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Abstract 

In this paper, a disturbance observer-based backstepping tracking control is designed 

for an electro-hydraulic actuator (EHA) system to estimate and track reference signals in 

a finite time. It is assumed that the system is uncertain with unknown upper bounds. 

Different from the existing ones, the proposed observer can deal with strong uncertainties 

in which the estimation error converges into an arbitrarily small neighborhood of zero in 

a finite time. Then, the disturbance observer-based backstepping tracking control is 

provided to compensate the uncertainties and estimation errors and to guarantee the 

finite-time tracking of the piston position toward the desired time-varying reference 

signal. The key idea is to employ a monotonically increasing function associated with the 

control objective to improve the control performance, where the finite-time boundedness 

criterion is guaranteed using Lyapunov stability analysis. Finally, the efficacy of the 

proposed robust scheme for the EHA system with unknown measurement noise is 

illustrated in numerical simulations as compared to a leading observer-based control 

strategy in the literature. It is shown that the proposed approach results in more accuracy 

and faster convergence compared to that technique, which makes it a qualified alternative 

approach with noteworthy potential. 
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1. Introduction 

Electro-Hydraulic Actuator (EHA) systems provide a high power-to-weight ratio, 

high stiffness, and high load efficiency and are widely used in mechatronic systems [1, 

2]. Control and tracking have been fundamental challenges in EHAs, where precision 

tracking performance in a finite time has frequently been required [3, 4]. EHAs include 

nonlinearities and several uncertainties such as unmodeled dynamics, disturbances, and 

frictions with dynamics that are not exactly known [5, 6]. Due to these challenges, there 

have been restrictions in accomplishment of finite-time tracking and high-precision 

control tasks in EHAs, and hence the concept of finite-time ultimate boundedness 

(FTUB) for tracking has been considered instead [7, 8]. Different techniques considering 

robustness have been employed to suppress nonlinearities and uncertainties, where the 

convergence of the tracking errors to a neighborhood of zero is achieved over a finite 

time interval [9]. Within the robust control context, feedback linearization is a helpful 

approach to cope with the problem of nonlinearities by eliminating the undesired 

nonlinear terms [10, 11]. In addition, to overcome the challenge of the uncertainties, 

sliding mode control (SMC) approach has been well presented [11, 12], where 

compensate gains are designed to be larger than the upper bounds of the uncertainties. 

One of the main drawbacks of these reviewed strategies is that information on 

uncertainties is assumed to be known and available online, which is not feasible in many 

practical situations [13, 14]. In real-world settings, the upper bound is partly known or 

even completely unknown, so the compensate gains must be sufficiently large to 

suppress the influence of the uncertainties. In practice, to overcome this restriction, an 

alternative approach is to equip the systems with sensors and design an observation 



algorithm to process incomplete information collected by the sensors and construct a 

reliable estimation of the uncertainties [13-17]. In this regard, the disturbance observer-

based control strategies have been proposed [18], where controllers are updated 

according to the estimates obtained by the observers. 

Within the disturbance observer-based control context, some schemes have already 

been presented in [19-23] to handle unknown terms. For instance, SMC-based 

approaches have been one of the leading methods with widespread applications [19, 20]. 

However, despite their acceptable efficiency, standard SMC-based approaches can 

potentially lead to destructive chattering phenomena in the closed-loop response, due to 

the use of the sign function in those methods. As a result, they cannot be always relied 

upon in real-world settings [21]. This has been overcome via using high-order SMC 

strategies to reduce the chattering phenomenon [22, 23], where finite-time convergence 

can be achieved with a relatively slow convergence rate for the initial conditions far from 

the equilibrium point. Therefore, it is desirable for control approaches to guarantee the 

convergence in a finite time interval regardless of initial conditions [24]. Fixed-time 

approaches using the concept of bi-limit homogeneity and high-gain differentiators were 

introduced in [25-27] and are more powerful than the finite-time approaches that 

guarantee the boundedness of the convergence time independently of the initial 

conditions. However, in addition to structural limitations, the gains are not easily 

computable. Also, defining a proper Lyapunov function to ensure the stability condition 

is not straightforward for high-order systems. 

So far, despite several studies, the subject of disturbance observer-based finite-time 

control has not been fully recognized for uncertain real-world systems and it has 

potential for further improvement. Some of the leading strategies recently presented in 

this area are summarized below. Time-varying approaches were presented in [28]-[30], 



where the system’s response is only valid in a short time interval, while, in many 

applications, it is important to have a valid response for a longer duration. Also, the 

estimation errors have not explicitly been considered in the proof, but they can act as 

uncertainties in the values of the state variables. To overcome these restrictions, another 

time-varying technique was introduced in [31, 32], where, by considering the estimation 

errors, the system’s response is valid for a longer duration. However, despite its high 

efficiency and straightforward design, it can encounter singularity when time goes to 

infinity. Hence, although that time-varying technique could be a valid scheme for 

stabilization and estimation, it is applicable only for single-input single-output canonical 

systems. Another powerful nonlinear tool is the implementation of high-gain observers 

[11], which can be used for a wide class of uncertain nonlinear systems and guarantees a 

proper efficiency when the observer gain is sufficiently high. The efficacy of a high-gain 

disturbance observer combined with an extended state observer (ESO) was highlighted in 

[33], where ESO was used to estimate the unmeasurable system states and the external 

matched disturbances, while the mismatched disturbances were estimated by the high-

gain disturbance observer. According to that strategy, the disturbance estimation 

performance depends not only on the physical disturbance in the real system but also the 

unmeasurable state estimation that is concurrently estimated by the ESO. Since high-gain 

observers are basically approximate differentiators, their practicality is limited by 

measurement noise and unmodeled high-frequency dynamics [11]. This approach was 

successfully developed in [34], where one ESO was employed to estimate various types 

of uncertainties. Note that the estimation of ESOs in [11] and [34] is essentially based on 

the Levant differentiator [27] with a highly accurate version of it reported in [35]. 

According to the studies above, it can be concluded that the output feedback controller 

with disturbances rejected (OFCDR) in [35] has superior properties such as high tracking 



accuracy without any singularity problem, finite-time convergence, chattering 

phenomenon reduction, and robustness against the effects of the uncertainties and 

external disturbances. That is, in that study, the estimations of the Levant differentiator 

are shown to be very close to the actual data indicating its high accuracy in estimating the 

uncertainties and external disturbances. Also, various comparative simulations were 

provided to analyze the efficiency of the OFCDR method as compared to a proportional-

integral-differential (PID) controller that has been widely used in industrial applications, 

a SMC method with strong robustness, and a robust backstepping controller (RBC) 

method, and it was shown that OFCDR can provide higher tracking precision and less 

chattering in control input than the other techniques studied in that work. Therefore, with 

the exception of the leading strategy proposed in [35], the subject of finite-time observer-

based tracking control still remains an open problem for further improvement in EHA 

systems. 

Inspired by the above considerations, in this paper, a disturbance observer-based 

backstepping tracking control is designed for a class of EHA systems in a simple and 

straightforward manner. For this purpose, first, in order to successfully achieve the 

position and velocity tracking in a finite time, the state-space model of the EHA system 

is partially transformed into a time-varying form, associated with the control objective. 

Then, assuming the upper bounds of uncertainties are known, a control law is designed 

using the backstepping technique to guarantee the finite-time tracking. Next, for realistic 

analysis, this assumption is relaxed by designing a finite-time disturbance observer based 

tracking control (FT-DOTC), where the uncertainties and disturbances are estimated 

using the proposed finite-time disturbance observer (FTDO). Distinct from the existing 

observers, this observer can deal with strong uncertainties with unknown upper bounds, 

where the estimation error converges into an arbitrarily small neighborhood around zero 



in finite time with the size of that neighborhood being adjustable through tuning the 

system parameters. Finally, the FT-DOTC law is designed to compensate the 

uncertainties and estimation errors and guarantee the finite-time tracking of the piston 

position and velocity toward the desired time-varying reference signals. To highlight the 

efficacy of the proposed framework, several comparative simulations are reported 

between the proposed scheme and the OFCDR method introduced in [35]. The main 

contributions of this paper follow: a) To improve the tracking control performance, a 

positive time-varying increasing function associated with the control objective is used, 

where the stabilization with finite-time boundedness properties is guaranteed in 

straightforward manners. b) A novel adaptive disturbance observer is proposed to finite 

time estimation of uncertainties. c) A reduced-order observer represents an improvement 

on previous works of the authors to estimate the full states of system in a finite time that 

its time-varying gains computed based on straightforward algebraic equations. d) Finally, 

without any knowledge about the upper bound of uncertainties, a continuous and 

chattering-free FT-DOTC law is designed, which makes it a qualified alternative 

approach with noteworthy potential. 

The remainder of this paper is organized as follows. In Section 2, a class of EHA 

systems that consist of a double-rod hydraulic cylinder and a proportional valve is 

introduced. Then, a preliminary of the finite-time boundedness concepts is presented. In 

Section 3, the FT-DOTC law is designed to guarantee finite-time tracking in the presence 

of different unknown terms. Furthermore, a guideline for tuning parameters is presented 

based on the trade-off between the convergence time and the control effort. In Section 4, 

simulation results are provided to show the advantages of the proposed scheme compared 

to the literature. Finally, concluding remarks are presented in Section 5. 

2. Preliminaries and system descriptions 



In EHA systems that mostly consist of a double-rod hydraulic cylinder and a 

proportional valve (see Figure 1), the exact mathematical model is required for a realistic 

analysis. 

 
Figure 1: Graphical representation of the hydraulic actuation system [16]. 

In the following, mathematical model of a class of electro-hydraulic actuation system 

is considered [16]. 
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where   denotes the position of the piston,            is the pressure due to the 

external load and supply, where according to Figure 1,    and    (   and   ) are the 

pressures (the flows) inside the two-cylinder chambers,    is the spool valve 

displacement signal,   is the valve command,    is the viscous friction coefficient,   is 

the mass of the load,   ( ̇) is the friction force,    is the piston area,   is the effective 

bulk modulus,    is the volume of each chamber for the piston centered position, 

 (  ) is a gain that depends on the geometry of the adopted proportional valve,    and 

    are the supply and tank pressures, respectively,     and    are the natural frequency 

and the damping ratio of the valve, respectively,    is the input gain, and     represents 

the spool position bias. In (1), the time variable   is omitted for convenience. Note that 



the top, middle, and bottom equations in (1) express the piston rod dynamics, the load 

pressure dynamics, and the proportional valve dynamics, respectively. 

In this paper, it is desired to design the valve command   required for the piston’s 

position   and its velocity  ̇ to track the bounded time-varying reference signals   ( ) 

and  ̇ ( ), respectively. Let   [              ]
  be the state vector with     , 

    ̇,      ,      , and     ̇ . Defining the tracking errors  ̅     

  ( ) and  ̅      ̇ ( ), the hydraulic actuation system dynamics in (1) can be 

rewritten as 
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where    is the nominal valve constant and  (   )   ̅(   )   ( ) represents the 

summation of uncertainties  ̅(   ) and disturbances  ( )  [   
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. The valve 

command   should be designed in a way that  ̅  and  ̅  converge to zero in a finite time. 

However, due to the uncertainties and external disturbances, the exact convergence to 

zero in finite time is impossible. Hence, the FTUB concept is considered instead. In this 

regard, the following fundamental definitions and remark are used. 



Definition 1 [32]. The time-varying system  ̇   (     ) is said to be bounded in a 

finite time   with respect to   where      , if for some positive-definite (PD) matrix 

function   and any positive constants    , and  , where      , the 

condition        is satisfied for   [   ] whenever   
       . 

Definition 2 [32]. The system  ̇   (     ) is said to be finite-time input-to-state 

stable (FT-ISS) in a finite time   with respect to   where ‖ ‖   , if the inequality  

‖ ‖   (‖  ‖  ̅)   (‖ ‖)                           (3) 

is guaranteed for any       , where  ( )      ( ) are   -class and  -class 

functions, respectively,  ̅ is a time-varying function that approaches infinity as       

 . Note that, in the absence of the disturbance  , a FT-ISS system becomes a finite-time 

stable (FTS) system [36]. 

Remark 1. Consider the change of coordinates       in form of       , where 

  is defined as a monotonically increasing function diverging asymptotically to infinity 

as       . Then, if the variable    remains stable, which does not tend to infinity, the 

FTUB of the first coordinate    as        is guaranteed. 

3. Finite-time tracking control design 

In this section, first, the constructed dynamic (2) are partially transformed into a 

time-varying form in which the finite-time converge of  ̅  and  ̅  is guaranteed using 

Lyapunov stability analysis. Then, based on presumably known upper bound of  (   ), a 

control law is designed using the backstepping technique to guarantee the finite-time 

tracking of the piston position toward the desired time-varying reference signal. Next, in 

order to make the assumption about  (   ) more realistic for practical situations, the 

backstepping-based feedback control law is modified to design a disturbance observer-



based state feedback control law, where the uncertainties and disturbances are estimated 

in a finite time. 

Step 1 (Transformation into a time-varying form): In order to achieve a successful 

tracking associated with the control objectives in the paper,   ,   , and  ̇  must be 

bounded, and  ̅  and  ̅  must converge to a neighborhood of zero in a finite time. For this 

purpose, the dynamics in (2) are partially transformed into a time-varying form using the 

transformation     (   ) ̅  (    and  ), where the monotonically increasing 

function 
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is defined as a time-varying function. For simplicity in the following notation, the 

arguments time   and the design constant   are omitted so that  (   ) is represented as  . 

The design constant   is a positive parameter and is selected later for finite-time 

convergence. After some straightforward derivations, the time derivatives of   , i.e. 

 ̇   ̇ ̅    ̇̅ , can be expressed as 
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where     
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( ). According to Remark 1, if    dynamics become stable (not 

necessarily in a finite time), then the FTUB of  ̅  (    and  ) is guaranteed. 

Step 2 (Finite-time backstepping-based feedback control law): In this section, first, 

based on presumably known upper bounds of  (   )’s, a feedback control law is 

designed to guarantee the finite-time tracking of the piston’s position. For this purpose, a 

hierarchical procedure based on the backstepping approach is conducted. We start with 

the special case of (5), i.e. 
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which will be generalized later. Based on the expression for   given in (4), it can be seen 

that 
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. Therefore, the dynamics of    in (6) are 

not stable when     . Hence, based on the backstepping approach [11], the dynamics 

of    can be stabilized by setting             (  ), where     denotes the 

designed visual input   ,    
 

 
. This can be shown by selecting a Lyapunov function of 

the form   (  )        
  with the time derivative  ̇  (
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That is, the stability of    and, consequently, the FTUB of  ̅  is guaranteed. 

Next, using the backstepping approach, the change of variable  ̃       (  ) is 

applied to rewrite the transformed dynamics in (5) as 
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where  ̇  
   

  
 
   

   
 ̇ . It is desired to guarantee the stability of the dynamics in (7) in 

the presence of   , where    is considered as the input. If    is designed as  
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where     denotes the designed visual input   ,    
 

 
 

 

 
 and    |  | is the only 

information needed to be known about   , then, stability can be shown using the 

Lyapunov approach.  For this purpose, a Lyapunov function of the form   (    ̃ )  
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   . Therefore, asymptotic stability of   ,  ̃ , and   , 

and, consequently, the FTUB of  ̅  and  ̅  are guaranteed. In order to backstep, the 

change of variable  ̃       (    ̃ ) is applied to rewrite the first three equations in 

(2) and (5) as 
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where  ̇  
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where     denotes the designed visual input   ,      and    |  | is the only 

information required to be known about   . Then, a Lyapunov function can be selected 

in the form   (    ̃   ̃ )    (    ̃ )       ̃ 
  satisfying  ̇  (
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   . Therefore, asymptotic stability of   ,  ̃ ,   ,  ̃ , and   , 

and, consequently, the FTUB of  ̅  and  ̅  are guaranteed. Now, by applying the change 

of variable  ̃       (    ̃   ̃ ), the first four equations in (2) and (5) can be 

rewritten as 
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where     denotes the designed visual input   ,     . The Lyapunov function is 
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 ̃ ,   ,  ̃ , and   , and, consequently, the FTUB of  ̅  and  ̅ . Finally, by applying the 

final change of variable  ̃       (    ̃   ̃   ̃ ), dynamics in (2) and (5) can be 

rewritten as 
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in (13) are asymptotically stable in the presence of       
        

( ) when the valve 

command   in that equation is selected as the state feedback control of the form 
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is summarized in the following lemma. 

Lemma 1: Consider the system given by (2), where the uncertainties    (   ,  , 

and  ) satisfy inequalities |  |    , |  |    , and |  |    . If the state feedback 

control law   is designed as in (14) with    sufficiently large and the positive constant 

gains    and    satisfying    
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, then all states of the closed-loop 

system constructed by (2) and (14) are bounded. Furthermore, the states   and  ̇ track the 

time-varying reference signals    and  ̇ , respectively, in a finite time.  

Proof: Inspired by Remark 1, since the finite-time stability of system    is equivalent 

to the Lyapunov stability of system   , based on the step 1, system (2) is written as 

follows: 
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The continuation of the proof is a direct consequence of the above formulations, 

where by selecting the Lyapunov’s sequence as   ,   ,   ,   , and   , respectively, the 
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    are obtained, 

respectively. Therefore, asymptotic stability of   ,   ,   ,   ,   , and, consequently, the 

FTUB of  ̅  and  ̅  are guaranteed, where the states   and  ̇ track the time-varying 

reference signals    and  ̇ , respectively, in a finite time. This completes the proof.       

Since the upper-boundedness of the uncertainties is not always a reasonable 

assumption in real world, for a realistic analysis, that assumption is relaxed in Step 3 

below by proposing a disturbance observer-based control scheme. 

Step 3 (Extension to observer-based control): The disturbance observer is proposed 

as 
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where the adaptive gains   ( ) (           ) are class   functions to be designed, such 

that the convergence of the estimated uncertainties    to small neighborhoods of their 

corresponding actual values is guaranteed in a finite time. In (16),     is a design 

constant,     and     are odd integers satisfying the condition    . Also, in that 

equation, the observation errors are defined as     ̂      , where  ̂ ’s are obtained as 

follow by inspired of [32] 
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where the state variables     ,      , and      , as the output of the system is 

measurable and available online. The discussion above is summarized in the following 

theorem. 

Theorem 1: Consider the system in (2). Using the observers in (16) and (17), there 

exist suitable parameters such that the observation errors    (           ) are globally 

FTUB. 
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their time derivatives along the system’s trajectories become 

 ̇     ̇    ( ̈  
  

 
 
 

 

 
  
 ̇ )    ( ̈̂    ̈  

  

 
 
 

 

 
  
 ̇ )                                  (19) 

After substituting the expression 
  

 
 
 

 

 
  
 ̇         ( ̇     

 
 ⁄
)   ̇̂  from the time 

derivative of the disturbance observer (16) into (19) and simplification, the latter 

becomes  

 ̇    (       (  ( ))   ̇ )                                                                                  (20) 

where based on [32], in this step it has been assumed   ̈   ̈̂ . Under the Lipschitz-like 

condition | ̇ |     (           ),  

 ̇     |  |  | ̇ ||  |   (     )|  |                                                                (21) 

Let the inverse of the function   ( ) be   
  ( ). Then, for any |  |    

  (  ), 

  ( )     and hence  ̇   . Therefore, the function   ̇         (  ( ))   ̇  satisfies 

the stability criterion in Theorem 1. Therefore,    is bounded as |  |    
  (  ) in the 



finite time    
|  ( )|

  (|  ( )|)   
 and the FTUB of the observation error    is guaranteed. This 

completes the proof.                                                                

Now, we can update the state feedback control law (14) by using the estimation of    

proposed by (16). After lengthy but straightforward calculations, the FT-DOTC law is 

obtained as 

  (     
 )  (  ̃     

 ( ̃   ̅ )        ( ̃   ̅ )   ̇̅     ̃  

( ̂   ̅ )   ( ̃ ))                                                                                                       (22) 

where  ̅  (           ) is to be designed to suppress the effect of the estimation errors 

that behave as small uncertainties in the states. It is worth noting that, the variables  ’s 

defined in the past steps and  ’s used here do not have any fundamental differences, 

where the capital letter   has been used only for Step 3. Also  ̅’s are new visual 

variables that are presented later. In the following theorem, it is shown that without any 

knowledge about the upper bounds of the uncertainties, the closed-loop dynamics 

obtained by (2), (16), (17), and (22) remain ultimately bounded and the output variable 

tracks the reference signal within a finite time. 

Theorem 2. Consider the system (2), the uncertainties    (           ) satisfy the 

Lipschitz-like conditions | ̇ |     | ̇ |    , and | ̇ |    . If   is designed as the 

disturbance observer-based state feedback control law in (22) with  ̅    
  (  ), 

 ̅    
  (  ), and  ̅    

  (  ) and the positive constant gains   and    are designed 

such that    
 

 
 and    

 

 
 

 

 
, then all states of the closed-loop system (2), (16), (17), 

and (22) are bounded and the variables   and  ̇ track the time-varying reference signals 

   and  ̇ , respectively, in a finite time. 

Proof. The proof is a direct consequence of Lemma 1 by replacing (23) and (24) with 

(8) and (10), respectively. 
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)
  

(       ̃   [ ̈  
 

 
 ̇ ]  (

 ̇

 
 

 

 
)    ̇   ( ̂  

 ̅ )    ( ̃ ))   ̅ (    ̃ )                                                                                          (23) 

and 

   (
    √   | ̃   ̅ |

  
)

  

( 
  

 
 ̃  

    

  
( ̃    )  

    

  
 ̇   ̇̅     ̃  

( ̂   ̅ )    ( ̃ ))   ̅ (    ̃   ̃ )                                                                        (24) 

By replacing (23) with (8), we obtain 

 ̇  (
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

   | ̃ | ̅  ( | ̃ | ̂    ̃   )        (25) 

For the convenience, depending on the term  [ | ̃ | ̂    ̃   ] two different cases 

may occur: 

Case 1 ( [ | ̃ | ̂    ̃   ]   | ̃ || ̂ |   | ̃ ||  |): In this case,  [ | ̃ | ̂  

  ̃   ] satisfies  [ | ̃ | ̂    ̃   ]   | ̃ |[| ̂ |  |  |]   | ̃ |  
  (  ). Then,  ̇  

is achieved as, 

 ̇  (
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

   | ̃ |(  
  (  )   ̅ )                              (26) 

Since  ̅  and   
  (  ) are positive, if  ̅    

  (  ) such that   
  (  )   ̅   , then 

 ̇  (
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

 . 

Case 2 ( [ | ̃ | ̂    ̃   ]   | ̃ ||  |   | ̃ || ̂ |): In this case,  [ | ̃ | ̂  

  ̃   ] satisfies  [ | ̃ | ̂    ̃   ]   | ̃ |[|  |  | ̂ |]    | ̃ |  
  (  ), and  ̇  

is achieved as, 

 ̇  (
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

   | ̃ |(   
  (  )   ̅ )                           (27) 



where  ̇  (
 ̇

 
   )   

  (
 ̇

 
 

 

 
   )  ̃ 

  is guaranteed without any concern. 

Therefore, the condition  ̅    
  (  ) is a sufficient condition to guarantee  ̇  

(
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

 . Subsequently, by replacing (24) with (10), we obtain 

 ̇  (
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

     ̃ 
  | ̃ | ̅  (| ̃ | ̂   ̃   )     (28) 

where   (    ̃   ̃ )    (    ̃ )       ̃ 
 . Now, as in the previous step, depending on 

the term  [| ̃ | ̂   ̃   ] two different cases may occur: 

Case 1 ( [| ̃ | ̂   ̃   ]  | ̃ || ̂ |  | ̃ ||  |): In this case,  [| ̃ | ̂  

 ̃   ] satisfies  [| ̃ | ̂   ̃   ]  | ̃ |[| ̂ |  |  |]  | ̃ |  
  (  ). Then,  ̇  is 

achieved as, 
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  (
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     ̃ 
  | ̃ |(  

  (  )   ̅ )                 (29) 

Since  ̅  and   
  (  ) are positive, if  ̅    

  (  ) such that   
  (  )   ̅   , then 
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 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

     ̃ 
 . 

Case 2 ( [| ̃ | ̂   ̃   ]  | ̃ ||  |  | ̃ || ̂ |): In this case,  [| ̃ | ̂  

 ̃   ] satisfies  [| ̃ | ̂   ̃   ]  | ̃ |[|  |  | ̂ |]   | ̃ |  
  (  ), and  ̇  is 

achieved as, 
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  | ̃ |(   

  (  )   ̅ )              (30) 

where  ̇  (
 ̇

 
   )  

  (
 ̇
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     ̃ 
  is guaranteed without any concern. 

Therefore, the condition  ̅    
  (  ) is a sufficient condition to guarantee  ̇  

(
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

     ̃ 
 . Finally, after replacing the FT-DOTC law (22) 

with the state feedback control law in (14), the updated Lyapunov function 

  (    ̃   ̃   ̃   ̃ ) is selected such that it satisfies  
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  | ̃ | ̅  

(| ̃ | ̂   ̃   )                                                                                                           (31) 

Now, as in the previous step, depending on the term  [| ̃ | ̂   ̃   ] two different 

cases may occur: 

Case 1 ( [| ̃ | ̂   ̃   ]  | ̃ || ̂ |  | ̃ ||  |): In this case,  [| ̃ | ̂  

 ̃   ] satisfies  [| ̃ | ̂   ̃   ]  | ̃ |[| ̂ |  |  |]  | ̃ |  
  (  ). Then,  ̇  is 

achieved as, 
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  (  )   ̅ )                                                                                    (  ) 

Since  ̅  and   
  (  ) are positive, if  ̅    

  (  ) such that   
  (  )   ̅   , then 
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     ̃ 

     ̃ 
 . 

Case 2 ( [| ̃ | ̂   ̃   ]  | ̃ || ̂ |  | ̃ ||  |): In this case, ( [| ̃ | ̂  

 ̃   ] satisfies  [| ̃ | ̂   ̃   ]  | ̃ |[|  |  | ̂ |]   | ̃ |  
  (  ), and  ̇  is 

achieved as, 
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 ̇
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 | ̃ |(   
  (  )   ̅ )                                                                                (  ) 

where  ̇  (
 ̇

 
   )   

  (
 ̇

 
 

 

 
   )  ̃ 

     ̃ 
     ̃ 

     ̃ 
  is guaranteed 

straightforward. Therefore, the condition  ̅    
  (  ) is a sufficient condition to 

guarantee  ̇  (
 ̇

 
   )  

  (
 ̇

 
 

 

 
   )  ̃ 

     ̃ 
     ̃ 

     ̃ 
 . That is, the 

closed-loop dynamics obtained by (2), (16), (17), and (22) remain ultimately bounded 



and the output variables   and  ̇ track the time-varying reference signals    and  ̇ , 

respectively, within a finite time. This completes the proof.                                      

3.1.Implementation issues 

According to (4), the time-varying transformation function  (   ) approaches 

infinity when    . To avoid this, that transformation function can be modified as 

 (   )  {
   

  

 

  
  

 

⁄     

        

                 (34) 

where for a positive real constant   , the constant      is defined as    
   
   

   
 ⁄ . The 

constant    should be designed based on a trade-off between the finite-time efficiency 

and the control efforts. Note that the stability analyses can be modified to address the 

new definition for the transformation function  ( ) given in (33). For this purpose, the 

stability analysis is performed during two different time intervals of      and     .  

The previous analysis is valid during the first time interval. Also, since we have already 

proved that all the states, including the observed states, remain bounded for all time, this 

statement will also remain valid for the second time interval. 

Furthermore, according to the definition of the sliding variable   ( ) (           ) 

given in the proof of Theorem 1, (  
  ( )

 ̇ 
)  ̇     

 
 ⁄
  , where by letting  ̇    ( ), 

  
  ( )

 ̇ 
  , and keeps the same property of finite-time stability as that in   ( ), which 

reversely means that the velocity of tracking error converges to the region  ̇    ( ) in a 

finite time. By simplifying  ̇ , it can be seen that  ̇   ̂    . Hence, combining this 

with  ̇    ( ) and the result of Theorem 1, i.e. |  |    
  (  ), yields 

| ̇ |  | ̂    |  |  ( )|    
  (  )                                                                       (35) 



Therefore, for any desired error bound   
  (  ), there exists a finite time such that | ̂  

  |    
  (  ) and, by tuning parameters, the size of the above region can be accurately 

suppressed to be arbitrarily small.  

Compared to conventional methods, the proposed scheme discussed above is 

straightforward to implement and realize where its block diagram is shown in Figure 2. 

 

Figure 2: Block diagram of the proposed FT-DOTC law scheme for the EHA system (1). 

By an appropriate selection of the observer and controller parameters such that they 

satisfy the conditions mentioned in the stability analyses; uncertainties can be estimated 

in a finite time before any divergence occurs. A recommended guideline on the selection 

of the parameters is provided in the following steps: 

(1) Since the estimates of uncertainties obtained through the FTDO in (16) is fed into 

the proposed FT-DOTC law in (22), the observer in (16) should be faster than the 

controller in (22). Therefore, to guarantee the estimation in a finite time,   is proposed as 

a positive constant, where increasing its value increases the convergence time 

significantly but reduces the control effort considerably, and vice versa. Also,   and   are 

 EHA system

Sybsystem 3

Sybsystem 1

Sybsystem 2
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positive odd integers, satisfying the condition    , where decreasing the value of the 

fraction 
 
 ⁄  reduces the convergence time considerably but increases the control effort 

significantly, and vice versa. 

(2) Then, in order to suppress the effect of the estimation errors, for class   

functions   ( ) (the adaptive gains  ̅  are designed as  ̅    
  (  ),  ̅    

  (  ), and 

 ̅    
  (  ).  

(3) Next, to achieve proper tracking in a finite time, the design parameter   is selected 

based on the trade-off between the control effort and the convergence time. Increasing 

the value of   reduces the control effort, while it increases the convergence time, and 

vice versa. 

(4) Finally, the positive constant gains    for           are selected to satisfy  

   
 

 
            

 

 
 

 

 
                 (       )                            (36)                                                                                 

The effect of the parameters tuning on the system performance is illustrated and further 

discussed in the numerical simulations section. 

4. Numerical simulations and discussion 

In this section, numerical simulations are presented to analyze the effectiveness of the 

proposed FT-DOTC law in (22) and the FTDO in (16) for the nonlinear EHA system in 

(2). Then, further simulations are reported to validate the performance of the proposed 

framework in the presence of unknown measurement noise. To clearly indicate the 

efficacy of the proposed approach, the numerical simulation results obtained using this 

technique is compared with those obtained using the OFCDR method in [35]. The 

OFCDR method is selected as the control benchmark since the efficiency of that method 

compared with the PID, SMC, and RBC methods was already demonstrated in [35]. It is 

shown in the following that the proposed scheme is advantageous over OFCDR in terms 



of system performance indices, which makes it a qualified alternative approach in the 

observer design with noteworthy potential. In the numerical simulations below, it is 

assumed that initial conditions for all state variables are zero and that the parameters in 

the observer are the same as those in the nonlinear EHA system. Specifically, the 

numerical values for the parameters used are provided in Table 1 [16]. 

Table 1 

Nominal parameters of the hydraulic actuator [16] 

 Symbol Unit Value 

Piston mass          

Piston area           

Centered camera volume             

Bulk modulus          

Input gain    -      

Valve natural frequency             

Valve damping coefficient    -      

Supply pressure           
 

First, to understand the dead-zone's effect, the results of the FTDO in (16) are 

compared to the high gain disturbance observer in [35], as shown in Figure 3, by 

employing a low-frequency sine wave       (  ) as input. It can be seen in Figure 3 

that the observer designed based on the high gain disturbance observer approach in [35] 

fails to estimate the dead-zone effect and is not able to sense the fast changes in the 

friction force in a short time. While, in response to the considered valve command signal, 

one can find from Figure 3 that by employing the proposed disturbance observer, the 

friction force and the dead-zone effect variables remain at a small neighborhood of the 

real states in a finite time. It can be seen that the proposed observer can achieve higher 

observation accuracy and faster convergence speed, where the proposed disturbance 

observer (16) coupled with (17) has a smaller convergence time (less than        ,      , 

and          , respectively) compared to the high gain disturbance observer (almost 

equal to       ,           , and        , respectively) [35]. 

Remark 2: One of the main drawbacks of the previous disturbance observers is that 

the upper bound of the unknown terms is often assumed to be known, which is not 



feasible in practical situations. To overcome this problem, the disturbance observer (16) 

can deal with strong uncertainties with unknown upper bounds, where estimation with 

finite-time boundedness is guaranteed in a straightforward manner. 

Next, the performance of the proposed scheme is evaluated in terms of finite-time 

tracking of the bounded time-varying reference signals   ( )     ( ) and  ̇ ( )  

   ( ). 

 
Figure 3: Simulated uncertainties and estimation results of the open-loop system (solid line for actual 

states (real states), dashed line for proposed FTDO results, and dash-dotted line for reference results [35]). 

 
Figure 4: Reference signals (desired states) and position and velocity tracking results of the closed-loop 

system (solid line for desired states, dashed line for proposed FT-DOTC results, and dash-dotted line for 

reference results [35]). 

Figure 4 illustrates the important efficiency of the proposed scheme, where the state 

variables    and    track the reference signals    and  ̇  in a shorter time and with less 
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tracking error (      and      , respectively) than OFCDR (        and          , 

respectively). To further demonstrate the merits of the proposed scheme, the performance 

of studied approaches are evaluated and compared quantitatively in Table 2 by defining 

RMS performance index   ̅  ‖√
 

  
∫  ̅  ̅   
  

 
‖ based on the infinity norm of the 

tracking error vector  ̅  [‖ ̅ ‖ ‖ ̅ ‖]
 , where       s denotes the simulation time. 

Table 2 

Comparative results between RMS performance indexes. 

 

Tracking error 

vector  ̅  
[‖ ̅ ‖ ‖ ̅ ‖]

  

performance index 

  ̅ 

Proposed scheme results  ̅  [
      
        

]   ̅           

OFCDR results [35]  ̅  [
       
        

]   ̅           

 

According to Table 2, the velocity tracking error is much larger than the position 

tracking error. This can be reasonable in practice because the characteristics of the load 

connected to the piston change very rapidly with the changes in friction force. As can be 

seen from the calculated indexes, without any knowledge about the upper bounds of the 

uncertainties, the tracking error of the proposed scheme is almost 30% less than that 

obtained using the OFCDR approach in [35], where the RMS performance index   ̅ 

obtained by the proposed scheme has the    norm                 and the OFCDR 

approach in [35] has the    norm               . It can be concluded that the 

proposed scheme has a better performance in terms of tracking errors in the presence of 

uncertainties. 

In Figure 5, the time histories of the control signals obtained using the proposed 

controller and OFCDR are presented. Since the tracking performance in the proposed 

scheme has been achieved in less finite time, so a sudden increase in the control law is 

produced, where it can be reasonable in practice. However, there is the problem of large 

overshoot compared with the OFCDR in [35], where practical constraints in terms of 



input saturation will be addressed in future works. In addition, as can be seen in Figure 5, 

the proposed FT-DOTC law (22) has a smoother behavior compared with the OFCDR 

control law in [35], where the valve input voltage is produced without any chattering 

phenomena. To show the merits of the proposed FTDO (14) in the closed-loop system 

obtained by (2), (16), (17), and (22), the results of the two observers are compared in 

Figure 6, where it is shown that the proposed observer can perceive quick changes in 

uncertainties accurately, while the observer [35] is not able to do so. 

 
Figure 5: Valve input voltage in the closed-loop system (dashed line for proposed FT-DOTC result 

and dash-dotted line for reference result [35]). 

 
Figure 6: Simulated uncertainties and estimation results of the closed-loop system (solid line for actual 

states, dashed line for proposed FTDO results, and dash-dotted line for reference results [35]). 
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Figure 7: Reference signals and position and velocity tracking results of the closed-loop system in the 

presence of unknown measurement noise (solid line for desired position, dashed line for proposed FT-DOTC 

results, and dash-dotted line for reference results [35]). 

It can be clearly seen in Figure 6 that the proposed scheme achieves high estimation 

performance in the closed-loop system. To evaluate the robustness of the proposed 

scheme in the presence of unknown measurement noise, Figure 7 is presented, where it 

can be seen that the tracking error obtained using the proposed approach is less than 

OFCDR in [35]. It is worth noting that, the considered unknown measurement noise in 

this paper is a Band-Limited White Noise (Refer to the Band-Limited White Noise block 

in the Simulink Matlab software), where according to the Figures 7 and 3, the proposed 

approach is completely robust in the presence of unknown measurement noise with 

unknown upper bound. 

5. Conclusions 

In this paper, a continuous disturbance observer-based backstepping finite-time 

tracking control has been presented for a class of electro-hydraulic actuator (EHA) 

systems. Without any knowledge about the upper bounds of the uncertainties, a finite-

time disturbance observer has been proposed to estimate the uncertainties and 

disturbances, where the estimation error converges into an arbitrarily small neighborhood 

around zero in a finite time by tuning the design parameters. Then, a finite-time 
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disturbance observer-based tracking control law was designed to guarantee the finite-

time tracking of the piston position toward a desired time-varying reference signal. The 

key idea in this regard was to employ a monotonically-increasing function associated 

with the control objective to improve the control performance, where the tracking errors 

dynamics are transformed into a time-varying form and the finite-time boundedness 

criterion is guaranteed using Lyapunov stability analysis. In this regard, time-varying 

gains of the controller were designed in a straightforward manner. Finally, numerical 

simulations were provided to demonstrate the effectiveness of the proposed scheme for 

the EHA system with unknown measurement noise. The results are compared to those 

obtained using a state-of-the-art observer-based control strategy in the literature, where 

the competence of the proposed scheme is numerically proved which makes it a qualified 

alternative approach with noteworthy advantages. In conclusion, the following objectives 

are successfully achieved: (1) Without any knowledge about the upper bound of 

uncertainties, the proposed disturbance observer-based control law is capable of tracking 

the reference signal in the presence of uncertainties with unknown upper bound. (2) By 

introducing a time-varying conversion, finite-time tracking has been guaranteed by using 

Lyapunov stability analysis. In terms of more interesting topics, an optimal algorithm is 

suggested to be designed for choosing all the observer parameters. Moreover, output 

feedback control in the presence of symmetric input saturation can be considered to 

investigate the possibility of decreasing the number of physical sensors to control the 

robotic manipulators. 
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