
07 August 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Barbanera F.,  Lanese I.,  Tuosto E. (2022). Formal Choreographic Languages. Cham : Springer
[10.1007/978-3-031-08143-9_8].

Published Version:

Formal Choreographic Languages

Published:
DOI: http://doi.org/10.1007/978-3-031-08143-9_8

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/904285 since: 2022-11-19

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1007/978-3-031-08143-9_8
https://hdl.handle.net/11585/904285


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

Barbanera, F., Lanese, I., Tuosto, E. (2022). Formal Choreographic Languages. In: ter Beek, M.H., Sirjani, 

M. (eds) Coordination Models and Languages. COORDINATION 2022. IFIP Advances in Information 

and Communication Technology, vol 13271. Springer, Cham.  

The final published version is available online at: https://doi.org/10.1007/978-3-031-08143-

9_8 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://doi.org/10.1007/978-3-031-08143-9_8
https://doi.org/10.1007/978-3-031-08143-9_8


Formal Choreographic Languages ⋆

Franco Barbanera1, Ivan Lanese2, and Emilio Tuosto3

barba@dmi.unict.it, ivan.lanese@gmail.com, emilio.tuosto@gssi.it

1 Dept. of Mathematics and Computer Science, University of Catania (Italy)
2 Focus Team, University of Bologna/INRIA (Italy)

3 Gran Sasso Science Institute (Italy)

Abstract. We introduce a meta-model based on formal languages, dub-
bed formal choreographic languages, to study message-passing systems.
Our main motivation is to establish a framework for the comparison
and generalisation of standard constructions and properties from the
literature. In particular, we consider notions such as global view, local
view, and projections from the former to the latter. The correctness of
local views projected from global views is characterised in terms of a
closure property. A condition is also devised to guarantee relevant com-
munication properties such as (dead)lock-freedom. Formal choreographic
languages capture existing formalisms for message-passing systems; we
detail the cases of multiparty session types and choreography automata.
Unlike many other models, formal choreographic languages can naturally
model systems exhibiting non-regular behaviour.

1 Introduction
axp@sisec:intro

Choreographic models of message-passing systems are gaining momentum both
in academia [8,12,13] and industry [27,34,10]. These models envisage the so-called
global and local views of communicating systems. The former can be thought
of as holistic descriptions of protocols that a number of participants should
realise through some communication actions, the latter as descriptions of the
contribution of single participants.

We propose formal choreographic languages (FCL) as a general framework to
formalise message-passing systems; existing choreographic models can be con-
ceived as specifications of FCLs. Specifically, we introduce global and local lan-
guages. Global languages (g-languages for short) are made of words built out of
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interactions of the form A−→B:m, representing the fact that participant A sends
message m to participant B, and participant B receives it. Local languages (l-
languages for short) consist of words of actions of the forms AB?m and AB!m,
respectively representing that participant B receives message m from A and that
participant A sends message m to B.

Abstractly such languages consist of runs of a system described in terms
of sequences of interactions at the global level and executed through message-
passing at the local level. A word w in a global language represents then a
possible run expected of a communicating system inducing an expected “local”
behaviour on each participant A: the projection of w on A yields the sequence
of output or input actions performed by A along the run w.

Our language-theoretic treatment is motivated mainly by the need for a gen-
eral setting immune to syntactic restrictions. This naturally leads us to consider
e.g., context-free choreographies (cf. Ex. 3.11). In fact, we strive for general-
ity; basically prefix-closure is the only requirement we impose on FCL. The gist
is that, if a sequence of interactions or of communications is an observable be-
haviour of a system, any prefix of the sequence should be observable as well. (We
discuss some implications of relaxing prefix-closure in Section 8.) This allows us
to consider partial executions as well as “complete” ones. We admit infinite words
to account for diverging computations, ubiquitous in communication protocols.

Some g-languages cannot be faithfully executed by distributed components;
consider { A−→B:m, A−→B:m·C−→D:n } that specifies a system where, if occurring, the
interaction between C and D has to follow the one between A and B. Clearly,
this is not possible if the participants act concurrently because C and D are not
aware of when the interaction between A and B takes place.

Contributions & structure We summarise below our main contributions.
(Proofs and further material can be found in [7].)

Section 2 introduces FCL (g-languages in Def. 2.1, l-languages in Def. 2.2) and
adapts standard constructions from the literature. We consider synchronous in-
teractions; the asynchronous case, albeit interesting, is scope for future work (cf.
Section 8). In particular, we render communicating systems as sets of l-languages
(Def. 2.3), while we borrow projections from choreographies and multiparty ses-
sion types.

Section 3 considers correctness and completeness. An immediate consequence
of our constructions is the completeness of systems projected from g-languages
(Corollary 3.2). Correctness is more tricky; for it, Def. 3.3 introduces closure
under unknown information (CUI). Intuitively, a g-language is CUI if it con-
tains extensions of words with a single interaction whose participants cannot
distinguish the extended word from other words of the language. Thm. 3.7 char-
acterises correctness of projected systems in terms of CUI.

Section 4 shows how FCLs capture many relevant communication properties
in a fairly uniform way.

Section 5 proposes branch-awareness (Def. 5.3) to ensure the communication
properties defined in Section 4 (Thm. 5.6). Intuitively, branch-awareness requires
each participant to “distinguish” words where its behaviour differs. Notably, we
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separate the conditions for correctness from the ones for communication proper-
ties. Most approaches in the literature instead combine them into a single condi-
tion, which takes names such as well-branchedness or projectability [25]. Thus,
these single conditions are stronger than each of CUI and branch-awareness.

Sections 6 and 7 illustrate the generality of FCLs on two case studies, respec-
tively taken from multiparty session types [37] and choreography automata [6].
We remark that FCL can capture protocols that cannot be represented by regu-
lar g-languages such as the “task dispatching” protocol in Ex. 3.11. To the best
of our knowledge this kind of protocols cannot be formalised in other approaches.

Section 8 draws some conclusions and discusses future work.

2 Formal Choreographic Languages
axp@siisec:c-lang

We briefly recall a few notions used through the paper. The sets of finite and
infinite words on a given alphabet Σ are, respectively, denoted by Σ⋆ and Σω,
where an infinite word on Σ is a map from natural numbers to Σ (aka ω-
word [38]). Let · be the concatenation operator on words and ε its neutral
element. We write a0 ·a1 ·a2 ·. . . for the word mapping i to ai ∈ Σ for all natural
numbers i. A language L on Σ is a subset of Σ∞ = Σ⋆ ∪Σω. The prefix-closure
of L ⊆ Σ∞ is pref(L) = { z ∈ Σ∞

∣∣ ∃z′ ∈ L : z ⪯ z′ }, where ⪯ is the prefix
relation; L is prefix-closed if L = pref(L). A word z is maximal in a language
L ⊆ Σ∞ if z ⪯ z′ for z′ ∈ L implies z′ = z. As usual we shall write z ≺ z′

whenever z ⪯ z′ and z ̸= z′.
We shall deal with languages on particular alphabets, namely the alphabets

of interactions Σint and of actions Σact whose definitions, borrowed from [6], are
as follows4

Σint = { A−→B:m
∣∣ A ̸= B ∈ P,m ∈ M } ranged over by α, β, . . .

Σact = { AB!m, AB?m
∣∣ A ̸= B ∈ P,m ∈ M } ranged over by a, b, . . .

where P is a fixed set of participants (or roles, ranged over by A, B, X, etc.)
and M is a fixed set of messages (ranged over by m, x, etc.); we take P and
M disjoint. Let msg(A−→B:m) = msg(AB!m) = msg(AB?m) = m and ptp(A−→B:m) =
ptp(AB!m) = ptp(AB?m) = {A,B }. These functions extend homomorphically to
(sets of) words. The subject of AB!m is the sender A and the subject of AB?m is
the receiver B. Words on Σ∞

int (ranged over by w,w′, ...) are called interaction
words while those on Σ∞

act (ranged over by v, v′, ...) are called words of actions.
Hereafter z, z′, ... range over Σ∞

int∪Σ∞
act and we use L and L to range over subsets

of, respectively, Σ∞
int and Σ∞

act.
A global language specifies the expected interactions of a system while a local

language specifies the communication behaviour of participants.

Definition 2.1 (Global language).
def:chorlang

A global language ( g-language for short)
is a prefix-closed language L on Σ∞

int such that ptp(L) is finite.
4 These sets may be infinite; formal languages over infinite alphabets have been stud-

ied, e.g., in [4].
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Definition 2.2 (Local language).
def:actlang

A local language ( l-language for short) is
a prefix-closed language L on Σact such that ptp(L) is finite. An l-language is
A-local if its words have all actions with subject A.

As discussed in Section 1, l-languages give rise to communicating systems.

Definition 2.3 (Communicating system).
def:commSyst

Let P ⊆ P be a finite set of
participants. A (communicating) system over P is a map S = (LA)A∈P assigning
an A-local language LA ̸= { ε } such that ptp(LA) ⊆ P to each participant A ∈ P.

By projecting a g-language L on a participant A we obtain the A-local lan-
guage describing the sequence of actions performed by A in the interactions
involving A in the words of L.

Definition 2.4 (Projection).
def:projection

The projection on A of an interaction B−→C:m

is computed by the function ↓ : Σint ×P → Σact ∪ { ε } defined by:

(A−→B:m)↓A= AB!m (A−→B:m)↓B= AB?m (A−→B:m)↓C= ε

and extended homomorphically to interaction words and g-languages. The pro-
jection of a g-language L, written L↓, is the communicating system (L↓A)A∈ptp(L).

Def. 2.4 recasts in our setting the notion of projection used, e.g., in [13,24].
ex:simple

Example 2.5. Let L = pref({ C−→A:m·A−→B:m, C−→B:m·A−→B:m, C−→A:m·C−→B:m }). By
Def. 2.4, we have L↓= (L↓X)X∈{ A,B,C } where L↓A= { ε, CA?m, CA?m·AB!m, AB!m },
L↓B= { ε, AB?m, CB?m, CB?m·AB?m }, and L↓C= { ε, CA!m, CB!m, CA!m·CB!m }. ⋄

We consider a synchronous semantics of communicating systems, similarly to
other choreographic approaches such as [12,13,15,37]. Intuitively, a choreographic
word is in the semantics iff its projection on each participant A yields a word in
the local language of A.

Definition 2.6 (Semantics).
def:syncSem

Given a system S over P, the set

JSK = {w ∈ Σ∞
int

∣∣ ptp(w) ⊆ P ∧ ∀A ∈ P : w↓A∈ S(A) }

is the (synchronous) semantics of S.

Notice that the above definition coincides with the join operation in [18],
used in realisability conditions for an asynchronous setting.

ex:simple2

Example 2.7. The semantics JL↓K of the system L ↓ in Ex. 2.5 is the prefix
closure of { C−→A:m·A−→B:m, C−→B:m·A−→B:m, C−→A:m·C−→B:m·A−→B:m }. ⋄

Two interactions α and β are independent (in symbols α ∥ β) when ptp(α)∩
ptp(β) = ∅. Informally, independent interactions can be swapped. The concur-
rency closure on infinite words is delicate. One in fact has to allow infinitely
many swaps while avoiding that they make an interaction disappear by pushing
it infinitely far away. Technically, we consider Mazurkiewicz’s traces [33] on Σint

with independence relation α ∥ β:
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Definition 2.8 (Concurrency closure).
def:cclos

Let ∼ be the reflexive and transi-
tive closure of the relation ≡ on finite interaction words defined by wαβ w′ ≡
w β αw′ where α ∥ β. Following [19, Def. 2.1], ∼ extends to Σω

int by defining

for all w,w′ ∈ Σω
int : w ∼ w′ ⇐⇒ w ≪ w′ and w′ ≪ w

where w ≪ w′ iff for each finite prefix w1 of w there are a finite prefix w′
1 of

w′ and a g-word ŵ ∈ Σ⋆
int such that w1 ·ŵ ∼ w′

1. A g-language L is concurrency
closed (c-closed for short) if it coincides with its concurrency closure, namely
L = {w ∈ Σ∞

int

∣∣ ∃w′ ∈ L : w ∼ w′ }.

Semantics of systems are naturally c-closed since in a distributed setting
independent events can occur in any order. Indeed thmt@@ccsem@data

thmt@@ccsemprop:par

Proposition 2.9. Let S be a system. Then JSK is c-closed.

The intuition that g-languages, equipped with the projection and semantic
functions of Def. 2.4 and Def. 2.6, do correspond to a natural syntax and seman-
tics for the abstract notion of choreography, can be strengthened by showing
that these functions form a Galois connection.

Let us define G = {L
∣∣ L is a g-language } and S = {S

∣∣ S is a system }.
Moreover, given S, S′ ∈ S, we define S ⊆ S′ if S(A) ⊆ S′(A) for each A.

thmt@@gc@data

thmt@@gcprop:gc

Proposition 2.10. The functions ↓ and J K form a (monotone) Galois con-
nection between the posets (G,⊆) and (S,⊆), namely, ↓ and J K are monotone
functions such that, given L ∈ G and S ∈ S:

L↓⊆ S ⇐⇒ L ⊆ JSK

Notice that, by Prop. 2.10, L↓⊆ S can be understood as “L can be realized
by S” according to the notion of realisability frequently used in the literature,
namely that all behaviours of the choreography are possible for the system.

It is well-known that, given a Galois connection (f⋆, f
⋆) the function cl =

f⋆ ◦ f⋆ is a closure operator namely, it is monotone (x ≤ y =⇒ cl(x) ≤ cl(y)),
extensive (x ≤ cl(x)), and idempotent (cl(x) = cl(cl(x))). In our setting cl( ) =
J ↓K, hence the above boils down to the following corollary:

fac:clgc

Corollary 2.11. For all g-languages L,L′ ∈ G,

monotonicity: L ⊆ L′ =⇒ JL↓K ⊆ JL′ ↓K,
extensiveness: L ⊆ JL↓K,
idempotency: JL↓K = JJL↓K↓K.

As we shall see, extensiveness coincides with completeness (Def. 3.1) and,
together with monotonicity, implies harmonicity (Def. 4.1).
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3 Correctness and Completeness
axp@siiisec:ui

A g-language specifies the expected communication behaviour of a system made
of several components. We now define properties relating a communicating sys-
tem (i.e., a set of l-languages) with a specification (i.e., a g-language).

Definition 3.1 (Correctness and completeness).
def:cc

A system S is correct
(resp. complete) w.r.t. a g-language L if JSK ⊆ L (resp. JSK ⊇ L).

Correctness and completeness are related to existing notions. For instance, in
the literature on multiparty session types (see, e.g., the survey [25]) correctness
is analogous to subject reduction and completeness to session fidelity. Notice that
by Prop. 2.10, we can interpret L↓⊆ S as a characterisation for completeness of
S w.r.t. L.

We discuss now how to ensure correctness and completeness “by construc-
tion”. Completeness is trivial: it holds for any projected system and coincides
with the extensiveness property of the closure operator associated to the Galois
connection defined in Section 2.

thmt@@completeness@data

thmt@@completenessth:completeness

Corollary 3.2. The projection of a g-language L is complete w.r.t. L.

We show now how correctness can be characterised as a closure property.

Definition 3.3 (CUI).
def:closedness

A g-language L is closed under unknown information
(in symbols cui(L)) if, for all finite words w1 ·α,w2 ·α ∈ L with the same final
interaction α = A−→B:m ∈ Σint, w·α ∈ L for all w ∈ L such that w ↓A= w1 ↓A and
w ↓B= w2 ↓B.

Intuitively, participants cannot distinguish words with the same projection
on their role. Hence, if two participants A and B find words w1 and w2 compatible
with another word w, and interaction A−→B:m can occur after both w1 and w2,
then it should be enabled also after w. Indeed, A (resp. B) cannot know whether
the current word is w or w1 (resp. w2), hence A and B are willing to take A−→B:m,
which can thus happen at the system level. Closure under unknown information
(CUI for short) lifts this requirement at the level of g-language.

ex:notCUI

Example 3.4. The language L in Ex. 2.5 is not CUI because it contains the words

w1 ·α = C−→A:m·A−→B:m w2 ·α = C−→B:m·A−→B:m and w = C−→A:m·C−→B:m

and A cannot distinguish between w1 and w while B cannot distinguish between
w2 and w; nonetheless w·A−→B:m = C−→A:m·C−→B:m·A−→B:m ̸∈ L. Notice that w·A−→B:m ∈
JL↓K, hence L ̸⊇ JL↓K. ⋄

The language in Ex. 3.4 is not the semantics of any system, in fact languages
obtained as semantics of a communicating system are always CUI. thmt@@semiscui@data

Proposition 3.5 (Semantics is CUI).
thmt@@semiscuiprop:semiscui

For all systems S, JSK is CUI.

The next property connects finite and infinite words in a language; it corre-
sponds to the closure under the limit operation used in ω-languages [17,38].
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Definition 3.6 (Continuity).
def:continuity

A language L on an alphabet Σ is continuous
if z ∈ L for all z ∈ Σω such that pref(z) ∩ L is infinite.

This notion of continuity, besides being quite natural, is the most suitable for
our purposes among the possible ones [36]. Intuitively, a language L is continuous
if an ω-word is in L when infinitely many of its approximants (i.e., finite prefixes)
are in L. A g-language L is standard or continuous (sc-language, for short) if
either L ⊆ Σ⋆

int or L is continuous. Notice that for prefix-closed languages for all
z ∈ Lω we have that pref(z) ∩ L is infinite iff pref(z) ⊆ L.

Closure under unknown information characterises correct projected systems.
thmt@@correctness@data

Theorem 3.7 (Characterisation of correctness).
thmt@@correctnessth:correctness

If L↓ is correct w.r.t. L
then cui(L) holds. If L is an sc-language and cui(L) then L↓ is correct w.r.t. L.

Notice that CUI is defined in terms of g-languages only, hence checking CUI
does not require to build the corresponding system. Also, strengthening the pre-
condition of Def. 3.3 with the additional requirement w1 = w2 would invalidate
Thm. 3.7. Indeed, the language in Ex. 2.5 would become CUI but not correct.
The next example shows that the continuity condition in Thm. 3.7 is necessary
for languages containing infinite g-words.

Example 3.8 (Continuity matters). The CUI language

L = pref(
⋃
i≥0

{ A−→B:l·B−→C:n·(C−→D:n)i } ∪ { A−→B:r·B−→C:n·(C−→D:n)ω })

does contain an infinite word but it is not continuous. The projection of L is
not correct because its semantics contains the g-word A−→B:l·B−→C:n·(C−→D:n)ω ̸∈ L
since the projections of C and D can exchange infinitely many messages n due
to the infinite g-word of L regardless whether A and B exchange l or r. ⋄

Notice that, since L ⊆ JL↓K always holds, Thm. 3.7 implies that cui(L) char-
acterises the languages L such that L = JL↓K. Besides, the following corollary
descends from Thm. 3.7.

thmt@@smallest@data

thmt@@smallest

Corollary 3.9. For each sc-language L, cl(L) is the smallest CUI sc-language
containing L.

CUI ensures that continuous g-languages are c-closed. thmt@@continuousiscc@data

thmt@@continuousiscc

Proposition 3.10. If L is an sc-language and cui(L), then L is c-closed.

Hence, an sc-language cannot be CUI unless it is c-closed.
As recalled before, in many choreographic formalisms (such as [5,25,14,9,18])

the correctness and completeness of a projected system, namely L = JL↓K (to-
gether with some forms of liveness and deadlock-freedom properties), is guaran-
teed by well-branchedness conditions. Most of such conditions guarantee, infor-
mally, that participants reach consensus on which branch to take when choices
arise. For instance, a well-branchedness condition could be that, at each choice,
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there is a unique participant deciding the branch to follow during a computa-
tion and that such participant informs each other participant. Such a condition
is actually not needed to prove L = JL↓K. In fact the g-language obtained by
adding the word w of Ex. 3.4 to the language of Ex. 2.5 is CUI, without being
well-branched in the above sense. Indeed, after the interaction C−→A:m, there is a
branching in the projected system, since both the interactions C−→B:m and A−→B:m

can be performed. However, these interactions do not have the same sender.
The next example exhibits a non-regular CUI g-language of finite words. By

Thm. 3.7 and Corollary 3.2, the projected system is correct and complete.

Example 3.11 (Task dispatching).
ex:parenthesis

As soon as a server (S) communicates its
availability (a), a dispatcher (D) sends a task (t) to S. The server either processes
the task directly and sends back the resulting data (d) to D or sends the task to
participant H for some pre-processing, aiming at resuming it later on. Indeed,
after communicating a result to D, the server can resume (r) a previous task (if
any) from H, process it, and send the result to D. The server eventually stops
by sending s to both D and H; this can happen only when all dispatched tasks
have been processed.

This protocol corresponds to the g-language L = pref(L), where L is the
(non-regular) language generated by the following context-free grammar.

S ::= S′ ·S−→D:s·S−→H:s S′ ::= S−→D:a·D−→S:t·S−→H:t·S′ ·S−→H:r·H−→S:r·S−→D:d·S′∣∣ S−→D:a·D−→S:t·S−→D:d·S′
∣∣ ε

Since S is involved in all the interactions of L, for each pair of words w,w′ ∈ L:
w ↓S= w′ ↓S iff w = w′. Now, if w1 α,w2 α,w ∈ L satisfy the required conditions
for CUI then either w1 ↓S= w ↓S or w2 ↓S= w ↓S, since S ∈ ptp(α). Hence cui(L)
trivially holds. ⋄

The language in Ex. 3.11 is non-regular since it has the same structure of
a language of well-balanced parenthesis. Remarkably, this implies that the g-
language cannot be expressed in any other choreographic model we are aware
of. The argument used to show cui(L) in Ex. 3.11 proves the following.

Proposition 3.12. If there exists a participant involved in all the interactions
of a g-language L then cui(L) holds.

4 Communication Properties
axp@sivsec:prop

Besides correctness and completeness, other properties could be of interest. For
instance, one would like to ensure that participants eventually interact, if they
are willing to. We consider a few properties, informally described as follows.

Harmonicity (HA): each sequence of communications that a participant is
able to perform can be executed in some computation of the system.

Lock-freedom (LF): if a participant has pending communications to make on
an ongoing computation, then there is a continuation of the computation
involving that participant.
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Strong lock-freedom (SLF): if a participant has pending communications to
make on an ongoing computation, then each maximal continuation of the
computation involves that participant.

Starvation-freedom (SF): if a participant has pending communications to
make on an ongoing computation, then each infinite continuation of the
computation involves that participant.

Deadlock-freedom (DF): in all completed computations each participant has
no pending actions.

We now formalise the properties above.

Definition 4.1 (Communication properties).
def:properties

Let S be a system on P.
def:llive

HA S is harmonic if S(A) ⊆ JSK↓A for each A ∈ P.
def:wlive

LF S is lock free if, for each finite word w ∈ JSK and participant A ∈ P, if w↓A
is not maximal in S(A) then there is a word w′ such that ww′ ∈ JSK and
w′ ↓A ̸= ε. def:sfl

SLF S is strongly lock free if, for each finite w ∈ JSK and participant A ∈ P, if
w↓A is not maximal in S(A) then for each word w′ such that ww′ is maximal
in JSK we have w′ ↓A ̸= ε.

def:lf

SF S is starvation free if, for each finite w ∈ JSK and participant A ∈ P, if w↓A
is not maximal in S(A) then w′ ↓A ̸= ε for each infinite word w′ such that
ww′ ∈ JSK.

def:deadlockfree

DF S is deadlock free if, for each finite and maximal word w ∈ JSK and partic-
ipant A ∈ P, w↓A is maximal in S(A).

Barred for harmonicity, these properties appear in the literature under dif-
ferent names in various contexts. For instance, the notion of lock-freedom in [5]
corresponds to ours, which in turn corresponds to the notion of liveness in [32,29]
in a channel-based synchronous communication setting. Likewise, the notion of
strong lock-freedom in [37] corresponds to ours and, under fair scheduling, to
the notion of lock-freedom in [28]. As a final example, the definition of deadlock-
freedom in its (equivalent) contrapositive form, coincides with the notion of
progress as defined for synchronous processes in [35,23]. Harmonicity, introduced
in the present paper, assures that no behaviour of a participant can be taken
out from a system without affecting the overall behaviour of the system itself.
Notice that the inverse of harmonicity, JSK↓A⊆ S(A), holds by construction.

The next proposition highlights the relations among our properties.
thmt@@systemproperties@data

thmt@@systempropertiesprop:systemproperties

Proposition 4.2. The following relations hold among the properties in Def. 4.1

LF DF

HA SF

where implication does not
hold in any direction be-
tween properties connected
by dashed lines

Moreover, DF ∧ SF ⇔ SLF.

/

5 Communication Properties by Construction
axp@svsec:proj-prop

Harmonicity is the only property in Def. 4.1 guaranteed by projection on any
system. This can be obtained as a simple consequence of Corollary 3.2.

thmt@@wfliveb@data



10

thmt@@wflivebthm:wfliveb

Corollary 5.1. If L is a g-language then L↓ is harmonic.

The other properties require some conditions on systems to be enjoyed by
L↓. Basically, we will strengthen CUI which is too weak. For instance, cui(L)
does imply neither deadlock-freedom nor lock-freedom for L↓.

Example 5.2 (CUI ⇏ DF).
ex:closnodl

Consider the following words

w = A−→C:l·A−→B:m·A−→C:m and w′ = A−→C:r·A−→B:m·B−→C:m

It is easy to check that the g-language L = pref({w,w′ }) is CUI. Informally,
cui(L) holds because C can ascertain which of its last actions to execute from
the first input. So, Corollary 3.2 and Thm. 3.7 ensure that L = JL↓K. However,
L↓ is not deadlock-free. In particular, w ∈ L = JL↓K is a deadlock since it is a
finite maximal word whose projection on B, namely w↓B= AB?m, is not maximal
in L↓B because w′ ↓B= AB?m·BC!m ∈ L↓B.

By Prop. 4.2, the system above is also non lock-free. ⋄

In many models (cf. [25]) in order to ensure, besides other properties, also
the correctness of L↓, a condition called well-branchedness is required. We iden-
tify a notion weaker than well-branchedness, which by analogy we dub branch-
awareness (BA for short).

Definition 5.3 (Branch-awareness).
def:ba

A participant X distinguishes two g-
words w1, w2 ∈ Σ∞

int if

w1 ↓X ̸= w2 ↓X and w1 ↓X ̸≺ w2 ↓X and w2 ↓X ̸≺ w1 ↓X .

A g-language L on P is branch-aware if each X ∈ P distinguishes all maximal
words in L whose projections on X differ.

Example 5.4. The language L = pref({w,w′ }) with w = A−→C:l·A−→B:m·A−→C:m and
w′ = A−→C:r ·A−→B:m ·B−→C:m from Ex. 5.2 is not branch-aware, since w ↓B= AB?m

and w′ ↓B= AB?m·BC!m, hence w↓B ̸= w′ ↓B but w↓B≺ w′ ↓B. ⋄

Condition w1 ↓X ̸= w2 ↓X in Def. 5.3 is not strictly needed to define BA, but
it makes the notion of ‘distinguishes’ more intuitive. Equivalently, as shown in
Prop. 5.5 below, a participant X distinguishes two branches if, after a common
prefix, X is actively involved in both branches, performing different interactions.

thmt@@distinguish@data

thmt@@distinguishprop:distinguish

Proposition 5.5. Participant X distinguishes two g-words w1, w2 ∈ Σ∞
int iff

there are w′
1 ·α1 ⪯ w1 and w′

2 ·α2 ⪯ w2 such that w′
1 ↓X= w′

2 ↓X and α1 ↓X ̸= α2 ↓X.

The notions of well-branchedness in the literature [25] additionally impose
that α1 ↓X and α2 ↓X in the above proposition are input actions, but for a (unique)
participant (a.k.a., the selector) which is required to have different outputs.

In our case, BA is not needed for correctness, but it is nevertheless useful to
prove the communication properties presented in Section 4.

thmt@@baconseq@data
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Theorem 5.6 (Consequences of BA).
thmt@@baconseqthm:baconseq

Let L be a branch-aware and CUI
sc-language. Then L↓ satisfies all the properties in Def. 4.1.

Example 5.7 (The task dispatching protocol is branch aware).
ex:parenthesis2

In order to show
that the g-language L in Ex. 3.11 is branch-aware, we first notice that each
maximal word in L ends with the interactions S−→D:s·S−→H:s. If L were not branch-
aware, there should be two maximal words w·S−→D:s·S−→H:s and w′·S−→D:s·S−→H:s and
a participant X ∈ ptp(L) such that (w·S−→D:s·S−→H:s)↓X≺ (w′·S−→D:s·S−→H:s)↓X. This
is impossible, since w and w′ are both generated by the non terminal symbol S′

and hence cannot contain the message s. ⋄

Prop. 4.2 refines as follows when restricting to projections of g-languages.thmt@@systempropertiesbis@data

thmt@@systempropertiesbisprop:systemproperties2

Proposition 5.8. When considering only systems which are projections of g-
languages the following relations hold among the properties in Def. 4.1

LF DF

HA SF

where implication does not
hold in any direction be-
tween properties connected
by dashed lines

Moreover, DF ∧ SF ⇔ SLF.

/

/

/
/

It is not difficult to show that branch-awareness actually characterises SLF
for systems obtained by projecting CUI languages. thmt@@bachar@data

Proposition 5.9 (Branch-awareness characterises SLF).
thmt@@bachar

A CUI g-language
L is branch-aware iff L↓ is strongly lock-free.

6 Global Types as Choreographic Languages
axp@svisec:mpst

The global types of [37] are our first case study. We recall global types adapting
some of the notation in [37] to our setting. Informally, a global type A → B :
{mi.Gi}1≤i≤n specifies a protocol where participant A must send to B a message
mi for some 1 ≤ i ≤ n and then, depending on which mi was chosen by A, the
protocol continues as Gi. Global types and multiparty sessions are defined in [37]
in terms of the following grammars:

G ::=co end∣∣ A → B : {mi.Gi}1≤i≤n

P ::=co 0∣∣ A?{mi.Pi}1≤i≤n∣∣ A!{mi.Pi}1≤i≤n

M ::= A ▷ P∣∣ M
∣∣ M

respectively for pre-global types, pre-processes, and pre-multiparty sessions. The
first two grammars are interpreted coinductively, that is their solutions are both
minimal and maximal fixpoints (the latter corresponding to infinite trees) and
all messages mi are pairwise different. A pre-global type G (resp. pre-process
P) is a global type (resp. process) if its tree representation is regular, namely it
has finitely many distinct sub-trees. A multiparty session (MPS for short) is a
pre-multiparty session such that (a) in A ▷ P , participant A does not occur in
process P and (b) in A1 ▷P1 | . . . | An ▷Pn, participants Ai are pairwise different.
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The semantics of global types is the LTS induced by

A → B : {mi.Gi}1≤i≤n

A→B:mi−−−−→ Gi R → S : {mi.Gi}1≤i≤n
A→B:m−−−−→ R → S : {mi.G

′
i}1≤i≤n

where in the latter rule {A,B }∩{R,S } = ∅ and for each 1 ≤ i ≤ n, Gi
A→B:m−−−−→ G′

i.
A branch is a set {mi.Pi}1≤i≤n where messages mi are pairwise distinct.

The semantics for MPSs is the LTS defined by the following rule

A ▷ B!({m.P} ⊎ Λ)
∣∣ B ▷ A?({m.P ′} ⊎ Λ′)

∣∣ M A→B:m−−−−→ A ▷ P
∣∣ B ▷ P ′

∣∣ M (1)
eq:mpssem

where ⊎ is the union of branches defined only on branches with disjoint sets of
messages. Rule (1) applies only if the messages in Λ′ include those in Λ, which
is the case for MPSs obtained by projection, defined below.

Definition 6.1 (Projection [37, Definition 3.4]).
definition:projection

The projection of G on
a participant X such that the depths of its occurrences in G are bounded is the
partial function G ↾X coinductively defined by end ↾X= 0 and, for a global type
G = A → B : {mi.Gi}1≤i≤n, by:

G↾X=



0 if X is not a participant of G

B!{mi.Gi ↾X}1≤i≤n if X = A

A?{mi.Gi ↾X}1≤i≤n if X = B

G1 ↾X if X ̸∈ {A,B} and n = 1

S?(Λ1 ⊎ . . . ⊎ Λn) if X ̸∈ {A,B}, n > 1, and ∀1 ≤ i ≤ n : Gi ↾X= S?Λi

The global type G is projectable5 if G↾X is defined for all participants X of G, in
which case G↾ denotes the corresponding MPS.

The g-language L(G) associated to a global type G is the concurrency and
prefix closure of L′(G), that is L(G) = pref({w ∈ Σ∞

int

∣∣ ∃w′ ∈ L′(G) : w ∼ w′ })
where L′(G) is coinductively defined as follows:

L′(end) = { ε } and L′(A → B : {mi.Gi}1≤i≤n) =
⋃

1≤i≤n
{ A−→B:mi ·w

∣∣ w ∈ L′(Gi) }

We define the l-language L(B ▷ P) associated to a named process B ▷ P as
the prefix closure of L′(B ▷ P) which, letting ⋆ ∈ { ?, ! }, is defined by

L′(B ▷ 0) = { ε } and L′(B ▷ A⋆ {mi.Pi}1≤i≤n) =
⋃

1≤i≤n
{AB⋆mi ·w

∣∣ w ∈ L′(Pi) }

The system associated to an MPS is defined as the following map:

S(A1 ▷P1 | . . . | An ▷ Pn) = {Ai 7→ L(Ai ▷ Pi)
∣∣ 1 ≤ i ≤ n }

Our constructions capture relevant properties of the global types in [37].
First, we relate projectability (cf. Def. 6.1) and our properties.

thmt@@wfba@data

thmt@@wfbaprop:cuiba

Proposition 6.2. If G is a projectable global type then L(G) is a CUI and
branch-aware sc-language.

This yields the following correspondences between the two frameworks.
thmt@@severi@data

thmt@@severiprop:sd

Proposition 6.3. Given a projectable global type G,
5 In [37], projectability embeds well-branchedness.
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L(G) ={w
∣∣ G w−→} (2)

eq:langds

JS(G↾)K ={w
∣∣ G↾

w−→} (3)
eq:projds

Projectable global types are proved strongly lock-free in [37]. The following
result corresponds to [37, Theorem 4.7].

cor:WFtoLF

Corollary 6.4. S(G↾) is strongly lock-free for any projectable G.

The symmetry between senders and receivers in CUI and branch-awareness
allows for an immediate generalisation of the projection in Def. 6.1 by extending
the last case with the clause:

S!(Λ1 ⊎ . . . ⊎ Λn) if X ̸∈ {A,B}, n > 1, and ∀1 ≤ i ≤ n : Gi ↾X= S!Λi

Corollary 6.4 still holds for this generalised definition of projection.

7 Choreography Automata
axp@sviisec:chor-automata

Recently we introduced choreography automata (c-automata) [6] as an expressive
and flexible model of global specifications. A c-automaton CA = ⟨S, q0, Σint,→⟩
is a finite-state automaton whose transition relation is labelled in Σint, namely
→⊆ S × Σint × S (cf. [7, Def. 8.2]: for the sake of space most of the technical
details of this section are in [7]). Observe that the set P of participants of CA
is necessarily finite. We have some immediate connection between c-automata
and FCL by taking as the language L(CA) of CA the set of words obtained by
concatenating the labels on any of its paths (including infinite paths, cf. [7, Def.
8.3]).In fact L(CA) is a continuous g-language, that is it is prefix-closed (cf. [7,
Prop. 8.4]).

The local behaviour of a participant A ∈ P can be straightforwardly obtained
by projecting c-automata on communicating finite-state machines (CFSMs) [11].
Basically, a CFSM is a finite-state automaton whose transitions are labelled in
Σact (cf. [7, Def. 8.1]). Formally, the projection of a c-automaton CA on A, written
CA↓A, is obtained by determinising up-to-language equivalence the intermediate
automaton

AA = ⟨S, q0, Σact ∪ { ε }, { q
λ↓A−−→ q′

∣∣ q λ−→ q′ }⟩

Finally, CA↓= (CA↓A)A∈P is the projection of CA (cf. [7, Def. 8.5]).
By applying the definition of language of c-automaton to CFSMs we can

associate an l-language L(M) to each CFSM M (cf. [7, Def. 8.3]). Projections
of c-automata and of the corresponding g-languages are related: L(CA ↓A) =
L(CA)↓A (cf. [7, Prop. 8.8]).

The synchronous behaviour of a system of CFSMs (MA)A∈P can be given
as an LTS where states are maps assigning a state in MA to each A ∈ P and
transitions are labelled by interactions (or by ε). Intuitively, given a configuration

s, if MA and MB have respectively transitions s(A)
AB!m−−−−→ q′A and s(B)

AB?m−−−−→ q′B

then s
A−→B:m−−−−−→ s[A 7→ q′A,B 7→ q′B], where f [x 7→ y] denotes the update of f on x
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g-languages
Def. 2.1

communicating systems
Def. 2.3

complete Def. 3.1 correct

branch-aware
Def. 5.3

CUI
Def. 3.3

Def. 4.1

Corollary 3.2

projection

Thm. 3.7

projection

Thm. 5.6

projection

Fig. 1. Contributions of the paper fig:contributions

with y. Likewise, s(A)
ε−→ q′A in MA implies s

ε−→ s[A 7→ q′A]. Observing that CA↓
is ε-free, the LTS of CA↓ is a c-automaton and its language coincides with the
g-language of the system {L(CA↓X) }X∈P (cf. [7, Prop. 8.7]).

The communication properties of a system of CFSMs S on P considered
in [6] are liveness, lock-freedom, and deadlock-freedom. We give an intuition of
such properties (see [7, Def. 8.9] for a precise account).

– S is live when each reachable configuration where a participant A ∈ P can
execute a communication has a continuation where A is involved;

– S is lock-free when in all computations starting from a reachable configura-
tion where a participant A ∈ P can execute, A is involved;

– S is deadlock-free if in none of its reachable configurations s without outgoing
transitions there exists A ∈ P willing to communicate.

A system of CFSMs S = (MX)X∈P is abstractly represented by the system
Ŝ = (L(MX))X∈P . It is the case that lock-freedom, strong lock-freedom, and
deadlock-freedom of Ŝ (in the sense of Def. 4.1) respectively imply liveness,
lock-freedom, and deadlock-freedom of S (cf. [7, Prop. 8.12]).

The conditions on c-automata devised in [6] in order to guarantee the above
communication properties in the synchronous case turned out to be flawed. This
is shown in [7, Sec. 8.3] (cf. [7, Ex. 8.10]).

Fortunately, the conditions given in the present paper can be applied also in
the setting of c-automata. As shown in [7, Sec. 8.4], CUI and branch-awareness
are decidable.

8 Concluding Remarks
axp@sviiisec:conc

We developed a general and abstract theory of choreographies based on formal
languages, in which we recasted known properties and constructions such as
projections from global to local specifications. We briefly recap our main contri-
butions, synoptically depicted in Fig. 1.

One of our contributions is the characterisation of systems’ correctness in
terms of closure under unknown information (CUI). Other communication prop-
erties can be ensured by additionally requiring branch awareness (BA).

Finally, the versatility of FCL allows us to capture existing models. We con-
sidered two models chosen according to their “proximity” to FCL. The first
model, the variant of MPSTs presented in [37], being based on behavioural



15

types, radically differs from FCL. The second framework, the c-automata in [6],
is closer to FCL given that it retraces the connection between automata and
formal language theories.

Related work The use of formal language theories for the modelling of concur-
rent systems dates back to the theory of traces [33]. A trace is an equivalence class
of words that differ only for swaps of independent symbols. Closure under con-
currency corresponds on finite words to form traces, as we noted after Def. 2.8.
An extensive literature has explored a notion of realisability whereby a language
of traces is realisable if it is accepted by some class of finite-state automata.
Relevant results in this respect are the characterisations in [39,16] (and the op-
timisation in [22]) for finite words and the ones in [19,20,21] for infinite ones.
A key difference of our framework w.r.t. this line of work is that we aim to
stricter notions of realisability: in our context it is not enough that the runs
of the language may be faithfully executed by a certain class of finite-state au-
tomata. Rather we are interested in identifying conditions on the g-languages
that guarantee well-behaved executions in “natural” realisations.

Other abstract models of choreographies, e.g. [18,6], have some relation with
ours. Conversation protocols (CP) [18], probably the first automata-based model
of choreographies, are non-deterministic Büchi automata whose alphabet re-
sembles a constrained variant of our Σint. A comparison with the g-languages
accepted by CPs is not immediate as CPs are based on asynchronous communi-
cations (although some connections are evident as noted below Def. 2.6).

Other proposals ascribable to choreographic settings (cf. [25]) define global
views that can be seen as g-languages. We focus on synchronous approaches
because our current theory needs to be extended to cope with asynchrony.

In [12,31] the correctness of implementations of choreographies (called chore-
ography conformance) is studied in a process algebraic setting. The other com-
munication properties we consider here are not discussed there.

The notion of choreography implementation in [12] corresponds to our cor-
rectness plus a form of existential termination. It is shown that one can decide
whether a system is an implementation of a given choreography, since both lan-
guages are generated by finite-state automata, hence language inclusion and
existential termination are decidable.

In [31] three syntactic conditions (connectedness, unique points of choice
and causality safety) ensure bisimilarity (hence trace equivalence) between a
choreography and its projection. Connectedness rules out systems which are not
c-closed, while we conjecture that unique points of choice and connectedness
together imply our CUI and BA. Causality safety, immaterial in our case, is
needed in [31] due to explicit parallel composition.

Many multiparty session type systems [25] have two levels of types (global
and local) and one implementation level (local processes). This is the case also
for synchronous session type systems such as [30,15]. Our approach, like the
session type systems in [37,5], considers only (two) abstract descriptions, g-
languages and l-languages. The literature offers several behavioural types fea-
turing correctness-by-construction principles through conditions (known as pro-
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jectability or well-branchedness) more demanding than ours. For instance, rela-
tions similar to those in Section 6 can be devised for close formalisms, such as [5]
whose notion of projection is more general than the one in [37], yet its notion of
projectability still implies CUI and BA.

There is a connection between CUI and the closure property CC2 [3] on
message-sequence charts (MSCs) [26]. On finite words CC2 and CUI coincide.
Actually, CUI can be regarded as a step-by-step way to ensure CC2 on finite
words. The relations between our properties and CC3, also used in MSCs, are
still under scrutiny.

Future work Our investigation proposes a new point of view for choreography
formalisms and the related constructions. As such, a number of extensions and
improvements need to be analysed, to check how they may fit in our setting. We
list below the most relevant.

First, we need to extend our theory to cope with asynchronous communi-
cations. While the general approach should apply, it is not immediate how to
extend CUI in order to characterize correctness for an asynchronous semantics.
This is somehow confirmed by the results in [1,2] on the realisability of MSCs
showing that in the asynchronous setting this is a challenging problem.

A second direction is analysing how to drop prefix-closure, so allowing for
specifications where the system (and single participants) may stop their execu-
tion at some points but not at others; a word would hence represent a complete
computation, not only a partial one.

A further direction would unveil the correspondence between closure proper-
ties and subtyping relations used in many multiparty session types.
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25. Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Lúıs Caires, Marco Carbone,
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