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Abstract. We propose a categorical semantics of gradient-based ma-
chine learning algorithms in terms of lenses, parametric maps, and re-
verse derivative categories. This foundation provides a powerful explana-
tory and unifying framework: it encompasses a variety of gradient descent
algorithms such as ADAM, AdaGrad, and Nesterov momentum, as well
as a variety of loss functions such as MSE and Softmax cross-entropy,
shedding new light on their similarities and differences. Our approach to
gradient-based learning has examples generalising beyond the familiar
continuous domains (modelled in categories of smooth maps) and can
be realized in the discrete setting of boolean circuits. Finally, we demon-
strate the practical significance of our framework with an implementation
in Python.

1 Introduction

The last decade has witnessed a surge of interest in machine learning, fuelled by
the numerous successes and applications that these methodologies have found in
many fields of science and technology. As machine learning techniques become
increasingly pervasive, algorithms and models become more sophisticated, posing
a significant challenge both to the software developers and the users that need to
interface, execute and maintain these systems. In spite of this rapidly evolving
picture, the formal analysis of many learning algorithms mostly takes place at a
heuristic level [41], or using definitions that fail to provide a general and scalable
framework for describing machine learning. Indeed, it is commonly acknowledged
through academia, industry, policy makers and funding agencies that there is a
pressing need for a unifying perspective, which can make this growing body of
work more systematic, rigorous, transparent and accessible both for users and
developers [2, 36].

Consider, for example, one of the most common machine learning scenar-
ios: supervised learning with a neural network. This technique trains the model
towards a certain task, e.g. the recognition of patterns in a data set (cf. Fig-
ure 1). There are several different ways of implementing this scenario. Typically,
at their core, there is a gradient update algorithm (often called the “optimiser”),
depending on a given loss function, which updates in steps the parameters of the
network, based on some learning rate controlling the “scaling” of the update. All
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of these components can vary independently in a supervised learning algorithm
and a number of choices is available for loss maps (quadratic error, Softmax
cross entropy, dot product, etc.) and optimisers (Adagrad [20], Momentum [37],
and Adam [32], etc.).

Fig. 1: An informal illustration of gradient-based learning. This neural network
is trained to distinguish different kinds of animals in the input image. Given an
input X, the network predicts an output Y , which is compared by a ‘loss map’
with what would be the correct answer (‘label’). The loss map returns a real
value expressing the error of the prediction; this information, together with the
learning rate (a weight controlling how much the model should be changed in
response to error) is used by an optimiser, which computes by gradient-descent
the update of the parameters of the network, with the aim of improving its
accuracy. The neural network, the loss map, the optimiser and the learning rate
are all components of a supervised learning system, and can vary independently
of one another.

This scenario highlights several questions: is there a uniform mathemati-
cal language capturing the different components of the learning process? Can
we develop a unifying picture of the various optimisation techniques, allowing
for their comparative analysis? Moreover, it should be noted that supervised
learning is not limited to neural networks. For example, supervised learning is
surprisingly applicable to the discrete setting of boolean circuits [50] where con-
tinuous functions are replaced by boolean-valued functions. Can we identify an
abstract perspective encompassing both the real-valued and the boolean case?
In a nutshell, this paper seeks to answer the question:

what are the fundamental mathematical structures underpinning gradient-
based learning?

Our approach to this question stems from the identification of three funda-
mental aspects of the gradient-descent learning process:
(I) computation is parametric, e.g. in the simplest case we are given a function

f : P × X → Y and learning consists of finding a parameter p : P such
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that f(p,−) is the best function according to some criteria. Specifically, the
weights on the internal nodes of a neural network are a parameter which the
learning is seeking to optimize. Parameters also arise elsewhere, e.g. in the
loss function (see later).

(II) information flows bidirectionally: in the forward direction, the computa-
tion turns inputs via a sequence of layers into predicted outputs, and then
into a loss value; in the reverse direction, backpropagation is used propa-
gate the changes backwards through the layers, and then turn them into
parameter updates.

(III) the basis of parameter update via gradient descent is differentiation e.g.
in the simple case we differentiate the function mapping a parameter to its
associated loss to reduce that loss.

We model bidirectionality via lenses [6, 12, 29] and based upon the above
three insights, we propose the notion of parametric lens as the fundamental
semantic structure of learning. In a nutshell, a parametric lens is a process with
three kinds of interfaces: inputs, outputs, and parameters. On each interface,
information flows both ways, i.e. computations are bidirectional. These data
are best explained with our graphical representation of parametric lenses, with
inputs A, A′, outputs B,B′, parameters P , P ′, and arrows indicating information
flow (below left). The graphical notation also makes evident that parametric
lenses are open systems, which may be composed along their interfaces (below
center and right).

A

A′
B

B′

P P ′

A

A′

B

B′

P P ′

C

C ′

Q Q′

A

A′
B

B′

P P ′

Q Q′

(1)

This pictorial formalism is not just an intuitive sketch: as we will show, it can
be understood as a completely formal (graphical) syntax using the formalism of
string diagrams [39], in a way similar to how other computational phenomena
have been recently analysed e.g. in quantum theory [14], control theory [5, 8],
and digital circuit theory [26].

It is intuitively clear how parametric lenses express aspects (I) and (II) above,
whereas (III) will be achieved by studying them in a space of ‘differentiable
objects’ (in a sense that will be made precise). The main technical contribution
of our paper is showing how the various ingredients involved in learning (the
model, the optimiser, the error map and the learning rate) can be uniformly
understood as being built from parametric lenses.

We will use category theory as the formal language to develop our notion of
parametric lenses, and make Figure 2 mathematically precise. The categorical
perspective brings several advantages, which are well-known, established princi-
ples in programming language semantics [3,40,49]. Three of them are particularly
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Fig. 2: The parametric lens that captures the learning process informally sketched
in Figure 1. Note each component is a lens itself, whose composition yields the
interactions described in Figure 1. Defining this picture formally will be the
subject of Sections 3-4.

important to our contribution, as they constitute distinctive advantages of our
semantic foundations:

Abstraction Our approach studies which categorical structures are sufficient
to perform gradient-based learning. This analysis abstracts away from the
standard case of neural networks in several different ways: as we will see, it
encompasses other models (namely Boolean circuits), different kinds of op-
timisers (including Adagrad, Adam, Nesterov momentum), and error maps
(including quadratic and softmax cross entropy loss). These can be all un-
derstood as parametric lenses, and different forms of learning result from
their interaction.

Uniformity As seen in Figure 1, learning involves ingredients that are seem-
ingly quite different: a model, an optimiser, a loss map, etc. We will show
how all these notions may be seen as instances of the categorical defini-
tion of a parametric lens, thus yielding a remarkably uniform description of
the learning process, and supporting our claim of parametric lenses being a
fundamental semantic structure of learning.

Compositionality The use of categorical structures to describe computation
naturally enables compositional reasoning whereby complex systems are anal-
ysed in terms of smaller, and hence easier to understand, components. Com-
positionality is a fundamental tenet of programming language semantics; in
the last few years, it has found application in the study of diverse kinds of
computational models, across different fields— see e.g. [8,14,25,45]. As made
evident by Figure 2, our approach models a neural network as a parametric
lens, resulting from the composition of simpler parametric lenses, capturing
the different ingredients involved in the learning process. Moreover, as all
the simpler parametric lenses are themselves composable, one may engineer
a different learning process by simply plugging a new lens on the left or right
of existing ones. This means that one can glue together smaller and relatively
simple networks to create larger and more sophisticated neural networks.
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We now give a synopsis of our contributions:

– In Section 2, we introduce the tools necessary to define our notion of para-
metric lens. First, in Section 2.1, we introduce a notion of parametric cat-
egories, which amounts to a functor Para(−) turning a category C into one
Para(C) of ‘parametric C-maps’. Second, we recall lenses (Section 2.2). In a
nutshell, a lens is a categorical morphism equipped with operations to view
and update values in a certain data structure. Lenses play a prominent role
in functional programming [47], as well as in the foundations of database
theory [31] and more recently game theory [25]. Considering lenses in C sim-
ply amounts to the application of a functorial construction Lens(−), yield-
ing Lens(C). Finally, we recall the notion of a cartesian reverse differential
category (CRDC): a categorical structure axiomatising the notion of differ-
entiation [13] (Section 2.4). We wrap up in Section 2.3, by combining these
ingredients into the notion of parametric lens, formally defined as a morphism
in Para(Lens(C)) for a CRDC C. In terms of our desiderata (I)-(III) above,
note that Para(−) accounts for (I), Lens(−) accounts for (II), and the CRDC
structure accounts for (III).

– As seen in Figure 1, in the learning process there are many components at
work: the model, the optimiser, the loss map, the learning rate, etc.. In Sec-
tion 3, we show how the notion of parametric lens provides a uniform char-
acterisation for such components. Moreover, for each of them, we show how
different variations appearing in the literature become instances of our ab-
stract characterisation. The plan is as follows:
◦ In Section 3.1, we show how the combinatorialmodel subject of the training

can be seen as a parametric lens. The conditions we provide are met by the
‘standard’ case of neural networks, but also enables the study of learning for
other classes of models. In particular, another instance are Boolean circuits:
learning of these structures is relevant to binarisation [16] and it has been
explored recently using a categorical approach [50], which turns out to be
a particular case of our framework.

◦ In Section 3.2, we show how the loss maps associated with training are also
parametric lenses. Our approach covers the cases of quadratic error, Boolean
error, Softmax cross entropy, but also the ‘dot product loss’ associated with
the phenomenon of deep dreaming [19,34,35,44].

◦ In Section 3.3, we model the learning rate as a parametric lens. This
analysis also allows us to contrast how learning rate is handled in the ‘real-
valued’ case of neural networks with respect to the ‘Boolean-valued’ case of
Boolean circuits.

◦ In Section 3.4, we show how optimisers can be modelled as ‘reparame-
terisations’ of models as parametric lenses. As case studies, in addition to
basic gradient update, we consider the stateful variants: Momentum [37],
Nesterov Momentum [48], Adagrad [20], and Adam (Adaptive Moment Es-
timation) [32]. Also, on Boolean circuits, we show how the reverse derivative
ascent of [50] can be also regarded in such way.

– In Section 4, we study how the composition of the lenses defined in Section 3
yields a description of different kinds of learning processes.
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◦ Section 4.1 is dedicated to modelling supervised learning of parameters,
in the way described in Figure 1. This amounts essentially to study of
the composite of lenses expressed in Figure 2, for different choices of the
various components. In particular we look at (i) quadratic loss with basic
gradient descent, (ii) softmax cross entropy loss with basic gradient descent,
(iii) quadratic loss with Nesterov momentum, and (iv) learning in Boolean
circuits with XOR loss and basic gradient ascent.

◦ In order to showcase the flexibility of our approach, in Section 4.2 we de-
part from our ‘core’ case study of parameter learning, and turn attention
to supervised learning of inputs, also called deep dreaming — the idea
behind this technique is that, instead of the network parameters, one up-
dates the inputs, in order to elicit a particular interpretation [19,34,35,44].
Deep dreaming can be easily expressed within our approach, with a differ-
ent rearrangement of the parametric lenses involved in the learning process,
see (8) below. The abstract viewpoint of categorical semantics provides a
mathematically precise and visually captivating description of the differ-
ences between the usual parameter learning process and deep dreaming.

– In Section 5 we describe a proof-of-concept Python implementation, avail-
able at [17], based on the theory developed in this paper. This code is intended
to show more concretely the payoff of our approach. Model architectures, as
well as the various components participating in the learning process, are now
expressed in a uniform, principled mathematical language, in terms of lenses.
As a result, computing network gradients is greatly simplified, as it amounts
to lens composition. Moreover, the modularity of this approach allows one to
more easily tune the various parameters of training.

We show our library via a number of experiments, and prove correctness by
achieving accuracy on par with an equivalent model in Keras, a mainstream
deep learning framework [11]. In particular, we create a working non-trivial
neural network model for the MNIST image-classification problem [33].

– Finally, in Sections 6 and 7, we discuss related and future work.

2 Categorical Toolkit

In this section we describe the three categorical components of our framework,
each corresponding to an aspect of gradient-based learning: (I) the Para con-
struction (Section 2.1), which builds a category of parametric maps, (II) the
Lens construction, which builds a category of “bidirectional” maps (Section
2.2), and (III) the combination of these two constructions into the notion of
“parametric lenses” (Section 2.3). Finally (IV) we recall Cartesian reverse dif-
ferential categories — categories equipped with an abstract gradient operator.

Notation We shall use f ; g for sequential composition of morphisms f : A → B
and g : B → C in a category, 1A for the identity morphism on A, and I for the
unit object of a symmetric monoidal category.
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2.1 Parametric Maps

In supervised learning one is typically interested in approximating a function
g : Rn → Rm for some n and m. To do this, one begins by building a neural
network, which is a smooth map f : Rp ×Rn → Rm where Rp is the set of
possible weights of that neural network. Then one looks for a value of q ∈ Rp

such that the function f(q,−) : Rn → Rm closely approximates g. We formalise
these maps categorically via the Para construction [9, 23,24,30].

Definition 1 (Parametric category). Let (C,⊗, I) be a strict4 symmetric
monoidal category. We define a category Para(C) with objects those of C, and
a map from A to B a pair (P, f), with P an object of C and f : P ⊗ A →
B. The composite of maps (P, f) : A → B and (P ′, f ′) : B → C is the pair
(P ′ ⊗ P, (1P ′ ⊗ f); f ′). The identity on A is the pair (I, 1A).

Example 1. Take the category Smooth whose objects are natural numbers and
whose morphisms f : n → m are smooth maps from Rn to Rm. As described
above, the category Para(Smooth) can be thought of as a category of neural
networks: a map in this category from n to m consists of a choice of p and a
map f : Rp ×Rn → Rm with Rp representing the set of possible weights of the
neural network.

As we will see in the next sections, the interplay of the various components
at work in the learning process becomes much clearer once represented the mor-
phisms of Para(C) using the pictorial formalism of string diagrams, which we
now recall. In fact, we will mildly massage the traditional notation for string
diagrams (below left), by representing a morphism f : A → B in Para(C) as
below right.

f

P

A

B f

P

A B

This is to emphasise the special role played by P , reflecting the fact that in
machine learning data and parameters have different semantics. String diagram-
matic notations also allows to neatly represent composition of maps (P, f) : A →
B and (P ′, f ′) : B → C (below left), and “reparameterisation” of (P, f) : A → B
by a map α : Q → P (below right), yielding a new map (Q, (α⊗1A); f) : A → B.

f

P

A
B

f ′

P ′

C f

P

A B

α

Q

(2)

4 One can also define Para(C) in the case when C is non-strict; however, the result
would be not a category but a bicategory.
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Intuitively, reparameterisation changes the parameter space of (P, f) : A → B to
some other object Q, via some map α : Q → P . We shall see later that gradient
descent and its many variants can naturally be viewed as reparameterisations.

Note coherence rules in combining the two operations in (2) just work as ex-
pected, as these diagrams can be ultimately ‘compiled’ down to string diagrams
for monoidal categories.

2.2 Lenses

In machine learning (or even learning in general) it is fundamental that infor-
mation flows both forwards and backwards: the ‘forward’ flow corresponds to a
model’s predictions, and the ‘backwards’ flow to corrections to the model. The
category of lenses is the ideal setting to capture this type of structure, as it is a
category consisting of maps with both a “forward” and a “backward” part.

Definition 2. For any Cartesian category C, the category of (bimorphic) lenses
in C, Lens(C), is the category with the following data. Objects are pairs (A,A′)
of objects in C. A map from (A,A′) to (B,B′) consists of a pair (f, f∗) where
f : A → B (called the get or forward part of the lens) and f∗ : A × B′ →
A′ (called the put or backwards part of the lens). The composite of (f, f∗) :
(A,A′) → (B,B′) and (g, g∗) : (B,B′) → (C,C ′) is given by get f ; g and put
⟨π0, ⟨π0; f, π1⟩; g∗⟩; f∗. The identity on (A,A′) is the pair (1A, π1).

The embedding of Lens(C) into the category of Tambara modules over C
(see [7, Thm. 23]) provides a rich string diagrammatic language, in which lenses
may be represented with forward/backward wires indicating the information
flow. In this language, a morphism (f, f∗) : (A,A′) → (B,B′) is written as
below left, which can be ‘expanded’ as below right.

A

A′
B

B′(f, f∗)
A

A′

B

B′

f

f∗

It is clear in this language how to describe the composite of (f, f∗) : (A,A′) →
(B,B′) and (g, g∗) : (B,B′) → (C,C ′):

A

A′

f

f∗

C

C ′

g

g∗

B

B′

(3)
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2.3 Parametric Lenses

The fundamental category where supervised learning takes place is the composite
Para(Lens(C)) of the two constructions in the previous sections:

Definition 3. The category Para(Lens(C)) of parametric lenses on C has
as objects pairs (A,A′) of objects from C. A morphism from (A,A′) to (B,B′),
called a parametric lens5, is a choice of parameter pair (P, P ′) and a lens (f, f∗) :
(P, P ′)×(A,A′) → (B,B′) so that f : P ×A → B and f∗ : P ×A×B′ → P ′×A′

String diagrams for parametric lenses are built by simply composing the graph-
ical languages of the previous two sections — see (1), where respectively a mor-
phism, a composition of morphisms, and a reparameterisation are depicted.

Given a generic morphism in Para(Lens(C)) as depicted in (1) on the left,
one can see how it is possible to “learn” new values from f : it takes as input an
input A, a parameter P , and a change B′, and outputs a change in A, a value
of B, and a change P ′. This last element is the key component for supervised
learning: intuitively, it says how to change the parameter values to get the neural
network closer to the true value of the desired function.

The question, then, is how one is to define such a parametric lens given
nothing more than a neural network, ie., a parametric map (P, f) : A → B.
This is precisely what the gradient operation provides, and its generalization to
categories is explored in the next subsection.

2.4 Cartesian Reverse Differential Categories

Fundamental to all types of gradient-based learning is, of course, the gradient
operation. In most cases this gradient operation is performed in the category of
smooth maps between Euclidean spaces. However, recent work [50] has shown
that gradient-based learning can also work well in other categories; for example,
in a category of boolean circuits. Thus, to encompass these examples in a single
framework, we will work in a category with an abstract gradient operation.

Definition 4. A Cartesian left additive category [13, Defn. 1] consists of
a category C with chosen finite products (including a terminal object), and an
addition operation and zero morphism in each homset, satisfying various axioms.
A Cartesian reverse differential category (CRDC) [13, Defn. 13] consists
of a Cartesian left additive category C, together with an operation which provides,
for each map f : A → B in C, a map R[f ] : A × B → A satisfying various
axioms.

For f : A → B, the pair (f,R[f ]) forms a lens from (A,A) to (B,B). We
will pursue the idea that R[f ] acts as backwards map, thus giving a means to
“learn”f .

5 In [23], these are called learners. However, in this paper we study them in a much
broader light; see Section 6.
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Note that assigning type A×B → A to R[f ] hides some relevant information:
B-values in the domain and A-values in the codomain of R[f ] do not play the
same role as values of the same types in f : A → B: in R[f ], they really take in a
tangent vector at B and output a tangent vector at A (cf. the definition of R[f ]
in Smooth, Example 2 below). To emphasise this, we will type R[f ] as a map
A × B′ → A′ (even though in reality A = A′ and B = B′), thus meaning that
(f,R[f ]) is actually a lens from (A,A′) to (B,B′). This typing distinction will
be helpful later on, when we want to add additional components to our learning
algorithms.

The following two examples of CRDCs will serve as the basis for the learning
scenarios of the upcoming sections.

Example 2. The category Smooth (Example 1) is Cartesian with product given
by addition, and it is also a Cartesian reverse differential category: given a
smooth map f : Rn → Rm, the map R[f ] : Rn × Rm → Rn sends a pair (x, v)
to J [f ]T (x) · v: the transpose of the Jacobian of f at x in the direction v. For
example, if f : R2 → R3 is defined as f(x1, x2) := (x3

1 +2x1x2, x2, sin(x1)), then

R[f ] : R2 × R3 → R2 is given by (x, v) 7→
[
3x2

1 + 2x2 0 cos(x1)
2x1 1 0

]
·

v1v2
v3

. Using

the reverse derivative (as opposed to the forward derivative) is well-known to be
much more computationally efficient for functions f : Rn → Rm when m ≪ n
(for example, see [28]), as is the case in most supervised learning situations
(where often m = 1).

Example 3. Another CRDC is the symmetric monoidal category POLYZ2
[13,

Example 14] with objects the natural numbers and morphisms f : A → B the B-
tuples of polynomials Z2[x1 . . . xA]. When presented by generators and relations
these morphisms can be viewed as a syntax for boolean circuits, with parametric
lenses for such circuits (and their reverse derivative) described in [50].

3 Components of learning as Parametric Lenses

As seen in the introduction, in the learning process there are many components
at work: a model, an optimiser, a loss map, a learning rate, etc. In this section
we show how each such component can be understood as a parametric lens.
Moreover, for each component, we show how our framework encompasses several
variations of the gradient-descent algorithms, thus offering a unifying perspective
on many different approaches that appear in the literature.

3.1 Models as Parametric Lenses

We begin by characterising the models used for training as parametric lenses.
In essence, our approach identifies a set of abstract requirements necessary to
perform training by gradient descent, which covers the case studies that we will
consider in the next sections.
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The leading intuition is that a suitable model is a parametric map, equipped
with a reverse derivative operator. Using the formal developments of Section 2,
this amounts to assuming that a model is a morphism in Para(C), for a CRDC
C. In order to visualise such morphism as a parametric lens, it then suffices to
apply under Para(−) the canonical morphism R : C → Lens(C) (which exists
for any CRDC C, see [13, Prop. 31]), mapping f to (f,R[f ]). This yields a functor
Para(R) : Para(C) → Para(Lens(C)), pictorially defined as

f

P

A B 7→
A

A′

B

B′

f

R[f ]

P P ′

(4)

Example 4 (Neural networks). As noted previously, to learn a function of type
Rn → Rm, one constructs a neural network, which can be seen as a function of
type Rp ×Rn → Rm where Rp is the space of parameters of the neural network.
As seen in Example 1, this is a map in the category Para(Smooth) of type
Rn → Rm with parameter space Rp. Then one can apply the functor in (4)
to present a neural network together with its reverse derivative operator as a
parametric lens, i.e. a morphism in Para(Lens(Smooth)).

Example 5 (Boolean circuits). For learning of Boolean circuits as described in
[50], the recipe is the same as in Example 4, except that the base category is
POLYZ2

(see Example 3). The important observation here is that POLYZ2
is a

CRDC, see [13,50], and thus we can apply the functor in (4).

Note a model/parametric lens f can take as inputs an element of A, an
element of B′ (a change in B) and a parameter P and outputs an element of
B, a change in A, and a change in P . This is not yet sufficient to do machine
learning! When we perform learning, we want to input a parameter P and a pair
A×B and receive a new parameter P . Instead, f expects a change in B (not an
element of B) and outputs a change in P (not an element of P ). Deep dreaming,
on the other hand, wants to return an element of A (not a change in A). Thus, to
do machine learning (or deep dreaming) we need to add additional components
to f ; we will consider these additional components in the next sections.

3.2 Loss Maps as Parametric Lenses

Another key component of any learning algorithm is the choice of loss map.
This gives a measurement of how far the current output of the model is from
the desired output. In standard learning in Smooth, this loss map is viewed as
a map of type B ×B → R. However, in our setup, this is naturally viewed as a
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parametric map from B to R with parameter space B.6 We also generalize the
codomain to an arbitrary object L.

Definition 5. A loss map on B consists of a parametric map (B, loss) :
Para(C)(B,L) for some object L.

Note that we can precompose a loss map (B, loss) : B → L with a neural
network (P, f) : A → B (below left), and apply the functor in (4) (with C =
Smooth) to obtain the parametric lens below right.

f

P

A loss

B

L
B 7→ A

A′

B

B′

P P ′

L

L′

B B′

f

R[f ]

loss

R[loss]

(5)

This is getting closer to the parametric lens we want: it can now receive
inputs of type B. However, this is at the cost of now needing an input to L′; we
consider how to handle this in the next section.

Example 6 (Quadratic error). In Smooth, the standard loss function on Rb is
quadratic error: it uses L = R and has parametric map e : Rb ×Rb → R given
by e(bt, bp) =

1
2

∑b
i=1((bp)i−(bt)i)

2, where we think of bt as the “true” value and

bp the predicted value. This has reverse derivative R[e] : Rb ×Rb ×R → Rb ×Rb

given by R[e](bt, bp, α) = α · (bp − bt, bt − bp) — note α suggests the idea of
learning rate, which we will explore in Section 3.3.

Example 7 (Boolean error). In POLYZ2
, the loss function on Zb which is im-

plicitly used in [50] is a bit different: it uses L = Zb and has parametric map
e : Zb × Zb → Zb given by

e(bt, bp) = bt + bp.

(Note that this is + in Z2; equivalently this is given by XOR.) Its reverse deriva-
tive is of type R[e] : Zb × Zb × Zb → Zb × Zb given by R[e](bt, bp, α) = (α, α).

Example 8 (Softmax cross entropy). The Softmax cross entropy loss is a Rb-

parametric map Rb → R defined by e(bt, bp) =
∑b

i=1(bt)i((bp)i−log(Softmax(bp)i))

where Softmax(bp) =
exp((bp)i)∑b

j=1 exp((bp)j)
is defined componentwise for each class i.

We note that, although bt needs to be a probability distribution, at the
moment there is no need to ponder the question of interaction of probability
distributions with the reverse derivative framework: one can simply consider bt
as the image of some logits under the Softmax function.

6 Here the loss map has its parameter space equal to its input space. However, putting
loss maps on the same footing as models lends itself to further generalizations where
the parameter space is different, and where the loss map can itself be learned. See
Generative Adversarial Networks, [9, Figure 7.].
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Example 9 (Dot product). In Deep Dreaming (Section 4.2) we often want to focus
only on a particular element of the network output Rb. This is done by supplying
a one-hot vector bt as the ground truth to the loss function e(bt, bp) = bt ·bp which
computes the dot product of two vectors. If the ground truth vector y is a one-
hot vector (active at the i-th element), then the dot product performs masking of
all inputs except the i-th one. Note the reverse derivative R[e] : Rb ×Rb ×R →
Rb ×Rb of the dot product is defined as R[e](bt, bp, α) = (α · bp, α · bt).

3.3 Learning Rates as Parametric Lenses

After models and loss maps, another ingredient of the learning process are learn-
ing rates, which we formalise as follows.

Definition 6. A learning rate α on L consists of a lens from (L,L′) to (1, 1)
where 1 is a terminal object in C.

Note that the get component of the learning rate lens must be the unique map
to 1, while the put component is a map L × 1 → L′; that is, simply a map
α∗ : L → L′. Thus we can view α as a parametric lens from (L,L′) → (1, 1)
(with trivial parameter space) and compose it in Para(Lens(C)) with a model
and a loss map (cf. (5)) to get

A

A′

B

B′

P P ′

L

L′

B B′

f loss

R[f ] R[loss]
α (6)

Example 10. In standard supervised learning in Smooth, one fixes some ϵ > 0
as a learning rate, and this is used to define α: α is simply constantly −ϵ, ie.,
α(l) = −ϵ for any l ∈ L.

Example 11. In supervised learning in POLYZ2
, the standard learning rate is

quite different: for a given L it is defined as the identity function, α(l) = l.

Other learning rate morphisms are possible as well: for example, one could
fix some ϵ > 0 and define a learning rate in Smooth by α(l) = −ϵ · l. Such a
choice would take into account how far away the network is from its desired goal
and adjust the learning rate accordingly.

3.4 Optimisers as Reparameterisations

In this section we consider how to implement gradient descent (and its variants)
into our framework. To this aim, note that the parametric lens (f,R[f ]) rep-
resenting our model (see (4)) outputs a P ′, which represents a change in the
parameter space. Now, we would like to receive not just the requested change
in the parameter, but the new parameter itself. This is precisely what gradient
descent accomplishes, when formalised as a lens.
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Definition 7. In any CRDC C we can define gradient update as a map G in
Lens(C) from (P, P ) to (P, P ′) consisting of (G,G∗) : (P, P ) → (P, P ′), where
G(p) = p and G∗(p, p′) = p+ p′7.

Intuitively, such a lens allows one to receive the requested change in parameter
and implement that change by adding that value to the current parameter. By its
type, we can now “plug” the gradient descent lens G : (P, P ) → (P, P ′) above the
model (f,R[f ]) in (4) — formally, this is accomplished as a reparameterisation
of the parametric morphism (f,R[f ]), cf. Section 2.1. This gives us Figure 3
(left).

A

A′

B

B′

P P ′

+

Model

P P

A

A′

B

B′

P P ′

Model

S × P S × P

Optimiser

Fig. 3: Model reparameterised by basic gradient descent (left) and a generic
stateful optimiser (right).

Example 12 (Gradient update in Smooth). In Smooth, the gradient descent repa-
rameterisation will take the output from P ′ and add it to the current value of
P to get a new value of P .

Example 13 (Gradient update in Boolean circuits). In the CRDC POLYZ2 , the
gradient descent reparameterisation will again take the output from P ′ and
add it to the current value of P to get a new value of P ; however, since + in
Z2 is the same as XOR, this can be also be seen as taking the XOR of the
current parameter and the requested change; this is exactly how this algorithm
is implemented in [50].

Other variants of gradient descent also fit naturally into this framework by
allowing for additional input/output data with P . In particular, many of them
keep track of the history of previous updates and use that to inform the next one.
This is easy to model in our setup: instead of asking for a lens (P, P ) → (P, P ′),
we ask instead for a lens (S×P, S×P ) → (P, P ′) where S is some “state” object.

7 Note that as in the discussion in Section 2.4, we are implicitly assuming that P = P ′;
we have merely notated them differently to emphasize the different “roles” they play
(the first P can be thought of as “points”, the second as “vectors”)
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Definition 8. A stateful parameter update consists of a choice of object S
(the state object) and a lens U : (S × P, S × P ) → (P, P ′).

Again, we view this optimiser as a reparameterisation which may be “plugged
in” a model as in Figure 3 (right). Let us now consider how several well-known
optimisers can be implemented in this way.

Example 14 (Momentum). In the momentum variant of gradient descent, one
keeps track of the previous change and uses this to inform how the current
parameter should be changed. Thus, in this case, we set S = P , fix some γ >
0, and define the momentum lens (U,U∗) : (P × P, P × P ) → (P, P ′) . by
U(s, p) = p and U∗(s, p, p′) = (s′, p+ s′), where s′ = −γs+ p′. Note momentum
recovers gradient descent when γ = 0.

In both standard gradient descent and momentum, our lens representation
has trivial get part. However, as soon as we move to more complicated variants,
this is not anymore the case, as for instance in Nesterov momentum below.

Example 15 (Nesterov momentum). In Nesterov momentum, one uses the mo-
mentum from previous updates to tweak the input parameter supplied to the
network. We can precisely capture this by using a small variation of the lens in
the previous example. Again, we set S = P , fix some γ > 0, and define the Nes-
terov momentum lens (U,U∗) : (P ×P, P ×P ) → (P, P ′) by U(s, p) = p+ γs
and U∗ as in the previous example.

Example 16 (Adagrad). Given any fixed ϵ > 0 and δ ∼ 10−7, Adagrad [20] is
given by S = P , with the lens whose get part is (g, p) 7→ p. The put is (g, p, p′) 7→
(g′, p+ ϵ

δ+
√
g′ ⊙ p′) where g′ = g+ p′ ⊙ p′ and ⊙ is the elementwise (Hadamard)

product. Unlike with other optimization algorithms where the learning rate is
the same for all parameters, Adagrad divides the learning rate of each individual
parameter with the square root of the past accumulated gradients.

Example 17 (Adam). Adaptive Moment Estimation (Adam) [32] is another method
that computes adaptive learning rates for each parameter by storing exponen-
tially decaying average of past gradients (m) and past squared gradients (v). For
fixed β1, β2 ∈ [0, 1), ϵ > 0, and δ ∼ 10−8, Adam is given by S = P × P , with
the lens whose get part is (m, v, p) 7→ p and whose put part is put(m, v, p, p′) =
(m̂′, v̂′, p + ϵ

δ+
√
v̂′ ⊙ m̂′) where m′ = β1m + (1 − β1)p

′, v′ = β2v + (1 − β2)p
′2,

and m̂′ = m′

1−βt
1
, v̂′ = v′

1−βt
2
.

Note that, so far, optimsers/reparameterisations have been added to the
P/P ′ wires. In order to change the model’s parameters (Fig. 3). In Section 4.2
we will study them on the A/A′ wires instead, giving deep dreaming.

4 Learning with Parametric Lenses

In the previous section we have seen how all the components of learning can be
modeled as parametric lenses. We now study how all these components can be
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put together to form supervised learning systems. In addition to studying the
most common examples of supervised learning: systems that learn parameters,
we also study different kinds systems: those that learn their inputs. This is a
technique commonly known as deep dreaming, and we present it as a natural
counterpart of supervised learning of parameters.

Before we describe these systems, it will be convenient to represent all the
inputs and outputs of our parametric lenses as parameters. In (6), we see the
P/P ′ and B/B′ inputs and outputs as parameters; however, the A/A′ wires are
not. To view the A/A′ inputs as parameters, we compose that system with the
parametric lens η we now define. The parametric lens η has the type (1, 1) →
(A,A′) with parameter space (A,A′) defined by (getη = 1A, putη = π1) and can

be depicted graphically as
A

A′

A

. Composing η with the rest of the learning

system in (6) gives us the closed parametric lens

A

A′

B

B′

P P ′

L

L′

B B′

Loss αModel

A A′

(7)

This composite is now a map in Para(Lens(C)) from (1, 1) to (1, 1); all its inputs
and outputs are now vertical wires, ie., parameters. Unpacking it further, this is
a lens of type (A×P ×B,A′ ×P ′ ×B′) → (1, 1) whose get map is the terminal
map, and whose put map is of the type A × P × B → A′ × P ′ × B′. It can be
unpacked as the composite put(a, p, bt) = (a′, p′, b′t), where

bp = f(p, a) (b′t, b
′
p) = R[loss](bt, bp, α(loss(bt, bp))) (p′, a′) = R[f ](p, a, b′p).

In the next two sections we consider further additions to the image above which
correspond to different types of supervised learning.

4.1 Supervised Learning of Parameters

The most common type of learning performed on (7) is supervised learning of
parameters. This is done by reparameterising (cf. Section 2.1) the image in the
following manner. The parameter ports are reparameterised by one of the (pos-
sibly stateful) optimisers described in the previous section, while the backward
wires A′ of inputs and B′ of outputs are discarded. This finally yields the com-
plete picture of a system which learns the parameters in a supervised manner:
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A

A′

B

B′

P P ′

L

L′

B

B′

Loss αModel

S × P S × PA

Optimiser

Fixing a particular optimiser (U,U∗) : (S × P, S × P ) → (P, P ′) we again
unpack the entire construction. This is a map in Para(Lens(C)) from (1, 1) to
(1, 1) whose parameter space is (A × S × P × B,S × P ). In other words, this
is a lens of type (A × S × P × B,S × P ) → (1, 1) whose get component is the
terminal map. Its put map has the type A × S × P × B → S × P and unpacks
to put(a, s, p, bt) = U∗(s, p, p′), where

p = U(s, p) bp = f(p, a)

(b′t, b
′
p) = R[loss](bt, bp, α(loss(bt, bp))) (p′, a′) = R[f ](p, a, b′p).

While this formulation might seem daunting, we note that it just explicitly
specifies the computation performed by a supervised learning system. The vari-
able p represents the parameter supplied to the network by the stateful gradient
update rule (in many cases this is equal to p); bp represents the prediction of
the network (contrast this with bt which represents the ground truth from the
dataset). Variables with a tick ′ represent changes: b′p and b′t are the changes
on predictions and true values respectively, while p′ and a′ are changes on the
parameters and inputs. Furthermore, this arises automatically out of the rule for
lens composition (3); what we needed to specify is just the lenses themselves.

We justify and illustrate our approach on a series of case studies drawn from
the literature. This presentation has the advantage of treating all these instances
uniformly in terms of basic constructs, highlighting their similarities and differ-
ences. First, we fix some parametric map (Rp, f) : Para(Smooth)(Ra,Rb) in
Smooth and the constant negative learning rate α : R (Example 10). We then
vary the loss function and the gradient update, seeing how the put map above
reduces to many of the known cases in the literature.

Example 18 (Quadratic error, basic gradient descent). Fix the quadratic error
(Example 6) as the loss map and basic gradient update (Example 12). Then the
aforementioned put map simplifies. Since there is no state, its type reduces to
A×P ×B → P , and we have put(a, p, bt) = p+ p′, where (p′, a′) = R[f ](p, a, α ·
(f(p, a) − bt)). Note that α here is simply a constant, and due to the linearity
of the reverse derivative (Def 4), we can slide the α from the costate into the
basic gradient update lens. Rewriting this update, and performing this sliding we
obtain a closed form update step put(a, p, bt) = p+α·(R[f ](p, a, f(p, a)−bt);π0),
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where the negative descent component of gradient descent is here contained in
the choice of the negative constant α.

This example gives us a variety of regression algorithms solved iteratively
by gradient descent: it embeds some parametric map (Rp, f) : Ra → Rb into the
system which performs regression on input data - where a denotes the input to
the model and bt denotes the ground truth. If the corresponding f is linear and
b = 1, we recover simple linear regression with gradient descent. If the codomain
is multi-dimensional, i.e. we are predicting multiple scalars, then we recover
multivariate linear regression. Likewise, we can model a multi-layer perceptron or
even more complex neural network architectures performing supervised learning
of parameters simply by changing the underlying parametric map.

Example 19 (Softmax cross entropy, basic gradient descent). Fix Softmax cross
entropy (Example 8) as the loss map and basic gradient update (Example 12).
Again the put map simplifies. The type reduces to A×P ×B → P and we have
put(a, p, bt) = p + p′ where (p′, a′) = R[f ](p, a, α · (Softmax(f(p, a)) − bt)). The
same rewriting performed on the previous example can be done here.

This example recovers logistic regression, e.g. classification.

Example 20 (Mean squared error, Nesterov Momentum). Fix the quadratic error
(Example 6) as the loss map and Nesterov momentum (Example 15) as the
gradient update. This time the put map A×S×P ×B → S×P does not have a
simplified type. The implementation of put reduces to put(a, s, p, bt) = (s′, p+s′),
where p = p+ γs, (p′, a′) = R[f ](p, a, α · (f(p, a)− bt)), and s′ = −γs+ p′.

This example with Nesterov momentum differs in two key points from all
the other ones: i) the optimiser is stateful, and ii) its get map is not trivial.
While many other optimisers are stateful, the non-triviality of the get map here
showcases the importance of lenses. They allow us to make precise the notion of
computing a “lookahead” value for Nesterov momentum, something that is in
practice usually handled in ad-hoc ways. Here, the algebra of lens composition
handles this case naturally by using the get map, a seemingly trivial, unused
piece of data for previous optimisers.

Our last example, using a different base category POLYZ2 , shows that our
framework captures learning in not just continuous, but discrete settings too.
Again, we fix a parametric map (Zp, f) : POLYZ2

(Za,Zb) but this time we fix
the identity learning rate (Example 11), instead of a constant one.

Example 21 (Basic learning in Boolean circuits). Fix XOR as the loss map (Ex-
ample 7) and the basic gradient update (Example 13). The put map again
simplifies. The type reduces to A × P × B → P and the implementation to
put(a, p, bt) = p+ p′ where (p′, a′) = R[f ](p, a, f(p, a) + bt).

A sketch of learning iteration. Having described a number of examples in
supervised learning, we outline how to model learning iteration in our framework.
Recall the aforementioned put map whose type is A×P ×B → P (for simplicity
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here modelled without state S). This map takes an input-output pair (a0, b0),
the current parameter pi and produces an updated parameter pi+1. At the next
time step, it takes a potentially different input-output pair (a1, b1), the updated
parameter pi+1 and produces pi+2. This process is then repeated. We can model
this iteration as a composition of the put map with itself, as a composite (A ×
put×B); put whose type is A×A×P ×B×B → P . This map takes two input-
output pairs A × B, a parameter and produces a new parameter by processing
these datapoints in sequence. One can see how this process can be iterated any
number of times, and even represented as a string diagram.

But we note that with a slight reformulation of the put map, it is possible
to obtain a conceptually much simpler definition. The key insight lies in seeing
that the map put : A×P ×B → P is essentially an endo-map P → P with some
extra inputs A×B; it’s a parametric map!

In other words, we can recast the put map as a parametric map (A×B, put) :
Para(C)(P, P ). Being an endo-map, it can be composed with itself. The resulting
composite is an endo-map taking two “parameters”: input-output pair at the
time step 0 and time step 1. This process can then be repeated, with Para
composition automatically taking care of the algebra of iteration.

P put

A×B

P
put

A×B

Pput

A×B

n. . .

This reformulation captures the essence of parameter iteration: one can think
of it as a trajectory pi, pi+1, pi+2, ... through the parameter space; but it is a
trajectory parameterised by the dataset. With different datasets the algorithm
will take a different path through this space and learn different things.

4.2 Deep Dreaming: Supervised Learning of Inputs

We have seen that reparameterising the parameter port with gradient descent
allows us to capture supervised parameter learning. In this section we describe
how reparameterising the input port provides us with a way to enhance an input
image to elicit a particular interpretation. This is the idea behind the technique
called Deep Dreaming, appearing in the literature in many forms [19,34,35,44].

A

A′

B

B′

A A′

L

L′

B

B′

Loss αModel

S × A S × A P

Optimiser

(8)
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Deep dreaming is a technique which uses the parameters p of some trained
classifier network to iteratively dream up, or amplify some features of a class b on
a chosen input a. For example, if we start with an image of a landscape a0, a label
b of a “cat” and a parameter p of a sufficiently well-trained classifier, we can start
performing “learning” as usual: computing the predicted class for the landscape
a0 for the network with parameters p, and then computing the distance between
the prediction and our label of a cat b. When performing backpropagation, the
respective changes computed for each layer tell us how the activations of that
layer should have been changed to be more “cat” like. This includes the first
(input) layer of the landscape a0. Usually, we discard this changes and apply
gradient update to the parameters. In deep dreaming we discard the parameters
and apply gradient update to the input (see (8)). Gradient update here takes these
changes and computes a new image a1 which is the same image of the landscape,
but changed slightly so to look more like whatever the network thinks a cat looks
like. This is the essence of deep dreaming, where iteration of this process allows
networks to dream up features and shapes on a particular chosen image [1].

Just like in the previous subsection, we can write this deep dreaming system
as a map inPara(Lens(C)) from (1, 1) to (1, 1) whose parameter space is (S×A×
P×B,S×A). In other words, this is a lens of type (S×A×P×B,S×A) → (1, 1)
whose get map is trivial. Its put map has the type S × A × P × B → S × A
and unpacks to put(s, a, p, bt) = U∗(s, a, a′), where a = U(s, a), bp = f(p, a),
(b′t, b

′
p) = R[loss](bt, bp, α(loss(bt, bp))), and (p′, a′) = R[f ](p, a, b′p).

We note that deep dreaming is usually presented without any loss function as
a maximisation of a particular activation in the last layer of the network output
[44, Section 2.]. This maximisation is done with gradient ascent, as opposed to
gradient descent. However, this is just a special case of our framework where
the loss function is the dot product (Example 9). The choice of the particular
activation is encoded as a one-hot vector, and the loss function in that case
essentially masks the network output, leaving active only the particular chosen
activation. The final component is the gradient ascent : this is simply recovered
by choosing a positive, instead of a negative learning rate [44]. We explicitly
unpack this in the following example.

Example 22 (Deep dreaming, dot product loss, basic gradient update). Fix Smooth
as base category, a parametric map (Rp, f) : Para(Smooth)(Ra,Rb), the dot
product loss (Example 9), basic gradient update (Example 12), and a positive
learning rate α : R. Then the above put map simplifies. Since there is no state, its
type reduces to A×P ×B → A and its implementation to put(a, p, bt) = a+ a′,
where (p′, a′) = R[f ](p, a, α · bt). Like in Example 18, this update can be rewrit-
ten as put(a, p, bt) = a + α · (R[f ](p, a, bt);π1), making a few things apparent.
This update does not depend on the prediction f(p, a): no matter what the net-
work has predicted, the goal is always to maximize particular activations. Which
activations? The ones chosen by bt. When bt is a one-hot vector, this picks out
the activation of just one class to maximize, which is often done in practice.

While we present only the most basic image, there is plenty of room left
for exploration. The work of [44, Section 2.] adds an extra regularization term



Categorical Foundations of Gradient-Based Learning 21

to the image. In general, the neural network f is sometimes changed to copy
a number of internal activations which are then exposed on the output layer.
Maximizing all these activations often produces more visually appealing results.
In the literature we did not find an example which uses the Softmax-cross entropy
(Example 8) as a loss function in deep dreaming, which seems like the more
natural choice in this setting. Furthermore, while deep dreaming commonly uses
basic gradient descent, there is nothing preventing the use of any of the optimiser
lenses discussed in the previous section, or even doing deep dreaming in the
context of Boolean circuits. Lastly, learning iteration which was described in at
the end of previous subsection can be modelled here in an analogous way.

5 Implementation

We provide a proof-of-concept implementation as a Python library — full usage
examples, source code, and experiments can be found at [17]. We demonstrate
the correctness of our library empirically using a number of experiments im-
plemented both in our library and in Keras [11], a popular framework for deep
learning. For example, one experiment is a model for the MNIST image clas-
sification problem [33]: we implement the same model in both frameworks and
achieve comparable accuracy. Note that despite similarities between the user in-
terfaces of our library and of Keras, a model in our framework is constructed
as a composition of parametric lenses. This is fundamentally different to the
approach taken by Keras and other existing libraries, and highlights how our
proposed algebraic structures naturally guide programming practice

In summary, our implementation demonstrates the advantages of our ap-
proach. Firstly, computing the gradients of the network is greatly simplified
through the use of lens composition. Secondly, model architectures can be ex-
pressed in a principled, mathematical language; as morphisms of a monoidal
category. Finally, the modularity of our approach makes it easy to see how var-
ious aspects of training can be modified: for example, one can define a new
optimization algorithm simply by defining an appropriate lens. We now give a
brief sketch of our implementation.

5.1 Constructing a Model with Lens and Para

We model a lens (f, f∗) in our library with the Lens class, which consists of a
pair of maps fwd and rev corresponding to f and f∗, respectively. For example,
we write the identity lens (1A, π2) as follows:

i d e n t i t y = Lens ( lambda x : x , lambda x dy : x dy [ 1 ] )

The composition (in diagrammatic order) of Lens values f and g is written
f >> g, and monoidal composition as f @ g. Similarly, the type of Para maps
is modeled by the Para class, with composition and monoidal product written
the same way. Our library provides several primitive Lens and Para values.
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Let us now see how to construct a single layer neural network from the com-
position of such primitives. Diagramatically, we wish to construct the following
model, representing a single ‘dense’ layer of a neural network:

Ra

Ra

Rb

Rb×a Rb×a Rb Rb

linear bias activation

Rb

Rb

Rb

Rb

Rb
(9)

Here, the parameters of linear are the coefficients of a b×a matrix, and the
underlying lens has as its forward map the function (M,x) → M ·x, where M is
the b× a matrix whose coefficients are the Rb×a parameters, and x ∈ Ra is the
input vector. The bias map is even simpler: the forward map of the underlying
lens is simply pointwise addition of inputs and parameters: (b, x) → b+x. Finally,
the activation map simply applies a nonlinear function (e.g., sigmoid) to the
input, and thus has the trivial (unit) parameter space. The representation of
this composition in code is straightforward: we can simply compose the three
primitive Para maps as in (9):

def dense ( a , b , a c t i v a t i o n ) :
return l i n e a r ( a , b ) >> b ia s (b) >> a c t i v a t i o n

Note that by constructing model architectures in this way, the computation
of reverse derivatives is greatly simplified: we obtain the reverse derivative ‘for
free’ as the put map of the model. Furthermore, adding new primitives is also
simplified: the user need simply provide a function and its reverse derivative in
the form of a Para map. Finally, notice also that our approach is truly composi-
tional: we can define a hidden layer neural network with n hidden units simply
by composing two dense layers, as follows:

dense ( a , n , a c t i v a t i o n ) >> dense (n , b , a c t i v a t i o n )

5.2 Learning

Now that we have constructed a model, we also need to use it to learn from
data. Concretely, we will construct a full parametric lens as in Figure 2 then
extract its put map to iterate over the dataset.

By way of example, let us see how to construct the following parametric lens,
representing basic gradient descent over a single layer neural network with a
fixed learning rate:

A

A′

B

B′

P P ′

L

L′

B

B′

loss
ϵ

+

dense

P PA

(10)
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This morphism is constructed essentially as below, where apply update(α,
f) represents the ‘vertical stacking’ of α atop f :

apply update ( bas ic update , dense ) >> l o s s >> l e a r n i n g r a t e (ϵ)

Now, given the parametric lens of (10), one can construct a morphism step :
B×P×A → P which is simply the put map of the lens. Training the model then
consists of iterating the step function over dataset examples (x, y) ∈ A×B to op-
timise some initial choice of parameters θ0 ∈ P , by letting θi+1 = step(yi, θi, xi).

Note that our library also provides a utility function to construct step from
its various pieces:

s tep = supe rv i s ed s t ep (model , update , l o s s , l e a r n i n g r a t e )

For an end-to-end example of model training and iteration, we refer the
interested reader to the experiments accompanying the code [17].

6 Related Work

The work [23] is closely related to ours, in that it provides an abstract categorical
model of backpropagation. However, it differs in a number of key aspects. We
give a complete lens-theoretic explanation of what is back-propagated via (i)
the use of CRDCs to model gradients; and (ii) the Para construction to model
parametric functions and parameter update. We thus can go well beyond [23]
in terms of examples - their example of smooth functions and basic gradient
descent is covered in our subsection 4.1.

We also explain some of the constructions of [23] in a more structured way.
For example, rather than considering the category Learn of [23] as primitive,
here we construct it as a composite of two more basic constructions (the Para
and Lens constructions). The flexibility could be used, for example, to com-
positionally replace Para with a variant allowing parameters to come from a
different category, or lenses with the category of optics [38] enabling us to model
things such as control flow using prisms.

One more relevant aspect is functoriality. We use a functor to augment a
parametric map with its backward pass, just like [23]. However, they additionally
augmented this map with a loss map and gradient descent using a functor as
well. This added extra conditions on the partial derivatives of the loss function:
it needed to be invertible in the 2nd variable. This constraint was not justified
in [23], nor is it a constraint that appears in machine learning practice. This led
us to reexamine their constructions, coming up with our reformulation that does
not require it. While loss maps and optimisers are mentioned in [23] as parts of
the aforementioned functor, here they are extracted out and play a key role: loss
maps are parametric lenses and optimisers are reparameterisations. Thus, in this
paper we instead use Para-composition to add the loss map to the model, and
Para 2-cells to add optimisers. The mentioned inverse of the partial derivative
of the loss map in the 2nd variable was also hypothesised to be relevant to deep
dreaming. We have investigated this possibility thoroughly in our paper, showing
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it is gradient update which is used to dream up pictures. We also correct a small
issue in Theorem III.2 of [23]. There, the morphisms of Learn were defined up to
an equivalence (pg. 4 of [23]) but, unfortunately, the functor defined in Theorem
III.2 does not respect this equivalence relation. Our approach instead uses 2-cells
which comes from the universal property of Para — a 2-cell from (P, f) : A → B
to (Q, g) : A → B is a lens, and hence has two components: a map α : Q → P
and α∗ : Q×P → Q. By comparison, we can see the equivalence relation of [23]
as being induced by map α : Q → P , and not a lens. Our approach highlights
the importance of the 2-categorical structure of learners. In addition, it does not
treat the functor Para(C) → Learn as a primitive. In our case, this functor
has the type Para(C) → Para(Lens(C)) and arises from applying Para to a
canonical functor C → Lens(C) existing for any reverse derivative category, not
just Smooth. Lastly, in our paper we took advantage of the graphical calculus
for Para, redrawing many diagrams appearing in [23] in a structured way.

Other than [23], there are a few more relevant papers. The work of [18] con-
tains a sketch of some of the ideas this paper evolved from. They are based
on the interplay of optics with parameterisation, albeit framed in the setting of
diffeological spaces, and requiring cartesian and local cartesian closed structure
on the base category. Lenses and Learners are studied in the eponymous work
of [22] which observes that learners are parametric lenses. They do not explore
any of the relevant Para or CRDC structure, but make the distinction between
symmetric and asymmetric lenses, studying how they are related to learners de-
fined in [23]. A lens-like implementation of automatic differentiation is the focus
of [21], but learning algorithms aren’t studied. A relationship between category-
theoretic perspective on probabilistic modeling and gradient-based optimisation
is studied in [42] which also studies a variant of the Para construction. Usage of
Cartesian differential categories to study learning is found in [46]. They extend
the differential operator to work on stateful maps, but do not study lenses, pa-
rameterisation nor update maps. The work of [24] studies deep learning in the
context of Cycle-consistent Generative Adversarial Networks [51] and formalises
it via free and quotient categories, making parallels to the categorical formula-
tions of database theory [45]. They do use the Para construction, but do not
relate it to lenses nor reverse derivative categories. A general survey of category
theoretic approaches to machine learning, covering many of the above papers,
can be found in [43]. Lastly, the concept of parametric lenses has started appear-
ing in recent formulations of categorical game theory and cybernetics [9,10]. The
work of [9] generalises the study of parametric lenses into parametric optics and
connects it to game thereotic concepts such as Nash equilibria.

7 Conclusions and Future Directions

We have given a categorical foundation of gradient-based learning algorithms
which achieves a number of important goals. The foundation is principled and
mathematically clean, based on the fundamental idea of a parametric lens. The
foundation covers a wide variety of examples: different optimisers and loss maps
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in gradient-based learning, different settings where gradient-based learning hap-
pens (smooth functions vs. boolean circuits), and both learning of parameters
and learning of inputs (deep dreaming). Finally, the foundation is more than
a mere abstraction: we have also shown how it can be used to give a practical
implementation of learning, as discussed in Section 5.

There are a number of important directions which are possible to explore
because of this work. One of the most exciting ones is the extension to more
complex neural network architectures. Our formulation of the loss map as a
parametric lens should pave the way for Generative Adversarial Networks [27],
an exciting new architecture whose loss map can be said to be learned in tandem
with the base network. In all our settings we have fixed an optimiser beforehand.
The work of [4] describes a meta-learning approach which sees the optimiser as a
neural network whose parameters and gradient update rule can be learned. This
is an exciting prospect since one can model optimisers as parametric lenses;
and our framework covers learning with parametric lenses. Recurrent neural
networks are another example of a more complex architecture, which has already
been studied in the context of differential categories in [46]. When it comes to
architectures, future work includes modelling some classical systems as well, such
as the Support Vector Machines [15], which should be possible with the usage
of loss maps such as Hinge loss.

Future work also includes using the full power of CRDC axioms. In particular,
axioms RD.6 or RD.7, which deal with the behaviour of higher-order derivatives,
were not exploited in our work, but they should play a role in modelling some
supervised learning algorithms using higher-order derivatives (for example, the
Hessian) for additional optimisations. Taking this idea in a different direction,
one can see that much of our work can be applied to any functor of the form
F : C → Lens(C) - F does not necessarily have to be of the form f 7→ (f,R[f ])
for a CRDC R. Moreover, by working with more generalised forms of the lens
category (such as dependent lenses), we may be able to capture ideas related
to supervised learning on manifolds. And, of course, we can vary the parameter
space to endow it with different structure from the functions we wish to learn. In
this vein, we wish to use fibrations/dependent types to model the use of tangent
bundles: this would foster the extension of the correct by construction paradigm
to machine learning, and thereby addressing the widely acknowledged problem
of trusted machine learning. The possibilities are made much easier by the com-
positional nature of our framework. Another key topic for future work is to link
gradient-based learning with game theory. At a high level, the former takes lit-
tle incremental steps to achieve an equilibrium while the later aims to do so in
one fell swoop. Formalising this intuition is possible with our lens-based frame-
work and the lens-based framework for game theory [25]. Finally, because our
framework is quite general, in future work we plan to consider further modifica-
tions and additions to encompass non-supervised, probabilistic and non-gradient
based learning. This includes genetic algorithms and reinforcement learning.
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43. Shiebler, D., Gavranović, B., Wilson, P.: Category Theory in Machine Learning.
arXiv:2106.07032 (2021)

44. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv:1312.6034 (2014)

45. Spivak, D.I.: Functorial data migration. arXiv:1009.1166 (2010)
46. Sprunger, D., Katsumata, S.y.: Differentiable causal computations via delayed

trace. In: Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’19, IEEE Press (2019)

47. Steckermeier, A.: Lenses in functional programming. Preprint, available at
https://sinusoid.es/misc/lager/lenses.pdf (2015)

48. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initial-
ization and momentum in deep learning. In: Dasgupta, S., McAllester, D. (eds.)
Proceedings of the 30th International Conference on Machine Learning. vol. 28,
pp. 1139–1147 (2013), http://proceedings.mlr.press/v28/sutskever13.html

49. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Pro-
ceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science. pp.
280–291 (1997). https://doi.org/10.1109/LICS.1997.614955

50. Wilson, P., Zanasi, F.: Reverse derivative ascent: A categorical approach to learn-
ing boolean circuits. In: Proceedings of Applied Category Theory (ACT) (2020),
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:31

51. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks. arXiv:1703.10593 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/

4.0/), which permits use, sharing, adaptation, distribution and reproduction in any

medium or format, as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons license and indicate if changes

were made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/null
http://journals.cambridge.org/article_S096012950000311X
http://journals.cambridge.org/article_S096012950000311X
http://arxiv.org/abs/1606.08514
http://proceedings.mlr.press/v28/sutskever13.html
https://doi.org/10.1109/LICS.1997.614955
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?ACT2020:31
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Categorical Foundations of Gradient-Based Learning
	1 Introduction
	2 Categorical Toolkit
	2.1 Parametric Maps
	2.2 Lenses
	2.3 Parametric Lenses
	2.4 Cartesian Reverse Differential Categories

	3 Components of learning as Parametric Lenses
	3.1 Models as Parametric Lenses
	3.1 Models as Parametric Lenses
	3.2 Loss Maps as Parametric Lenses
	3.3 Learning Rates as Parametric Lenses
	3.4 Optimisers as Reparameterisations

	4 Learning with Parametric Lenses
	4.1 Supervised Learning of Parameters
	4.2 Deep Dreaming: Supervised Learning of Inputs

	5 Implementation
	5.1 Constructing a Model with Lens and Para
	5.2 Learning

	6 Related Work
	7 Conclusions and Future Directions
	References




