
Science of Computer Programming 221 (2022) 102844
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

A Java typestate checker supporting inheritance

Lorenzo Bacchiani a, Mario Bravetti a,b, Marco Giunti c, João Mota c,∗, 
António Ravara c

a University of Bologna, Italy
b Focus Team, INRIA, France
c NOVA LINCS and NOVA School of Science and Technology, Portugal

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 November 2021
Received in revised form 12 July 2022
Accepted 13 July 2022
Available online 20 July 2022

Keywords:
Behavioral types
Object-oriented programming
Subtyping
Type-checking
Typestates

Detecting programming errors in software is increasingly important, and building tools that 
help developers with this task is a crucial area of investigation on which the industry 
depends. Leveraging on the observation that in Object-Oriented Programming (OOP) it is 
natural to define stateful objects where the safe use of methods depends on their internal 
state, we present Java Typestate Checker (JATYC), a tool that verifies Java source code with 
respect to typestates. A typestate defines the object’s states, the methods that can be called 
in each state, and the states resulting from the calls. The tool statically verifies that when a 
Java program runs: sequences of method calls obey to object’s protocols; objects’ protocols 
are completed; null-pointer exceptions are not raised; subclasses’ instances respect the 
protocol of their superclasses. To the best of our knowledge, this is the first OOP tool that 
simultaneously tackles all these aspects.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).
The code (and data) in this article has been certified as Reproducible by Code Ocean: https://codeocean .com/. More information on the Reproducibility 
Badge Initiative is available at https://www.elsevier.com /physical -sciences -and -engineering /computer-science /journals.

* Corresponding author.
E-mail address: jd.mota@campus.fct.unl.pt (J. Mota).

https://doi.org/10.1016/j.scico.2022.102844
0167-6423/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.scico.2022.102844
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2022.102844&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:jd.mota@campus.fct.unl.pt
https://doi.org/10.1016/j.scico.2022.102844
http://creativecommons.org/licenses/by/4.0/


L. Bacchiani, M. Bravetti, M. Giunti et al. Science of Computer Programming 221 (2022) 102844
Software metadata

(Executable) software metadata description

Current software version 3.0
Permanent link to executables of this version https://github.com/jdmota/java-typestate-checker/releases/tag/3.0
Permanent link to Reproducible Capsule https://codeocean.com/capsule/5619420/tree/v1
Legal Software License MIT License
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows
Installation requirements & dependencies Java 8, Checker Framework 3.14.0
Link to user manual https://github.com/jdmota/java-typestate-checker/wiki/Documentation
Support email for questions jd.mota@campus.fct.unl.pt

Code metadata

Code metadata description

Current code version 3.0
Permanent link to code/repository used for this code version https://github.com/ScienceofComputerProgramming/SCICO-D-21-00203
Permanent link to Reproducible Capsule https://codeocean.com/capsule/5619420/tree/v1
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used Java, Kotlin, Gradle, Checker Framework
Compilation requirements, operating environments & dependencies Java 8
Developer documentation/manual https://github.com/jdmota/java-typestate-checker/wiki/Documentation
Support email for questions jd.mota@campus.fct.unl.pt

1. Introduction

Programming errors such as de-referencing null pointers [1], using objects wrongly (e.g. reading from a closed file; 
closing a socket that timed out1), or forgetting to free resources (e.g. not closing a file reader), result in programs that may 
malfunction or waste memory unnecessarily. It is, therefore, crucial to develop tools that assist the software development 
process by detecting these mistakes as early as possible since these bugs occur more often than one might think [2].

In programming languages, some common errors are detected thanks to type systems embedded in compilers [3]. Unfor-
tunately, the subset of errors detected at compile-time in mainstream languages is still limited, and unsafe code that breaks 
the program’s logic, or that could crash at runtime, can yet be compiled (and ran) in most programming technologies. In 
more detail, our approach avoids some uncaught errors and is motivated by the following observations on the practice of 
Object-Oriented Programming (OOP).

Most OOP languages, including Java, do not statically ensure that methods are called according to a specified protocol, like 
calling hasNext before calling next in an iterator. Usually, the protocol is specified in natural language in the documentation, 
but not statically enforced: this is a source of many errors, like accessing a variable that was not initialized [4]. While some 
language frameworks support a refined analysis, they require expert users to provide complex specifications, for example, 
in separation logic [5–7].

To overcome this limitation, tools such as Mungo [8] extend Java classes with typestate definitions [9] which specify the 
behavior of instances of those classes in terms of a state machine, and check if sequences of method calls happen in the 
order prescribed in the typestate [8].

To further enhance the static analysis and avoid null-pointer exceptions at runtime, one can use the Nullness Checker2

plugin of the Checker Framework [10], a framework that supports adding type systems to the Java language. This plugin 
enhances the Java’s type system so that types are non-nullable by default, except when declared with a Nullable annotation. 
Some modern languages, such as Kotlin, also distinguish non-null types from nullable types,3 thus avoiding these exceptions. 
Nonetheless, the approach might give false alarms even when the code is safe,4 requiring the programmer to provide 
additional checks that a value is not null, following a style known as defensive programming, or a number of annotations.5

Last but not least, any static analysis for OOP must take into consideration inheritance in order to be effective. This is 
challenging in the context of typestates: given that a class can inherit from another and be used as a type of the superclass, 
it is crucial to ensure that the behavior specified in the usage protocol of the superclass is also possible in its subclasses. 
Thus, we need a notion of subtyping for protocols, which are akin to session types [11,12] that is, behavioral types rep-
resenting interactions in Service Oriented Computing [13,14]. Session types subtyping for synchronous communication was 

1 https://github .com /xetorthio /jedis /issues /1747.
2 https://checkerframework.org /manual /#nullness -checker.
3 https://kotlinlang .org /docs /null -safety.html.
4 An example is available at https://tinyurl .com /yvdvrd5j.
5 An example is available at https://tinyurl .com /5dpkzxdh.
2

https://github.com/jdmota/java-typestate-checker/releases/tag/3.0
https://codeocean.com/capsule/5619420/tree/v1
https://github.com/jdmota/java-typestate-checker/wiki/Documentation
https://github.com/ScienceofComputerProgramming/SCICO-D-21-00203
https://codeocean.com/capsule/5619420/tree/v1
https://github.com/jdmota/java-typestate-checker/wiki/Documentation
https://github.com/xetorthio/jedis/issues/1747
https://checkerframework.org/manual/#nullness-checker
https://kotlinlang.org/docs/null-safety.html
https://tinyurl.com/yvdvrd5j
https://tinyurl.com/5dpkzxdh


L. Bacchiani, M. Bravetti, M. Giunti et al. Science of Computer Programming 221 (2022) 102844

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
public class BaseIterator {
private String [] items;
protected int index;
public BaseIterator(String [] items) {

this.items = items;
this.index = 0;

}
public boolean hasNext () {

return this.index < this.items.length;
}
public Object next() {

return this.items[this.index ++];
}
public int remainingItems () {

return this.items.length − this.index;
}

}

Listing 1: BaseIterator class.

first studied by Gay and Hole [15]. Lange and Yoshida [16] design an algorithm to check if a session type is a subtype 
of another was implemented. Bacchiani et al. [17] develop a tool to generate simulation graphs for synchronous session 
subtyping. When applying synchronous session types subtyping to an OOP language, inputs are method calls and outputs 
are returned values. Checking for protocol subtyping is only the first step: as we will see in the next sections, we also need 
other mechanisms to correctly handle inheritance, method overriding and casting.

In this paper, we present Java Typestate Checker (JATYC) [18,19], a tool that type-checks Java source code where objects are 
associated with typestates. Java classes are annotated with typestates which specify the behavior of class instances in terms 
of available methods and state transitions. With JATYC, well-typed programs have the following properties: objects are used 
according to their protocols (typestates); protocols reach the end state (if the program terminates); null-pointer exceptions 
are not raised (in the code we can inspect). To ensure these properties, we follow the usual session type approach and force 
the linear use of objects associated with protocols.

JATYC is a new implementation of Mungo [8] that supports inheritance and adds critical features and fixes known 
issues, like assuming that a continue statement jumps to the beginning of the loop’s body, thus skipping the condition 
expression [19], which may produce false negatives. It is freely distributed6 and is implemented in Kotlin [20] as a plugin 
for the Checker Framework [10], which is actively maintained and well-integrated with the Java language and toolset.

The major contributions with respect to the current version of Mungo are:

- checking the absence of null pointer errors, which is critical to avoid the “The Billion Dollar Mistake” [1];
- checking that the protocols of objects are completed, i.e. protocols reach the end state, if the program terminates;
- support for subtyping thanks to a synchronous subtyping algorithm, inspired in the work by Gay and Hole [15], Lange 

and Yoshida [16], and Bacchiani et al. [17].

A previous version of the tool has been introduced by Mota et al. [18]; the present version enhances it by adding support 
for subtyping.

2. Protocol analysis and nullness checking

To motivate the need for JATYC, consider a BaseIterator Java class that allows one to iterate over items of an array. List. 1
shows an implementation.7

The intended protocol is defined implicitly by the sequences of method calls that are supported, and by the “states” 
reached via those calls. To use the BaseIterator, one must invoke the hasNext method before calling next, to ensure that 
there are remaining items to retrieve. If this contract is not followed, an IndexOutOfBoundsException will be thrown.

While the Java compiler accepts code that does not follow this contract, in the next section we will show how to enrich 
Java classes with typestate annotations that allow rejecting programs containing these kinds of behavioral errors at compile-
time.

What JATYC allows one to do is to complement the code with protocol specifications and statically make sure these are 
respected and executed to completion (if the program terminates). Additionally, it ensures no null pointer errors are raised 
and checks subtyping compliance.

6 https://github .com /jdmota /java -typestate -checker.
7 The complete example is available at https://git .io /J1Fta.
3

https://github.com/jdmota/java-typestate-checker
https://git.io/J1Fta


L. Bacchiani, M. Bravetti, M. Giunti et al. Science of Computer Programming 221 (2022) 102844

1
2
3
4
5
6
7
8

1
2
3

1
2
3
4
5
6

typestate BaseIterator {
HasNext = {

boolean hasNext (): <true: Next , false: end >
}
Next = {

Object next (): HasNext
}

}

Listing 2: BaseIterator protocol.

import jatyc.lib.Typestate;
@Typestate("BaseIterator")
public class BaseIterator { ... }

Listing 3: BaseIterator class with Typestate annotation.

BaseIterator it = new BaseIterator(args);
while (!it.hasNext ()) {

// Error: Cannot call next on state end
System.out.println(it.next ());

}
// Error: [it] did not complete its protocol

Listing 4: BaseIterator use.

Protocol specifications. All instances of a Java class having a typestate are checked in order to enforce the prescribed be-
havior. The typestate specifications are written in .protocol files.8 List. 2 presents the protocol for the BaseIterator (cf. List. 1). 
It specifies two states, HasNext and Next, and implicitly includes the end state, which is the final state. In the initial state 
HasNext, only the hasNext method is available to be called (line 3). If the method returns true, the state changes to Next; 
otherwise, the state changes to end, where no operations are allowed. In the Next state, we are allowed to call the next
method (line 6), which changes the state to HasNext.

To associate a protocol with a Java class, one must include a Typestate annotation containing the (relative) path of the 
protocol file (List. 3). The .protocol extension is optional.

Protocol compliance and completion. JATYC ensures that instances of Java classes associated with a typestate obey to the 
corresponding protocol and reach the end state, so that potentially important method calls are not forgotten and resources 
are freed.

To see an example of incorrect use of BaseIterator, consider List. 4, where errors are indicated in the comments. According 
to the protocol (List. 2), we can only call next if the hasNext call returns true, but the code is doing the opposite (notice the 
negated condition in line 2). This results in an error stating that we cannot call next in state end and that the protocol was 
not completed. Removing the negation fixes both issues.

Nullness checking. Null pointer errors are the cause of most runtime exceptions in Java programs [4,21]: being able to 
detect these errors at compile-time is therefore crucial. Towards that direction, JATYC offers the following guarantees:

1. Types are non-null by default (contrary to Java’s default type system9), method calls and field accesses are only per-
formed on non-null types, as in the Nullness Checker,10 and nullable types are marked with the Nullable annotation. 
Given that in the BaseIterator class, all the fields are initialized, no potential null-pointer errors are reported with re-
spect to field accesses. Nonetheless, since there is no guarantee that the items of the array are non-null, we need to 
augment the next method with a Nullable annotation (List. 5).

2. False alarms regarding accesses to initialized nullable fields (in classes associated to protocols) are ruled out by taking 
into account that methods are only called in a specific order. For example, imagine that the underlying collection of 
the iterator was not provided in the constructor but instead via an init method that initializes the items field (initially 
marked as nullable).11 If the protocol specifies that init should be called before any method, the tool can ensure that 
subsequent fields accesses will not raise null pointer errors, without the need for defensive programming (i.e. checking 
that items != null) or additional annotations.

8 The complete grammar is available at https://git .io /JtMu3.
9 The fact that null is a value of any type is the source of Java not being type safe. [22].

10 https://checkerframework.org /manual /#nullness -checker.
11 A complete example is available at https://git .io /J1FtI.
4

https://git.io/JtMu3
https://checkerframework.org/manual/#nullness-checker
https://git.io/J1FtI


L. Bacchiani, M. Bravetti, M. Giunti et al. Science of Computer Programming 221 (2022) 102844

1
2
3
4
5

1
2
3
4
5
6
7
8
9

10
11
12
import jatyc.lib.Nullable;
...
public @Nullable Object next() {

return this.items[this.index ++];
}

Listing 5: Nullable annotation.

typestate RemovableIterator {
HasNext = {

boolean hasNext (): <true: Next , false: end >
}
Next = {

Object next (): Remove
}
Remove = {

boolean hasNext (): <true: Next , false: end >,
void remove (): HasNext

}
}

Listing 6: RemovableIterator protocol.

3. Inheritance

To add support for inheritance, JATYC needs to be endowed with a subtyping algorithm to ensure the protocol of sub-
classes complies with the protocol of superclasses. Besides the implementation of such an algorithm, the support for these 
concepts also requires one to deal correctly with method overriding and casting.

3.1. Synchronous subtyping algorithm

The algorithm for supporting protocol subtyping takes inspiration from the synchronous subtyping one for session 
types [16,17]. It builds graphs from the protocols to be checked, traverses them by firing common input/output opera-
tions and marks each encountered pair of states. Notice that, in our setting, input operations are represented by method 
calls, while output operations by values returned by them. We mark pairs of states if: (i) both are input states and input 
contravariance holds, i.e. the subtype can perform a set of input operations greater or equal to the one of the supertype, 
(ii) both are output states and output covariance holds, i.e. the supertype can perform a set of output operations greater or 
equal to the one of the subtype, (iii) both states are end states. The algorithm stops when either all reachable pairs have 
been marked (subtyping holds) or a pair of states does not satisfy any of the above conditions (subtyping does not hold). 
Since Java does not support inheritance in enumeration classes, we have to consider all enumeration values as potentially 
returnable and, consequently, all should be included in the protocol. Because of this, output covariance always holds (in our 
setting all outputs are invariant).

For example, consider the RemovableIterator protocol presented in List. 6. It extends the BaseIterator protocol (List. 2) by 
adding the state Remove with the new method remove. Thanks to the algorithm described above, we can safely state that the 
RemovableIterator is a subtype of the BaseIterator. In particular, the Remove state respects input contravariance with respect 
to the HasNext state in the supertype.

3.2. Method inheritance

Inheritance makes it possible to reuse methods from superclasses, override some, or add new ones. For example, the 
code presented in List. 7 shows an example of safe class inheritance: the RemovableIterator class implements the protocol 
presented in List. 2 and extends the BaseIterator class. In particular, the RemovableIterator class, differently from the BaseIt-
erator, uses a Java List as the underlying data structure and consequently all the methods need to be overridden in order to 
access the collection. Moreover, according to its protocol, the class presented in List. 7 implements the new remove method.

To correctly support inheritance, we consider the following cases:

1. A class without protocol extending a class without protocol.
2. A class with protocol extending a class with protocol.
3. A class without protocol extending a class with protocol.
4. A class with protocol extending a class without protocol.

The first and second scenarios are trivially handled: the former does not require any inspection since classes by default 
do not have protocols; and the latter is checked using the subtyping algorithm. In the third case, we let the use of overridden 
5



L. Bacchiani, M. Bravetti, M. Giunti et al. Science of Computer Programming 221 (2022) 102844

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

1
2
3
4
5
6
7
8
9

10
11
12
13
import java.util .∗;
import jatyc.lib .∗;

@Typestate("RemovableIterator ")
public class RemovableIterator extends BaseIterator {

protected List <Object > items;
public RemovableIterator (String [] items) {

super(items);
this.items = Util.toList(items );

}
public boolean hasNext () {

return this.index < this.items.size ();
}
public @Nullable Object next() {

return this.items.get(this.index ++);
}
public void remove () {

this.items.remove(−−this.index );
}
public int remainingItems () {

return this.items.size() − this.index;
}

}

Listing 7: RemovableIterator class.

public static void main(String [] args) {
BaseIterator it = new RemovableIterator (args);
RemovableIterator rIt =

(RemovableIterator ) iterate(it);
System.out.printf("Left:%d\n", rIt. remainingItems ());

}

public static BaseIterator iterate(@Requires("HasNext") BaseIterator it) {
while (it.hasNext ()) {

System.out.printf("Item:%s\n", it.next());
}
return it;

}

Listing 8: Polymorphic code example.

methods to be governed by the inherited protocol and newly added methods are treated as anytime methods, which can be 
called at any moment. In the fourth case, we consider all methods in the superclass as anytime methods and enforce that 
these remain so in the subclasses, which implies that these methods cannot be included in protocols of subclasses. Note 
that any method that does not appear in a protocol is considered an anytime method, like the remainingItems method in 
the BaseIterator class (List. 1). To ensure safety, anytime methods currently can only perform read operations or call other 
anytime methods.

3.3. Casting

The support for inheritance opens the door to polymorphism and the need to handle casting. For example, consider the 
code in List. 8.

In a nutshell, we create a RemovableIterator object and assign it to a variable of type BaseIterator, thus performing an 
up-cast, and then we pass it to the iterate method. This method iterates over all items and returns a BaseIterator in the end
state. Finally, we perform a down-cast and we call the anytime method remainingItems, which returns zero. Notice that the 
method iterate makes use of the Requires annotation from the jatyc.lib package, which indicates in which states the object 
pointed by the parameter is expected to be in.

Casting operations are currently only allowed in the beginning of the protocol (before any method is called) or at the 
end of the protocol. This limitation is caused by the fact that states belonging to subclasses and superclasses could possibly 
be in a many-to-many relation. For example, it turns out that the HasNext state of the BaseIterator (List. 2) is in relation with 
both HasNext and Remove states of the RemovableIterator (List. 6). If we downcast from BaseIterator to RemovableIterator, we 
do not know to which state we should cast to (HasNext or Remove).
6



L. Bacchiani, M. Bravetti, M. Giunti et al. Science of Computer Programming 221 (2022) 102844

1
2
3
4
5
6
7

typestate Iterator {
HasNext = {

boolean hasNext (): <true: Next , false: end >,
drop: end // This marks a state as droppable

}
Next = { String next (): HasNext }

}

Listing 9: Example of droppable states.

4. Future work

In this paper, we present a subtyping endowed version of JATYC, a tool that makes it possible to run programs with the 
following properties: (i) objects are used according to their protocols (typestates); (ii) protocols reach the end state (if the 
program terminates); (iii) null-pointer exceptions are not raised (in the code we can inspect). The support for subtyping, 
albeit with the limitations described, allows the use of fundamental OOP concepts like polymorphism and inheritance.

As future work, we would like to also consider droppable states [19] in the subtyping analysis. These states are declared 
by including the special transition drop: end, thus specifying that an object may stop to be used in that state. For example, 
we can specify an iterator protocol that does not need to reach the end state (List. 9). Droppable states require relaxing 
the subtyping algorithm: we will work on a proper formalization of the current algorithm to correctly deal with droppable 
states.

Another future direction is to improve the management of polymorphism: currently up/down-castings are only allowed 
in the beginning of the protocol (before any method is called) or at the end of the protocol. Our goal is to implement a 
correct algorithm for typestate-mapping that makes it possible to perform castings no matter which state the object to be 
casted is in.

CRediT authorship contribution statement

Lorenzo Bacchiani: Conceptualization, Investigation, Methodology, Software, Validation, Writing – original draft, Writing 
– review & editing. Mario Bravetti: Conceptualization, Investigation, Methodology, Supervision, Validation, Writing – origi-
nal draft, Writing – review & editing. Marco Giunti: Conceptualization, Investigation, Methodology, Supervision, Validation, 
Writing – original draft, Writing – review & editing. João Mota: Conceptualization, Investigation, Methodology, Software, Val-
idation, Writing – original draft, Writing – review & editing. António Ravara: Conceptualization, Investigation, Methodology, 
Supervision, Validation, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgements

This work was partially supported by the EU H2020 RISE programme under the Marie Skłodowska-Curie grant agree-
ment No. 778233 (BehAPI) and by NOVA LINCS (UIDB/04516/2020 and UIDB/04516/2020/TRA/BIM/07) via the Portuguese 
Fundação para a Ciência e a Tecnologia.

References

[1] T. Hoare, Null references: the billion dollar mistake, https://tinyurl .com /eyipowm4, 2009, presentation at QCon London.
[2] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, C. Zhai, Bug characteristics in open source software, Empir. Softw. Eng. 19 (2014) 1665–1705, https://doi .org /10 .

1007 /s10664 -013 -9258 -8.
[3] L. Cardelli, Type systems, ACM Comput. Surv. 28 (1996) 263–264, https://doi .org /10 .1145 /234313 .234418.
[4] N.E. Beckman, D. Kim, J. Aldrich, An empirical study of object protocols in the wild, in: Proc. of European Conference on Object-Oriented Programming 

(ECOOP), Springer, 2011, pp. 2–26.
[5] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, F. Piessens, VeriFast: a powerful, sound, predictable, fast verifier for C and Java, in: Proc. of 

NASA Formal Methods (NFM), Springer, 2011, pp. 41–55.
[6] J.C. Reynolds, Separation logic: a logic for shared mutable data structures, in: Proc. of Logic in Computer Science (LICS), IEEE, 2002, pp. 55–74.
[7] S.S. Ishtiaq, P.W. O’hearn, BI as an assertion language for mutable data structures, in: Proc. of Principles of Programming Languages (POPL), 2001, 

pp. 14–26.
[8] D. Kouzapas, O. Dardha, R. Perera, S.J. Gay, Typechecking protocols with Mungo and StMungo, in: Proc. of Principles and Practice of Declarative 

Programming (PPDP), ACM, 2016, pp. 146–159.
[9] R. Garcia, É. Tanter, R. Wolff, J. Aldrich, Foundations of typestate-oriented programming, ACM Trans. Program. Lang. Syst. 36 (2014) 12, https://doi .org /

10 .1145 /2629609.
[10] M.M. Papi, M. Ali, T.L. Correa Jr, J.H. Perkins, M.D. Ernst, Practical pluggable types for Java, in: Proc. of Software Testing and Analysis (ISSTA), 2008, 

pp. 201–212.
7

https://tinyurl.com/eyipowm4
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1007/s10664-013-9258-8
https://doi.org/10.1145/234313.234418
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib2891B6734CB9D1AEB55915EFA8BF2EECs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib2891B6734CB9D1AEB55915EFA8BF2EECs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib7BDEB4539201BCCAFB2BC7A9B3EBC7B3s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib7BDEB4539201BCCAFB2BC7A9B3EBC7B3s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibE0A24BB15C55CC9EFFE543EC1D7715B8s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib58AB2FB9C9C1A2DEDC70208E6D1D8AC6s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib58AB2FB9C9C1A2DEDC70208E6D1D8AC6s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibC62C9F843AA7EFC83DAD02778829E621s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibC62C9F843AA7EFC83DAD02778829E621s1
https://doi.org/10.1145/2629609
https://doi.org/10.1145/2629609
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibBF303AF7D459909D80882DD712BE69E1s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibBF303AF7D459909D80882DD712BE69E1s1


L. Bacchiani, M. Bravetti, M. Giunti et al. Science of Computer Programming 221 (2022) 102844
[11] K. Honda, V.T. Vasconcelos, M. Kubo, Language primitives and type discipline for structured communication-based programming, in: Proceedings of 
Programming Languages and Systems - ESOP’98, in: Lecture Notes in Computer Science, vol. 1381, Springer, 1998, pp. 122–138.

[12] H. Hüttel, I. Lanese, V.T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou, D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H.T. Vieira, G. Zavattaro, 
Foundations of session types and behavioural contracts, ACM Comput. Surv. 49 (2016) 3, https://doi .org /10 .1145 /2873052.

[13] L. Cruz-Filipe, I. Lanese, F. Martins, A. Ravara, V.T. Vasconcelos, The stream-based service-centred calculus: a foundation for service-oriented program-
ming, Form. Asp. Comput. 26 (2014) 865–918, https://doi .org /10 .1007 /s00165 -013 -0284 -5.

[14] M. Boreale, R. Bruni, L. Caires, R.D. Nicola, I. Lanese, M. Loreti, F. Martins, U. Montanari, A. Ravara, D. Sangiorgi, V.T. Vasconcelos, G. Zavattaro, SCC: a 
service centered calculus, in: Proceedings of Web Services and Formal Methods (WS-FM), in: Lecture Notes in Computer Science, vol. 4184, Springer, 
2006, pp. 38–57.

[15] S.J. Gay, M. Hole, Types and subtypes for client-server interactions, in: Proc. of Programming Languages and Systems (ESOP), in: Lecture Notes in 
Computer Science, vol. 1576, Springer, 1999, pp. 74–90.

[16] J. Lange, N. Yoshida, Characteristic formulae for session types, in: Proc. of Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 
in: Lecture Notes in Computer Science, vol. 9636, Springer, 2016, pp. 833–850.

[17] L. Bacchiani, M. Bravetti, J. Lange, G. Zavattaro, A session subtyping tool, in: Proc. of Coordination Models and Languages (COORDINATION), in: Lecture 
Notes in Computer Science, vol. 12717, Springer, 2021, pp. 90–105.

[18] J. Mota, M. Giunti, A. Ravara, Java typestate checker, in: Proc. of Coordination Models and Languages (COORDINATION), in: Lecture Notes in Computer 
Science, vol. 12717, Springer, 2021, pp. 121–133.

[19] J. Mota, Coping with the reality: adding crucial features to a typestate-oriented language, Master’s thesis, NOVA School of Science and Technology, 
2021, http://hdl .handle .net /10362 /125329.

[20] D. Jemerov, S. Isakova, Kotlin in Action, Manning Publications Company, 2017.
[21] J. Sunshine, Protocol programmability, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2013.
[22] N. Amin, R. Tate, Java and Scala’s type systems are unsound: the existential crisis of null pointers, ACM SIGPLAN Not. 51 (2016) 838–848, https://

doi .org /10 .1145 /3022671.2984004.
8

http://refhub.elsevier.com/S0167-6423(22)00077-6/bib6ED692EECAEFD13EF2F53E27D630DCB2s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib6ED692EECAEFD13EF2F53E27D630DCB2s1
https://doi.org/10.1145/2873052
https://doi.org/10.1007/s00165-013-0284-5
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib700054284D9715A26949767A3C71EF3Cs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib700054284D9715A26949767A3C71EF3Cs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib700054284D9715A26949767A3C71EF3Cs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib0E08F62C61783F6920C48C300F1C620Cs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib0E08F62C61783F6920C48C300F1C620Cs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib72F2B484A10CA12FA53BCDD9F9A100F3s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib72F2B484A10CA12FA53BCDD9F9A100F3s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib8D3F5811DA2A16F8D22464B7F7E6B616s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib8D3F5811DA2A16F8D22464B7F7E6B616s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibA63585F6F207801E7F0B71D1D24B3056s1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibA63585F6F207801E7F0B71D1D24B3056s1
http://hdl.handle.net/10362/125329
http://refhub.elsevier.com/S0167-6423(22)00077-6/bib7F8E471328F802A9D01466458F3EE18Cs1
http://refhub.elsevier.com/S0167-6423(22)00077-6/bibD8ACE767EAF73C716F644BA2C385DBC8s1
https://doi.org/10.1145/3022671.2984004
https://doi.org/10.1145/3022671.2984004

	A Java typestate checker supporting inheritance
	1 Introduction
	2 Protocol analysis and nullness checking
	3 Inheritance
	3.1 Synchronous subtyping algorithm
	3.2 Method inheritance
	3.3 Casting

	4 Future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


