constructed starting from cylinder sets by means of comple-
mentation together with finite intersection and union. In this way,
for any Boolean formula b, it makes sense to define new formulas
like C

1
2 b, which is true when the Borel set associated with b has

measure greater than 1
2 (i.e. when b is satisfied by at least 1

2 of its
models). For instance, given two distinct indexes i, j ∈ N, so that
the variables xi ,xj correspond to two independent events, the
formula C

1
2 (xi ∨xj) is true. Indeed, the Borel set formed by the

ω ∈ 2N such that either ω(i) = 1 or ω(j) = 1 has measure greater
than 1

2 (equivalently,xi ∨xj is satisfied by at least 1
2 of its models).

Instead, C
1
2 (xi ∧xj) is false, since, xi and xj being independent,

the Borel set associated with xi ∧xj has only measure 1
4 .

Counting propositional logic (from now on, CPL) is defined by
enriching classical propositional logic with counting quantifiers Cq ,
where q ∈ [0, 1] ∩ Q. Following our sketch, CPL admits a natural
semantics in the Borel σ -algebra of the Cantor space, together with
a sound and complete sequent calculus [2]. Notice that measuring a
Boolean formula actually amounts at counting its models, that is, to
a purely recursive operation, albeit one which needs not be doable
in polynomial time (indeed, CPL is deeply related to Wagner’s
counting hierarchy [2]).

Going back to the term Ξhalf , what seems to be lacking in intu-
itionistic logic is precisely a way to express that C could be C

1
2A,

i.e. that it could be A with probability at least 1
2 , and, similarly,

that it could be by C
1
2 B. In Section 3 we introduce an intuitionis-

tic version of CPL, called iCPL, which enriches intuitionistic logic
with Boolean variables as well as the counting quantifier Cq . In-
tuitively, if a proof of a formula A can be seen as a deterministic
program satisfying the specification A, a proof of CqA will corre-
spond to a probabilistic program that satisfies the specification A
with probability q. Our main result consists in showing that proofs
in iCPL correspond to functional probabilistic programs and, most
importantly, that normalization in this logic describes probabilistic
evaluation.

2.2 Can CbN and CbV Evaluation Coexist?
When dealing with λ-calculi extended with probabilistic choice,
two different evaluation strategies are usually considered: the call-
by-name (CbN) strategy, which possibly duplicates choices before
evaluating them, and the call-by-value (CbV) strategy, which instead

Curry and Howard Meet Borel LICS ’22, August 2–5, 2022, Haifa, Israel

evaluates choices before possibly duplicating their outcomes. Im-
portantly, the probability of termination of a program might differ
depending on the chosen strategy. For example, consider the appli-
cation of the term 2 := λyx .y(yx) (i.e. the second Church numeral)
to I ⊕ Ω, where I = λx .x and Ω is the diverging term (λx .xx)λx .xx .
Under CbN, the redex 2(I ⊕ Ω) first produces λx .(I ⊕ Ω)((I ⊕ Ω)x),
then reduces to any of the terms λx .u(vx), with u,v chosen from
{I ,Ω}, each with probability 1

4 . Since λx .u(vx) converges only
when u = v = I , the probability of convergence is thus 1

4 . Un-
der CbV, in 2(I ⊕ Ω) one first has to evaluate I ⊕ Ω, and then passes
the result to 2, hence returning either the converging term I (Ix) or
the diverging term Ω(Ωx), each with probability 1

2 .
If we now try to think of the Church numeral 2 as a proof of

some counting quantified formula, we see that, depending on the
reduction strategy considered, it must prove a different formula.
Indeed, given that I ⊕ Ω proves C

1
2 (A → A), in the CbN case, 2

proves C
1
2 (A → A) → A → C

1
4A, since only in one out of four

cases it yields a proof of A, while in the CbV case, 2 proves the
formula C

1
2 (A → A) → A → C

1
2A, as it yields a proof of A in one

case out of two.
In the literature on probabilistic λ-calculi, the apparent incompat-

ibility of CbN and CbV evaluation is usually resolved by restricting
to calculi with one or the other strategy. Nevertheless, the obser-
vation above suggests that, if functional programs are typed using
counting quantifiers, it should become possible to make the two
evaluation strategies coexist, by assigning them different types.

Actually, a few recent approaches [16, 18, 21, 23] already suggest
ways to make CbN and CbV evaluation live together. In particu-
lar, in the probabilistic event λ-calculus [18] the choice operator ⊕
is decomposed into two different operators, yielding a confluent
calculus: a choice operator t ⊕a u, depending on some probabilistic
event a ∈ {0, 1}, and a probabilistic event generator νa.t , which
actually “flips the coin”. In this language, the CbN and CbV applica-
tions of 2 to I ⊕ Ω are encoded by two distinct terms 2(νa.I ⊕a Ω)
and νa.2(I ⊕a Ω), crucially distinguishing between generating a
probabilistic choice before or after a duplication takes place.

This calculus constitutes then an ideal candidate for our CHC.
Indeed, as we shall see, the logical rules for the counting quantifier
Cq naturally give rise to typing rules for the event generator νa.
In Section 4 we introduce a variant Λ{}

PE of the calculus from [18],
with the underlying probability space {0, 1} replaced by the Can-
tor space, and in Section 5 we introduce a type system Cλ{}→ for
simple types with counting quantifiers, showing that natural de-
duction derivations translate into typing derivations in Cλ{}→, with
normalization precisely corresponding to reduction in Λ

{}
PE.

2.3 Capturing Probability of Normalization via
Types

As observed in the Introduction, a quantitative property we would
like to observe using types is the probability of termination. Never-
theless, given that the reduction ofΛ{}

PE is purely deterministic, what
notions of probabilistic termination should we actually observe?

Rather than evaluating programs by implementing probabilistic
choices, reduction in the probabilistic event λ-calculus progressively
generates the full tree of outcomes of (sequences of) probabilistic

choices, giving rise to a distribution of values. Therefore, given
a term t , rather than asking whether some or all reductions of t
terminate, it makes sense to ask what is the probability for a normal
form to be found by generating all probabilistic outcomes of t .

In Section 6wewill first show that when the typeCqσ is assigned
to a program t , the value q ∈ Q ∩ (0, 1] provides a lower bound
for the actual probability of finding a (head) normal form in the
development of t . Thenwe show that, in analogywithwhat happens
in the deterministic case, by extending the type system with an
intersection operator, one can attain an upper bound and, thus, fully
characterize the distribution of values associated with a term.

2.4 Preliminaries on the Cantor Space
Throughout the paper, we exploit some basic facts about the Cantor
space, its Borel σ -algebra, and their connections with Boolean logic,
that we briefly recall here.

We consider a countably infinite setAof names, noted a,b, c,
For any finite subset X ⊆ A, we let BX (resp. BA) indicate the
Borel σ -algebra on the X -th product of the Cantor space (2N)X
(resp. on the A-th product (2N)A), that is, the smallest σ -algebra
containing all open sets under the product topology. There exists
a unique measure µ on BA such that µ(Ca,i) = 1

2 for all cylinders
Ca,i = {ω | ω(a)(i) = 1}. The measure µ restricts to a measure µX
on BX by letting µX (S) = µ(S × (2N)A−X).

Boolean formulas with names in Aare defined by:

b ::= ⊤ | ⊥ | xi
a | ¬b | b∧ b | b∨ b

where a ∈ A and i ∈ N. We let FN(b) ⊆ A be the set of names
occurring in b. For all Boolean formulas b and X ⊇ FN(b), we
let JbKX indicate the Borel set {ω ∈ (2N)X | ω ⊨ b} (notice that
Jxi

aK{a } = Ca,i). As the value µX (JbKX) ∈ [0, 1] ∩ Q does not
depend on the choice of X ⊇ FN(b), we will note it simply as µ(b).

3 INTUITIONISTIC COUNTING
PROPOSITIONAL LOGIC

In this section we introduce a constructive version of CPL, that we
call iCPL, which extends standard intuitionistic logic with Boolean
variables and counting quantifiers. The logic iCPL combines con-
structive reasoning (corresponding, under the standard CHC, to
functional programming) with semantic reasoning on Boolean for-
mulas and their models (corresponding, as we have seen, to discrete
probabilistic reasoning). Formulas of iCPL are somehow hybrid, as
comprising both a countable set P = {p,q, . . . } of intuitionistic
propositional variables, and named Boolean propositional variables
xi
a .
For example, consider the formula below:

A := p→ q→ (x0
a ∧p) ∨ (¬x0

a ∧ q).
Intuitively, proving A amounts to showing that, wheneverp and
q hold, given that either x0

a or ¬x0
a do, in the first casep holds,

and in the second q does. Suppose we test A against some element
ω from the Cantor space. A way of proving A, in the “environment”
ω, could then be as follows: given assumptionsp and q, conclude
p andx0

a ifω(0) = 1, i.e. ifω satisfiesx0
a , and conclude q and ¬x0

a
if ω(0) = 0, i.e. if ω does not satisfy ¬xi

a . In other words, a proof
of A under ω could be something like λxy.x ⊕a y. Now, assuming

LICS ’22, August 2–5, 2022, Haifa, Israel Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

that ω is uniformly sampled, what are the chances that our strategy
will actually yield a proof of A? Well, there are two possible cases,
and in both cases we get a proof of one of the disjuncts x0

a ∧p

and ¬x0
a ∧ q, and thus a proof of A. Hence, we obtain a proof of

A with probability 1 or, otherwise said, a proof of C1
aA (this time

independent from any “environment”). As a term, this proof looks
then precisely as the closed term νa.λxy.x ⊕a y.

Consider now another formula:
B := p→ q→ x0

a ∧p.

Given an environment ω, if ω(0) = 1, a proof of B can conclude
both p and x0a from the assumptions p and q; instead, if ω(0) = 0,
there is nothing to be proved, since the conclusion x0

a ∧p can in
no way be true under ω. Depending on the environment ω, we can
thus either construct a correct proof of B or acknowledge that B
cannot be true. If ω is sampled uniformly, we obtain thus a proof
of B only in one half of the cases, i.e. we get a proof of C

1
2
a B, and

this proof looks precisely as the term νa.λxy.x ⊕a ?, where ? can
be any term.

3.1 The Semantics and Proof-Theory of iCPL.
The formulas of the logic just sketched are defined by:

A ::= ⊤ | ⊥ | xi
a | p | A ∧A | A ∨A | A → A | CqaA,

where p ∈ P and q ∈ (0, 1] ∩ Q.3 A natural semantics for iCPL-
formulas is given in terms of Kripke-like structures.

Definition 3.1. An iCPL-structure is a tripleM= (W , ⪯, i) where
W is a countable set, ⪯ is a preorder onW , and i : P→W ↑, where
W ↑ is the set of upper subsets ofW .

The interpretation of formulas in iCPL-structures combines a set
W of worlds (for the interpretation of intuitionistic propositional
variables) with the choice of an element of the Cantor space (for the
interpretation of Boolean variables): for any iCPL-structure M=
(W , ⪯, i) and finite set X , we define the relationw,ω ⊩X

M
A (where

w ∈W , ω ∈ (2N)X and FN(A) ⊆ X) by induction as follows:
• w,ω ⊮X

M
⊥ andw,ω ⊩X

M
⊤;

• w,ω ⊩X
M

xi
a iff ω(a)(i) = 1;

• w,ω ⊩X
M

p iffw ∈ i(p);
• w,ω ⊩X

M
A ∧ B iffw,ω ⊩X

M
A andw,ω ⊩X

M
B;

• w,ω ⊩X
M

A ∨ B iffw,ω ⊩X
M

A orw,ω ⊩X
M

B;
• w,ω ⊩X

M
A → B iff for all w ′ ⪰ w , w ′,ω ⊩X

M
A implies

w ′,ω ⊩X
M

B;
• w,ω ⊩X

M
CqaA iff

µ
({
ω ′ ∈ 2N | w,ω +a ω ′ ⊩X∪{a }

M
A
})

≥ q

where ω +a ω ′ ∈ (2N)X∪{a } is defined by (ω +a ω ′)(b)(n) =
ω(b)(n), for b ∈ X , and (ω +a ω ′)(a)(n) = ω ′(n).

Using properties of the Borel σ -algebra BX , it can be shown that
for any w ∈ W and formula A, the set {ω ∈ (2N)X | w,ω ⊩X

M

A} is a Borel set, and thus measurable. We write Γ ⊩X
M

A when
for all w ∈ W and ω ∈ (2N)X , whenever w,ω ⊩X

M
Γ holds, also

3With respect to CPL, we do not consider quantified formulas of the form C0
aA, as

these are equivalent to ⊤.

w,ω ⊩X
M

A holds. We write Γ ⊨ A when for any iCPL-structure M
and X ⊇ FN(A), Γ ⊩X

M
A holds.

A sound and complete proof system for iCPL can be defined (full
details can be found in [4]). Indeed, starting from usual natural
deduction for intuitionistic logic, one obtains a calculus NDiCPL
for iCPL by adding the excluded middle xi

a ∨ ¬xi
a as an axiom

for Boolean variables, together with suitable rules and axioms for
counting quantifiers.

Theorem 3.2. Γ ⊨ A iff Γ ⊢NDiCPL A.

For example, the counting quantifier Cqa admits an introduction
rule as below

Γ,d ⊢ A µ(d) ≥ q

Γ ⊢ CqaA
(CI)

with the proviso that a does not occur in Γ, and is the only name
occurring in d. Intuitively, this rule says that if we can prove A
under assumptions Γ and d, and if a randomly chosen valuation of
a has chance q of being a model of d, then we can build a proof
of CqaA from Γ. Observe that the rule (CI) has a semantic premise
µ(d) ≥ q: we ask to an oracle to count the models of d for us (this
is similar to what happens in sequent calculi for CPL, see [2]).

3.2 The Computational Fragment of iCPL.
From the perspective of the CHC, however, iCPL is not what we are
looking for, due to the presence of classical Boolean formulas. In
order to relate proofs and programs, one should first choose among
the several existing constructive interpretations of classical logic.
Yet, in our previous examples Boolean formulas were not treated
as formulas to be proved but, rather, as semantic constraints that
programs may or may not satisfy (for example, when saying that a
program, depending on some event ω, yields a proof of A when ω
satisfies b, or that a program has q chances of yielding a proof of A
when b has measure at least q).

Would it be possible, then, to somehow separate purely construc-
tive reasoning from Boolean semantic reasoning within formulas
and proofs of iCPL? The following lemma suggests that this is
indeed possible.

Lemma 3.3 (Decomposition Lemma). For any formula A of iCPL
there exist Boolean formulas bv and purely intuitionistic formulas
Av (i.e. formulas of iCPL containing no Boolean variables), where v
varies over all possible valuations of the Boolean variables in A, such
that:

⊨ A ↔
∨
v

bv ∧Av

Proof sketch. The idea is to let bv be the formula character-
izing v , i.e. the conjunction of all variables true in v and of all
negations of variables false in v , and let Av be obtained from A by
replacing each Boolean variable by either ⊤ or ⊥, depending on its
value under v . □

By Lemma 3.3, any sequent Γ ⊢ A of iCPL can be associated
with a family of intuitionistic sequents of the form Γv , bv ⊢ Av ,
wherev ranges over all valuations of the Boolean variables of Γ and
A, and Γv , bv ,Av are as in Lemma 3.3. We will note such special
sequents as Γv ⊢ bv ↣ Av , in order to highlight the special role

Curry and Howard Meet Borel LICS ’22, August 2–5, 2022, Haifa, Israel

played by the Boolean formula bv , which intuitively describes the
“environment” in which the sequent is considered.

The sequents Γ ⊢ b↣ A have a natural computational interpre-
tation: they express program specifications of the form “Π yields a
proof ofA from Γ whenever its sampled function satisfies b”. By the
way, Lemma 3.3, ensures that, modulo Boolean reasoning, logical
arguments in iCPL can be reduced to (families of) arguments of
this kind.

Let then iCPL0 be the fragment formed by the purely intuition-
istic formulas of iCPL, which are defined by:

A ::= p | A → A | CqA

where q ∈ (0, 1] ∩ Q. For simplicity, and since this is enough for
the CHC, we take here implication as the only connective, yet all
other propositional connectives could be added. As formulas do
not contain Boolean variables, counting quantifiers in iCPL0 are
not named. We use Cq1∗···∗qnA (or even C®q , for simplicity) as an
abbreviation for Cq1 . . .CqnA.

The natural deduction system NDiCPL0 for iCPL0 is defined by
the rules illustrated in Fig. 1. In the rule (CI) it is assumed that
FN(b) ∩ FN(d) = ∅ and that d contains at most one name. A few
rules involve semantic premises of the forms b ⊨ c and µ(b) ≥ q.
Beyond standard intuitionistic rules, NDiCPL0 comprises structural
rules to manipulate Boolean formulas, and introduction and elimi-
nation rules for the counting quantifier. The rule (⊥) yields dummy
proofs of any formula, i.e. proofs which are correct for no possible
event; the rule (m) combines two proofs Π1,Π2 of the same formula
into one single proof Π′, with the choice depending on the value of
some Boolean variablexi

a (Π′ is thus something like Π1⊕aΠ2). The
introduction rule for Cq is similar to rule (CI). It is explained as fol-
lows: if Π, in the “environment”ω+aω ′ ∈ (2N)X∪{a } ≃ (2N)X ×2N,
yields a proof of A whenever ω +a ω ′ satisfies the two independent
constraints b and d (i.e. ω ⊨ b and ω ′ ⊨ d), then by randomly
choosing ω ′ ∈ 2N, we have at least q ≥ µ(d) chances of getting
a proof of A (Π′ is thus something like νa.Π). Finally, the elimi-
nation rule (CE) essentially turns a proof of A → B into a proof
of CqA → CqsB. As we will see, this rule captures CbV function
application.

Example 3.4. Fig. 2a illustrates a proof Π 1
2 id

of C
1
2 (A → A)

obtained by first “mixing” a correct proof of A → A with a dummy
one, and then introducing the counting quantifier. Fig. 2b illustrates
a derivation of Cq (A → A) → A → Cq⋆qA.

As shown in detail in [4], natural deduction proofs for iCPL can
be related with families of natural deduction proofs in iCPL0, along
the lines of Lemma 3.3.

3.3 Normalization in iCPL0
From the CHC perspective, natural deduction proofs correspond to
programs, and normalization corresponds to execution. Let us look
at normalization in iCPL0, then.

The twomain normalization steps are (→I/→E) and (CI/CE). The
cuts (→I/→E) are eliminated, as usual, by means of the admissible
substitution rule

Γ ⊢ b↣ A Γ,A ⊢ b↣ B (subst)
Γ ⊢ b↣ B

Identity Rule
(id)

Γ, � ⊢ b �

Structural Rules
b � ⊥ (⊥)

Γ ⊢ b �

Γ ⊢ c � Γ ⊢ d � b � � (c,d,x8
0) (m)

Γ ⊢ b �

(� (c,d,x8

0
) = (c∧x8

0
) ∨ (d∧ ¬x8

0
))

Logical Rules
Γ, � ⊢ b � (→I)

Γ ⊢ b (� → �)

Γ ⊢ b (� → �) Γ ⊢ b �
(→E)

Γ ⊢ b �

Counting Rules
Γ ⊢ b∧ d � ` (d) ≥ @

(CI)
Γ ⊢ b C@�

Γ ⊢ b C@� Γ, � ⊢ b � (CE)
Γ ⊢ b C@B�

Figure 1: Rules of NDiCPL0 .

The normalization step (CI/CE), illustrated in Fig. 3, applies the
rule (subst) to the premiss of (CI) and the minor premiss of (CE),
and permutes the rule (CI) downwards. The other normalization
steps (fully illustrated in [4]) permute (m) with other rules.

For example, if we cut the proof Π from Fig. 2b with Π 1
2 id

from
Fig. 2a (by letting q = 1

2), we obtain, after normalization, a normal
proof of A → C

1
2 ∗ 1

2A. One can see that normalization duplicates Π,
that is, it duplicates the choice between the correct and the dummy
proof of A → A, yielding a proof which is correct only in one case
over four. To make the study of normalization as simple as possible,
we did not consider a “multiplication rule” to pass from CqCsA
to CqsA (i.e., in our example, from C

1
2 ∗ 1

2A to C
1
4A), as this would

introduce other normalization steps.4
In Section 5 it will be shown (Prop. 5.4) that, once proofs in

NDiCPL0 are seen as probabilistic programs, the two normalization
steps (→I/→E) and (CI/CE) simulate CbN and CbV evaluation,
respectively, and that all other permuting rules correspond to the
permuting reductions for the probabilistic λ-calculus introduced in
the next section. Moreover, as a by-product of the CHC developed
in the following sections, we will obtain a strong normalization
theorem for iCPL0 (Corollary 5.5).

4 THE PROBABILISTIC EVENT LAMBDA
CALCULUS

In this section we introduce the computational side of the CHC, that
is, a variant of the probabilistic event λ-calculusΛPE from [18], with
choices depending on events from the Cantor space. We will then
4In [4], an alternative “CbN” proof-systemNDiCPL0 also comprising this rule is studied.

LICS ’22, August 2–5, 2022, Haifa, Israel Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

Π 1
2 id

=

� ⊢ x8
0 �

(→I)
⊢ x8

0 (� → �) (⊥)⊢ ⊥ (� → �) x8
0 � (x8

0 ∧x8
0) ∨ (¬x8

0 ∧ ⊥)
(m)

⊢ x8
0 (� → �) ` (x8

0) ≥ 1
2 (CI)

⊢ C 1
2 (� → �)

(a)

Π =

C@ (� → �), � ⊢ C@ (� → �)
� → �,� ⊢ � → � � → �,� ⊢ � (→E)

� → �,� ⊢ �
(CE)

C@ (� → �), � ⊢ C@�
C@ (� → �), �,� ⊢ C@ (� → �)

� → �,�,� ⊢ � → � � → �,�,� ⊢ � (→E)
� → �,�,� ⊢ �

(CE)
C@ (� → �), �,� ⊢ C@�

(CE)
C@ (� → �), � ⊢ C@∗@�

(→I)⊢ C@ (� → �) → � → C@∗@�

(b)

Figure 2: Examples of derivations in NDiCPL0 .

Σ

Γ ⊢ b∧ d � ` (d) ≥ @
(CI)

Γ ⊢ b C@�
Π

Γ, � ⊢ b � (CE)
Γ ⊢ b C@B�

{

Σ

Γ ⊢ b∧ d �

Π[b ↦→ b∧ d]
Γ, � ⊢ b∧ d � (subst)

Γ ⊢ b∧ d � ` (d) ≥ @B
(CI)

Γ ⊢ b C@B�

Figure 3: Normalization step (CI)/(CE) of NDiCPL0 .

discuss how terms of ΛPE yield distributions of values, and define
two notions of probabilistic normalization for such distributions.
We finally introduce a further variant Λ{}

PE of ΛPE, which provides
a smoother representation of CbV functions.

4.1 A λ-Calculus Sampling from the Cantor
Space

The terms of ΛPE are defined by the grammar below:
t ::= x | λx .t | tt | t ⊕ia t | νa.t

with a ∈ A, and i ∈ N. The intuition is that νa samples some
function ω from the Cantor space, and t ⊕ia u yields either t or u
depending on the value ω(a)(i) ∈ {0, 1}. In the following we let
t ⊕i u be an abbreviation for νa.t ⊕ia u (supposing a does not occur
free in either t or u). For any term t , finite set X and ω ∈ (2N)X ,
the “application of ω to t through X ”, noted πωX (t), is defined by:

πωX (x) = x

πωX (λx .t) = λx .πωX (t)
πωX (tu) = πωX (t)πωX (u)

πωX (t ⊕ia u) =

πωX (t) if a ∈ X and ω(a)(i) = 1
πωX (u) if a ∈ X and ω(a)(i) = 0
πωX (t) ⊕ia πωX (u) if a < X

πωX (νb .t) = νb .πωX (t)
In usual randomized λ-calculi, program execution is defined so

to be inherently probabilistic: for example a term t ⊕ u can reduce
to either t or u, with probability 1

2 . In this way, chains of reduction
can be described as stochastic Markovian sequences [50], leading to
formalize the idea of normalization with probability r ∈ [0, 1] (see
[10]).

By contrast, reduction in ΛPE is fully deterministic: beyond the
usual (and un-resticted) β-rule (λx .t)u _β t[u/x], it comprises a

C ⊕8
0 C _p C (i)

(C ⊕8
0 D) ⊕8

0 E _p C ⊕8
0 E (c1)

C ⊕8
0 (D ⊕8

0 E) _p C ⊕8
0 E (c2)

_G.(C ⊕8
0 D) _p (_G .C) ⊕8

0 (_G.D) (⊕_)
(C ⊕8

0 D)E _p (CD) ⊕8
0 (DE) (⊕f)

C (D ⊕8
0 E) _p (CD) ⊕8

0 (CE) (⊕a)
(C ⊕8

0 D) ⊕ 9

1
E _p (C ⊕ 9

1
E) ⊕8

0 (D ⊕ 9

1
E) ((0, 8) < (1, 9)) (⊕⊕1)

C ⊕ 9

1
(D ⊕8

0 E) _p (C ⊕ 9

1
D) ⊕8

0 (C ⊕ 9

1
E) ((0, 8) < (1, 9)) (⊕⊕2)

a1.(C ⊕8
0 D) _p (a1.C) ⊕8

0 (a1.D) (0 ≠ 1) (⊕a)
a0.C _p C (0 ∉ FN(C)) (¬a)

_G .a0.C _p a0._G .C (a_)
(a0.C)D _p a0.(CD) (af)

Figure 4: Permutative reductions.

permutative reduction t _p u defined by the rules in Fig. 4 (where
(a, i) < (b, j) if eitherνb occurs in the scope ofνa, ora = b and i < j).
Intuitively, permutative reductions implement probabilistic choices
by computing the full tree of possible choices. For example, given
terms t1, t2,u1,u2, one can see that the term νa.(t1 ⊕0

a t2)(u1 ⊕1
a u2)

reduces to νa.(t1u1 ⊕1
a t1u2) ⊕0

a (t2u1 ⊕1
a t2u2), hence displaying all

possible alternatives.
The fundamental properties of ΛPE are the following:

Theorem 4.1 ([18]). _p is confluent and strongly normalizing.
Full reduction _ :=_β ∪ _p is confluent.

Curry and Howard Meet Borel LICS ’22, August 2–5, 2022, Haifa, Israel

The existence and unicity of normal forms for _p (that we
call permutative normal forms, PNFs for short) naturally raises the
question of what these normal forms represent.

Let T indicate the set of PNFs containing no free name occur-
rence. A PNF t ∈ T can be of two forms: either t starts with a
generator, i.e. t = νa.t ′, and t ′ is a tree of a-labeled choices ⊕ia
whose leaves form a finite set of T (the support of t ′, supp(t)); oth-
erwise, t is of the form λx1.λxn .t ′t1 . . . tp , where t ′ is either a
variable or a λ. We call these last terms pseudo-values, and we let
V⊆ T indicate the set formed by them.
Using this decomposition, any t ∈ T can be associated in a

unique way with a (sub-)distribution of pseudo-values Dt : V→
[0, 1] by letting Dt (v) = δt (where δt (t) = 1 and δt (v) = 0 if t , v)
when t ∈ V, and

Dt (v) =
∑

u ∈supp(t ′)
Du (v) · µ

({
ω ∈ 2N | πω{a }(t ′) = u

})

if t = νa.t ′. Intuitively, Dt (v)measures the probability of findingv
by iteratively sampling events from the Cantor space and applying
them to t any time a generator ν is found.

4.2 Probabilistic (Head) Normalization
Given a term t ∈ T, the questions “is t in normal form?” and
“does t reduce to a normal form?” have univocal yes/no answers,
because _ is deterministic. However, if we think of t rather as
Dt , the relevant questions become “with what probability is t in
normal form?” and “with what probability does t reduce to normal
form?”. To answer this kind of questions we introduce functions
HNV_(t), NF_(t) measuring the probability that t reduces to a
normal form. Let us consider head-normal forms, first. A head-
reduction t _h u is either a _p-reduction or a _β -reduction of
the form R[λ®x .(λy.t)uu1 . . .un] _β R[λ®x .t[u/x]u1 . . .un], where
R is a randomized context, defined by the grammar

R[] ::= [] | R[] ⊕ia u | t ⊕ia R[] | νa.R[].
A head normal value (in short, HNV) is a _h-normal term which
is also a pseudo-value, i.e. is of the form λ®x .yu1 . . .un . We let HNV
indicate the set of such terms.

Definition 4.2. For any t ∈ T, HNV(t) := ∑
v ∈HNV Dt (v) and

HNV_(t) := sup{HNV(u) | t _∗
h u}. When HNV_(t) ≥ q, we

say that t yields a HNV with probability at least q.

For example, if t = νa.(λxλy.(y ⊕ia I)x)u, where u = I ⊕j Ω, then
HNV_(t) = 3

4 . Indeed, we have

t _∗
h νa.λy.(y(νb .I ⊕j

b Ω)) ⊕ia (νb ′.I ⊕j
b′ Ω)

and three over the four possible choices (corresponding to choos-
ing between either left or right for both νa and νb ′) yield a HNV.
Observe that the choice about νb does not matter, since λy.yu is
already a HNV.

Let us now consider normal forms. The first idea might be to
define a similar function NF(t) = ∑

v normal form Dt (v). Neverthe-
less, according to this definition, a term like t = λx .x(νa.I ⊕0

a Ω)
would have probability 0 of yielding a normal form. Instead, our
guiding intuition here is that t should yield a normal form with
probability 1

2 , i.e. depending on a choice for a. This leads to the
following definition:

Definition 4.3. For any t ∈ T, NF(t) is defined by:
• if t = λ®x .yu1 . . .un ∈ HNV, then NF(t) :=∏n

i=1 NF(ui);
• otherwise NF(t) := ∑

u ∈HNV NF(u) · Dt (u).
We let NF_(t) = sup{NF(u) | t _∗ u} and, if NF_(t) ≥ q, we say
that t yields a normal form with probability at least q.

For example, for the term t considered above, NF_(t) = 4
8 =

1
2 :

four over the eight possible choices for νa, νb and νb ′ yield a normal
form (i.e. either choose left for νa and νb and choose anything for
νb ′, or choose right for νa, left for νb ′, and choose anything for νb).

4.3 Extending ΛPE with CbV Functions
ΛPE makes it possible to encode a CbV redex like νa.2(I ⊕0

a Ω), as
we have seen. However, in view of the functional interpretation
of iCPL0, it would be convenient to also be able to represent the
CbV functions mapping νa.(u ⊕a v) onto νa.2(u ⊕0

a v). A simple
way to do this is by enriching the language of ΛPE with a “CbV
application” operator {t}u, with suitable permutative rules. Let Λ{}

PE
indicate the extension of the syntax of ΛPE with the operator {}.
β-reduction for Λ{}

PE is defined as for ΛPE; permutative reduction
_p{} is defined by all rules in Fig. 4 except for (¬ν), together with
three new permutations:

{t}νa.u _p{} νa.tu ({}ν)
{t ⊕ia u}v _p{} {t}v ⊕ia {t}v ({}⊕1)

{t}(u ⊕ia v) _p{} {t}u ⊕ia {t}v ({}⊕2)

For instance, a CbV Church numeral can be encoded in Λ
{}
PE as

2CbV := λ f .{2} f , since one has 2CbV(νa.u ⊕ia v) _β {2}νa.u ⊕ia
v _p{} νa.2(u ⊕ia v).

Several important properties of ΛPE scale to Λ
{}
PE:

Proposition 4.4. _p{} is confluent and strongly normalizing.
Full reduction _{} :=_β ∪ _p{} is confluent.

Moreover, also the definitions of Dt and HNV_(t) scale to Λ{}
PE

in a natural way (see [4]).

5 THE CORRESPONDENCE, STATICALLY
AND DYNAMICALLY

In this section we present the core of our CHC. First, we introduce
two type systems Cλ→ and Cλ{}→ for ΛPE and Λ

{}
PE, respectively,

which extend the simply typed λ-calculus with counting quanti-
fiers. Then, we show that each proof Π in iCPL0 can be associated
with a typing derivation in Cλ{}→ of some probabilistic term tΠ , in
such a way that normalization of Π corresponds to reduction of
tΠ . Observe that translating the rule (CE) requires the CbV appli-
cation operator {}. However, it is possible to define an alternative
“CbN” proof-system for iCPL0 which translates into Cλ→, thus not
requiring the operator {} (see [4]).

5.1 Two Type Systems with Counting
Quantifiers

Both type systems Cλ→ and Cλ{}→ extend the simply typed λ-
calculus with counting quantifiers, but in a slightly different way: in
Cλ→ types are of the form Cqs, i.e. prefixed by exactly one counting

LICS ’22, August 2–5, 2022, Haifa, Israel Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

Identity rule
FN(b) ⊆ -

(id)
Γ, G : s ⊢- G : b s

Structural rule{
Γ ⊢- C : b8 s

}
8=1,...,=

b �-
∨

8 b8
(∨)

Γ ⊢- C : b s

Plus rule
Γ ⊢-∪{0} C : c s Γ ⊢-∪{0} D : d s b � � (c,d,x8

0) (⊕)
Γ ⊢-∪{0} C ⊕8

0 D : b s

(� (c,d,x8

0
) = (c∧x8

0
) ∨ (d∧ ¬x8

0
))

Arrow rules
Γ, G : s ⊢- C : b C®@g (_)

Γ ⊢- _G .C : b C®@ (s ⇒ g)

Γ ⊢- C : c C®@ (s ⇒ g) Γ ⊢- D : d s b �- c∧ d (@)
Γ ⊢- CD : b C®@g

Γ ⊢- C : c C®@ (s ⇒ g) Γ ⊢- D : d CA
s b �- c∧ d ({})

Γ ⊢- {C}D : b CAB∗®@g

Counting rule
Γ ⊢-∪{0} C : b∧ d s ` (d) ≥ @ (`)

Γ ⊢- a0.C : b C@s

Figure 5: Typing rules of Cλ{}→.

quantifier, while in Cλ{}→ types are of the form C®qs, i.e. prefixed by
a (possibly empty) list of counting quantifiers.

More precisely, the types (noted s, t) of Cλ→ and Cλ{}→ are gen-
erated by the grammars below:

s ::= Cqσ σ ::= o | s ⇒ σ (Cλ→)

s ::= C®qσ σ ::= o | s ⇒ σ (Cλ{}→)

where, in both cases, the qs are chosen in (0, 1] ∩ Q.
Judgements in both systems are of the form Γ ⊢X t : b ↣ s,

where Γ is a set of type declarations xi : si of pairwise distinct
variables, t is a term of ΛPE (resp. of Λ{}

PE), b a Boolean formula,
and X a finite set of names with FN(t), FN(b) ⊆ X . The intuitive
reading of Γ ⊢X t : b↣ s is that, whenever ω ∈ (2N)X satisfies
b, then πωX (t) correctly maps programs of type Γ into programs of
type s.

The typing rules of Cλ{}→, which are essentially derived from
those of iCPL0, are illustrated in Fig. 5, where in the rule (µ) it is
assumed that FN(b) ⊆ X , FN(d) ⊆ {a} and a < X . The rule (∨)
allows one to merge n typing derivations for the same term; in
particular, with n = 0, one has that Γ ⊢X t : ⊥↣ s holds for any
term t . The rules (⊕), (µ) and ({}) are reminiscent, respectively, of
the rules (m), (CI) and (CE) of iCPL0.

The typing rules of Cλ→ coincide with those of Cλ{}→ (with
C®q replaced everywhere by Cq), except for the rule ({}), which is
obviously absent, and for the rule (µ), which is adapted as follows:

Γ ⊢X∪{a } t : b∧ d↣ Cqσ µ(d) ≥ s
(µ ′)

Γ ⊢X νa.t : b↣ Cqsσ
with the similar proviso that FN(b) ⊆ X , FN(d) ⊆ {a} and a < X .

Both systems enjoy the subject reduction property:
Proposition 5.1 (Subject Reduction). If Γ ⊢X t : b↣ s in

Cλ→ (resp. in Cλ{}→) and t _ u (resp. t _{} u), then Γ ⊢X u : b↣
s.

The choice of considering arrow types of the form C®q (s ⇒ σ),
i.e. of never having a counting quantifier to the right of ⇒ (as in
e.g. s ⇒ Cqσ), was made to let the rule (λ) be permutable over (µ),
as required by the permuting rule (νλ).

Example 5.2. Fig. 6a and Fig. 6b illustrate typing derivations in
Cλ{}→ for a version of the CbNChurch numeral 2CbN = λy.λx .{y}(yx),
with type Cq∗q (Cq (o ⇒ o) ⇒ (o ⇒ o)), and for the CbV numeral
2CbV with type Cq (Cq (o ⇒ o) ⇒ (o ⇒ o)).

Both Cλ→ and Cλ{}→ can type non-normalizable terms. For ex-
ample, one can type all terms of the form I ⊕i Ω with C

1
2 (o ⇒ o)

in Cλ{}→ and with C
1
2 (C1o ⇒ o) in Cλ→. Actually, the failure of

normalization for typable programs can be ascribed to the rule
(∨), as shown by the result below (where we let Γ ⊢¬∨ t : b↣ s
indicate that Γ ⊢ t : b↣ s is deduced without using the rule (∨)).

Theorem 5.3 (Deterministic Normalization). In both Cλ→
and Cλ{}→, if Γ ⊢¬∨ t : b↣ s, then t is strongly normalizable.

As observed in the previous section, restricting to terms of ΛPE
having a normal form excludes the most interesting part of the
calculus, which is made of terms for which normalization is inher-
ently probabilistic. Similarly, restricting to type derivations without
(∨) trivializes the most interesting features of Cλ→ and Cλ{}→, that
is, their ability to estimate probabilities of termination. We will
explore the expressiveness of these systems in this sense in the next
section.

5.2 Translating iCPL0 into Cλ {}
→.

We now show how derivations in iCPL0 translate into typing deriva-
tions in Cλ{}→.5

For any formula A of iCPL0, let us define a corresponding type
sA by letting sp := o, sA→C ®qB := C®q (sA ⇒ sB) and sCqA :=
CqsA. Fig. 7 shows how a derivation Π of Γ ⊢ b ↣ A in iCPL0
translates into a typing derivation DΠ of sΓ ⊢ tΠ : b↣ sA in Cλ{}→,
with FN(tΠ) ⊆ FN(b), by induction on Π. Notice that we exploit a
special constant c to translate the rule (⊥). Moreover, the rule (→E)
translates as CbN application tu, while the rule (CE) translates as
CbV application {t}u.

As required by the CHC, normalization steps of iCPL0 are simu-
lated by _{}-reductions:

Proposition 5.4 (Stability Under Normalization). If Π {
Π′, then tΠ _∗

{} t
Π′
.

Proof sketch. The normalization step (→I/→E) translates into
β-reduction, while the normalization step (CI/CE) in Fig. 3 trans-
lates into the following chain of reductions:

{λxsA .tΠ}νa.tΣ _p{} νa.(λxsA .tΠ)tΣ _β νa.tΠ[tΣ/x]
All other normalization steps translate into _p{}-reductions. □
5A similar translation of the “CbN” proof-system for iCPL0 into Cλ→ is presented
in [4].

Curry and Howard Meet Borel LICS ’22, August 2–5, 2022, Haifa, Israel

~ : C@ (> ⇒ >), G : > ⊢ ~ : ⊤ C@ (> ⇒ >)
~ : C@ (> ⇒ >), G : > ⊢ ~ : ⊤ C@ (> ⇒ >) ~ : C@ (> ⇒ >), G : > ⊢ G : ⊤ >

(@)
~ : C@ (> ⇒ >), G : > ⊢ ~G : ⊤ C@>

({})
~ : C@ (> ⇒ >), G : > ⊢ {~}(~G) : ⊤ C@∗@>

(_)
⊢ 2CbN : ⊤ C@∗@ (C@ (> ⇒ >) ⇒ (> ⇒ >))

(a)

...

~ : C@ (> ⇒ >) ⊢ 2 : ⊤ (> ⇒ >) ⇒ (> ⇒ >) ~ : C@ (> ⇒ >) ⊢ ~ : ⊤ C@ (> ⇒ >)
({})

~ : C@ (> ⇒ >) ⊢ {2}~ : ⊤ C@ (> ⇒ >)
(_)

⊢ 2CbV : ⊤ C@ (C@ (> ⇒ >) ⇒ (> ⇒ >))

(b)

Figure 6: Typing of CbN and CbV Church numerals in Cλ{}→.

Notice that the normalization step (→I/→E) translates into CbN
reduction (i.e. plain β-reduction): the “choice” νa.tΣ is directly sub-
stituted, and thus possibly duplicated; instead the (CI/CE) step
translates into CbV reduction (i.e. (ν f) followed by β-reduction):
the generator νa is first permuted down and only tΣ is substituted.

By observing that the only use of (∨) coming from the translation
introduces a constant c, from Theorem 5.3 we deduce, as promised,
the following:

Corollary 5.5. iCPL0 is strongly normalizing.

6 FROM TYPE SOUNDNESS TO TYPE
COMPLETENESS: INTERSECTION TYPES

In this section we first show that derivations in Cλ→ and Cλ{}→
provide sound approximations of HNV(t) and NF(t). In order to
achieve completeness, we then introduce an extension Cλ→,∩ of
Cλ→ with intersection types and show that this system fully cap-
tures both deterministic and probabilistic notions of termination
for ΛPE.

6.1 From Types to Probability
We already observed, through examples, that if a term t has a type
like, e.g. C

1
2 (o ⇒ o), then t has one chance over two of yielding a

“correct” program for o ⇒ o. The result below makes this intuition
precise, by showing that the probabilities derived in Cλ→ and Cλ{}→
are lower bounds for the function HNV_(t), that is, for the actual
probability of finding a head normalizable term in the distribution
Dt .

Theorem 6.1. If ⊢Cλ→ t : ⊤ ↣ Cqσ , then HNV_(t) ≥ q. If
⊢Cλ{}→ t : ⊤↣ Cq1∗···∗qnσ , then HNV_(t) ≥ ∏n

i=1 qi .

What about reduction to normal form, i.e. the function NF_(t)?
A result like Theorem 6.1 cannot hold in this case. Indeed, consider
the term t = λy.y(I ⊕i Ω). While NF(t) = 1

2 , Cλ
{}
→ types t with

s = C1(C1(C 1
2 σ ⇒ σ) ⇒ σ), with σ = o ⇒ o. The problem in this

example is that the type s contains the “unbalanced” assumption
C1(C 1

2 σ ⇒ σ) (corresponding, in logical terms, to the formula
C

1
2A → C1A), i.e. it exploits the assumption of the existence of a

function turning a 1
2 -correct input into a 1-correct output. Notice

that such a function f can only be one that erases its input, and
these are the only functions such that t f can reduce to a normal
form.

Nevertheless, soundness with respect to NF(t) can be proved,
for Cλ→, by restricting to those types not containing such “unbal-
anced” assumptions, i.e. to types whose programs cannot increase
probabilities.

Definition 6.2. For any type s ofCλ→ of the formCqσ , let ⌈s⌉ = q.
A type Cq (s1 ⇒ . . . ⇒ sn ⇒ o) of Cλ→ is balanced if all si are
balanced and q ≤ ∏n

i=1 ⌈si ⌉.
Theorem 6.3. If ⊢ t : ⊤ ↣ s is derivable in Cλ→, where s is

balanced, then NF_(t) ≥ ⌈s⌉.
Theorems 6.1 and 6.3 are proved by adapting the standard tech-

nique of reducibility predicates to the quantitative notion of proba-
bilistic normal form.6.

6.2 From Probability to Intersection Types
To achieve a type-theoretic characterization ofHNV_(t) andNF_(t),
we introduce an extension of Cλ→ with intersection types. Like
those of Cλ→, the types of Cλ→,∩ are of the form s = Cqσ , but σ
is now defined as:

σ ::= o | n | hn | M ⇒ σ M ::= [s, . . . , s]
where [a1, . . . ,an] indicates a finite set. WhileM intuitively stands
for a finite intersection of types, the new ground types n and hn
correspond to the types of normalizable and head-normalizable
programs.

We introduce a preorder σ ⪯ τ over types by α ⪯ α , for α =
o, n, hn, Cqσ ⪯ Csτ if q ≤ s and σ ⪯ τ , and (M ⇒ σ) ⪯ (N ⇒ τ)
if σ ⪯ τ and N ⪯∗ M, where [s1, . . . , sn] ⪯∗ [t1, . . . , tm] holds is
there exists an injective function f : {1, . . . ,m} → {1, . . . ,n} such
that sf (i) ⪯ ti .

A type judgment of Cλ→,∩ is of the form Γ ⊢X t : b↣ s, where
Γ is made of declarations of the form xi : Mi . The typing rules
of Cλ→,∩ are illustrated in Fig. 8. We omit the (∨)- and (⊕)-rules,
6For further details, see [4]

LICS ’22, August 2–5, 2022, Haifa, Israel Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

(id)
Γ, � ⊢ b � ↦→ (id)

sΓ, G : s� ⊢ G : b s�

b � ⊥ (⊥)
Γ ⊢ b �

↦→ b � ⊥ (∨)
sΓ ⊢ c : b s�

Π

Γ ⊢ c �

Π
′

Γ ⊢ d � b � � (c,d,x8
0) (m)

Γ ⊢ b �

↦→
�Π

sΓ ⊢ CΠ : c s�

�Π
′

sΓ ⊢ CΠ′ : d s� b � � (c,d,x8
0) (⊕)

sΓ ⊢ CΠ ⊕8
0 C

Π
′ : b s�

Π

Γ, � ⊢ b � (→I)
Γ ⊢ b (� → �)

↦→
�Π

sΓ, G : s� ⊢ CΠ : b s� (_)
sΓ ⊢ _G.CΠ : b s�→�

Π

Γ ⊢ b (� → C®@�)
Σ

Γ ⊢ b �
(→E)

Γ ⊢ b C®@�
↦→

�Π

sΓ ⊢ CΠ : b C®@ (s� → s�)
�Σ

sΓ ⊢ CΣ : b s� (@)
sΓ ⊢ CΠCΣ : b sC ®@�

Π

Γ ⊢ b∧ d � ` (d) ≥ @
(CI)

Γ ⊢ b C@�
↦→

�Π

sΓ ⊢ CΠ : b∧ d s� ` (d) ≥ @
(`)

sΓ ⊢ a0.CΠ : b sC@�

Π

Γ ⊢ b C@�

Σ

Γ, � ⊢ b C®B� (CE)
Γ ⊢ b C@BC®B�

↦→ �Π

sΓ ⊢ CΠ : b C@s�

�Σ

sΓ, G : s� ⊢ CΣ : b C®B
s� (_)

sΓ ⊢ _G.CΣ : b C®B (s� ⇒ s�) ({})
sΓ ⊢ {_G .CΣ}CΠ : b sC@BC®B�

Figure 7: Translation Π 7→ DΠ from NDiCPL0 to Cλ{}→.

which are as in Cλ→. In the rule (µΣ) it is assumed that a does
not occur in b, is the only name in the di , and that for i , j,
di ∧ dj ⊨ ⊥.

The two rules (hn) and (n) are justified by Proposition 6.5 and
Theorem 6.6 below. As rule (n) must warrant a bound on normal
forms, following Theorem 6.3, σ has to be safe, i.e. balanced7 and
{[], hn}-free. The rule (@∩) is a standard extension of rule (@) of
Cλ→ to finite intersections.

The counting rule (µΣ) requires some discussion. The rule admits
n + 1 major premisses expressing typings for t which depend on
pairwise disjoint events (the Boolean formulas di). This is needed
to cope with situations as follows: let

t[a,b] =
(
(I ⊕1

b Ω) ⊕0
b Ω

)
⊕0
a

(
Ω ⊕0

b I
)

t[a,b] can be given type σ = C1(C1o ⇒ o) under either of the two
disjoint Boolean constraintsd1 := x0

a∧(x0
b∧x1

b) andd2 := ¬x0
a∧

¬x0
b . Notice that the termνa.νb .t[a,b] has probability µ(x0

a)µ(x0
b∧

x1
b)+ µ(¬x0

a)µ(¬x0
b) = 1

2 · 14 + 1
2 · 12 = 3

8 of yielding a head normal
value. Yet, in Cλ→, the best we can achieve is ⊢ νa.νb .t[a,b] : ⊤↣
C

1
4 σ , that is, a probability estimation of 1

4 <
3
8 . Indeed, the rule

(µ ′) forces us to approximate µ(x0
b ∧x1

b) and µ(¬x1
b) to a common

lower bound, i.e. 1
4 , in order to apply a (∨)-rule as illustrated in

Fig. 9a. Instead, using (µΣ) we can reach the actual probability 3
8 ,

as illustrated in Fig. 9b.
7Definition 6.2 extends to the types of Cλ→,∩ by letting ⌈hn⌉ = ⌈[]⌉ = 0, ⌈n⌉ = 1
and ⌈[s1, . . . , sn+1]⌉ = max{ ⌈si ⌉ }.

Thanks to the rule (µΣ), the generalized counting rule (µ∗) below
becomes admissible in Cλ→,∩:

Γ ⊢{a1, ...,an } t : b↣ Cqσ (µ∗)
Γ ⊢∅ νa1.νan .t : ⊤↣ Cq ·µ(b)σ

This rule plays an essential role in the completeness results below,
together with the standard result that both subject reduction and
subject expansion hold for intersection types.

Proposition 6.4 (Subject Reduction/Expansion). If Γ ⊢X t :
b↣ s and either t _ u or u _ t , then Γ ⊢X t : b↣ s.

We will now discuss how typings in Cλ→,∩ capture both deter-
ministic and probabilistic properties of terms. First we have the
following facts, which show that the types hn and n capture deter-
ministic termination.

Proposition 6.5 (Deterministic Completeness). For any closed
term t ,
(i.) t is head-normalizable iff ⊢¬∨ t : ⊤↣ C1hn;
(ii.) t is normalizable iff ⊢¬∨ t : ⊤↣ C1n.
(iii.) t is strongly normalizable iff ⊢¬∨ t : ⊤↣ C1n and all types in

the derivation are safe.

Proof sketch. Using standard intersection types arguments,
it is shown that ⊢¬∨ t : ⊤ ↣ C1hn holds for any head-normal
t . The first half of (i.) is deduced then using Proposition 6.4. The
second half follows from a normalization argument similar to that
of Theorem 5.3. Cases (ii.) and (iii.) are similar. □

Curry and Howard Meet Borel LICS ’22, August 2–5, 2022, Haifa, Israel

Identity rule:
s8 � t FN(b) ⊆ -

(id�)
Γ, G : [s1, . . . , s=] ⊢- G : b t

Ground types rules:
Γ ⊢- C : b C@f (hn)
Γ ⊢- C : b C@hn

Γ ⊢- C : b C@f f safe (n)
Γ ⊢- C : b C@n

Arrow rules:
Γ, G : M ⊢- C : b C@g (_)

Γ ⊢- _G.C : b C@ (M ⇒ g)

Γ ⊢- C : b C@ (M ⇒ g)
{
Γ ⊢- D : b s8

}
8=1,...,= (@∩)

Γ ⊢- CD : b C@g
(M = [s1, . . . , s=])

Counting rule:{
Γ ⊢-∪{0} C : b∧ d8 C@8f

}
8=1,...,=+1

` (d8) ≥ B8
(`Σ)

Γ ⊢- a0.C : b C
∑

8 @8B8f

Figure 8: Typing rules of Cλ→,∩.

The probabilistic normalization theorems 6.1 and 6.3 (which ex-
tend smoothly toCλ→,∩) ensure that if t has type Cqhn (resp.Cqn),
then HNV_(t) ≥ q (resp. NF_(t) ≥ q). Conversely, HNV_(t) and
NF_(t) can be bounded by means of derivations in Cλ→,∩, in the
following sense:

Theorem 6.6 (Probabilistic Completeness). For any closed
term t ,

HNV_(t) = sup{q | ⊢ t : ⊤↣ Cqhn}
NF_(t) = sup{q | ⊢ t : ⊤↣ Cqn}

Proof sketch. Suppose w.l.o.g. that t = νa1.νak .t
′. For

any u ∈ HNV such that Dt (u) > 0, we can deduce ⊢ u : ⊤↣ hn.
The sequence of probabilistic choices leading to u is finite, and
thus captured by a Boolean formula bt 7→u . Using subject reduc-
tion/expansionwe thus deduce ⊢ t ′ : bt 7→u ↣ hn. Hence, for any fi-
nite number of head normal forms u1, . . . ,un such that Dt (ui) > 0,
we deduce ⊢ t ′ : bt 7→ui ↣ hn. Using (∨) and the generalized
counting rule (µ∗) we deduce then ⊢ t : ⊤ ↣ Cshn, where
s =

∑n
i=1 µ(bt 7→ui) = µ(∨n

i=1 bt 7→ui). The argument for NF(t)
is similar. □

7 RELATEDWORK
To the best of our knowledge, our results provide the first clear
correspondence between a logical proof system and a probabilistic
extension of the λ-calculus. Nevertheless, this does not mean that
our logic and calculi come from nowhere.

Different kinds of measure-theoretic quantifiers have been in-
vestigated in the literature, with the intuitive meaning that “A is
true for almost all x”, see [44, 54] and more recently [42, 43], or
“A is true for the majority of x”, as for example in [47, 61, 62]. Our
use of the term “counting quantifier” comes from [2], where an

extension of classical propositional logic with such quantifiers is
studied and related to Wagner’s counting operator on classes of
languages [56–58]. To our knowledge, the present work is the first
to apply some form of measure quantifier to typed probabilistic
functional programs.

Despite the extensive literature on logical systems enabling - in
various ways and for different purposes - some form of probabilistic
reasoning, there is not much about logics tied to computational
aspects, as iCPL is. Most of the recent logical formalisms have been
developed in the realm of modal logic, as for example [5–7, 24, 31,
32, 45, 46]. Another class of probabilistic modal logics have been
designed to model Markov chains and similar structures [33, 39, 40].
With the sole exception of Riesz modal logic [25], we are not aware
of sequent calculi for probability logics.

Intuitionistic modal logic has been related in the Curry-Howard
sense to monadic extensions of the λ-calculus [1, 8, 14, 20, 63]. Nev-
ertheless, in these correspondences modal operators are related
to qualitative properties of programs (typically, tracing algebraic
effects), as opposed to the quantitative properties expressed by
counting quantifiers. However, our Kripke structures for iCPL can
be related to standard Kripke structures for intuitionistic modal
logic [49, 52]. These are based on a setW with two pre-order rela-
tions, ≤ and R, enjoying a suitable “diamond” property R; ≤ ⊆ ≤;R.
We obtain a similar structure by considering worlds to be pairs
w,ω made of a world and an outcome from the Cantor space, with
(w,ω) ⪯ (w ′,ω), whenever w ≤ w ′, and (w,ω)R(w,ω + ω ′). The
clause for CqA can then be seen as a quantitative variant of the
corresponding clause for ^A. Actually, this is not very surprising,
given the similarity between the introduction and elimination rules
for Cq and those for ^, see e.g. [1, 8].

On the other hand, quantitative semantics arising from linear
logic have been largely used in the study of probabilistic λ-calculi,
e.g. [16, 21, 23]. Notably, probabilistic coherence spaces [21, 22, 28]
have been shown to provide a fully abstract model of probabilistic
PCF. While we are not aware of correspondences relating prob-
abilistic programs with proofs in linear logic, it seems that the
proof-theory of counting quantifiers could somehow be related to
that of bounded exponentials [19, 30] and, more generally, to the
theory of graded monads and comonads [12, 26, 36, 37].

The calculus ΛPE is strongly inspired by [18], where a simple
type system is also introduced. However, since typings in this sys-
tem ensure strong normalization, they do not provide information
about probability of termination for non-normalizable terms. Sev-
eral other type systems for probabilistic λ-calculi, rather focused on
capturing genuinely probabilistic properties of normalization, have
been recently introduced. Among these, we can certainly mention
systems based on type distributions [17], where a single derivation
assigns several types to a term, each with some probability, and sys-
tems based on oracle intersection types [11], where type derivations
capture single evaluations as determined by an oracle. Our type sys-
tems sit in between these two approaches: like the first (and unlike
the second), typing derivations can capture a finite number of differ-
ent evaluations, although without using distributions of types; like
the second, typings reflect the dependency of evaluation on oracles,
although the latter are manipulated in an aggregate way by means
of Boolean constraints. Finally, in [60] dependent type theory is
enriched with a probabilistic choice operator, yielding a calculus

LICS ’22, August 2–5, 2022, Haifa, Israel Melissa Antonelli, Ugo Dal Lago, and Paolo Pistone

Γ ⊢{0,1} C [0, 1] : x0
0 ∧ (x0

1
∧x1

1
) C1f ` (x0

1
∧x1

1
) ≥ 1/4

(`′)
Γ ⊢{0} a1.C [0, 1] : x0

0 C
1
4 f

Γ ⊢{0,1} C [0, 1] : ¬x0
0 ∧ ¬x0

1
 C1f ` (¬x0

1
) ≥ 1/4

(`′)
Γ ⊢{0} a1.C [0, 1] : ¬x0

0 C 1
4f (∨)

Γ ⊢{0} a1.C [0, 1] : x0
0 ∨ ¬x0

0 C 1
4f ` (x0

0 ∨ ¬x0
0) ≥ 1

(`′)
Γ ⊢∅ a0.a1.C [0, 1] : ⊤ C

1
4 f

(a)

Γ ⊢{0,1} C [0, 1] : x0
0 ∧ (x0

1
∧x1

1
) C1f ` (x0

1
∧x1

1
) ≥ 1/4

(`Σ)
Γ ⊢{0} a1.C [0, 1] : x0

0 C
1
4 f

Γ ⊢{0,1} C [0, 1] : ¬x0
0 ∧ ¬x0

1
 C1f ` (¬x0

1
) ≥ 1/2

(`Σ)
Γ ⊢{0} a1.C [0, 1] : ¬x0

0 C 1
2f ` (x0

0), ` (¬x0
0) ≥ 1/2 (`Σ)

Γ ⊢∅ a0.a1.C [0, 1] : ⊤ C
1
4 · 12+ 1

2 · 12 f

(b)

Figure 9: Comparing probabilities derived with the rules (µ ′) and (µΣ).

with both term and type distributions. Interestingly, a fragment
of this system enjoys a sort of CHC with so-called Markov Logic
Networks [51], a class of probabilistic graphical models specified by
means of first-order logic formulas.

8 CONCLUSIONS
The main contribution of this work consists in defining a Curry-
Howard correspondence between a logic with counting quantifiers
and a type system providing lower bounds to the probability of
termination. Moreover, in analogy with what happens in the de-
terministic case, extending the type system with an intersection
operator leads to a full characterization of probability of termina-
tion. Even though intersection types do not have a clear logical
counterpart, the existence of this extension convinces us that the
correspondence here introduced is meaningful. The possibility of
defining a Curry-Howard correspondence relating algebraic effects,
on the program side, with a modal operator, on the logical side, is
certainly not surprising. Instead, it seems to us that the main (and
unexpected!) contribution of this work is showing that the peculiar
features of probabilistic effects can be managed in an elegant way
using ideas coming from logic and proof theory.

Among the many avenues of research that this work opens, the
study of type inference must certainly be mentioned, as well as the
extension of the correspondence to polymorphic types or to control
operators. Particularly intriguing, then, is the possibility of study-
ing systems of intersection types supporting program synthesis,
again in analogy with what is already known in the framework of
deterministic computation [9, 34].

ACKNOWLEDGMENTS
This work is supported by the ERC CoG “DIAPASON” under Grant
No. 818616, and by the ANR PRC project “PPS”, ANR-19-CE48-0014.

REFERENCES
[1] N. Alechina, M. Mendler, V. de Paiva, and E. Ritter. 2001. Categorical and Kripke

Semantics for Constructive S4 Modal Logic. In Proc. of CSL 2021. Springer, Berlin,
Heidelberg, 292–307.

[2] M. Antonelli, U. Dal Lago, and P. Pistone. 2021. On Counting Propositional Logic
and Wagner’s Hierarchy. In Proc. of ICTCS 2021, Vol. 3072. CEUR Workshop
Proceedings, Aachen, 107–121.

[3] M. Antonelli, U. Dal Lago, and P. Pistone. 2021. On Measure Quantifiers in
First-Order Arithmetic. In Proc. of CiE 2021. Springer, Switzerland, 12–24.

[4] M. Antonelli, U. Dal Lago, and P. Pistone. 2022. Curry and Howard Meet Borel
(Long Version). (March 2022). https://arxiv.org/abs/2203.11265.

[5] F. Bacchus. 1990. Lp, a Logic for Representing and Reasoning with Statistical
Knowledge. Computational Intelligence 6, 4 (1990), 209–231.

[6] F. Bacchus. 1990. On Probability Distributions over Possible Worlds. In Uncer-
tainty in Artificial Intelligence. Machine Intelligence and Pattern Recognition,
Vol. 9. North-Holland, Amsterdam, 217–226.

[7] F. Bacchus. 1990. Representing and Reasoning with Probabilistic Knowledge. MIT
Press, Cambridge MA.

[8] N. P. Benton, G. M. Bierman, and V. C. V De Paiva. 1998. Computational types
from a logical perspective. Journal of Functional Programming 8, 2 (1998), 177–
193.

[9] J. Bessai, A. Dudenhefner, B. Düdder, M. Martens, and J. Rehof. 2016. Combinatory
Process Synthesis. In Leveraging Applications of Formal Methods, Verification and
Validation: Foundational Techniques, T. Margaria and B. Steffen (Eds.). Springer
International Publishing, Cham, 266–281.

[10] O. Bournez and C. Kirchner. 2002. Probabilistic Rewrite Strategies. Applications
to ELAN. In Proc. of RTA 2002. Springer, Berlin, Heidelberg, 252–266.

[11] F. Breuvart and U. Dal Lago. 2018. On Intersection Types and Probabilistic
Lambda Calculi. In Proc. of PPDP 2018. Association for Computing Machinery,
New York, NY, USA, 1–13.

[12] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic. 2014. A Core Quantitative
Coeffect Calculus. In Proc. of ESOP 2014. Springer, Berlin, Heidelberg, 351–370.

[13] L. Caires, F. Pfenning, and B. Toninho. 2016. Linear logic propositions as session
types. Mathematical Structures in Computer Science 26, 3 (2016), 367–423.

[14] P.-L. Curien, M. Fiore, and G. Munch-Maccagnoni. 2016. A Theory of Effects
and Resources: Adjunction Models and Polarised Calculi. In Proc. of POPL 2016.
Association for Computing Machinery, New York, NY, 44–56.

[15] H. B. Curry and R. Feys. 1958. Combinatory Logic. Vol. I. North-Holland, Amster-
dam.

[16] U. Dal Lago, C. Faggian, B. Valiron, and A. Yoshimizu. 2017. The Geometry of
Parallelism: Classical, Probabilistic, and Quantum Effects. In Proc. of POPL 2017.
Association for Computing Machinery, New York, NY, 833–845.

[17] U. Dal Lago and C. Grellois. 2019. Probabilistic Termination by Monadic Affine
Sized Typing. ACM Transactions on Programming Languages and Systems 41, 2
(2019), 10–65.

[18] U. Dal Lago, G. Guerrieri, and W. Heijltjes. 2020. Decomposing Probabilistic
Lambda-Calculi. In Proc. of FoSSaCS 2020. Springer, Cham, 136–156.

[19] U. Dal Lago and M. Hofmann. 2009. Bounded Linear Logic, Revisited. In Proc. of
TLCA 2009. Springer, Berlin Heidelberg, 80–94.

[20] R. Davies and F. Pfenning. 2001. A Modal Analysis of Staged Computation. J.
ACM 48, 3 (2001), 555–604.

[21] T. Ehrhard and C. Tasson. 2018. Probabilistic Call by Push Value. Logical Methods
in Computer Science 15, 1 (2018), 1–46.

[22] T. Ehrhard, C. Tasson, and M. Pagani. 2014. Probabilistic Coherence Spaces
Are Fully Abstract for Probabilistic PCF. In Proc. of POPL 2014. Association for
Computing Machinery, New York, NY, 309–320.

[23] C. Faggian and S. Ronchi della Rocca. 2019. Lambda-Calculus and Probabilistic
Computation. In Proc. of LICS 2019. IEEE, Vancouver, Canada, 1–13.

[24] R. Fagin and J.Y. Halpern. 1994. Reasoning about Knowledge and Probability. J.
ACM 41, 2 (1994), 340–367.

[25] R. Furber, R. Mardare, and M. Mio. 2020. Probabilistic logics based on Riesz
spaces. Logical Methods in Computer Science 16, 1 (2020), 6:1–6:45.

[26] D. R. Ghica and A. I. Smith. 2014. Bounded Linear Types in a Resource Semiring.
In Proc. of ESOP 2014. Springer, Berlin, Heidelberg, 331–350.

[27] J.-Y. Girard. 1972. Interprétation fonctionnelle et élimination des coupures de
l’arithmetique d’ordre supérieur. Ph.D. Dissertation. Université Paris VII.

https://arxiv.org/abs/2203.11265

Curry and Howard Meet Borel LICS ’22, August 2–5, 2022, Haifa, Israel

[28] J.-Y. Girard. 2004. Between Logic and Quantic: a Tract. London Mathematical
Society Lecture Note Series, Vol. 316. Cambridge University Press, Cambridge,
346–381.

[29] J.-Y. Girard, Y. Lafont, and P. Taylor. 1989. Proofs and Types. Cambridge Tracts in
Theoretical Computer Science, Vol. 7. Cambridge University Press, New York,
NY.

[30] J.-Y. Girard, A. Scedrov, and P.J. Scott. 1992. Bounded linear logic: a Modular
Approach to Polynomial-Time Computability. Theoretical Computer Science 97, 1
(1992), 1–66.

[31] J.Y. Halpern. 1990. An Analysis of First-Order Logics for Probability. Artificial
Intelligence 46, 3 (1990), 311–350.

[32] J.Y. Halpern. 2003. Reasoning About Uncertainty. MIT Press, Cambridge MA.
[33] H. Hansson and B. Jonsson. 1994. A logic for reasoning about time and reliability.

Formal Aspects of Computing 6, 5 (1994), 512–535.
[34] F. Henglein and J. Rehof. 2016. Modal Intersection Types, Two-Level Languages,

and Staged Synthesis. In Semantics, Logics, and Calculi: Essays Dedicated to Hanne
Riis Nielson and Flemming Nielson on the Occasion of Their 60th Birthdays. Springer
International Publishing, Cham, 289–312.

[35] W.A. Howard. 1980. The Formula-as-Types Notion of Construction (1969). In
To H.B. Curry. Essays on Combinatory Logic, Lambda Calculus and Formalism.
Academic Press, Cambridge, MA.

[36] S. Katsumata. 2014. Parametric Effect Monads and Semantics of Effect Systems.
In Proc. of POPL 2014. Association for Computing Machinery, New York, NY,
633–645.

[37] S. Katsumata. 2018. A Double Category Theoretic Analysis of Graded Linear Ex-
ponential Comonads. In Proc. of FoSSaCS 2018. Springer International Publishing,
Cham, 110–127.

[38] N. Kobayashi, U. Dal Lago, and C. Grellois. 2019. On the Termination Problem
for Probabilistic Higher-Order Recursive Programs. In Proc. of LICS 2019. IEEE,
Vancouver, France, 1–14.

[39] D. Kozen. 1981. Semantics of probabilistic programs. Journal of Computer and
System Science 22, 3 (1981), 328 – 350.

[40] D. Lehmann and S. Shelah. 1982. Reasoning with time and chance. Information
and Control 53, 3 (1982), 165 – 198.

[41] P. Martin-Löf. 1975. An Intuitionistic Theory of Types: Predicative Part. In Proc.
of Logic Colloquium ’73, Vol. 80. North-Holland, Amsterdam, 73–118.

[42] H. Michalewski and M. Mio. 2016. Measure Quantifiers in Monadic Second Order
Logic. In Proc. of LFCS 2016. Springer, Cham, 267–282.

[43] M. Mio, M. Skrzypczak, and H. Michalewski. 2012. Monadic Second Order Logic
with Measure and Category Quantifiers. Logical Methods in Computer Science 8,
2 (2012), 1–29.

[44] C.F. Morgenstern. 1979. The Measure Quantifier. Journal of Symbolic Logic 44, 1
(1979), 103–108.

[45] N. J. Nilsson. 1986. Probabilistic Logic. Artificial Intelligence 28, 1 (1986), 71–87.

[46] N. J. Nilsson. 1993. Probabilistic Logic Revisited. Artificial Intelligence 59, 1/2
(1993), 39–42.

[47] C.H. Papadimitriou. 1985. Games Against Nature. Journal of Computer and
System Science 31, 2 (1985), 288–301.

[48] M. Parigot. 1992. λµ-Calculus: An Algorithmic Interpretation of Classical Natural
Deduction. In Proc. of LPAR 1992. Springer, Berlin Heidelberg, 190–201.

[49] G. Plotkin and C. Stirling. 1986. A Framework for Intuitionistic Modal Logics:
Extended Abstract. In Proc. of TARK ’86. Morgan Kaufmann Publishers Inc., San
Francisco, CA, 399–406.

[50] M. L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., USA.

[51] M. Richardson and P. Domingos. 2006. Markov Logic Networks.Machine Learning
62, 1 (2006), 107–136.

[52] A.K. Simpson. 1994. The Proof Theory and Semantics of Intuitionistic Modal Logic.
Ph.D. Dissertation. University of Edinburgh.

[53] M.H. Sorensen and P. Urzyczyn. 2006. Lectures on the Curry-Howard isomor-
phism. Studies in Logic and the Foundations of Mathematics, Vol. 149. Elsevier,
Amsterdam.

[54] C.I. Steinhorn. 1985. Borel Structures and Measure and Category Logics. In
Model-Theoretic Logics. Vol. 8. Springer-Verlag, New York, Berlin, Heidelberg,
Tokyo, 579–596.

[55] P. Wadler. 2012. Propositions as Sessions. In Proc. of ICFP 2012. Association for
Computing Machinery, New York, NY, 273–286.

[56] K.W. Wagner. 1984. Compact descriptions and the counting polynomial-time
hierarchy. In Frege Conference 1984: Proceedings of the International Conference
held at Schwerin (Mathematische Forschung, Vol. 20). Akademie-Verlag, Berlin,
383–392.

[57] K.W. Wagner. 1986. Some Observations on the Connection Between Counting
and Recursion. Theoretical Computer Science 47 (1986), 131–147.

[58] K.W. Wagner. 1986. The Complexity of Combinatorial Problems with Succinct
Input Representation. Acta Informatica 23 (1986), 325–356.

[59] D. Wang, D. M. Kahn, and J. Hofmann. 2020. Raising Expectations: Automating
Expected Cost Analysis with Types. In Proc. of ICFP 2020, Vol. 4. Association for
Computing Machinery, New York, NY, 1–31.

[60] J. Warrell and M. B. Gerstein. 2018. Dependent Type Networks: A Probabilistic
Logic via the Curry-Howard Correspondence in a System of Probabilistic De-
pendent Types. (2018). unpublished manuscript, http://papers.gersteinlab.org/
papers/UDL-19/index-all.html.

[61] S. Zachos. 1988. Probabilistic Quantifiers and Games. Journal of Computer and
System Science 36, 3 (1988), 433–451.

[62] S. Zachos and H. Heller. 1986. A decisive characterization of BPP. Information
and Control 1–3 (1986), 125–135.

[63] N. Zyuzin and A. Nanevski. 2021. Contextual Modal Types for Algebraic Effects
and Handlers. In Proc. of ICFP 2021. Association for Computing Machinery, New
York, NY, 1–29.

http://papers.gersteinlab.org/papers/UDL-19/index-all.html
http://papers.gersteinlab.org/papers/UDL-19/index-all.html

	Abstract
	1 Introduction
	2 From Logic to Counting and Probability: a Roadmap
	2.1 Randomized Programs and Counting Quantifiers
	2.2 Can CbN and CbV Evaluation Coexist?
	2.3 Capturing Probability of Normalization via Types
	2.4 Preliminaries on the Cantor Space

	3 Intuitionistic Counting Propositional Logic
	3.1 The Semantics and Proof-Theory of iCPL.
	3.2 The Computational Fragment of iCPL.
	3.3 Normalization in iCPL0

	4 The Probabilistic Event Lambda Calculus
	4.1 A -Calculus Sampling from the Cantor Space
	4.2 Probabilistic (Head) Normalization
	4.3 Extending PE with CbV Functions

	5 The Correspondence, Statically and Dynamically
	5.1 Two Type Systems with Counting Quantifiers
	5.2 Translating iCPL0 into C{}.

	6 From Type Soundness to Type Completeness: Intersection Types
	6.1 From Types to Probability
	6.2 From Probability to Intersection Types

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

