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SUMMARY

Faecalibacterium prausnitzii is one of the most prevalent and abundant polyphy-
letic health-promoting components of the human gut microbiome with a propen-
sity for dysbiotic decreases. To better understand its biology in the human gut,
we specifically explored the divergence pressures acting on F. prausnitzii clades
on a global scale. Five F. prausnitzii cladeswere de novo identified from 55 publicly
available genomes and 92 high-quality metagenome assembled genomes. Diver-
gence rate indices were constructed and validated to compare the divergence
rates among the different clades and between each of the diverging genes. For
each clade we identified specific patterns of diverging functionalities, probably re-
flecting different ecological propensities, in term of inter-host dispersion capacity
or exploitation of different substrates in the gut environment. Finally, we speculate
that these differences may explain, at least in part, the observed differences in the
overall divergence rates of F. prausnitzii clades in human populations.

INTRODUCTION

Faecalibacterium prausnitzii is one of the most wide-spread and abundant bacteria in the human gut

microbiome (GM). It is probably an integral component of our evolutionary history which has populated

our lineage for at least 1M years.1 F. prausnitzii has been consistently reported as one of the main

health-promoting components found in the intestine,2 showing a crucial role in host nutrition and immu-

nity, where it acts as an important anti-inflammatory commensal.3 Indeed, recent studies4–6 have shown

that F. prausnitzii can attenuate the severity of inflammation through the release of a panel of anti-inflam-

matory metabolites, which enhance the intestinal barrier acting on tight junctions, as well as on peroxisome

proliferator-activated receptor alpha (PPAR-a), PPAR-g and PPAR b/d genes.7

Over the last few years an increasing number of studies have reported a depletion of F. prausnitzii in GMs

associated with multiple diseases, enteric and non-enteric,8–12 to the point that this bacterium has been

proposed as a possible biomarker of dysbiotic shifts. This defines a complex scenario where, on the one

hand, F. prausnitzii has a crucial role in maintaining gut homeostasis, but on the other hand it is extremely

prone to dysbiotic reductions. However, at present, it still remains elusive which biotic and abiotic factors

regulate its presence in the gut, the extent of their influence and the mechanisms involved in its retention.

First 16S rRNA gene-based phylogenetic analyses showed that at least two different F. prausnitzii phy-

logroups can be found in the human GM, whose distribution is different between healthy subjects and

patients with gut disorders.13,14 Most recently, the polytypic nature of F. prausnitzii has been confirmed,

detecting up to 11 different clades, which show a different prevalence and/or abundance in the human

GM depending on age, geographical origin and lifestyle.15 These authors also confirmed the depletion

of this species in inflammatory bowel disease and obesity. Although these findings certainly represent a

milestone for a better understanding of F. prausnitzii biology in the human gut, there is still no evidence

concerning possible selective pressures driving for the observed clades divergences, and it has not yet

been investigated why such clades exhibited a markedly different distribution in the human population.

In an attempt to answer these questions, here we explored the dynamics involved in the divergence pro-

cesses of the clade-specific marker genes in the F. prausnitzii complex, dissecting the peculiarities of each

clade and providing some glimpses on the putative pressures selectively acting on each of them. Specif-

ically, we reconstructed high-quality F. prausnitzii genomes from metagenomes (MAGs) starting from

�750 healthy human gut metagenomes16–22 and identified F. prausnitzii clades by implementing a
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previously validated pipeline.15,23,24 Then, the within-clade genetic diversity have been analyzed, allowing

to dissect the putative evolutionary forces acting on each clade. In particular, the divergence dynamics

were assessed by accounting for the specific pattern of mutations accumulating in the respective clade-

specific genes. Given the high susceptibility of this species to alteration of host homeostasis and environ-

mental stresses, our findings may provide new insights into the determinants responsible for its decrease in

disease conditions and help to find solutions for the recovery of this keystone taxon.

RESULTS

De novo identification and functional characterization of 5 F. prausnitzii clades

We assembled 92 high-quality F. prausnitziiMAGs from 740 human gut metagenomes from a correspond-

ing number of healthy subjects from 7 different studies, representing 8 different populations (Germans,

Italians, Swedes, North Americans, Japanese, Peruvians and Tanzanian hunter-gatherers) (Figure S1).

The obtained MAGs showed >95% completeness and <5% contamination levels.25 These 92 MAGs were

complemented with 55 F. prausnitzii genomes directly downloaded from the NCBI RefSeq database

(https://www.ncbi.nlm.nih.gov/refseq) (Table S1), for a total of 147 genomes used for the subsequent an-

alyses. By computing the average nucleotide identity (ANI) distances, the Jaccard dissimilarity matrix on

genes content and the PhyloPhlAn226 phylogenetic grouping, we were able to identify 5 clades (A to E),

with the largest (clade C) hosting 39 genomes and the smallest (clade E) comprising 12 genomes (Figure 1).

By means of alignments, we noted that the 11 clades previously reported by DeFilippis et al.15 were rep-

resented within ours (Table S2). Arguably, the higher completeness threshold we applied for MAGs assem-

bly explains the lower number of clades we were able to identify in our study.When we sought for functional

specificities, we observed considerable functional differences between our clades, in terms of presence/

absence of specific KEGG Orthology (KO) functionalities (Figure S2) and carbohydrate-active enzymes

(CAZymes) (Figure S3). Most of the differences in KO genes concerned broad cellular processes, such as

energy metabolism, ABC transporters and dehydrogenases. As regards carbohydrates metabolism, clade

A was the most eclectic, bearing the highest fraction of CAZymes, followed by clades D and E. In contrast,

clade B seemed to behave as a specialist, possessing a lower amount of CAZymes showing a particularly

underrepresented glycoside hydrolase functional potential.

We next assessed the distribution of the 5 clades in the human population (see STAR Methods). According

to our data, the 5 clades we identified are distributed across the entire set of human populations consid-

ered, thus all the clades can be regarded as cosmopolitan (Figure S4A). To investigate if these clades were

mutually exclusive or able to co-inhabit the bowel, we evaluated the co-presence within the same metage-

nomic sample. This analysis clearly revealed that the degree of co-presence is variable in the human pop-

ulation, with some subjects harboring all the clades, whilst others not harboring F. prausnitzii at all. In

particular, we observed that the presence/copresence of the F. prausnitzii clades was associated with

age, geographical origin and subsistence strategy (Figures S4B–S4D), confirming what previously high-

lighted in another study (De Filippis et al., 202015). Indeed, F. prausnitziiwas almost always present in adults

(96% contained at least 1 F prausnitzii clade, 18–69 years old), but the prevalence considerably decrease in

infant (29%, <1 years old, Fisher’s test p<0.01), and centenarians (40%, >99 years old, p<0.01). Lower prev-

alence was also detected in children (89%, 1–16 years old, p<0.01) and elderly people (89%, 70–97 years

old, p<0.01). Finally, the intra-individual clades diversity was highly variable according to the geographical

area and the related lifestyle, with higher levels in non-Western countries (e.g., Tanzania, Wilcoxon test

p=0.0001), respect to Western countries, that showed a progressively lower prevalence for all clades

from Europe to Japan through North America.

Construction and validation of divergence indices

To account for the rate of divergence between the F. prausnitzii clades, we developed two Divergence Rate

Indices (DRIs), one at the clade level and the other at the gene level. The clade-level DRI (DRIc), was specifically

conceived to account for the overall divergence rate of each clade andwas computed as the natural logarithm

(ln) of the ratio between the median number of single nucleotide polymorphisms (SNPs) of the whole set of

clade-specific genes (ME) – defined as genes present in at least the 95% of the genomes from a given clade

and absent in the other clades – and the median SNPs for a basal set of housekeeping reference genes (MH),

i.e., genes showing a little divergence within a clade. The housekeeping references was constituted by a panel

of 10 genes (recA, rplS, rplI, purN,mreB,maf, fmt, gyrB, rpoB, proC) (Table S3), comprising essential genes we

found present in all the genomes and MAGs we analyzed. On the other hand, the gene-level DRI (DRIg) was

created to account for the absolute divergence rate for a single clade-specific gene for a given clade and was
2 iScience 25, 105533, December 22, 2022
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Figure 1. De novo identification and functional characterization of 5 Faecalibacterium prausnitzii clades

(A) Genetic distances in terms of ANI, within a clade (intra-clade), between clades (inter-clade) and between clades and other species (OS) of the

Ruminococcaceae family, used as outgroups (see STAR Methods). Five F. prausnitzii clades (A to E) were identified. The dotted line denotes the 6% ANI

distance threshold.

(B) Jaccard distance based on gene content between (inter-clade) and within (intra-clade) F. prausnitzii clades.

(C) Whole-genome phylogenetic tree derived from PhyloPhlAn2, representing the genome panel (n = 158, of which 92 MAGs, 55 reference genomes and 11

OS) clustered into the 5 identified clades. Colored circles indicate the genomes we assembled from metagenomes (MAGs).
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computed as the ln of the ratio between the SNPs of the selected clade-specific gene (MG) and MH (the me-

dian SNPs of the basal set of housekeeping reference genes).

Further, to fully assess divergence pressures, the aforementioned indices were implemented by consid-

ering the ratio of non-synonymous to synonymous substitutions (dN/dS).27 Consistently, 2 non-synony-

mous divergence rate indices (NDRIs) were developed: (1) The clade-level NDRI (NDRIc), which considers

the ln of the ratio between the mean dN/dS values for the whole set of clade-specific genes (mE) and the

mean dN/dS for the basal set of housekeeping reference genes (mH), (2) the gene-level NDRI (NDRIg), as

ln of the ratio between the dN/dS value of the selected clade-specific gene (mG) and mH.

Generally, for a given clade, a positive value for the DRIc and NDRIc indices points out that the correspond-

ing set of clade-specific genes are accumulating SNPs and non-synonymous SNPs faster than
iScience 25, 105533, December 22, 2022 3



Figure 2. Clade-specific marker genes showed higher divergence indices than core genes

For each metagenomic sample we computed the DRIc and NDRIc values for the 5 F prausnitzii clades detected (A to E).

Median values among the 740 samples investigated are shown with whiskers ranging from the 25th to the 75th percentiles.

Control refers to 500 core genes taken from the pan-genome of the F. prausnitzii complex as detected by the ROARY28

pipeline. For further information concerning DRI and NDRI calculation and marker-genes/core-gene identification,

consult the STAR Methods.
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housekeeping references; the higher the index values, the greater the divergence rate for the specific

clade. Analogously, for a given clade-specific gene, a positive value for the DRIg and NDRIg indices indi-

cates that the gene is accumulating SNPs and non-synonymous SNPs faster than housekeeping references;

the higher the index values, the greater the divergence rate for the given clade-specific gene.

Because the DRIg and NDRIg indices were first necessarily computed at the level of the single metage-

nomes, to be then extrapolated at the population and metapopulation levels, and to verify any bias

due to the sequencing yields, for each clade we performed Pearson’s correlation tests between MH and

mH values and metagenome lengths and the computed F. prausnitzii abundances. Correlations were

also sought between gene prevalence and DRIg/NDRIg indices, to assess the presence of biases due to

sequencing coverage on specific genes. According to our findings, no significant correlations were

found (p>0.05).
Divergence dynamics: Each clade shows a distinctive profile

Once defined and validated, we utilized our indices to study the divergence of the F. prausnitzii complex in the

human population. First, we assessed the divergence of the clades in the human population by calculating the

globalDRIcandNDRIc indices (Figure 2) as themedianofall theDRIcandNDRIc indicescomputed for the single

metagenomic samples. For each clade, both global DRIc andNDRIc indices showed positive values, in contrast

to theglobal indices for 500 randomlypicked coregenes (seeSTARMethods), which resulted in negative values.

This confirms that clade-specificmarker genes are globally accountable for the divergence of the clades; hence,

investigating their function may provide new glimpses over the selective pressure driving clades divergence.

In particular, clade D showed the highest NDRIc values - with relatively high values for the DRIc index as

well – resulting in the most rapidly diverging clade in the human population.

Next, to highlight for each clade the most diverging clade-specific genes, the clade-specific patterns of

DRIg and NDRIg indices were computed (Figure 3 and Table S4). For each clade, gene-level divergence

indices showed positive values for a multitude of clade-specific genes, indicating an overwhelming
4 iScience 25, 105533, December 22, 2022



Figure 3. Clade-specific marker genes show different values of DRIg and NDRIg indices

Curves represent the median values of the DRIg (yellow, bottom) and NDRIg (green, top) indices across the 740

metagenomic samples for each clade-specific marker gene. Genes are in increasing order with respect to the NDRIg

values. See also Table S4 for the DRIg and NDRIg values for each clade-specific marker gene and Table S7 for the number

of marker genes for each clade.
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divergence rate in the human population that far exceeds that characteristic of housekeeping genes, as

representative of a basal divergence.

For each clade, marker genes were then filtered, keeping only those with both global DRIg and NDRIg pos-

itive values. We interpreted the combination of higher mutation rates and more impactful mutations as a

signature of active divergence of those regions, therefore investigating the function of such sequencesmay

provide new glimpses over the selective pressures acting globally on F. prausnitzii.
Clade-specific marker genes show genetic signatures of purifying selection and selective

sweeps

To confirm that clade-specific marker genes are evolving under a non-neutral process, we added Tajima’s

D29 to our approach. This parameter allows one to identify sequences that do not fit the neutral theory

model at equilibrium between mutation and genetic drift. Computing Tajima’s D for F. prausnitzii on syn-

onymous sites, to reduce the effects of selection, we observed negative values for all 5 clades (mean�1.6),

with clade A showing the lowest value (�2.1) and clade D the highest (�1.3). Looking at the single gene

contributions, we found that clade-specific marker genes contributed more to the negative values than

core genes, indicating strong level of purifying selection with an excess of rare polymorphisms (Figure 4).

Also, together with the evidence from our indices, these estimates suggest that the higher values of the

dN/dS ratio of the marker genes are probably caused by recent mutations, capturing a current selection

still in progress, acting immediately after or in a context of selective sweeps.
Different clades show different functions of the clade-specific marker genes under

divergence pressure

To investigate the function of clade-specific marker genes filtered according to the combination of DRIg

and NDRg indices, KEGG Orthology30 was used, allowing one to take into account the possible functional

redundancy among the different markers. Thus, for each clade, we were able to obtain a profile of KOs cor-

responding to the most diverging clade-specific genes, i.e., those showing positive DRIg and NDRIg

values. As expected, several KOs were specific to each single clade, whilst others were shared by two to

four clades. No common functions to all clades were identified (Figure 5 and Table S5).

In particular, clade A showed 64 distinctive KOs, including many genes related to sporulation, DNA repair,

microbial resistance mechanisms (e.g., antibiotic biosynthesis, xenobiotic degradation, CRISPR proteins,
iScience 25, 105533, December 22, 2022 5



Figure 4. Clade-specific marker genes show genetic signatures of purifying selection and selective sweeps

dN/dS and Tajima’s D estimates were computed on clade-specific marker genes and 500 core genes, the same defined in

Figure 2. The marker genes showed higher level of purifying selection estimated through the ratio of non-synonymous to

synonymous nucleotide substitutions (dN/dS) and Tajima’s D values respect to core genes.
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CAMP-resistance) and several transporters and transcription factors. As for cladeB,we identified 43 uniqueKOs,

mainly concerning the two-component system, antibiotic resistance genes, membrane transporters, as well as

DNA repair and one carbon pool by folate. Clade C presented 39 selective KOs involved in DNA repair, spor-

ulation, antimicrobial resistance, beta-lactam resistance, xenobiotic degradation, as well as several efflux pro-

teins, transcription factors, genes involved in tRNA biogenesis, ribosome biogenesis and aminoacyl-tRNA

biosynthesis. In addition to these functions, Clade C was the only clade that showed the anti-inflammatory

MAM (microbiota anti-inflammatory molecule) protein within the filtered marker genes. Clade D and clade E

exhibited 11 specific KOs, with the first particularly enriched in inorganic ion transporters and functions related

to amino acids metabolism and transport, and the second in carbohydrate and lipid transporters (Table S6).

Finally, for each clade, we explored the variation in clade-level divergence rates in different human popu-

lations. According to our findings, all clades, with the exception of clade C, showed a heterogeneous

pattern of DRIc and NDRIc in the human populations considered (Figure 6). In particular, quite opposite

trends were found for clades A and D, with the former showing the highest divergence rates in hunter-gath-

erers and rural communities, and the latter diverging most actively in industrial urban populations.
DISCUSSION

Starting from previous evidences12,14,15 that F. prausnitzii is a polytypic species, we performed a de novo clade

identification process and then took a step forward to gauge possible determinants of clades divergence. In

particular, by analyzing a panel of 92 F prausnitziiMAGs assembled from 740 humanmetagenomes and 55 avail-

able genomes from NCBI, we were able to define 5 distinct clades of the F. prausnitzii complex, on which we

based our further research. Four divergence rate indices (DRIc, NDRIc, DRIg and NDRIg) were constructed

and validated, which, combined with Tajima’s D estimation, allowed for a curated assessment of the non-neutral

divergence rate of each clade down to the gene level. Of interest, the exploitation of gene-level indices to iden-

tify the most rapidly diverging clade-specific marker genes allowed us to dissect the signatures of the possible

selective pressures acting over these clades. In particular, for the clades A, B and C, the most rapidly diverging

genes corresponded to functionalities that may allow to better cope with environmental changes, as well as to

increase the inter-host dispersion capacity. Indeed, clade A was found to rapidly diverge in genes involved in

several stages of the sporulation process, DNA repair and microbial resistance mechanisms, all of which are

important factors for a prokaryotic cell to withstand and counteract environmental stresses. Similarly, clade B re-

vealed a propensity to diverge functionalities related to the two-component system, mRNA expression regula-

tion, aminoacyl-tRNAbiosynthesis, transporters andmembraneproteins, whichmay allow for a bettermetabolic

flexibility in response to environmental stimuli. Finally, clade C combined a certain resistance potential, attribut-

able to DNA repair, sporulation and resistance genes, with functional adaptability, as evidenced by several

genes encoding transcription factors and transporters, and involved in the expression regulation. As a distinctive

feature of clade C, the most rapidly diverging clade-specific genes also included functions related to the mod-

ulation of the immune response, such as the MAM protein, which has been shown to exert anti-inflammatory

activities primarily via NF-kB pathway inibition.31 In contrast, clade D and E showed a different pattern of
6 iScience 25, 105533, December 22, 2022



Figure 5. Different clades show different functions of the clade-specific marker genes under divergence pressure

Five hundred and fifty-five clade-specificmarker genes with NDRIg and DRIg >0 were classified in the KEGG database and

visualized for their F. prausnitzii clade (A to E)-specific presence. Red, presence; cyan, absence. See also Table S5 for the

complete list of KOs under divergence pressure for each clade.
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diverging functionalities, probably related to the exploitation of a copiotrophic gut environment, as indicated by

the distinctive presence of genes coding for amino acid transport andmetabolism, as well as carbohydrates and

lipids transporters.

In our study, we found differences in the clade-level divergence rates between different human populations. In

particular, clade A is diverging faster in hunter-gathering and rural populations, whereas clade D showed an

opposite trend. Taken together, these observations might suggest that F. prausnitzii clades – or at least

someof them - are evolving characteristic functional specializations that are better suited to the context of a spe-

cific host subsistence strategy which, in turn, would favor a more rapid divergence rate. For instance, clade A –

which is evolving functionalities to survive outside host – showed a better fit in traditional populations, where

inter-host dispersion of GM components is still an active process as it is not compromised by the sanitization

practices typical of Western populations.32,33 Conversely, clade D, which is evolving adaptations for efficient

exploitation of different substrates within the gut environment, showed a better fit and faster adaptive evolution

in industrial urban populations, who are well known to consume high-fat/high-protein diets enriched in simple

carbohydrates.34 Future studies including the isolation and cultivation of different F. prausnitzii strains represent-

ing each clade should be crucial to better identify the specific selective pressures driving clade differentiation.

Overall, our findings may provide new insights into the possible factors driving to the differentiation of the

observed subspecies groups in the F. prausnitzii taxon. This information may be helpful for better under-

standing the evolutionary propensity of this health-promoting GM component allowing, from our side, to

adopt sustainable dietary and lifestyle practices to favor its retention in the human gut. This is particularly

important for industrial urban populations, where a decrease in F. prausnitzii diversity and prevalence has

been observed.15 Possibly, the excess of sanitization practices typical of these populations is just facili-

tating the reduction of the F. prausnitzii clades A-C, which are evolving for better outside-host survival

as a strategic factor for increasing their colonization of the human population.

Finally, the procedure we developed and implemented in this work can be virtually applied to every polytypic

species of bacteria and, assuming the use of a sufficient number of genomes andmetagenomes, could provide

new ecological insights over the evolutionary forces shaping the microbial world around and within us.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human metagenomes

d METHOD DETAILS

B Constructing a F. prausnitzii genome panel with additional curated genomes from metagenomes

B Metagenomic assembly to MAGs

B Average nucleotide and genetic distances within the F. prausnitzii complex and between the com-

plex and related species

B Phylogenetic analysis of the F. prausnitzii genomes included in the genome panel
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Figure 6. Clade-level indices show differences among the considered human populations

DRIc and NDRIc indices were computed at the single population level as the median of the individual DRIc and

NDRIc values among the subjects belonging to that population. For each clade (A–E), divergence rates showed

sign of active divergence compared to the housekeeping Control. Clade C resulted particularly consistent across

all populations, whilst clade A and D showed opposite trends, being respectively highly divergent in rural
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Figure 6. Continued

communities and industrial urban populations. The 25th and 75th percentiles are shown with whiskers. Control refers to

the 500 core genes as in Figure 2. The following populations were considered: industrial urbans from Germany, Italy,

Sweden, North America and Japan, rural inhabitants from Peru, and hunter-gatherers (HG) from Peru and Tanzania.

ll
OPEN ACCESS

iScience
Article
B Identification of clade-specific marker genes and abundance analysis

B Functional annotation

B SNP calling procedure and estimation of dN/dS and Tajima’s D values in metagenomic samples

B Implementation of divergence rate indices (DRIs) and Non-synonymous divergence rate indices

(NDRIs)

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.105533.
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Bermúdez-Humarán, L.G. (2020). Butyrate
mediates anti-inflammatory effects of
Faecalibacterium prausnitzii in intestinal
epithelial cells through Dact3. Gut
Microbes 12, 1–16. https://doi.org/10.
1080/19490976.2020.1826748.

7. Moosavi, S.M., Akhavan Sepahi, A., Mousavi,
S.F., Vaziri, F., and Siadat, S.D. (2020). The
effect of Faecalibacterium prausnitzii and its
extracellular vesicles on the permeability of
intestinal epithelial cells and expression of
PPARs and ANGPTL4 in the Caco-2 cell
culture model. J. DiabetesMetab. Disord. 19,
1061–1069. https://doi.org/10.1007/s40200-
020-00605-1.

8. Machiels, K., Joossens, M., Sabino, J., De
Preter, V., Arijs, I., Eeckhaut, V., Ballet, V.,
Claes, K., Van Immerseel, F., Verbeke, K.,
et al. (2014). A decrease of the butyrate-
producing species roseburia hominis and
faecalibacterium prausnitzii defines dysbiosis
in patients with ulcerative colitis. Gut 63,
1275–1283. https://doi.org/10.1136/gutjnl-
2013-304833.

9. Duvallet, C., Gibbons, S.M., Gurry, T., Irizarry,
R.A., and Alm, E.J. (2017). Meta-analysis of
gut microbiome studies identifies disease-
specific and shared responses. Nat.
Commun. 8, 1784. https://doi.org/10.1038/
s41467-017-01973-8.

10. Demirci, M., Tokman, H.B., Uysal, H.K.,
Demiryas, S., Karakullukcu, A., Saribas, S.,
Cokugras, H., and Kocazeybek, B.S. (2019).
Reduced Akkermansia muciniphila and
Faecalibacterium prausnitzii levels in the gut
microbiota of children with allergic asthma.
iScience 25, 105533, December 22, 2022 9

https://doi.org/10.1016/j.isci.2022.105533
https://doi.org/10.1038/s42003-021-01689-y
https://doi.org/10.1038/s42003-021-01689-y
https://doi.org/10.1016/J.NMNI.2021.100928
https://doi.org/10.1016/J.NMNI.2021.100928
https://doi.org/10.3389/FMICB.2017.00114
https://doi.org/10.3109/00365521.2013.828773
https://doi.org/10.3109/00365521.2013.828773
https://doi.org/10.1186/s12866-015-0400-1
https://doi.org/10.1186/s12866-015-0400-1
https://doi.org/10.1080/19490976.2020.1826748
https://doi.org/10.1080/19490976.2020.1826748
https://doi.org/10.1007/s40200-020-00605-1
https://doi.org/10.1007/s40200-020-00605-1
https://doi.org/10.1136/gutjnl-2013-304833
https://doi.org/10.1136/gutjnl-2013-304833
https://doi.org/10.1038/s41467-017-01973-8
https://doi.org/10.1038/s41467-017-01973-8


ll
OPEN ACCESS

iScience
Article
Allergol. Immunopathol. 47, 365–371. https://
doi.org/10.1016/j.aller.2018.12.009.

11. Gurung, M., Li, Z., You, H., Rodrigues, R.,
Jump, D.B., Morgun, A., and Shulzhenko, N.
(2020). Role of gut microbiota in type 2
diabetes pathophysiology. EBioMedicine 51,
102590. https://doi.org/10.1016/J.EBIOM.
2019.11.051.

12. Zhao, H., Xu, H., Chen, S., He, J., Zhou, Y., and
Nie, Y. (2021). Systematic review and meta-
analysis of the role of Faecalibacterium
prausnitzii alteration in inflammatory bowel
disease. J. Gastroenterol. Hepatol. 36,
320–328. https://doi.org/10.1111/jgh.15222.

13. Lopez-Siles, M., Martinez-Medina, M., Abellà,
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18. Bäckhed, F., Roswall, J., Peng, Y., Feng, Q.,
Jia, H., Kovatcheva-Datchary, P., Li, Y., Xia, Y.,
Xie, H., Zhong, H., et al. (2015). Dynamics and
stabilization of the human gut microbiome
during the first year of life. Cell Host Microbe
17, 690–703. https://doi.org/10.1016/j.chom.
2015.04.004.

19. Biagi, E., Franceschi, C., Rampelli, S.,
Severgnini, M., Ostan, R., Turroni, S.,
Consolandi, C., Quercia, S., Scurti, M., Monti,
D., et al. (2016). Gut microbiota and extreme
longevity. Curr. Biol. 26, 1480–1485. https://
doi.org/10.1016/j.cub.2016.04.016.

20. Nishijima, S., Suda,W., Oshima, K., Kim, S.W.,
Hirose, Y., Morita, H., and Hattori, M. (2016).
The gut microbiome of healthy Japanese and
its microbial and functional uniqueness. DNA
10 iScience 25, 105533, December 22, 2022
Res. 23, 125–133. https://doi.org/10.1093/
dnares/dsw002.

21. Obregon-Tito, A.J., Tito, R.Y., Metcalf, J.,
Sankaranarayanan, K., Clemente, J.C., Ursell,
L.K., Zech Xu, Z., Van Treuren, W., Knight, R.,
Gaffney, P.M., et al. (2015). Subsistence
strategies in traditional societies distinguish
gut microbiomes. Nat. Commun. 6, 6505.
https://doi.org/10.1038/ncomms7505.

22. Rampelli, S., Schnorr, S.L., Consolandi, C.,
Turroni, S., Severgnini, M., Peano, C., Brigidi,
P., Crittenden, A.N., Henry, A.G., and
Candela, M. (2015). Metagenome
sequencing of the Hadza hunter-gatherer gut
microbiota. Curr. Biol. 25, 1682–1693. https://
doi.org/10.1016/j.cub.2015.04.055.

23. Manara, S., Asnicar, F., Beghini, F., Bazzani,
D., Cumbo, F., Zolfo, M., Nigro, E., Karcher,
N., Manghi, P., Metzger, M.I., et al. (2019).
Microbial genomes from non-human primate
gut metagenomes expand the primate-
associated bacterial tree of life with over 1000
novel species. Genome Biol. 20, 299. https://
doi.org/10.1186/s13059-019-1923-9.

24. Pasolli, E., Asnicar, F., Manara, S., Zolfo, M.,
Karcher, N., Armanini, F., Beghini, F., Manghi,
P., Tett, A., Ghensi, P., et al. (2019). Extensive
unexplored human microbiome diversity
revealed by over 150, 000 genomes from
metagenomes spanning age, geography,
and lifestyle. Cell 176, 649–662.e20. https://
doi.org/10.1016/j.cell.2019.01.001.

25. Bowers, R.M., Kyrpides, N.C., Stepanauskas,
R., Harmon-Smith, M., Doud, D., Reddy,
T.B.K., Schulz, F., Jarett, J., Rivers, A.R., Eloe-
Fadrosh, E.A., et al. (2017). Minimum
information about a single amplified genome
(MISAG) and a metagenome-assembled
genome (MIMAG) of bacteria and archaea.
Nat. Biotechnol. 35, 725–731. https://doi.org/
10.1038/nbt.3893.

26. Segata, N., Börnigen, D., Morgan, X.C., and
Huttenhower, C. (2013). PhyloPhlAn is a new
method for improved phylogenetic and
taxonomic placement of microbes. Nat.
Commun. 4, 2304. https://doi.org/10.1038/
ncomms3304.

27. Zhao, S., Lieberman, T.D., Poyet, M.,
Kauffman, K.M., Gibbons, S.M., Groussin, M.,
Xavier, R.J., and Alm, E.J. (2019). Adaptive
evolution within gut microbiomes of healthy
people article adaptive evolution within gut
microbiomes of healthy people. Cell Host
Microbe 25, 656–667.e8. https://doi.org/10.
1016/j.chom.2019.03.007.

28. Page, A.J., Cummins, C.A., Hunt, M., Wong,
V.K., Reuter, S., Holden, M.T.G., Fookes, M.,
Falush, D., Keane, J.A., and Parkhill, J. (2015).
Roary: rapid large-scale prokaryote pan
genome analysis. Bioinformatics 31, 3691–
3693. https://doi.org/10.1093/
bioinformatics/btv421.

29. Tajima, F. (1989). Statistical method for
testing the neutral mutation hypothesis by
DNA polymorphism. Genetics 123, 585–595.

30. Kanehisa, M., and Goto, S. (2000). KEGG:
kyoto encyclopedia of genes and genomes.
Nucleic Acids Res. 28, 27–30. https://doi.org/
10.1093/nar/28.1.27.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Faecalibacterium prausnitzii reference genomes NCBI Accession numbers reported in Table S1

Human gut metagenomes Asnicar et al.16 Accession numbers reported in Table S1

Human gut metagenomes Backhed et al.18 Accession numbers reported in Table S1

Human gut metagenomes Biagi et al.19 Accession numbers reported in Table S1

Human gut metagenomes Costea et al.17 Accession numbers reported in Table S1

Human gut metagenomes Nishijima et al.20 Accession numbers reported in Table S1

Human gut metagenomes Obregon Tito et al.21 Accession numbers reported in Table S1

Human gut metagenomes Rampelli et al.22 Accession numbers reported in Table S1

Rumiococcaceae reference genomes

(here termed ‘‘Other Species - OS’’)

NCBI NCBI: PRJNA224116

Software and algorithms

SRA toolkit 2.8.0 Leinonen, Sugawara and

Shumway, 2011

https://github.com/ncbi/sra-tools

FastQC 0.11.8 Andrews,35 http://www.bioinformatics.babraham.ac.uk/

projects/fastqc

KneadData 0.7.2 McIver et al.36 https://github.com/biobakery/kneaddata

MetaWRAP 1.0.2 Uritskiy et al.37 https://github.com/bxlab/metaWRAP

MetaPhlAn2 2.7.5 Truong et al.38 https://github.com/biobakery/MetaPhlAn

MegaHIT 1.1.2 Li et al.39 https://github.com/voutcn/megahit

MetaBAT2 2.12.1 Kang et al.40 https://bitbucket.org/berkeleylab/metabat

MaxBin2 2.2.5 Wu et al.41 https://sourceforge.net/projects/maxbin2/

CheckM 1.0.7 Parks et al.42 https://github.com/Ecogenomics/CheckM/wiki

PhyloPhlAn3 0.30 Asnicar et al.43 https://github.com/biobakery/phylophlan

Pyani 0.2.6 Pritchard et al.44 https://pypi.org/project/pyani/

Prokka 1.14.6 Seeman,45 https://github.com/tseemann/prokka

ROARY 3.13.0 Page et al.28 https://github.com/sanger-pathogens/Roary

PRANK v.170427 Löytynoja,46 http://wasabiapp.org/software/prank/

Diamond 0.9.9.110 Buchfink et al.47 https://github.com/bbuchfink/diamond

MAFFT 7.310 Standley and Katoh,48 https://mafft.cbrc.jp/alignment/server/

trimAl 1.2rev59 Capella-Gutiérrez et al.49 http://trimal.cgenomics.org/

FastTree 2.1.10 Price et al.50 https://bio.tools/fasttree

RAxML 8.1.15 Stamatakis,51 https://cme.h-its.org/exelixis/web/software/raxml/

EggNOG mapper 1.0.3 Jensen et al.52 https://github.com/eggnogdb/eggnog-mapper

HMMER 3.1b2 Eddy,53 http://hmmer.org/

Blast 2.2.31+ Altschul et al.54 https://blast.ncbi.nlm.nih.gov/

Bowtie2 2.3.5 Langmead and Salzberg,55 http://bowtie-bio.sourceforge.net/bowtie2

SAMtools 1.9 Li et al., 2009, 201156,57 http://www.htslib.org/

Bcftools 1.9 Danecek et al.2011,202158,59 https://samtools.github.io/bcftools/bcftools.html

Vcftools 0.1.16 Danecek et al., 2011,202158,59 http://vcftools.sourceforge.net/

EMBOSS transeq 6.6.0 Rice et al.60 https://www.ebi.ac.uk/Tools/st/emboss_transeq/

ClustalW 2.1 Thompson et al.,61 Larkin et al.62 http://www.clustal.org/clustal2/

PAL2NAL v14 Suyama et al.63 https://bio.tools/pal2nal

PAML 4.9j Yang, 1997, 200764,65 http://abacus.gene.ucl.ac.uk/software/paml.html
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RESOURCE AVAILABILITY

Lead contact

Further information and request for resources and reagents should be directed to andwill be fulfilled by the

lead contact, Simone Rampelli (simone.rampelli@unibo.it).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All human gut metagenomic sequences used in this study are available in public repositories (see

Table S1 for accession numbers).

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human metagenomes

Human metagenome datasets used in this study are from 7 previously published studies, are available in

public repositories (see Table S1 for accession numbers), and included 747 subjects spanning different

countries (North America, Peru, Sweden, Germany, Italy, Tanzania and Japan) and lifestyles (industrial

urban populations, hunter-gatherers and rural communities).

METHOD DETAILS

Constructing a F. prausnitzii genome panel with additional curated genomes from

metagenomes

A panel of 147 F. prausnitzii genomes comprising the entire set of available genomes through the NCBI

RefSeq Genome repository (55 genomes, https://www.ncbi.nlm.nih.gov/refseq), and 92 manually curated

MAGs (see the paragraph below ‘‘metagenomic assembly to MAGs’’) were collected for performing the

analysis. Metagenomic samples from reference studies16–22 were downloaded via Sequences Read Archive

(SRA).66 We included gut microbiome samples from individuals from different geographical regions and

lifestyles for taking into consideration different aspects of gut microbiome variation. In particular, consid-

ered regions were: North America (urbans), Peru (rural inhabitants and hunter-gatherers), Sweden (urbans),

Germany (urbans), Italy (urbans), Tanzania (hunter-gatherers) and Japan (urbans). Sequences were quality-

checked with FastQC v.0.11.835 and filtered for human reads using KneadData v0.7.2,36 in case of single-

end reads, and the MetaWRAP command ‘‘read_qc’’ (v1.0.2)37 for paired-end reads. The panel was

complemented with further 11 genomes from species of the Ruminococcaceae family that are considered

as outgroup for clade definition in the subsequent analyses. Accession numbers of the F. prausnitzii NCBI

genomes, metagenomic samples and OS reference genomes included in the study are provided in

Table S1.

Metagenomic assembly to MAGs

To profile the microbial community composition contained in each quality-filtered sample, shotgun meta-

genomic sequencing data were analysed with MetaPhlAn2.38 Reads from samples containing at least 1%

F. prausnitzii were assembled using MegaHIT.39 The minimum contig length considered for further

analyses was set by default to 1kb. MetaBAT 240 and MaxBin 241 algorithms were used for the binning

procedure, followed by quality analysis with CheckM.42 Only genome bins with >95% bin completeness

and <5% bin contamination were retained and taxonomically classified using PhyloPhlAn 3.043

(databaseSGB.Dec19) and MetaWRAP with the NCBI nucleotide and taxonomy databases.67 Ninety-two

high-quality MAGs classified at species level for F. prausnitzii were included within the genome panel.

Average nucleotide and genetic distances within the F. prausnitzii complex and between the

complex and related species

The average nucleotide identity (ANI) pairwise distances were computed using pyani (version 0.2.6; option

‘-m ANIb’)44 for all the F. prausnitzii genomes and 11 publicly available reference genomes from other
iScience 25, 105533, December 22, 2022 13

mailto:simone.rampelli@unibo.it
https://www.ncbi.nlm.nih.gov/refseq


ll
OPEN ACCESS

iScience
Article
species of the Ruminococcaceae family included in our panel. Percentage identity was converted into a dis-

tance measure, and distances scores were filtered to include only the pairwise comparisons where align-

ment lengths exceeded 500,000 bp.

The pairwise genetic distances between the same genomes compared above were calculated using a pipe-

line that included Prokka,45 ROARY28 and the package ‘‘vegan’’ of the R software.68,69 In brief, each genome

was first analysed by Prokka with the ‘–fast’ flag, to identify open reading frames.70 The core genome align-

ments were produced utilizing PRANK46 included within the ROARY pipeline. For this step we set the min-

imum percentage identity for gene clustering to 90% and the minimum required presence for defining core

genes to 90% of genomes. The pangenome information obtained, comprising a binary table with gene

presence/absence, was used for building a genome-based Jaccard dissimilarity pairwise distance matrix

in R using the ‘‘vegdist’’ command.68

Clades were finally defined by hierarchical Ward-linkage clustering using both distance matrices. Permu-

tational multivariate analysis of variance was used to verify whether the clades were significantly different

from each other in terms of ANI and gene contents (FDR< 0.001).
Phylogenetic analysis of the F. prausnitzii genomes included in the genome panel

A phylogenetic tree was built using the genome panel and PhyloPhlAn 226. The configuration file was

customized as by Tett at al.,71 using Diamond v0.9.9.11047 for the mapping step, MAFFT v7.31048 for the

multiple sequence alignment, trimAl version 1.2rev5949 for trimming, FastTree v2.1.1050 for the first tree

generated and RAxML v8.1.1551 for the final tree. In addition to the customized configuration file, the

parameters used were ‘–diversity low –fast’.
Identification of clade-specific marker genes and abundance analysis

Marker genes for each clade were identified by analysing the F. prausnitzii pangenome obtained with the

Prokka and ROARY pipelines (see the ‘‘average nucleotide and genetic distances within the F. prausnitzii

complex and between the complex and related species’’ paragraph above for further information). In

particular, we defined as ‘‘marker genes’’ for a given clade, the genes present in at least 95% of the ge-

nomes of that specific clade and completely absent in all the others (see Table S7 for the number of marker

genes identified for each clade). Nucleotide sequences for each pool of marker genes were used for build-

ing clade-specific databases with bowtie2-build.55 To determine if a given clade was present in a metage-

nomic sample, the reads were mapped to the clade-specific markers using Bowtie255 and then processed

to evaluate the marker genes coverage.72 A marker was scored present if it had R0.5X coverage and a

clade present if at least 50% of its clade-specific markers were hit. Finally, clade relative abundances for

each metagenomic sample were calculated as the mean clade marker coverage multiplied by the

F. prausnitzii genome size (bp) and divided by the metagenome size (bp).
Functional annotation

The functional annotation step was performed using the EggNOG mapper (version 1.0.3)52 on the protein

sequences identified by Prokka with the ‘-d bact’database option. The KEGG Brite Hierarchy was used to

screen the EggNOG annotations. Fisher’s exact test with Bonferroni’s correction was used to identify sig-

nificant differences (p<0.01) in gene content between clades.

We also sought for differences in the level of CAZymes.73 Gene sequences were identified with

HMMSEARCH53 against the dbCAN HMMs v6 database,74 using default parameters and applying post-

processing stringency cut-offs as suggested by the authors (if alignment length >80 AA, E-value is filtered

for values < 1e-5, otherwise for values < 1e-3; then a cut-off is applied based on the covered fraction of

HMM >0.3).74 Only CAZy families that were significantly different in at least one clade (Bonferroni-cor-

rected Fisher’s exact test, p<0.01) were retained and graphically represented using the R package

‘‘gplots’’.75

Finally, the genes encoding the MAM protein of F. prausnitzii were detected by aligning the protein

sequence31 against the full set of genes from the F. prausnitzii pangenome using protein-protein BLAST

(v2.2.31+).54 For a complete list of marker genes with annotated function, refer to Table S8.
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SNP calling procedure and estimation of dN/dS and Tajima’s D values in metagenomic

samples

SNP calling procedure was performed for the clade-specific marker genes, 10 selected housekeeping

genes (recA, rplS, rplI, purN, mreB, maf, fmt, gyrB, rpoB, proC) (Table S3), and 500 randomly selected

F. prausnitzii core genes as genes present in at least 95% of genomes within our panel. Metagenomic sam-

ples showing at least 1% F. prausnitzii, ensuing from the previous MetaPhlAn 239 analysis, were aligned

against the databases with Bowtie255 using the ‘–end-to-end’ and ‘–very-sensitive’ parameters and then

sorted using SAMtools.56,57 Candidate SNPs were identified using BCFtools mpileup,58 with the ‘–ploidy’

parameter set to 1, to extract all the variants in vcf format. VCFutils varFilter was then used to filter the min-

imum depth to 10 reads and the QUAL score >200. For each position, only one point mutation was consid-

ered, and the SNP-per-base values were calculated for each gene, dividing the total number of identified

SNPs in a gene sequence by its length (bp).

Consensus sequences retrieved from the metagenome alignment and reference sequences were then

translated into proteins using EMBOSS transeq 6.6.060 and the proteins were aligned using ClustalW

2.1.61,62 Protein alignment was converted into codon-aligned PAML alignment using PAL2NAL v1463 and

analyzed using the CODEML program of the PAML phylogenetic analysis package (v4.9j),64,65 to compute

dN/dS. Codon frequencies were set to ‘3 3 4’ and no phylogenetic tree was submitted. The outputs of the

pairwise comparison between reconstructed consensus genes from metagenomes and reference genes

were considered and filtered for 0.01 < dS < 2, because values of dS % 0.01 or R 2 entail unreliable esti-

mate of dN/dS since the sequences are too similar or too divergent.

Tajima’s D values were computed with vcftools 0.1.1659 over each gene sequence starting from previously

identified and quality-filtered polymorphisms. Both population genetic parameters (dN/dS and Tajima’s D)

for the F. prausnitzii clades were calculated for the same set of marker genes and 500 core genes used for

the SNP calling procedure. The parameters were calculated separately for each gene, then the median

values were used to represent the parameters for each specific clade.
Implementation of divergence rate indices (DRIs) and Non-synonymous divergence rate

indices (NDRIs)

In this study we introduced Divergence Rate Indices (DRIs) and Non-Synonymous Divergence Rate Indices

(NDRIs), as clade- or gene-specific indices to assess sequence divergence.

DRI indices were estimated using the SNP-per-base values previously computed. For each metagenomic

sample we calculated the DRI for a specific gene of interest (DRIg), using the number of SNP-per-base de-

tected for that specific gene of interest (MG), the median number of SNP-per-base detected for 10 house-

keeping genes (MH), and calculating the ln of the ratio between the two values. Analogously, we defined

the clade-level DRI (DRIc) by considering the median number of SNP-per-base for the entire set of

clade-specific genes (ME), the median value of SNP-per-base for the set of housekeeping genes (MH)

and calculating the ln of the ratio between the two values.

On the other hand, NDRI indices were estimated using the dN/dS values previously computed. For each

metagenomic sample we calculated the NDRI for a specific gene of interest (NDRIg), using the value of

dN/dS ratio detected for that specific gene of interest (mG), the mean value of dN/dS ratio detected for

the 10 housekeeping genes (mH), and calculating the ln of the ratio between the two values. Analogously,

we defined the clade-level NDRI (NDRIc) by considering the mean value of dN/dS ratio for the entire set of

clade-specific genes (mE), the mean value of dN/dS ratio for the set of housekeeping genes (mH) and calcu-

lating the ln of the ratio between the two obtained values.

DRIc = ln
ME

MH
DRIg = ln

MG

MH
NDRIc = ln
mE

mH

NDRIg = ln
mG

mH

Higher values for all indices indicate a higher number of SNPs or non-synonymous substitutions in the spe-

cific gene/group of genes compared to housekeeping genes.
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WhenMH or mH values were equal to zero, we substituted the value with the lowest MH or mH detected in the

global human population. Furthermore, when both dividend and divisor were equal to zero, we set the

indices to zero. These corrections had no effect on our results since we only focused on positive values

to determine the divergence.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was performed using R software v4.0.3. The pairwise genetic distances between the

same genomes of the panel obtained via the Prokka/ROARY pipeline were analysed with the R package

‘‘vegan’’. The Jaccard dissimilarity pairwise distancematrix was built using the ‘‘vegdist’’ command. Permu-

tational multivariate analysis of variance was used to verify whether the clades were significantly different

from each other in terms of ANI and gene contents (p value corrected for multiple testing applying

Benjamini-Hochberg false discovery rate,76FDR< 0.001). Fisher’s exact test with Bonferroni’s correction

was used to identify significant differences (p< 0.01) in gene content and CAZymes counts between clades.

Graphical representations were made using the R packages ‘‘gplots’’, ‘‘ggplot2’’.
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