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Abstract. A modular extension of Arg-tuProlog, a light-weight argu-
mentation tool, is here presented and discussed, highlighting how it
enables reasoning with rules and interpretations of multiple legal systems.
Its effectiveness is demonstratedwith examples fromdifferent national pri-
vate international law (PIL) laws, running in Arg-tuProlog. PIL addresses
overlaps and conflicts between legal systems by distributing cases between
the authorities of such systems (jurisdiction) and establishing what rules
these authorities have to apply to each case (choice of law).

Keywords: Modular argumentation · Private international law ·
Arg-tuProlog

1 Introduction

In our increasingly pervasive and interconnected world, the application and
enforcement of the law make it necessary to take into account the interplay
of multiple normative systems, especially when dealing with international con-
tracts and other commercial and social interactions involving different countries.
Moreover, normative systems may also interact or conflict on different levels: this
is true of both national legal systems and of various transnational or interna-
tional laws and conventions. All these sources of law need to be considered to
properly reason about the law.

The research in this paper focuses on the field of private international law
(PIL) – a growing and important domain of the law – which deals with the coex-
istence of multiple normative systems, having distinct and often contradictory
rules, and the legal interaction of persons connected to different legal systems,
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trying to establish priorities between them. Conflicts about competences and
rules are addressed by identifying which authority is responsible for making a
decision in each given case (jurisdiction), and which set of norms should be
applied (applicable law).

A recent logical analysis of PIL has highlighted how this body of law can be
suitably modelled by modular argumentation [8] so as to provide a formal model
of the interaction among multiple legal systems. The model proceeds from the
assumption that PIL is not concerned with specific inconsistencies between the
rules of different legal systems, since only one system will be selected and applied,
regardless of how the others would regulate the same case (choice of law). Thus,
the law is modelled through sets of modules in which different legal systems
are represented separately. Moreover, each legal-system module is further split
into separate modules, each with a specific function: determining jurisdiction,
establishing the law to be applied, and providing substantive legal outcomes.
This formal model has not yet been captured and implemented in ready-to-use
technology.

For this reason, we are here presenting an extension for the Arg-tuProlog
framework [5,10] – a lightweight argumentation tool – enabling the exploitation
of modular knowledge bases. In this work, previous works on Arg-tuProlog [3] are
extended focusing onmodularity issues and fully addressing a complete case study
in the field of PIL and legal reasoning. Arg-tuProlog makes it possible to design
and define knowledge organised in distinct and separate modules that can “call”
one another. Such calls request skeptical or credulous reasoning. The final answers
from the system are obtained by way of dialectical argumentation. In particular,
a knowledge module – which may represent a legal system or parts of it – can be
used by itself, or by referring to another module for specific issues. This second
approach is done by directly calling and querying the relevant module.

In past years, research in either legal theory or AI and law has devoted
little attention to the logical analysis of PIL. Only recently have several projects
begun to fill this gap1, providing computable representations of international and
national PIL rules. This is an important development since private international
law is an increasingly relevant domain of the law – and considering as well
that legal relationships involving citizens of different countries are becoming
increasingly frequent. The tool presented in this paper is a further advancement,
for it can be used to expand existing projects (such as Interlex), and also as
a basis for broader applications. Indeed, the model – and its technology – can
also be useful for governing interactions and coordination between heterogeneous
agents, belonging to different and differently regulated virtual societies, without
recourse to a central regulatory agency [4].

1 Among these is the European project Interlex, aimed at developing a consultative
and training system for internet-related PIL, making it available as an online plat-
form. The platform will be composed of three modules: a Decision Support Module
(DSM), a Find Law Module (FLM), and a Training Module (TM). In this context,
the core component of the Decision Support Module (DSM) lies in a set of logic
representations in Prolog, providing basic legal reasoning capabilities.
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Accordingly, the paper is organised as follows. Section 2 presents two exam-
ples in the PIL domain illustrating the interaction between national and inter-
national legislation. Section 3 then presents the Arg-tuProlog modular argumen-
tation tool. In Sect. 4 the examples discussed in Sect. 2 are represented in the
Arg-tuProlog framework. Section 5 discusses the results of the experiment and
proposes future lines of research.

2 The Domain of Private International Law: Running
Examples

In this section, we will provide two examples of a possible interaction between
national and transnational normative systems. In particular, we will focus on one
of the EU’s main PIL instruments, the Brussels Regulation2, providing common
EU rules on jurisdiction and the recognition and enforcement of judgments.
According to the Brussels Regulation, there are some cases where the regulation
itself does not give an answer to the question of jurisdiction, pointing instead
to national legislation for the relevant laws. This happens, for example, in the
sections on consumer contracts (Sect. 4) and third-party proceedings (Sect. 5).

We have built two examples that set aside EU legislation and focus on the
switch/conflict between national laws. In our examples, we focus in particular
on two sets of national PIL laws: the Italian and the Bulgarian. The source
texts presented here are extracted from then English translations of national
laws available on the Interlex portal3.

Example 1 (General jurisdiction rule)
In this example we consider article 3.1 of the Italian Law No. 218 of 31 May 1995
(Reform of the Italian System of Private International Law) and article 4 of the
Bulgarian Law DB, bp. 42 ot 17.05.2005 r. (Private International Law Code).

Article 3 (Scope of jurisdiction)
1. Italian courts shall have jurisdiction if the defendant is domiciled or
resides in Italy or has a representative in this country who is enabled to
appear in court pursuant to Article 77 of the Code of Civil Procedure, as
well as in the other cases provided for by law. [...]]

Thus Italian courts shall have jurisdiction if the defendant is domiciled or resides
in Italy.

Article 4. General Jurisdiction
(1) The Bulgarian courts and other authorities shall have international
jurisdiction where: 1. the defendant has a habitual residence, statutory
seat or principal place of business in the Republic of Bulgaria; [...]

2 Regulation (EU) No. 1215/2012 on jurisdiction and the recognition and enforcement
of judgments in civil and commercial matters (recast) (the Brussels Regulation). The
EU’s two other main PIL instruments are Regulation (EC) No. 593/2008 on the law
applicable to contractual obligations (Rome I) and Regulation (EC) No. 864/2007
on the law applicable to noncontractual obligations (Rome II).

3 https://interlex-portal.eu/FindLaw/.

https://interlex-portal.eu/FindLaw/
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Thus Bulgarian courts shall have jurisdiction if the defendant has a habitual
residence, statutory seat, or the principal place of business in Bulgaria.

Let us consider, as a first scenario, the case of Marius, an Italian citizen
with his primary residence in the city of Rome. Marius is summoned to appear
in front of a judge to answer a complaint brought against him. Based on this
information we can determine that the Italian court of Rome should be assigned
jurisdiction in this complaint.

In a second scenario, Marius is also the owner of a business in Bulgaria. In this
case, the Bulgarian PIL law – called by the Brussels Regulation – would assign
jurisdiction to a Bulgarian court. Since both rules are valid, the jurisdiction in
Marius’s case belongs to both the Italian and Bulgarian courts. If no priority
was set, then a conflict of laws would arise, with two equally valid indications of
jurisdiction.

Example 2 (Jurisdiction related to rights in rem)
In the second example we consider articles 5.1 of Italian PIL and article 12 of
Bulgarian PIL.

Article 5 (Actions concerning rights in rem in immovables situated abroad)
1. Italian courts shall have no jurisdiction over actions concerning rights
in rem in immovables situated abroad.

Thus, under Italian law, Italian Courts have no jurisdiction over actions con-
cerning rights in rem in immovables (real property) situated outside Italy.

Article 12. Jurisdiction in Matters Relating to Rights in Rem
(1) (Amended, SG No. 59/2007) The matters under Article 109 of the
Code of Civil Procedure relating to immovable property situated in the
Republic of Bulgaria, the matters relating to the enforcement or to security
which such property constitutes, as well as the matters relating to trans-
fer or establishment of rights in rem in such property, shall be exclusively
cognizable in the Bulgarian courts and other authorities. [...]

Thus, under Bulgarian law, Bulgarian Courts have jurisdiction for matters relat-
ing to the transfer or the establishment of rights in rem in immovable property
situated in Bulgaria.

Let us consider Marius, an Italian citizen, owner of two houses, one in Italy
(Milan) and the other in Bulgaria (Sofia). A claim is brought against Marius
with an action concerning a right in rem over one of his immovable properties.
Depending on which house is the object of the claim, Marius will be summoned
in front of an Italian or Bulgarian judge respectively.
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3 Modular Argumentation in Arg-tuProlog

Arg-tuProlog [5,13] is a lightweight modular argumentation tool that fruitfully
combines modular logic programming and legal reasoning. It makes it possible
to represent, reason, and carry out an argument on conditional norms featuring
obligations, prohibitions, and (strong or weak) permissions – including under any
burden-of-persuasion constraints that may apply – fully supporting the modu-
lar argumentation model, i.e., allowing theory fragmentation, thus enabling the
coexistence of different modules.

The approach is based on common constructs in computational argumen-
tation modules – rule-based arguments, argumentation graphs, and labelling
semantics – laying their foundation on Dung’s abstract argumentation [7] and
structured argumentation [2]. Arguments are formed by chaining applications of
inference rules into inference trees or graphs – i.e., arguments are constructed
using deductive inference rules that license deductive inferences from premises
to conclusions (cf. [9]).

The Arg-tuProlog-structured argumentation framework adopts an ASPIC+-
like syntax [11]: in a nutshell, arguments are produced from a set of defeasible
rules, and attack relationships between arguments are drawn in argumentation
graphs. The arguments in the graph are then labelled by applying an acceptance
labelling semantics (namely, grounded semantics [1]) that takes burdens of per-
suasion into account. The framework addresses burdens of persuasion within an
argumentation setting [6] (formal accounts of the adopted deontic extensions are
discussed in detail in [12], while the implemented burden-of-persuasion model
can be found in [6]). The argumentation model is then enhanced according to the
concept of modularity [8], making it possible to separate knowledge as well as
to create an internal structure of the knowledge (linked modules corresponding
to knowledge organisation).

Being completely based on logic programming, the system makes possible a
completely integrated cooperation between logic programming and argumenta-
tion, therefore – as in the following examples – the knowledge can contain strict
rules on which basis to perform queries and reasoning.

3.1 Modular Logic: Architecture and Predicates

In the following, we will focus on deepening the discussion of the modular exten-
sion of Arg-tuProlog, being the core of this work and being functional to the
appropriate design of private international law. Details on the argument model
and its syntax and architecture can be found in [14].

The Arg-tuProlog framework leverages the underlying tuProlog engine and
is freely available at [13]. The entire framework is a collection of tuProlog-
compatible libraries, and all the required components exploit the tuProlog fea-
ture to allow the inclusion of external libraries during the evaluation process.
The system’s inner modular architecture greatly enhances the upgradability and
flexibility of the entire system by making it possible to add new features or
modify requirements.
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As mentioned, the framework fully supports a modular argumentation model,
i.e., it allows theory fragmentation and enables the coexistence and interaction of
different modules. Different modules can be combined when querying the system,
leading to different responses according to the modules considered. It is also pos-
sible to nest modules, thus establishing a hierarchy among the modules. These
features make the system particularly suitable for designing and implementing
complex scenarios such as the one relating to the PIL domain. Indeed, as dis-
cussed in Sect. 2, this legal domain is based on the coordination and cooperation
of different legal systems, such as national law and international treaties. From
a computational point of view, this mixture translates into a scenario where a
logic theory (module) can query or consult a piece of information contained in
another theory (module).

Modules are identified by distinct Prolog files (.pl files) and can be called
and executed exploiting the predicate module call(+Modules, :Query), where
Modules is an input parameter containing the list of the required modules – i.e.,
modules that need to be loaded to answer the query – and Query is the query that
must be evaluated. In particular, the predicate: i) creates a new environment
that contains only the required modules data, ii), executes the query in the
newly created environment, iii) and feeds the result to the caller—note that the
original caller environment is not altered by the procedure.

The location of the modules must be included in the root theory (main mod-
ule) through the predicate modulesPath(++FileSystemPath), where the input
parameter FileSystemPath denotes the full path file-system name. Note that
in the case of nested calls, it is not necessary to re-specify the path in the
submodules.

For example, consider the case in which there is a unique module in the
modules folder (systemPath/modules/moduleOne.pl) containing the following
theory:

legislation("italian legislation", moduleOne ).
jurisdiction(C) :- legislation(C, ModuleName ).

In order to use moduleOne, the root module needs to set the modules path as
shown in the following. In order to better understand the system’s functioning,
we will add a fact legislation to the root module as well.

modulesPath(systemPath/modules ).
legislation("root legislation", root).
jurisdiction(C):- modules_call ([ moduleOne], jurisdiction(C)).

Then, when calling the goal

:- jurisdiction(C)

the module call/2 loads the required modules, in this case moduleOne; creates
the new environment; and proceeds to the query evaluation. The result will be

C="italian legislation", ModuleName=moduleOne

highlighting that the root theory content is not considered during the query
evaluation (i.e., C="root legislation", ModuleName=root is not a solution).
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If we add a second module – moduleTwo.pl – containing the following theory:

legislation("bulgarian legislation", moduleTwo ).

we can combine modules’ content – and their solutions – writing the root module
as follows:

modulesPath(systemPath/modules ).
legislation("root legislation", root).
jurisdiction(C) :- modules_call ([moduleOne , moduleTwo],

jurisdiction(C)).

in such a case, the legislation(L,X) goal will provide the two distinct solutions

C="italian legislation", ModuleName=moduleOne

C="bulgarian legislation", ModuleName=moduleTwo

Byexploitingthepredicates justdiscussed, it is sopossibletoorganizetheknowl-
edge into a series of distinct modules that may be dependent on and/or pertinent
to a hierarchical structure. Accordingly, a dispatch of concerns and contents is
possible while ensuring easy interaction and cooperation among distinct modules.

4 Running Examples in Arg-tuProlog

In the following, the examples discussed in Sect. 2 are reified in the Arg-tuProlog
framework to show the technology’s effectiveness and potential4.

Both examples discussed in Sect. 2 can be mapped starting from the Brussels
Regulation, the Italian national law, and the Bulgarian national law. For such a
reason they have been mapped onto the Arg-tuProlog framework exploiting three
distinct modules: one for the Brussels Regulation, one for the Italian national
law, and one for the Bulgarian national law. In fact, the complexity of the sce-
nario makes it necessary to take different bodies of law into account and to make
them interact and interoperate, while also providing a tool for detecting possible
conflicts and inconsistencies. For this reason, a modular approach is required.

In the following, we list an extract from the Brussels Regulation codification
(BrusselsRegulation.pl module) that makes it possible to establish jurisdiction
according to the content of the articles. In particular, the final choice on the
complaint is referred to the national laws of the UE member states in question.
This connection is modelled using the modularity feature of Arg-tuProlog and
in particular the call module predicate:

hasJurisdiction(Article , Country , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
memberState(MemberLaw),
call_module ([MemberLaw , ClaimId],

hasJurisdiction(Article , Country , Court , ClaimId )).

4 The theories used in the examples can be found at https://github.com/tuProlog/
arg2p/tree/master/example-theories/IPL-brussels.

https://github.com/tuProlog/arg2p/tree/master/example-theories/IPL-brussels
https://github.com/tuProlog/arg2p/tree/master/example-theories/IPL-brussels
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hasJurisdiction(Article , Country , Court , ClaimId):-
claimObject(ClaimId , rightsInRem),
memberState(MemberLaw),
call_module ([MemberLaw , ClaimId],

hasJurisdiction(Article , Country , Court , ClaimId )).

The Italian law module – italy.pl – is a simple theory that includes the Prolog
translation of the articles from the Italian PIL law as described in Sect. 2. The
articles may be represented in the Arg-tuProlog system as follows:

hasJurisdiction(art3_1 , italy , Court , ClaimId) :-
personRole(PersonId , ClaimId , defendant),
personDomicile(PersonId , italy , Court ).

hasJurisdiction(art3_1 , italy , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
personAgent(AgentId , PersonId),
personDomicile(AgentId , italy , Court ).

hasJurisdiction(art51 , italy , Court , ClaimId):-
claimObject(ClaimId , rightsInRem),
immovableProperty(ClaimId , italy , Court ).

The Bulgarian national law is represented by the bulgaria.pl module which
contains the Prolog translation from the Bulgarian PIL law as described in Sect.
2. A possible Arg-tuProlog representation is as follows:

hasJurisdiction(art4_1 , bulgaria , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
personDomicile(PersonId , bulgaria , Court ).

hasJurisdiction(art4_1 , bulgaria , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
personPlaceOfBusiness(PersonId , bulgaria , Court ).

hasJurisdiction(art12 , bulgaria , Court , ClaimId):-
claimObject(ClaimId , rightsInRem),
immovableProperty(ClaimId , bulgaria , Court ).

Using this knowledge as our basis – the knowledge being split into the cor-
responding modules – let us discuss the resolution of some example complaints
so as to illustrate the potential of using a modular argumentation framework.

Example 1 (General jurisdiction rule). Let us consider the case discussed in
Example 2. The facts and details of the case are stored in a separate mod-
ule (claim1.pl), listed in the following. In particular, we have facts establishing
the role of Marius (i.e., defendant), his domicile (i.e., Italy), and his place of
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Fig. 1. Arg2p interface: result of claim1 (left) and claim2 (right).

business, which once again is Italy (respectively personRole, personDomicile,
and personPlaceOfBusiness predicates). Finally, we have two facts establish-
ing which states are EU member states (under the Brussels Regulation), which
in our example are Italy and Bulgaria.

personRole(marius , claim1 , defendant ).

personDomicile(marius , italy , rome).
personPlaceOfBusiness(marius , italy , rome).

memberState(bulgaria ).
memberState(italy ).

To evaluate the case, we can select the jurisdiction simply by calling the following
goal over the top module brusselsRegulation.pl :

call_module ([ brusselsRegulation , claim1],
hasJurisdiction(Article , Country , Court , claim1 )).

Figure 1 (left) shows the result, which is that under article 3.1 of the Italian
law, the court to which the case is assigned is in Rome, Italy. The result is
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perfectly consistent since the defendant is domiciled in Italy (and also his place
of business).

Let us now consider the same case, with the only difference that the place of
the defendant’s business is in Sofia, Bulgaria (claim2.pl).

personRole(marius , claim2 , defendant ).

personDomicile(marius , italy , rome).

personPlaceOfBusiness(marius ,bulgaria ,sofia ).

memberState(bulgaria ).
memberState(italy).

As shown in Fig. 1 (right), the answer in this case is twofold. Article 4.1 of the
Bulgarian law and Article 3.1 of the Italian law should apply at the same time,
assigning jurisdiction to the Sofia (Bulgarian) court in one case and the Rome
(Italian) court in the other. The system makes it possible to detect and point out
this inconsistency, indicating that two different articles, with different answers
in the matter of jurisdiction, should apply simultaneously.

Fig. 2. Arg2p interface: result of claim3 (left) and claim4 (right).

Example 2 (Jurisdiction related to rights in rem). Let us now turn to the
case discussed in Example 2. The facts of the case are stored in module
claim3.pl. In particular, we have a fact establishing the object of the complaint
(claimObject), in this case rights in rem. We then have a fact stating the place
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of the immovable property in case (immovableProperty), which in the case at
hand is Sofia. Finally, as in the example before, we have facts establishing which
states are members of the EU—in our examples, Italy and Bulgaria.

claimObject(claim3 , rightsInRem ).

immovableProperty(claim3 , bulgaria , sofia ).

memberState(bulgaria ).
memberState(italy ).

To evaluate the case, we can select the jurisdiction simply by calling the following
goal over the top module brusselsRegulation.pl :

call_module ([ brusselsRegulation , claim3],
hasJurisdiction(Article , Country , Court , claim3 )).

The result is shown in Fig. 2 (left) and states that the jurisdiction and the court
must be in Bulgaria. Once again, the system shows that the connection between
different modules is a necessary feature. In fact, since the immovable property
is in Bulgaria, the Brussels Regulation defers Bulgarian legislation to determine
the jurisdiction. Bulgarian law confirms that if the property is in Bulgaria, the
case must be brought before a Bulgarian court. It should be noted that in this
case the Italian law only states that if the property is not in Italy, then it is not
for an Italian court to take the case, but nowhere does the law state which court
should do so. Therefore, without such a connection between the different bodies
of law, there would be no answer that the Italian court could offer in deciding
where the case should be heard.

If we change the fact concerning the property, indicating that it is in Italy, the
system will respond, correctly, that the case must be adjudicated by an Italian
court, and in particular the Milan court (Fig. 2 (right)).

claimObject(claim4 , rightsInRem ).

immovableProperty(claim4 , italy , milan ).

memberState(bulgaria ).
memberState(italy ).

5 Conclusion

In this paper we have shown how the domain of private international law can be
suitably modelled by modular argumentation with the support of Arg-tuProlog,
which provides a way to reason about a formal model of interaction among
multiple legal systems.
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Indeed, we were aware that the PIL domain is particularly difficult to for-
malize, especially by comparison with domains that are traditional fields where
knowledge-based systems in law are applied, such as tax, administrative, and
entitlement law.

In the future, we aim to extend the modular-argumentation approach sup-
ported by Arg-tuProlog so as to cover additional parts of the domain of EU PIL
law. In particular, we aim to cover international and national rules dealing with
laws that apply to both contracts and non-contractual obligations and to extend
the set of modules so as to cover a broader range of national legal systems.

In addition, we think that the same approach, that combines modular argu-
mentation and defeasible reasoning, can be used to further model legal domains
presenting characteristics and issues similar to PIL law (e.g., multiple levels of
conflicting/overlapping rules), such as internet and aviation law.
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