
29 June 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Low-Latency Anomaly Detection on the Edge-Cloud Continuum for Industry 4.0 Applications: the SEAWALL
Case Study / Bacchiani, Lorenzo; De Palma, Giuseppe; Sciullo, Luca; Bravetti, Mario; Di Felice, Marco;
Gabbrielli, Maurizio; Zavattaro, Gianluigi; Della Penna, Roberto. - In: IEEE INTERNET OF THINGS
MAGAZINE. - ISSN 2576-3180. - ELETTRONICO. - 5:3(2022), pp. 32-37. [10.1109/IOTM.001.2200120]

Published Version:

Low-Latency Anomaly Detection on the Edge-Cloud Continuum for Industry 4.0 Applications: the SEAWALL
Case Study

Published:
DOI: http://doi.org/10.1109/IOTM.001.2200120

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/903914 since: 2023-09-29

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/IOTM.001.2200120
https://hdl.handle.net/11585/903914


Low-Latency Anomaly Detection on the
Edge-Cloud Continuum for Industry 4.0
Applications: the SEAWALL Case Study

Lorenzo Bacchiani∗, Giuseppe De Palma∗, Luca Sciullo∗,
Mario Bravetti∗, Marco Di Felice∗, Maurizio Gabbrielli∗, Gianluigi Zavattaro∗

Roberto Della Penna†∗Department of Computer Science and Engineering, University of Bologna, Italy
†Bonfiglioli S.P.A., Italy

Abstract—Several emerging Industry 4.0 applications related
to the monitoring and fault diagnostic of critical equipment
introduce strict bounds on the latency of the data processing.
Edge computing has emerged as a viable approach to mitigate
the latency by offloading tasks to nodes nearby the data sources;
at the same time, few industrial case studies have been reported
so far. In this paper, we describe the design, implementation and
evaluation of the SEAWALL platform for the heterogeneous data
acquisition and low-latency processing in Industry 4.0 scenarios.
The framework has been developed within the homonymous
project founded by the Italian BIREX industrial consortium and
involving both academic and industrial partners. The proposed
framework supports data collection from heterogeneous produc-
tion line machines mapped to different IoT protocols. In addition,
it enables the seamless orchestration of workloads in the edge-
cloud continuum so that the latency of the alerting service is
minimized, while taking into account the constrained resources
of the edge servers. We evaluate the SEAWALL framework in a
small-case industrial testbed and quantify the performance gain
provided by the dynamic workload allocation on the continuum.

Index Terms—Industry 4.0, Industrial Internet of Things
(IIoT), Edge computing, Web of Things (WoT), Workload or-
chestration

I. INTRODUCTION

In Industry 4.0 scenarios, the Internet of Things (IoT) and
the cloud computing are considered the key technological
enablers of industrial process monitoring and automation
[1]. Among the enabled applications, early fault detection
of assembly line machines plays a crucial role to minimize
operation downtime and to maximize production efficiency.
Most of the reported deployments of industrial fault detec-
tion systems are based on a cloud-centric approach, i.e. the
sensory data collected from the assembly line machines are
transferred to remote cloud infrastructures where they are
stored and analyzed e.g. by using Machine Learning (ML)
tools. While this approach can ensure the service scalability
and the possibility to cope with dynamic and massive data
flows, it does not fit the requirements of emerging, time-
critical industrial applications that introduce strict Quality of
Service (QoS) requirements in terms of reliability and latency
of the operations. This is the case, for instance, of industrial
robots or unmanned/guided vehicles used for transportation of
tools and products [2]. How to support low-latency operations

in time-critical industry 4.0 scenarios is becoming a major
research challenge and pushing the adoption of novel solutions
in two complementary domains. On the communication side,
standards like Time Sensitive Networking (TSN) and the 5G
[3] are envisioned to minimize the data acquisition latency
while ensuring the deterministic delivery of messages. On
the processing side, edge computing solutions [4] have been
largely investigated as a viable solution to reduce the process-
ing latency and to save bandwidth. Generally speaking, edge
computing is a relatively new paradigm that attempts to offload
computational tasks to devices nearby the IoT data sources:
example of edge devices may include micro-controllers (in
this case, they are also referred as the extreme edge), micro-
computers, Base Stations (BS) or servers, all characterized
to be geographically close to sources of data. To do that,
edge computing solutions involve multiple components [5]:
(i) edge caching, i.e. techniques allowing to store portions of
data directly on the edge devices; (ii) edge intelligence, i.e.
techniques aimed at extracting knowledge from the cached
data, often adapting existing ML techniques to be executed
on hardware constrained edge devices; and (iii) edge offload,
i.e. the possibility of assign tasks to other devices in case a
single edge node does not have enough resource to execute
them. Regarding the latter, several recent works enlarge such
concept through the emerging paradigm of the edge-cloud
continuum, which refers to possibility to seamlessly allocate
resources and workloads to edge/cloud or intermediate nodes
based on resource utilization or QoS metrics [6]. At the same
time, while several components of the continuum, such as
the task allocation policies, have been investigated, few works
report real-world deployments in industrial scenarios.
In this paper, we attempt to fill such gap by describing
the design and implementation of a software architecture
for Industry 4.0 scenarios enabling edge-cloud continuum
operations of machine monitoring and fault detection. The
architecture has been deployed within the SEAmless loW
lAtency cLoud pLatforms (SEAWALL) project founded by the
BIREX1 consortium, a competence center for the Industry 4.0
recently established in Bologna, Italy. The project involved

1https://bi-rex.it/en/



ON FIELD DATA 

IIOT EDGE GATEWAY 

Edge	Runtime	

Data	
Acquisition	

Data	flow	
service		

Feature	
engineering	

Data	
labeling	

Alert	
service	

CNC	

PLC	

CLOUD 

Storage Training Model 

Cloud 
Runtime 

1

2

3Real-time	

Model	update	

Manual	activity	

Batch	

Machine	Learning	

Data	flow	

 CONTEXT DATA 

MES	

OPC UA MQTT 

ML Feature 
Extraction 

ML Feature Data 
Labelling 

ML Model 
Generation 

Data 
Ingestion Edge Buffering 

Edge	Timeseries	
(Historian)	

IIoT Message Bus 

DATA VISUALIZATION 4

Custom 

Data 
Contextualization 

Dashed	arrows		

Solid	arrows		

Fig. 1: Previous architecture of the case study.

academic researchers and companies, the latter being technical
services providers or end-users (i.e., manufacturing companies
interested in the digitalization of industrial processes). More
in detail, the proposed architecture allows to address two main
requirements of Industry 4.0 scenarios, respectively the data
heterogeneity support and the time-aware data processing sup-
port. Regarding the first, the SEAWALL framework employs
the emerging Web of Things (WoT) standard promoted by the
World Wide Web Consortium (W3C) to design effective data
acquisition strategies from heterogeneous production lines, by
abstracting from the underlying IoT protocols. In this way,
different machines can be easily integrated into our framework,
decoupling the data processing from the acquisition. Regarding
time-aware data processing, the SEAWALL framework enables
the dynamic orchestration of workloads among the nodes of
the edge-cloud continuum. The data processing services can
be dynamically activated/deactivated on different edge/cloud
nodes so that the overall latency is minimized while the
edge servers are not overloaded. To this aim, we validate our
platform in a use-case proposed by an industrial automation
company (Bonfiglioli S.P.A.). The use case focuses on the
seamless allocation of a Data Alerting (DA) service - in charge
of running anomaly detection algorithms over the data of a
production line - between edge and cloud nodes. We evaluate
different policies for the DA allocation by varying the amount
of data generated by the production line and measuring the
corresponding latency to generate the alarm. In [7], a pre-
liminary description of the SEAWALL architecture has been
presented. Here, we extend such work with implementation
details and experimental results. .
The rest of the paper is structured as follows. In Section II we
review existing edge-cloud workload allocation schemes for

the IoT. The industrial use case within the BIREX project is
described in Section III. Section IV introduces the SEAWALL
architecture. The implementation of the SEAWALL modules
is detailed in Section V. Experimental results for a small-case
industrial testbed are reported in Section VI. Conclusions and
future works are in Section VII.

II. RELATED WORKS

IoT applications are composed of multiple, interacting com-
ponents enabling the storage, processing, and valorization of
sensory data as well as the actuation on the target environment.
For this reason, the micro-service patterns have emerged as
a viable approach to decompose an IoT application into a
set of loosely coupled services [6]; the latter can be con-
tainerized via virtualization techniques such as Docker2 and
deployed at different nodes of the compute continuum thanks
to orchestration services such as Kubernetes3. The question
of how the continuum can help meet the QoS requests is a
novel yet investigated topic for generic micro-service-based
applications; at the same time, few studies refer to the IoT
or to Industry 4.0 scenarios. Efficient workload allocation
is the major concern in most of these papers. In [8] the
authors assume that an IoT application can be modeled as
a set of micro-services (called Processing Elements) forming
a Directed Acyclic Graph (DAG); hence, they formulate the
Processing Elements (PE) scheduling problem where the goal
is to minimize the latency of the whole PE workflow. Similarly,
the framework in [9] attempts to allocate Web Things (WTs)
to nodes of the continuum by taking into account the interde-
pendencies among the WTs so that the in-network overhead

2https://www.docker.com
3https://kubernetes.io



PRODUCTION LINE 

POD

EDGE NODE

REQUEST

DATA

MEASUREMENTS

A
LE

R
TS

CLOUD NODE (WORKER)
CLOUD NODE (MASTER)

MODEL

TRAINING

ML MODEL

(Anomaly
Detection)

ML MODEL

(Anomaly

Detection)

CONTROL

PLANE


METRICS

POD
PLANS

CNC

PLC

R
EQ

U
ES

T

A
N

O
M

A
LY

? 



(Y
ES

/N
O

)

MQTT 

BROKER

STORAGE

ED
G

E 
LA

YE
R

DATA

PROCESSOR

DATA
COLLECTOR


POD

WORKLOAD

ORCHESTRATOR

DATA

PROCESSOR


POD
REQUEST

ANOMALY? 

(YES/NO)

POD

DATA

ALERTING


TASK

MIGRATION

C
LO

U
D

 L
AY

ER
DASHBOARD

Fig. 2: The proposed cloud/edge architecture and the enabling technologies.

is minimized. The placement of components must find the
optimal trade-off between conflicting requirements in terms of
QoS requests from users/applications and unpaired resource
and cost availability on edge and cloud nodes. For these
reasons, multi-objective workload allocation strategies have
been proposed like in [10] where the placement framework
attempts to jointly minimize the service completion time, the
energy computation and communication consumption, and the
storage and communication cost. Other recent studies raise
the concern about the dynamic variation of metrics used for
allocation policies, such as execution time or CPU utilization,
which can vary significantly over time or on different nodes
of the continuum, and, for this reason, they employ ML-based
solutions to learn workload patterns [11]. In the computing
continuum environment proposed in [12], each edge cluster
contains a scheduler node in charge of receiving requests from
clients and of taking decisions whether to execute the task
locally, on the cloud or to reject it; the decision is based on a
Reinforcement Learning (RL) engine which receives a positive
reward for every task completed within a deadline. All the
previous studies assume a global IoT workload balance. Vice
versa, [13] proposes a decentralized load-balancing system
for IoT service placement which aims at reducing the cost
of service execution by enabling each edge/cloud node to
generate a predefined number of possible service placement
plans. Finally, a further issue to consider is how to implement
the workload allocation. In allocation-only schemes, containers
are switched on/off at different nodes but no software mobility
occurs. Vice versa, migration-based strategies enable container
transfer among nodes of the continuum, in a stateless or
stateful way as discussed in [14].

III. INDUSTRY 4.0 USE CASE

he SEAWALL platform was designed as a solution to a case
study proposed by Bonfiglioli S.P.A, a world leader manufac-
turer in industrial automation, mobile machinery, and wind

energy. It concerns, see Figure 1, an edge-cloud continuum
system to control and perform anomaly detection over CNC
(Computer Numerical Control) or PLC (Programming Logic
Controller) machines. Such machines produce various kinds
of data, transmitted following specific protocols like OPC
UA, describing their current working state. The data must be
stored to perform data analysis, including the production of
anomaly detection models, by exploiting ML techniques. Due
to the heavy amount of storage and of computational resources
needed to store the data and to train the ML models, this part
of the system is expected to be deployed in the cloud. The
ML models are periodically re-trained by considering more
recent data, and are then used within a control-loop that,
due to low-latency constraints, is expected to be deployed on
the edge. The control loop is triggered by an alert service
that periodically uses the ML model to classify the most
recent data acquired from the production line machines and the
outcomes of the predictions are communicated to the machine
operators. The use-case cannot be considered a strict real-time
IoT system like the robotics/unmanned vehicles applications
mentioned in the Introduction, due to the usage of ML tech-
niques (which are generally delay-tolerant) and of best-effort
networking solutions, and of the nature of the system output,
which is mainly informative and does not involve automatic
actions. However, there is still the need of minimizing the
latency of the data alerting process for the human operators.
The realization of the system has been developed by adopting
edge-cloud solutions offered and managed by a public cloud
provider.

This system has been already successfully experimented
on one machine. Nevertheless, the company found out that
the large-scale adoption of the current architecture is not
possible for several limitations. We mention below some of
such limitations:

• a unique ML classifier deployed in the edge cannot
manage an intensive flow of data, possibly produced in



parallel by several machines connected to the same edge
gateway;

• the implementation of several independent control loops
(one for each machine, or one for each flow of data pos-
sibly generated by different sensors in the same machine)
cannot be managed due to the limited edge storage and
parallel computing resources;

• the current system does not support dynamic automatic
scaling of the computing resources at the edge level;

• the adoption of an edge-cloud solution managed by public
cloud providers imposes further limitations; in particular,
it is not possible to dynamically migrate components from
edge to cloud, and vice versa, depending on customer-
defined load-balancing rules.

In the next Sections, we will present the design, implementa-
tion, and experimental validation of an alternative architecture
that attempts to overcome the serious limitations of the existing
deployment.

IV. ARCHITECTURE

The architecture proposed in Figure 2 includes two main
layers, i.e., the cloud and edge layers and it is micro-service
oriented, with each macro-functionality that has been mapped
to a single component. More in detail, at the edge layer we
find all services in charge of producing and collecting data.
Data is generated by a production line, that can be considered
as the extreme edge layer of the architecture, and that consists
of a set of industrial machineries equipped with heterogeneous
sensors monitoring the working conditions of the machineries
themselves. We mapped the entire production line to a W3C
Web Thing to take benefit of the new W3C Web of Things
(WoT) standard [15] in terms of interoperability. As a result,
we abstract in this paper from the specific machinery in use
and from the sensor types, since new kind of machineries can
be easily added by providing the WoT mapping interface. An
edge node, close to the data source, hosts two services, a static
one -the Data Collector (DC)- for gathering data through the
OPC UA protocol, and a dynamic one -the Data Processor
(DP)- that instead is moved between the cloud and edge layers
depending on the specific needs. The DP can be invoked to
retrieve the latest measurements from the DC and to execute
anomaly detection for discovering a possible misbehavior of
the production line. The detector is constituted by a pre-
trained Machine Learning (ML) model. In this paper, we do
not propose any new ML technique for anomaly detection,
since the focus is on where to allocate the workload of the
processing task more than on the algorithm itself. As a result,
the SEAWALL platform is general enough to support multiple
anomaly detection algorithms, assuming that the code for
training and inference is provided and properly connected to
the DP interface. In the cloud layer we find the Data Alerting
(DA) service, which is in charge of periodically triggering
the DP in order to get in output the response of a possible
anomaly detection. Furthermore, the cloud nodes host: (i) a
storage service that acts as data lake of alerts and raw sensory
data of the production line; (ii) an IoT dashboard showing the

current machineries conditions and triggered alarms and (iii)
and the workload orchestrator service, whose task is to monitor
whether the DP has to be moved between cloud and edge, for
instance when specific latency conditions have been exceeded.
The dotted lines in the Figure highlight the possibility of re-
training the ML model when new data available are available
on the cloud, and of transferring back the updated parameters
to the DP service. We note that under normal operations, the
anomaly detector is executed on the cloud given the higher
availability of computational resources than the edge node.
However, different policies can be easily implemented and
deployed in the workload orchestrator in order to adapt the
entire system to the specific use case.

V. IMPLEMENTATION

In this Section we briefly present the main technologies
used for the implementation of the architecture described in
Section IV. The production line has been mapped to a Thing
Description (TD) in order to be exposed as a Web Thing by
the DC service; the latter communicates with the physical
machineries through OPC UA although it may acquire their
data through any WoT-compliant protocol. For this purpose,
we used Node-wot4, the official NodeJS WoT framework that
is able to consume and produce a Web Thing adhering to the
W3C WoT Scripting API indications5. Both the DP and the
DA services are written in Typescript and run over the NodeJS
runtime6. In particular, they expose some REST API for the
data interaction. The MQTT broker is the open-source Eclipse
Mosquitto7 tool, while the storage system is constituted by
an InfluxDB8 instance. Finally, the dashboard module is an
Angular web application. The whole architecture has been
implemented through containerization, i.e., each service is a
Docker container managed through a Kubernetes controller
running on the Master node. We continuously monitor the
performance of the DA service through the Istio framework9,
in terms of latency of the alert generation: the latter includes
both the latency for data retrieval (from the DP module) and
the latency of the ML model execution. These metrics are
then used by our custom Workload Orchestrator service to
decide where to allocate the DP, i.e., whether on the cloud or
edge layer. The current policy offloads the DP service to the
edge node when the latency of the alert generation becomes
higher than a threshold tunable by the system administrator
through a simple dashboard. The output of the Workload
Orchestrator is implemented by the Kubernetes Control Plane
by activating/deactivating PODs at different nodes, without
any active code migration.

VI. PERFORMANCE EVALUATION

We test the effectiveness of our edge-cloud continuum
approach using the settings described in Table I: we deploy

4https://github.com/eclipse/thingweb.node-wot
5https://www.w3.org/TR/wot-scripting-api/
6https://nestjs.com/
7https://mosquitto.org/
8https://www.influxdata.com/
9https://istio.io/



Fig. 3: Latency-Size relation for DP in cloud or in edge.

a Kubernetes cluster composed of 3 nodes, provisioned by
Digital Ocean, each one with 2vcpu and 4gb. More precisely,
we have 2 nodes situated in London, one of which is the
master node with the Kubernetes control plane and the other
is a worker node embodying the cloud layer. The third node
is situated in San Francisco as the edge layer. To evaluate the
performance of our architecture, we place the DA in the cloud
layer, the DC in the edge layer, and allow the placement of
the DP either on the edge or in the cloud.

Nodes 3

Node locations London, San Francisco
Node resources 2vcpu with 4gb RAM
Request payload 3500 B
Workload size x*x*3500 with x ∈ [20 140] B

Request interval 3s
Monitoring interval 10s

TABLE I: Experimental settings.

The DA has a request interval of 3 seconds, while the
workload orchestrator has a monitoring interval of 10 seconds.
The workload used to test our architecture is composed of
synthetic data reproducing the same pattern of real data used
in Bonfiglioli S.P.A.

The first experiment aims at evaluating the performances of
the DP on edge, and in the cloud, under different amounts of
data sent to the DP by the DC. As possible amounts of data, we
pick a value x from the interval [20, 140] and then compute the
actual size as x∗x∗3500 bytes (3500 is the original size of the
payload of a single request). We consider seven possible values
for x, starting from 20 and increasing it by 20 for six times.
For each value of x we execute ten runs in which we perform
requests to the DC, and we depict in Figure 3 the measured
latencies with a box plot, indicating the minimal, maximal, and
median latency, and latency variance. The experimental data

show that, despite the workload size grows, the increment in
latency with the DP in the edge layer is very limited, while
for the DP service fixed in the cloud layer the performance
rapidly degrades, as the workload size increases. These two
behaviors follow from the different network latencies for the
communications between the DP and the DC: communication
is obviously faster when they are both placed on the edge
(hence physically in the same data center in San Francisco)
while it is slower when they are placed in the two distinct
edge and cloud layers (hence 1 in San Francisco and 1 in
London). This confirms the expected advantages of the data
locality principle, i.e. moving services instead of data.

In the light of this initial observation, we decided to consider
a realistic pipeline in which the size of data sent by the DC
varies over time, and the DP is moved from cloud to edge,
and vice versa, depending on the actual latency/size of the
data. The variation of the size of data has been generated by
randomly picking a value x ∈ [20, 140], and then computing
the actual size as described above. The workload orchestrator
keeps the DP service in the cloud until the latency is under a
2 seconds threshold. When it increases, the service is moved
to the edge layer and kept there as long as the size is above a
threshold resulting from a combination of latency and size: the
DP service can return in the cloud only if latency ≤ 1s and
request size < 11MB. We extract the request size value from
Figure 3: a size of 11MB is related to a latency of 2 seconds for
the DP in the cloud layer. We executed 35 runs of this single
pipeline example, which confirm there is a low variance of
performance. In Figure 5, we present 4 runs that we consider
particularly significant as they follow the 2 patterns observed
in our experiments. These patterns execute the same mobility
operations except for t = 140s: Run 1 − 2 don’t swap (they
swap at t = 150s), while the others swap. Figure 5 also shows
that our mobility has no overhead on performance: it captures



Fig. 4: Multiple pipeline mobility (latency-based policy above, size-based one below).

the best from edge computing (low latency despite big request
sizes) and cloud computing (no waste of edge resources).

The final experimented scenario considers multiple inde-
pendent pipelines. When multiple services are deployed to the
edge layer, there is the risk to overload the edge nodes, mean-
while the cloud nodes can be more easily added to the cluster
thanks to cloud elasticity. For this reason, in such a scenario
it is interesting to evaluate workload orchestrator policies that
deploy in edge only a few DP services, while keeping in the
cloud the remaining ones. To evaluate the flexibility of our
architecture to deal with a multiple pipeline scenario, we have
considered 3 independent pipelines, following three distinct
randomly generated profiles for the workload size, under the
constraint that at most 1 DP service can run in the edge. We
start with the 3 DP services in the cloud layer and every
10 seconds the latency and workload size are queried. We

compare two possible workload mobility policies: the first one,
in each step, moves the service with the highest latency to the
edge layer, meanwhile the second policy moves the service
with the highest workload size instead. An analysis of both
policies is presented in Figure 4. The first policy, as shown on
the left graph, incurs the problem of swapping DP services at
each step. In step tn the DPi service with the highest latency is
chosen and it is moved to the edge, and in the next step tn+1,
DPi will have the lowest latency, benefiting from the data
locality principle, therefore another DPj with i ̸= j (currently
in the cloud layer) will be chosen and swapped with DPi.
For example, at t = 40s the orchestrator moves DP3 to the
cloud despite the fact that it has the highest request size (and
consequently the highest latency if kept in the cloud). The
second policy is shown in the right graph and, being based
on the workload sizes, is more stable and incurs fewer swaps.



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time (sec)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

La
te

nc
y 

(m
s)

Run 1
Run 2
Run 3

Run 4
Cloud to Edge
Edge to Cloud

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Si
ze

 (M
B)

Data sent

Fig. 5: Single pipeline mobility

More precisely, the service with the highest workload size
which is greater than 11MB is placed in the edge node. The
policy can avoid swaps when no service satisfies the condition.
Comparing the two policies, as can be seen in Table II, the
workload size-based one effectively halves the number of
swaps, reacting only when the workload significantly increases
for a pipeline. Both policies react to the latency peaks and try
to improve the performance of the system resulting in a similar
latency flow.

Latency-based Sized-based
Pipeline 1: swaps 11 4

Pipeline 1: avg latency 1.8s 1.8s
Pipeline 2: swaps 10 3

Pipeline 2: avg latency 1.8s 1.8s
Pipeline 3: swaps 8 4

Pipeline 3: avg latency 2s 1.9s

TABLE II: Trade-offs between the two policies.

A graph comparing the average performance of these two
policies is shown in Figure 6. Both policies generally incur
the same average latency trends with the latency-based one
performing slightly worse.

VII. CONCLUSION AND FUTURE WORKS

We have presented a micro-service-based architecture, to be
deployed over the edge-cloud continuum, that was designed
on purpose to address the limitations of an Industry 4.0
application, provided us by one of the industrial partners of
the SEAWALL project. Our novel architecture, implemented

by adopting open standards and open technologies, solves the
most critical limitations of the previous implementation, e.g.,
it can support heterogeneous sources of data by adopting the
W3C Web of Things (WoT) standard, instead of considering a
unique classifier deployed in the edge it can support multiple
classifiers (hence also several independent control-loops) to
be placed in the edge or in the cloud layers, it allows for
the easy customization of policies for the dynamic mobility
of workloads between the edge and cloud layers, it allows for
the sharing of resources among multiple independent pipelines
for the analysis of data, and it avoids the typical problems
deriving from the adoption of IoT edge-cloud solutions offered
and managed by public cloud vendors, like limitations in the
customization of the system or vendor lock-in.

We are currently planning the transfer to the production
line of our architecture, which successfully passed our tests
on synthetic data. As future work, we will follow at least
two lines of extension. On one hand, we will enrich our tests
by considering different sources of synthetic data, possibly
located on distinct nodes/regions. In such a setting, we will
have to implement a topology-aware workload orchestrator,
able to appropriately move the services closer to their sources
of data. On the other hand, we will enrich the workload
mobility policies supported by our system, by considering the
possibility to use machine learning techniques to anticipate
increments/decrements of the amount of generated data, thus
being able to anticipate also the mobility of the involved
services towards the data sources.



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time (sec)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

La
te

nc
y 

(m
s)

Size-based policy
Latency-based policy 

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

Si
ze

 (M
B)

Data sent

Fig. 6: Performance comparison between latency-based and workload size-based policies.

ACKNOWLEDGEMENTS

This work has been funded by the SEAWALL (SEAm-
less loW lAtency cLoud pLatforms) project, founded by the
BIREX consortium (https://bi-rex.it/en/).

REFERENCES

[1] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A survey on industrial
internet of things: A cyber-physical systems perspective,” IEEE Access,
vol. 6, pp. 78 238–78 259, 2018.

[2] A. Fellan, C. Schellenberger, M. Zimmermann, and H. D. Schotten, “En-
abling communication technologies for automated unmanned vehicles
in industry 4.0,” in 2018 International Conference on Information and
Communication Technology Convergence (ICTC), 2018, pp. 171–176.

[3] M. K. Atiq, R. Muzaffar, Seijo, I. Val, and H.-P. Bernhard, “When ieee
802.11 and 5g meet time-sensitive networking,” IEEE Open Journal of
the Industrial Electronics Society, vol. 3, pp. 14–36, 2022.

[4] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu,
“Edge computing in industrial internet of things: Architecture, advances
and challenges,” IEEE Communications Surveys Tutorials, vol. 22, no. 4,
pp. 2462–2488, 2020.

[5] D. Xu, T. Li, Y. Li, X. Su, S. Tarkoma, T. Jiang, J. Crowcroft, and
P. Hui, “Edge intelligence: Architectures, challenges, and applications,”
arXiv: Networking and Internet Architecture, 2020.

[6] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards low-
latency service delivery in a continuum of virtual resources: State-of-the-
art and research directions,” IEEE Communications Surveys Tutorials,
vol. 23, no. 4, pp. 2557–2589, 2021.

[7] L. Bacchiani, G. De Palma, L. Sciullo, M. Bravetti, M. De Felice,
M. Gabbrielli, G. Zavattaro, R. Della Penna, C. Iorizzo, A. Livaldi,
L. Magnotta, and M. Orsini, “Seawall: Seamless low latency cloud
platforms for the industry 4.0,” in 2022 5th Conference on Cloud and
Internet of Things (CIoT), 2022, pp. 90–91.

[8] A. Karamoozian, A. Hafid, and E. M. Aboulhamid, “On the fog-cloud
cooperation: How fog computing can address latency concerns of iot
applications,” in 2019 Fourth International Conference on Fog and
Mobile Edge Computing (FMEC), 2019, pp. 166–172.

[9] C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, and M. Di Felice, “From
cloud to edge: Seamless software migration at the era of the web of
things,” IEEE Access, vol. 8, pp. 228 118–228 135, 2020.

[10] D. Kimovski, N. Mehran, C. E. Kerth, and R. Prodan, “Mobility-
aware iot applications placement in the cloud edge continuum,” IEEE
Transactions on Services Computing, pp. 1–1, 2021.

[11] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, vol. 21, pp. 940–954, 2022.

[12] G. P. Mattia and R. Beraldi, “Leveraging reinforcement learning for
online scheduling of real-time tasks in the edge/fog-to-cloud computing
continuum,” in 2021 IEEE 20th International Symposium on Network
Computing and Applications (NCA), 2021, pp. 1–9.

[13] Z. Nezami, K. Zamanifar, K. Djemame, and E. Pournaras, “Decentral-
ized edge-to-cloud load balancing: Service placement for the internet of
things,” IEEE Access, vol. 9, pp. 64 983–65 000, 2021.

[14] C. Puliafito, A. Virdis, and E. Mingozzi, “Migration of multi-container
services in the fog to support things mobility,” in 2020 IEEE Inter-
national Conference on Smart Computing (SMARTCOMP), 2020, pp.
259–261.

[15] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura,
and K. Kajimoto, “Web of Things (WoT) Architecture,” W3C Recom-
mendation, Apr. 2020, https://www.w3.org/TR/wot-architecture/.



Lorenzo Bacchiani got his M.Sc. degree in Com-
puter Science at the University of Bologna in 2020.
He is now a Ph.D. student in Computer Science
and Engineering in the same university. He is cur-
rently working on behavioral based approaches and
languages for component interaction, adaptation and
deployment..

Giuseppe De Palma Giuseppe De Palma received
his M.Sc. degree in Computer Science at the Uni-
versity of Bologna in 2020. He is now a Ph.D.
student in Computer Science and Engineering in
the same university and he is active in the Cloud
Computing and DevOps fields, with a focus on
Serverless Computing.

Luca Sciullo is a postdoctoral researcher with the
University of Bologna, Italy, where he also obtained
his Ph.D. in Computer Science and Engineering in
the 2021 and his Master Degree (summa cum Laude)
in Computer Science in 2017. He was a Visiting
Researcher at the Huawei European Research Center
of Munich, Germany. He is part of the IoT Prism
Lab directed by Prof.Marco Di Felice and Prof.
Luciano Bononi. His research interests include wire-
less systems and protocols for emergency scenarios,
wireless sensor networks, IoT systems and Web of

Things.

Mario Bravetti is a Full Professor at the Computer
Science and Engineering Department of University
of Bologna. He is also permanent member of the FO-
CUS (FOundations of Component-based Ubiquitous
Systems) team which is part of the INRIA Sophia
Antipolis - Méditerranée French research center. He
is PhD in computer science and winner of the award
for the two best Italian PhD theses in theoretical
computer science in the year 2002, assigned by
the Italian Chapter of the European Association for
Theoretical Computer Science. His research activity

spans from formal description and verification of distributed systems based on
concurrency and probability theory to more applicative topics such as service
oriented and cloud computing.

Marco Di Felice is a Full Professor of Computer
Science with the University of Bologna, where he
is the co-director of the IoT PRISM laboratory. He
received the Laurea (summa cum laude) and Ph.D.
degrees in computer science from the University of
Bologna, in 2004 and 2008, respectively. He was
a Visiting Researcher with the Georgia Institute of
Technology, Atlanta, GA, USA and with Northeast-
ern University, Boston, MA, USA. He authored more
than 120 papers on wireless and mobile systems,
achieving three best paper awards for his scientific

production. He is Associate Editor of the IEEE Internet of Things journal. His
research interests include self-organizing wireless networks, unmanned aerial
systems, IoT, WoT, and context-aware computing.

Maurizio Gabbrielli is professor of Computer Sci-
ence since 2001 at the Department of Computer Sci-
ence and Engineering of the University of Bologna,
University of Bologna. He is also Associate dean
for AI and digital soul and director of the Master
in Management of Digital Technology at Bologna
Business School, member of the INRIA project team
FOCUS. He received his Ph.d. in Computer Science
in 1992 from the Univeristy of Pisa. He has been
employed at CWI (Amsterdam), at the University of
Pisa and at the University of Udine. He is author

of more than 100 publications in the fields of programming languages and
artificial intelligence and he has been Director of the European EIT Digital
Doctoral School from J2015 to 2017. He has also been: president of the
Italian association for Logic Programming (GULP); member of the advisory
board of TPLP; member of the Executive Committee of the Association for
Logic Programming; chair of the Steering Committee of the ACM conference
PPDP; member of the board of the European association for Programming
Languages and Systems.

Gianluigi Zavattaro is a full professor in computer
science at the University of Bologna, where he
obtained his PhD in computer science in 2000. His
main research interests are on concurrency theory
and verification of concurrent and distributed pro-
grams. He is co-author of more than 150 publica-
tions, and he was invited speaker at several inter-
national conferences like CONCUR’15, ESOCC’13
and FORTE’10. He is currently the chair of the
steering committee of the International Federated
Conference on Distributed Computing Techniques,

and he served as chair of the Program Committee of international conferences
like Microservices’20, ECOWS’11, CONCUR’09, and COORDINATION’08.

Roberto Della Penna was born in Vasto, Italy, in
1995. He received the bachelor’s degree in com-
puter engineering in 2017 and the master’s degree
in computer engineering in 2020, both from the
Unversity of Bologna. Since 2020 he works in
Bonfiglioli S.p.A. as Machine Learning Engineer. He
is responsible for developing discrete process models
of anomaly detection for predictive maintenance of
machine tools and building pipelines for automating
training and deployment.


