
Modular Logic Argumentation
in Arg-tuProlog

Roberta Calegari1 , Giuseppe Contissa1 , Giuseppe Pisano1(B) ,
Galileo Sartor2, and Giovanni Sartor1

1 Alma AI – Alma Mater Research Institute for Human-Centered Artificial
Intelligence, Alma Mater Studiorum—Università di Bologna, Bologna, Italy

{roberta.calegari,giuseppe.contissa,g.pisano,giovanni.sartor}@unibo.it
2 University of Torino, Turin, Italy

galileo.sartor@unito.it

Abstract. A modular extension of Arg-tuProlog, a light-weight argu-
mentation tool, is here presented and discussed, highlighting how it
enables reasoning with rules and interpretations of multiple legal systems.
Its effectiveness is demonstratedwith examples fromdifferent national pri-
vate international law (PIL) laws, running in Arg-tuProlog. PIL addresses
overlaps and conflicts between legal systems by distributing cases between
the authorities of such systems (jurisdiction) and establishing what rules
these authorities have to apply to each case (choice of law).

Keywords: Modular argumentation · Private international law ·
Arg-tuProlog

1 Introduction

In our increasingly pervasive and interconnected world, the application and
enforcement of the law make it necessary to take into account the interplay
of multiple normative systems, especially when dealing with international con-
tracts and other commercial and social interactions involving different countries.
Moreover, normative systems may also interact or conflict on different levels: this
is true of both national legal systems and of various transnational or interna-
tional laws and conventions. All these sources of law need to be considered to
properly reason about the law.

The research in this paper focuses on the field of private international law
(PIL) – a growing and important domain of the law – which deals with the coex-
istence of multiple normative systems, having distinct and often contradictory
rules, and the legal interaction of persons connected to different legal systems,

Roberta Calegari, Giuseppe Pisano and Giovanni Sartor have been supported by the
H2020 ERC Project “CompuLaw” (G.A. 833647). Giuseppe Contissa and Galileo
Sartor have been supported by the European Union’s Justice programme under Grant
Agreement No. 800839 for the project “InterLex: Advisory and Training System for
Internet-related private International Law”.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Bandini et al. (Eds.): AIxIA 2021, LNAI 13196, pp. 91–103, 2022.
https://doi.org/10.1007/978-3-031-08421-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-08421-8_7&domain=pdf
http://orcid.org/0000-0003-3794-2942
http://orcid.org/0000-0002-8511-1505
http://orcid.org/0000-0003-0230-8212
http://orcid.org/0000-0003-2210-0398
https://doi.org/10.1007/978-3-031-08421-8_7

92 R. Calegari et al.

trying to establish priorities between them. Conflicts about competences and
rules are addressed by identifying which authority is responsible for making a
decision in each given case (jurisdiction), and which set of norms should be
applied (applicable law).

A recent logical analysis of PIL has highlighted how this body of law can be
suitably modelled by modular argumentation [8] so as to provide a formal model
of the interaction among multiple legal systems. The model proceeds from the
assumption that PIL is not concerned with specific inconsistencies between the
rules of different legal systems, since only one system will be selected and applied,
regardless of how the others would regulate the same case (choice of law). Thus,
the law is modelled through sets of modules in which different legal systems
are represented separately. Moreover, each legal-system module is further split
into separate modules, each with a specific function: determining jurisdiction,
establishing the law to be applied, and providing substantive legal outcomes.
This formal model has not yet been captured and implemented in ready-to-use
technology.

For this reason, we are here presenting an extension for the Arg-tuProlog
framework [5,10] – a lightweight argumentation tool – enabling the exploitation
of modular knowledge bases. In this work, previous works on Arg-tuProlog [3] are
extended focusing onmodularity issues and fully addressing a complete case study
in the field of PIL and legal reasoning. Arg-tuProlog makes it possible to design
and define knowledge organised in distinct and separate modules that can “call”
one another. Such calls request skeptical or credulous reasoning. The final answers
from the system are obtained by way of dialectical argumentation. In particular,
a knowledge module – which may represent a legal system or parts of it – can be
used by itself, or by referring to another module for specific issues. This second
approach is done by directly calling and querying the relevant module.

In past years, research in either legal theory or AI and law has devoted
little attention to the logical analysis of PIL. Only recently have several projects
begun to fill this gap1, providing computable representations of international and
national PIL rules. This is an important development since private international
law is an increasingly relevant domain of the law – and considering as well
that legal relationships involving citizens of different countries are becoming
increasingly frequent. The tool presented in this paper is a further advancement,
for it can be used to expand existing projects (such as Interlex), and also as
a basis for broader applications. Indeed, the model – and its technology – can
also be useful for governing interactions and coordination between heterogeneous
agents, belonging to different and differently regulated virtual societies, without
recourse to a central regulatory agency [4].

1 Among these is the European project Interlex, aimed at developing a consultative
and training system for internet-related PIL, making it available as an online plat-
form. The platform will be composed of three modules: a Decision Support Module
(DSM), a Find Law Module (FLM), and a Training Module (TM). In this context,
the core component of the Decision Support Module (DSM) lies in a set of logic
representations in Prolog, providing basic legal reasoning capabilities.

Modular Logic Argumentation in Arg-tuProlog 93

Accordingly, the paper is organised as follows. Section 2 presents two exam-
ples in the PIL domain illustrating the interaction between national and inter-
national legislation. Section 3 then presents the Arg-tuProlog modular argumen-
tation tool. In Sect. 4 the examples discussed in Sect. 2 are represented in the
Arg-tuProlog framework. Section 5 discusses the results of the experiment and
proposes future lines of research.

2 The Domain of Private International Law: Running
Examples

In this section, we will provide two examples of a possible interaction between
national and transnational normative systems. In particular, we will focus on one
of the EU’s main PIL instruments, the Brussels Regulation2, providing common
EU rules on jurisdiction and the recognition and enforcement of judgments.
According to the Brussels Regulation, there are some cases where the regulation
itself does not give an answer to the question of jurisdiction, pointing instead
to national legislation for the relevant laws. This happens, for example, in the
sections on consumer contracts (Sect. 4) and third-party proceedings (Sect. 5).

We have built two examples that set aside EU legislation and focus on the
switch/conflict between national laws. In our examples, we focus in particular
on two sets of national PIL laws: the Italian and the Bulgarian. The source
texts presented here are extracted from then English translations of national
laws available on the Interlex portal3.

Example 1 (General jurisdiction rule)
In this example we consider article 3.1 of the Italian Law No. 218 of 31 May 1995
(Reform of the Italian System of Private International Law) and article 4 of the
Bulgarian Law DB, bp. 42 ot 17.05.2005 r. (Private International Law Code).

Article 3 (Scope of jurisdiction)
1. Italian courts shall have jurisdiction if the defendant is domiciled or
resides in Italy or has a representative in this country who is enabled to
appear in court pursuant to Article 77 of the Code of Civil Procedure, as
well as in the other cases provided for by law. [...]]

Thus Italian courts shall have jurisdiction if the defendant is domiciled or resides
in Italy.

Article 4. General Jurisdiction
(1) The Bulgarian courts and other authorities shall have international
jurisdiction where: 1. the defendant has a habitual residence, statutory
seat or principal place of business in the Republic of Bulgaria; [...]

2 Regulation (EU) No. 1215/2012 on jurisdiction and the recognition and enforcement
of judgments in civil and commercial matters (recast) (the Brussels Regulation). The
EU’s two other main PIL instruments are Regulation (EC) No. 593/2008 on the law
applicable to contractual obligations (Rome I) and Regulation (EC) No. 864/2007
on the law applicable to noncontractual obligations (Rome II).

3 https://interlex-portal.eu/FindLaw/.

https://interlex-portal.eu/FindLaw/

94 R. Calegari et al.

Thus Bulgarian courts shall have jurisdiction if the defendant has a habitual
residence, statutory seat, or the principal place of business in Bulgaria.

Let us consider, as a first scenario, the case of Marius, an Italian citizen
with his primary residence in the city of Rome. Marius is summoned to appear
in front of a judge to answer a complaint brought against him. Based on this
information we can determine that the Italian court of Rome should be assigned
jurisdiction in this complaint.

In a second scenario, Marius is also the owner of a business in Bulgaria. In this
case, the Bulgarian PIL law – called by the Brussels Regulation – would assign
jurisdiction to a Bulgarian court. Since both rules are valid, the jurisdiction in
Marius’s case belongs to both the Italian and Bulgarian courts. If no priority
was set, then a conflict of laws would arise, with two equally valid indications of
jurisdiction.

Example 2 (Jurisdiction related to rights in rem)
In the second example we consider articles 5.1 of Italian PIL and article 12 of
Bulgarian PIL.

Article 5 (Actions concerning rights in rem in immovables situated abroad)
1. Italian courts shall have no jurisdiction over actions concerning rights
in rem in immovables situated abroad.

Thus, under Italian law, Italian Courts have no jurisdiction over actions con-
cerning rights in rem in immovables (real property) situated outside Italy.

Article 12. Jurisdiction in Matters Relating to Rights in Rem
(1) (Amended, SG No. 59/2007) The matters under Article 109 of the
Code of Civil Procedure relating to immovable property situated in the
Republic of Bulgaria, the matters relating to the enforcement or to security
which such property constitutes, as well as the matters relating to trans-
fer or establishment of rights in rem in such property, shall be exclusively
cognizable in the Bulgarian courts and other authorities. [...]

Thus, under Bulgarian law, Bulgarian Courts have jurisdiction for matters relat-
ing to the transfer or the establishment of rights in rem in immovable property
situated in Bulgaria.

Let us consider Marius, an Italian citizen, owner of two houses, one in Italy
(Milan) and the other in Bulgaria (Sofia). A claim is brought against Marius
with an action concerning a right in rem over one of his immovable properties.
Depending on which house is the object of the claim, Marius will be summoned
in front of an Italian or Bulgarian judge respectively.

Modular Logic Argumentation in Arg-tuProlog 95

3 Modular Argumentation in Arg-tuProlog

Arg-tuProlog [5,13] is a lightweight modular argumentation tool that fruitfully
combines modular logic programming and legal reasoning. It makes it possible
to represent, reason, and carry out an argument on conditional norms featuring
obligations, prohibitions, and (strong or weak) permissions – including under any
burden-of-persuasion constraints that may apply – fully supporting the modu-
lar argumentation model, i.e., allowing theory fragmentation, thus enabling the
coexistence of different modules.

The approach is based on common constructs in computational argumen-
tation modules – rule-based arguments, argumentation graphs, and labelling
semantics – laying their foundation on Dung’s abstract argumentation [7] and
structured argumentation [2]. Arguments are formed by chaining applications of
inference rules into inference trees or graphs – i.e., arguments are constructed
using deductive inference rules that license deductive inferences from premises
to conclusions (cf. [9]).

The Arg-tuProlog-structured argumentation framework adopts an ASPIC+-
like syntax [11]: in a nutshell, arguments are produced from a set of defeasible
rules, and attack relationships between arguments are drawn in argumentation
graphs. The arguments in the graph are then labelled by applying an acceptance
labelling semantics (namely, grounded semantics [1]) that takes burdens of per-
suasion into account. The framework addresses burdens of persuasion within an
argumentation setting [6] (formal accounts of the adopted deontic extensions are
discussed in detail in [12], while the implemented burden-of-persuasion model
can be found in [6]). The argumentation model is then enhanced according to the
concept of modularity [8], making it possible to separate knowledge as well as
to create an internal structure of the knowledge (linked modules corresponding
to knowledge organisation).

Being completely based on logic programming, the system makes possible a
completely integrated cooperation between logic programming and argumenta-
tion, therefore – as in the following examples – the knowledge can contain strict
rules on which basis to perform queries and reasoning.

3.1 Modular Logic: Architecture and Predicates

In the following, we will focus on deepening the discussion of the modular exten-
sion of Arg-tuProlog, being the core of this work and being functional to the
appropriate design of private international law. Details on the argument model
and its syntax and architecture can be found in [14].

The Arg-tuProlog framework leverages the underlying tuProlog engine and
is freely available at [13]. The entire framework is a collection of tuProlog-
compatible libraries, and all the required components exploit the tuProlog fea-
ture to allow the inclusion of external libraries during the evaluation process.
The system’s inner modular architecture greatly enhances the upgradability and
flexibility of the entire system by making it possible to add new features or
modify requirements.

96 R. Calegari et al.

As mentioned, the framework fully supports a modular argumentation model,
i.e., it allows theory fragmentation and enables the coexistence and interaction of
different modules. Different modules can be combined when querying the system,
leading to different responses according to the modules considered. It is also pos-
sible to nest modules, thus establishing a hierarchy among the modules. These
features make the system particularly suitable for designing and implementing
complex scenarios such as the one relating to the PIL domain. Indeed, as dis-
cussed in Sect. 2, this legal domain is based on the coordination and cooperation
of different legal systems, such as national law and international treaties. From
a computational point of view, this mixture translates into a scenario where a
logic theory (module) can query or consult a piece of information contained in
another theory (module).

Modules are identified by distinct Prolog files (.pl files) and can be called
and executed exploiting the predicate module call(+Modules, :Query), where
Modules is an input parameter containing the list of the required modules – i.e.,
modules that need to be loaded to answer the query – and Query is the query that
must be evaluated. In particular, the predicate: i) creates a new environment
that contains only the required modules data, ii), executes the query in the
newly created environment, iii) and feeds the result to the caller—note that the
original caller environment is not altered by the procedure.

The location of the modules must be included in the root theory (main mod-
ule) through the predicate modulesPath(++FileSystemPath), where the input
parameter FileSystemPath denotes the full path file-system name. Note that
in the case of nested calls, it is not necessary to re-specify the path in the
submodules.

For example, consider the case in which there is a unique module in the
modules folder (systemPath/modules/moduleOne.pl) containing the following
theory:

legislation("italian legislation", moduleOne).
jurisdiction(C) :- legislation(C, ModuleName).

In order to use moduleOne, the root module needs to set the modules path as
shown in the following. In order to better understand the system’s functioning,
we will add a fact legislation to the root module as well.

modulesPath(systemPath/modules).
legislation("root legislation", root).
jurisdiction(C):- modules_call ([moduleOne], jurisdiction(C)).

Then, when calling the goal

:- jurisdiction(C)

the module call/2 loads the required modules, in this case moduleOne; creates
the new environment; and proceeds to the query evaluation. The result will be

C="italian legislation", ModuleName=moduleOne

highlighting that the root theory content is not considered during the query
evaluation (i.e., C="root legislation", ModuleName=root is not a solution).

Modular Logic Argumentation in Arg-tuProlog 97

If we add a second module – moduleTwo.pl – containing the following theory:

legislation("bulgarian legislation", moduleTwo).

we can combine modules’ content – and their solutions – writing the root module
as follows:

modulesPath(systemPath/modules).
legislation("root legislation", root).
jurisdiction(C) :- modules_call ([moduleOne , moduleTwo],

jurisdiction(C)).

in such a case, the legislation(L,X) goal will provide the two distinct solutions

C="italian legislation", ModuleName=moduleOne

C="bulgarian legislation", ModuleName=moduleTwo

Byexploitingthepredicates justdiscussed, it is sopossibletoorganizetheknowl-
edge into a series of distinct modules that may be dependent on and/or pertinent
to a hierarchical structure. Accordingly, a dispatch of concerns and contents is
possible while ensuring easy interaction and cooperation among distinct modules.

4 Running Examples in Arg-tuProlog

In the following, the examples discussed in Sect. 2 are reified in the Arg-tuProlog
framework to show the technology’s effectiveness and potential4.

Both examples discussed in Sect. 2 can be mapped starting from the Brussels
Regulation, the Italian national law, and the Bulgarian national law. For such a
reason they have been mapped onto the Arg-tuProlog framework exploiting three
distinct modules: one for the Brussels Regulation, one for the Italian national
law, and one for the Bulgarian national law. In fact, the complexity of the sce-
nario makes it necessary to take different bodies of law into account and to make
them interact and interoperate, while also providing a tool for detecting possible
conflicts and inconsistencies. For this reason, a modular approach is required.

In the following, we list an extract from the Brussels Regulation codification
(BrusselsRegulation.pl module) that makes it possible to establish jurisdiction
according to the content of the articles. In particular, the final choice on the
complaint is referred to the national laws of the UE member states in question.
This connection is modelled using the modularity feature of Arg-tuProlog and
in particular the call module predicate:

hasJurisdiction(Article , Country , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
memberState(MemberLaw),
call_module ([MemberLaw , ClaimId],

hasJurisdiction(Article , Country , Court , ClaimId)).

4 The theories used in the examples can be found at https://github.com/tuProlog/
arg2p/tree/master/example-theories/IPL-brussels.

https://github.com/tuProlog/arg2p/tree/master/example-theories/IPL-brussels
https://github.com/tuProlog/arg2p/tree/master/example-theories/IPL-brussels

98 R. Calegari et al.

hasJurisdiction(Article , Country , Court , ClaimId):-
claimObject(ClaimId , rightsInRem),
memberState(MemberLaw),
call_module ([MemberLaw , ClaimId],

hasJurisdiction(Article , Country , Court , ClaimId)).

The Italian law module – italy.pl – is a simple theory that includes the Prolog
translation of the articles from the Italian PIL law as described in Sect. 2. The
articles may be represented in the Arg-tuProlog system as follows:

hasJurisdiction(art3_1 , italy , Court , ClaimId) :-
personRole(PersonId , ClaimId , defendant),
personDomicile(PersonId , italy , Court).

hasJurisdiction(art3_1 , italy , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
personAgent(AgentId , PersonId),
personDomicile(AgentId , italy , Court).

hasJurisdiction(art51 , italy , Court , ClaimId):-
claimObject(ClaimId , rightsInRem),
immovableProperty(ClaimId , italy , Court).

The Bulgarian national law is represented by the bulgaria.pl module which
contains the Prolog translation from the Bulgarian PIL law as described in Sect.
2. A possible Arg-tuProlog representation is as follows:

hasJurisdiction(art4_1 , bulgaria , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
personDomicile(PersonId , bulgaria , Court).

hasJurisdiction(art4_1 , bulgaria , Court , ClaimId):-
personRole(PersonId , ClaimId , defendant),
personPlaceOfBusiness(PersonId , bulgaria , Court).

hasJurisdiction(art12 , bulgaria , Court , ClaimId):-
claimObject(ClaimId , rightsInRem),
immovableProperty(ClaimId , bulgaria , Court).

Using this knowledge as our basis – the knowledge being split into the cor-
responding modules – let us discuss the resolution of some example complaints
so as to illustrate the potential of using a modular argumentation framework.

Example 1 (General jurisdiction rule). Let us consider the case discussed in
Example 2. The facts and details of the case are stored in a separate mod-
ule (claim1.pl), listed in the following. In particular, we have facts establishing
the role of Marius (i.e., defendant), his domicile (i.e., Italy), and his place of

Modular Logic Argumentation in Arg-tuProlog 99

Fig. 1. Arg2p interface: result of claim1 (left) and claim2 (right).

business, which once again is Italy (respectively personRole, personDomicile,
and personPlaceOfBusiness predicates). Finally, we have two facts establish-
ing which states are EU member states (under the Brussels Regulation), which
in our example are Italy and Bulgaria.

personRole(marius , claim1 , defendant).

personDomicile(marius , italy , rome).
personPlaceOfBusiness(marius , italy , rome).

memberState(bulgaria).
memberState(italy).

To evaluate the case, we can select the jurisdiction simply by calling the following
goal over the top module brusselsRegulation.pl :

call_module ([brusselsRegulation , claim1],
hasJurisdiction(Article , Country , Court , claim1)).

Figure 1 (left) shows the result, which is that under article 3.1 of the Italian
law, the court to which the case is assigned is in Rome, Italy. The result is

100 R. Calegari et al.

perfectly consistent since the defendant is domiciled in Italy (and also his place
of business).

Let us now consider the same case, with the only difference that the place of
the defendant’s business is in Sofia, Bulgaria (claim2.pl).

personRole(marius , claim2 , defendant).

personDomicile(marius , italy , rome).

personPlaceOfBusiness(marius ,bulgaria ,sofia).

memberState(bulgaria).
memberState(italy).

As shown in Fig. 1 (right), the answer in this case is twofold. Article 4.1 of the
Bulgarian law and Article 3.1 of the Italian law should apply at the same time,
assigning jurisdiction to the Sofia (Bulgarian) court in one case and the Rome
(Italian) court in the other. The system makes it possible to detect and point out
this inconsistency, indicating that two different articles, with different answers
in the matter of jurisdiction, should apply simultaneously.

Fig. 2. Arg2p interface: result of claim3 (left) and claim4 (right).

Example 2 (Jurisdiction related to rights in rem). Let us now turn to the
case discussed in Example 2. The facts of the case are stored in module
claim3.pl. In particular, we have a fact establishing the object of the complaint
(claimObject), in this case rights in rem. We then have a fact stating the place

Modular Logic Argumentation in Arg-tuProlog 101

of the immovable property in case (immovableProperty), which in the case at
hand is Sofia. Finally, as in the example before, we have facts establishing which
states are members of the EU—in our examples, Italy and Bulgaria.

claimObject(claim3 , rightsInRem).

immovableProperty(claim3 , bulgaria , sofia).

memberState(bulgaria).
memberState(italy).

To evaluate the case, we can select the jurisdiction simply by calling the following
goal over the top module brusselsRegulation.pl :

call_module ([brusselsRegulation , claim3],
hasJurisdiction(Article , Country , Court , claim3)).

The result is shown in Fig. 2 (left) and states that the jurisdiction and the court
must be in Bulgaria. Once again, the system shows that the connection between
different modules is a necessary feature. In fact, since the immovable property
is in Bulgaria, the Brussels Regulation defers Bulgarian legislation to determine
the jurisdiction. Bulgarian law confirms that if the property is in Bulgaria, the
case must be brought before a Bulgarian court. It should be noted that in this
case the Italian law only states that if the property is not in Italy, then it is not
for an Italian court to take the case, but nowhere does the law state which court
should do so. Therefore, without such a connection between the different bodies
of law, there would be no answer that the Italian court could offer in deciding
where the case should be heard.

If we change the fact concerning the property, indicating that it is in Italy, the
system will respond, correctly, that the case must be adjudicated by an Italian
court, and in particular the Milan court (Fig. 2 (right)).

claimObject(claim4 , rightsInRem).

immovableProperty(claim4 , italy , milan).

memberState(bulgaria).
memberState(italy).

5 Conclusion

In this paper we have shown how the domain of private international law can be
suitably modelled by modular argumentation with the support of Arg-tuProlog,
which provides a way to reason about a formal model of interaction among
multiple legal systems.

102 R. Calegari et al.

Indeed, we were aware that the PIL domain is particularly difficult to for-
malize, especially by comparison with domains that are traditional fields where
knowledge-based systems in law are applied, such as tax, administrative, and
entitlement law.

In the future, we aim to extend the modular-argumentation approach sup-
ported by Arg-tuProlog so as to cover additional parts of the domain of EU PIL
law. In particular, we aim to cover international and national rules dealing with
laws that apply to both contracts and non-contractual obligations and to extend
the set of modules so as to cover a broader range of national legal systems.

In addition, we think that the same approach, that combines modular argu-
mentation and defeasible reasoning, can be used to further model legal domains
presenting characteristics and issues similar to PIL law (e.g., multiple levels of
conflicting/overlapping rules), such as internet and aviation law.

References

1. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation
semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011). https://doi.org/10.1017/
S0269888911000166

2. Besnard, P., et al.: Introduction to structured argumentation. Argument Comput.
5(1), 1–4 (2014). https://doi.org/10.1080/19462166.2013.869764

3. Calegari, R., Contissa, G., Pisano, G., Sartor, G., Sartor, G.: Arg-tuProlog: a
modular logic argumentation tool for PIL. In: Villata, S., Harašta, J., Křemen, P.
(eds.) Legal Knowledge and Information Systems. JURIX 2020: The Thirty-third
Annual Conference. Frontiers in Artificial Intelligence and Applications, vol. 334,
pp. 265–268, 9–11 December 2020. https://doi.org/10.3233/FAIA200880

4. Calegari, R., Omicini, A., Sartor, G.: Computable law as argumentation-based mas.
In: Proceedings of the 21th Workshop “From Objects to Agents”, WOA (2020)

5. Calegari, R., Pisano, G., Omicini, A., Sartor, G.: Arg2P: an argumentation frame-
work for explainable intelligent systems. J. Log. Comput. 32, 369–401 (2022).
https://doi.org/10.1093/logcom/exab089

6. Calegari, R., Sartor, G.: Burden of persuasion in argumentation. In: Proceed-
ings 36th International Conference on Logic Programming (Technical Commu-
nications), ICLP 2020. EPTCS, 18–24 September 2020. Camera-ready sent

7. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X

8. Dung, P.M., Sartor, G.: The modular logic of private international law. Artif. Intell.
Law 19(2–3), 233–261 (2011). https://doi.org/10.1007/s10506-011-9112-5

9. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a
tutorial. Argument Comput. 5(1), 31–62 (2014)

10. Pisano, G., Calegari, R., Omicini, A., Sartor, G.: A mechanism for reasoning over
defeasible preferences in Arg2P. In: Monica, S., Bergenti, F. (eds.) CILC 2021 -
Italian Conference on Computational Logic. Proceedings of the 36th Italian Confer-
ence on Computational Logic. CEUR Workshop Proceedings, vol. 3002, pp. 16–30.
CEUR-WS, Parma, 7–9 September 2021. http://ceur-ws.org/Vol-3002/paper10.
pdf

https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1080/19462166.2013.869764
https://doi.org/10.3233/FAIA200880
https://doi.org/10.1093/logcom/exab089
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/s10506-011-9112-5
http://ceur-ws.org/Vol-3002/paper10.pdf
http://ceur-ws.org/Vol-3002/paper10.pdf

Modular Logic Argumentation in Arg-tuProlog 103

11. Prakken, H.: An abstract framework for argumentation with structured
arguments. Argument Comput. 1(2), 93–124 (2010). https://doi.org/10.1080/
19462160903564592

12. Riveret, R., Rotolo, A., Sartor, G.: A deontic argumentation framework towards
doctrine reification. J. Appl. Log.–IfCoLog J. Log. Their Appl. 6(5), 903–940
(2019). https://collegepublications.co.uk/ifcolog/?00034

13. tuProlog: Arg-tuprolog repository. https://github.com/tuProlog/arg2p-kt
14. tuProlog: Arg-tuprolog website. https://pika-lab.gitlab.io/argumentation/arg2p-

kt/

https://doi.org/10.1080/19462160903564592
https://doi.org/10.1080/19462160903564592
https://collegepublications.co.uk/ifcolog/?00034
https://github.com/tuProlog/arg2p-kt
https://pika-lab.gitlab.io/argumentation/arg2p-kt/
https://pika-lab.gitlab.io/argumentation/arg2p-kt/

	 Preface
	 Organization
	 Contents
	Planning and Strategies
	Task Allocation for Multi-robot Task and Motion Planning: A Case for Object Picking in Cluttered Workspaces
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Task-Motion Planning and AND/OR Graphs
	2.3 Problem Definition

	3 Multi-robot Task and Motion Planning
	3.1 Obstacles Selection
	3.2 Task Allocation
	3.3 Task Decomposition
	3.4 Task and Motion Planning
	3.5 The Multi-robot Task-Motion Planning Loop

	4 Experimental Results
	5 Conclusion
	References

	A Sound (But Incomplete) Polynomial Translation from Discretised PDDL+ to Numeric Planning
	1 Introduction
	2 Background
	2.1 Polynomial Translation

	3 POLY-: A Sound (but Incomplete) Translation
	4 Experimental Analysis
	5 Conclusion
	References

	Enhancing Telepresence Robots with AI: Combining Services to Personalize and React
	1 Introduction
	2 An Architecture to Enhance Robotic Telepresence
	3 The Deliberative Services for Personalization
	3.1 Executing Plans and Adapting Them to the Reality

	4 Contextualized Navigation Services
	5 Advanced Perception
	5.1 Emotion Detection

	6 The Integrated System at Work
	7 Conclusions
	References

	Tafl-ES: Exploring Evolution Strategies for Asymmetrical Board Games
	1 Introduction
	2 Background
	2.1 Hnefatafl
	2.2 State of the Art
	2.3 Evolution Strategies

	3 Approach
	3.1 Problem Formulation
	3.2 Proposed Solution: Tafl-ES

	4 Results
	5 Conclusions and Future Work
	References

	Constraints, Argumentation, and Logic Programming
	Combining DCOP and MILP for Complex Local Optimization Problems
	1 Introduction
	2 Adopted Techniques and Related Work
	2.1 Distributed Constraint Optimization Problem
	2.2 DCOP with Complex Local Problems
	2.3 Supply Chain Coordination Problem (SCC)
	2.4 Attempts to Solve SCC with DCOP

	3 Combining DCOP with MILP to Solve SCC
	3.1 Formal Model
	3.2 Algorithms

	4 Experiments
	4.1 Description of Experiments
	4.2 Results Analysis

	5 Conclusions and Future Work
	References

	Automated Design of Elevator Systems: Experimenting with Constraint-Based Approaches
	1 Introduction
	2 Design of Elevator Systems
	3 Encoding Elevator Systems Design
	4 Experimental Results
	5 Conclusions
	References

	Modular Logic Argumentation in Arg-tuProlog
	1 Introduction
	2 The Domain of Private International Law: Running Examples
	3 Modular Argumentation in Arg-tuProlog
	3.1 Modular Logic: Architecture and Predicates

	4 Running Examples in Arg-tuProlog
	5 Conclusion
	References

	Burden of Persuasion in Meta-argumentation
	1 Introduction
	2 Meta-argumentation Framework
	2.1 Structured Argumentation for Object-Level Argumentation
	2.2 Object and Meta Level Connection: Bimodal Graphs
	2.3 Argument Schemes for Meta-level Argumentation

	3 Burden of Persuasion as Meta-argumentation
	3.1 Meta-level Graph
	3.2 Object and Meta Level Connection: Supporting Sets
	3.3 Equivalence with Burden of Persuasion Semantics

	4 Burden Inversion
	5 Conclusions
	References

	Knowledge Representation, Reasoning, and Learning
	Reasoning About Smart Contracts Encoded in LTL
	1 Introduction
	2 Preliminaries
	2.1 Smart Contracts
	2.2 Linear Temporal Logic with Past Operators

	3 Encoding Smart Contracts in Linear Temporal Logic
	4 Reasoning About Smart Contracts
	4.1 Reasoning Problems on a Single Smart Contract
	4.2 Reasoning Problems on a Set of Smart Contracts

	5 SCRea: Smart Contracts Reasoner
	5.1 Conceptual Architecture
	5.2 Encoder and Decoder Modules
	5.3 SCRea at Runtime

	6 Concluding Remarks
	References

	A Combinatorial Approach to Weighted Model Counting in the Two-Variable Fragment with Cardinality Constraints
	1 Related Work
	2 FOMC for Universal Formulas
	3 FOMC for Cardinality Constraints
	4 FOMC for Existential Quantifiers
	5 Weighted First-Order Model Counting
	6 Conclusion
	References

	Option Discovery for Autonomous Generation of Symbolic Knowledge
	1 Introduction
	2 Problem Description
	3 Implementation
	3.1 Option Discovery
	3.2 Abstracting Options in PPDDL

	4 Empirical Analysis
	5 Conclusions and Future Work
	References

	Natural Language Processing
	A Neural-Machine-Translation System Resilient to Out of Vocabulary Words for Translating Natural Language to SPARQL
	1 Introduction
	2 Preliminaries
	2.1 Knowledge Bases and SPARQL
	2.2 Recurrent Neural Networks

	3 From Natural Language Questions to SPARQL
	3.1 Mitigating the WOOV Problem
	3.2 Out-of-Vocabulary Words in NL Questions
	3.3 The Model

	4 Experiments
	4.1 Evaluation on Monument Dataset
	4.2 Evaluation on QALD-9

	5 Related Work
	6 Conclusions and Future Work
	References

	Exploiting Textual Similarity Techniques in Harmonization of Laws
	1 Introduction
	2 Related Work
	3 Case Study
	3.1 CrossJustice Project
	3.2 Types of Annotations
	3.3 Dataset Overview

	4 Methodology
	4.1 Text Processing
	4.2 Similarity Measure

	5 Output
	5.1 Text Representation
	5.2 Heat Maps Visualization

	6 Conclusions
	References

	Easy Semantification of Bioassays
	1 Introduction
	2 A Motivating Example for Bioassay Semantification
	3 Related Work
	3.1 Corpora of Semantified Life Science Publications
	3.2 AI-Based Scholarly Knowledge Graph Construction

	4 Materials and Methods
	4.1 An Expert-Annotated Semantified Bioassays Corpus
	4.2 Labeling Task Definition for Bioassay Semantification
	4.3 Clustering Task Definition for Bioassay Semantification

	5 Bioassay Semantification Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Digital Library Bioassay Semantification Workflows
	7 Conclusion
	References

	Pruned Graph Neural Network for Short Story Ordering
	1 Introduction
	2 Related Work
	2.1 Sentence Ordering
	2.2 Graph Neural Networks in NLP

	3 Baselines
	3.1 ATTOrderNet
	3.2 SE-Graph

	4 Methodology
	4.1 Problem Formulation
	4.2 Dataset
	4.3 Pruned Graph Sentence Ordering (PG)
	4.4 Majority Voting

	5 Experiment
	5.1 Evaluation Metrics
	5.2 Contrast Models
	5.3 Setting
	5.4 Results

	6 Conclusion
	References

	Multi-task and Generative Adversarial Learning for Robust and Sustainable Text Classification
	1 Introduction
	2 Multi-task and Generative Adversarial Learning in MT-GAN-BERT
	3 Experimental Evaluation
	4 Conclusion
	References

	Punctuation Restoration in Spoken Italian Transcripts with Transformers
	1 Introduction
	2 Related Work
	3 Experimental Setting
	3.1 Model
	3.2 Data

	4 Results
	5 Error Analysis
	6 Extended Evaluation
	7 Conclusions
	References

	AI for Content and Social Media Analysis
	On the Impact of Social Media Recommendations on Opinion Consensus
	1 Introduction
	2 The Model
	3 Symmetric Two-Block Model
	3.1 Characterization

	4 General Networks
	5 Conclusions
	References

	Misogynous MEME Recognition: A Preliminary Study
	1 Introduction
	2 State of the Art
	3 The MEME Dataset
	4 Models and Results
	4.1 Unimodal Classifiers
	4.2 Multimodal Classifier

	5 Conclusions
	References

	Signal Processing: Images, Videos and Speech
	A Relevance-Based CNN Trimming Method for Low-Resources Embedded Vision
	1 Introduction
	2 Related Work
	3 The Pruning Method
	4 Applications and Experimental Evaluation
	4.1 Pruning CNNs for Camera Tasks
	4.2 VGG16 on Cifar10

	5 Conclusions
	References

	Vision-Based Holistic Scene Understanding for Context-Aware Human-Robot Interaction
	1 Introduction
	2 Related Work
	3 Datasets
	4 Methodology
	4.1 Convolutional Neural Network
	4.2 Recurrent Neural Network
	4.3 CNN + RNN Architecture

	5 Experiments
	5.1 Dataset
	5.2 Implementation Details
	5.3 Result Analysis

	6 Context-Aware Human-Robot Interaction
	6.1 Application

	7 Conclusion and Further Work
	References

	Human Detection in Drone Images Using YOLO for Search-and-Rescue Operations
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 HERIDAL Dataset
	3.2 SARD Dataset
	3.3 YOLOv5

	4 Experiment
	4.1 Setting
	4.2 Metrics
	4.3 Results

	5 Conclusion
	References

	ArabCeleb: Speaker Recognition in Arabic
	1 Introduction
	2 The ArabCeleb Dataset
	2.1 Description
	2.2 Collection Pipeline

	3 Experiments
	3.1 Speaker Verification Baseline Methods Considered
	3.2 Results

	4 Conclusions
	References

	Static, Dynamic and Acceleration Features for CNN-Based Speech Emotion Recognition
	1 Introduction and Related Work
	2 Proposed Method
	2.1 Static, Dynamic and Acceleration Features
	2.2 Global Features
	2.3 Proposed 1-D Convolutional Neural Network

	3 Experiments
	3.1 Datasets
	3.2 Comparison with the State of the Art
	3.3 Result

	4 Conclusion
	References

	EEG-Based BCIs for Elderly Rehabilitation Enhancement Exploiting Artificial Data
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Datasets
	3.2 Multivariate Empirical Mode Decomposition

	4 Our Proposal
	5 Results and Discussion
	6 Conclusions
	References

	Machine Learning for Argumentation, Explanation, and Exploration
	Supporting Trustworthy Artificial Intelligence via Bayesian Argumentation
	1 Introduction
	2 A Primer in Statistical Learning
	3 A Primer in Bayesian Argumentation
	4 Argumentative-Generative Framework
	5 Conclusions
	References

	Logic Constraints to Feature Importance
	1 Introduction
	2 Bibliographic Review
	3 Mathematical Setting of Feature Importance
	4 Constraints to Feature Importance
	5 Fairness Through Feature Importance Constraints
	6 Toy Example: Constraint of the Form Lg
	7 Fairness Through Constraints to Feature Importance
	8 Conclusion and Future Work
	References

	Clustering-Based Interpretation of Deep ReLU Network
	1 Introduction
	2 Bibliographic Review
	3 Deep ReLU Networks for the Partition of the Input Space
	4 Simulation Study
	5 Titanic Dataset
	6 Conclusions and Limitations
	References

	Exploration-Intensive Distractors: Two Environment Proposals and a Benchmarking
	1 Introduction
	2 Related Work
	2.1 Approaches to Sparsity
	2.2 Distractors

	3 Environment Design
	3.1 Base Environment
	3.2 Single-Action Static-Rendering (SASR) TV
	3.3 Multi-Action Dynamic-Rendering (MADR) TV
	3.4 ViZDoom-TV Integration

	4 Benchmarking
	4.1 Covered Algorithms
	4.2 Training Details
	4.3 Results and Discussion

	5 Conclusions
	References

	Neural QBAFs: Explaining Neural Networks Under LRP-Based Argumentation Frameworks
	1 Introduction
	2 Background
	2.1 MLP Basics
	2.2 LRP Basics
	2.3 QBAF Basics

	3 nQBAFS and LRP-Based Argumentation Semantics
	4 Properties for nQBAFS Under LRP Semantics
	5 Empirical Study
	5.1 DAX Basics
	5.2 The Basics of Google's Method
	5.3 Settings
	5.4 DAX Vs Google Comparisons
	5.5 Discussion

	6 Conclusions
	References

	Machine Learning and Applications
	Domino Saliency Metrics: Improving Existing Channel Saliency Metrics with Structural Information
	1 Introduction
	2 Data Flow Graph for Pruning
	2.1 Background
	2.2 Channel Pruning Networks with Splits and Joins
	2.3 Data Flow Graph
	2.4 Join and Split Nodes
	2.5 Group Convolution
	2.6 How to Prune Biases and Activation Layers

	3 Domino Pruning
	4 Experimental Evaluation
	4.1 Pruning Algorithm
	4.2 Networks
	4.3 Saliency Metrics

	5 Results
	6 Related Work
	7 Conclusion
	References

	Learned Sorted Table Search and Static Indexes in Small Model Space
	1 Introduction
	1.1 Learned Searching in Sorted Sets
	1.2 Our Contributions

	2 A Simple View of Learned Searching in Sorted Sets
	3 Experimental Methodology
	3.1 Sorted Table Search and Classic Indexes
	3.2 Model Classes Characterizing Model Space
	3.3 Hardware
	3.4 Datasets

	4 Learning the CDF of a Sorted Table and Mining SODS Output for the Synoptic RMI: Outline of Experiments and Findings
	5 Constant Space Models: Outline of Query Experiments
	6 Parametric Space Models: Outline of Query Experiments
	7 Conclusions and Future Directions
	References

	Siamese Networks with Transfer Learning for Change Detection in Sentinel-2 Images
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Siamese Network
	3.2 Fine-tuning

	4 Implementation Details
	5 Experimental Evaluation
	5.1 Datasets, Experimental Setting and Evaluation Metrics
	5.2 Results

	6 Conclusion
	References

	Adversarial Machine Learning in e-Health: Attacking a Smart Prescription System
	1 Introduction
	2 Related Work
	3 Case Study
	4 Threat Model
	5 Methodology
	6 Experimental Analysis
	6.1 The Classification Network
	6.2 Results and Discussion

	7 Conclusions
	References

	Deep Learning of Recurrence Texture in Physiological Signals
	1 Introduction
	2 Methods
	2.1 Texture of Recurrence Dynamics
	2.2 Deep Learning of Texture of Recurrence in Time Series
	2.3 Simulation of Texture for Data Augmentation in Deep Learning
	2.4 Procedure of Proposed Method

	3 Results and Discussion
	4 Conclusion
	References

	Highlighting the Importance of Reducing Research Bias and Carbon Emissions in CNNs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Base Network Selection
	3.2 Categories for Experimentation
	3.3 How do we Measure Energy Consumption?

	4 Experimental Evaluation
	4.1 Architecture Modification
	4.2 Learning Rate Scheduler
	4.3 Data Augmentation
	4.4 Optimizer
	4.5 Loss Function
	4.6 Custom Nodes and Layers

	5 Discussion
	References

	Generating Local Textual Explanations for CNNs: A Semantic Approach Based on Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 The Knowledge Graph Model
	3.2 Generation of Textual Factual and Counterfactual Explanations for Mistakes

	4 Experimental Evaluation
	4.1 Evaluating Link Prediction for Semantic Attributes
	4.2 A Visual Evaluation for Factual and Counterfactual Explanations

	5 Conclusions and Future Work
	References

	Detection Accuracy for Evaluating Compositional Explanations of Units
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Network Dissection and Compositional Explanations
	3.2 Detection Accuracy

	4 Experiments
	4.1 Setup
	4.2 Detection Accuracy as Evaluation Metric
	4.3 Detection Accuracy as Optimization Metric

	5 Conclusion and Future Work
	References

	Knowledge-Based Neural Pre-training for Intelligent Document Management
	1 Introduction
	2 Transformers for Robust NL Inferences
	3 ABILaBERT: Injecting Domain Knowledge in BERT
	3.1 Injecting Process Knowledge as Auxiliary Tasks
	3.2 Auxiliary Tasks for Domain Specific Pre-training

	4 Using ABILaBERT for Text-Driven Process Mining
	5 Experimental Evaluation
	6 Conclusion
	References

	Improving Machine Translation of Arabic Dialects Through Multi-task Learning
	1 Introduction
	2 Related Work
	3 Dataset
	4 Methodology
	4.1 Sequence-to-Sequence Learning
	4.2 Multi-task Sequence-to-Sequence Learning
	4.3 Model Training

	5 Experimental Results and Discussion
	5.1 Experiment Settings

	6 Conclusion
	References

	Continuous Defect Prediction in CI/CD Pipelines: A Machine Learning-Based Framework
	1 Overview
	2 State of the Art
	3 The Framework
	3.1 The Dataset
	3.2 Data Preparation
	3.3 Feature Engineering and Selection
	3.4 The Models
	3.5 The Monitoring Dashboard

	4 Infrastructural Considerations
	5 Conclusions
	References

	AI Applications
	Robust Optimization Models For Local Flexibility Characterization of Virtual Power Plants
	1 Introduction
	2 Related Work
	3 VPP: A Distributed Architecture
	4 Model Description
	4.1 Modeling of Uncertainties
	4.2 Model and Components
	4.3 Modeling of RES Production
	4.4 Modeling of Storage Systems
	4.5 External Grid
	4.6 Modeling of Generator Units
	4.7 Demand Side Management
	4.8 Power Balance
	4.9 Objective Functions

	5 Case Studies
	5.1 Dataset Description and Local VPP Configurations

	6 Experimental Results and Discussion
	6.1 Cost Comparison

	7 Conclusion
	References

	Explainable Artificial Intelligence for Technology Policy Making Using Attribution Networks
	1 Introduction and Motivation
	1.1 AI-Driven Law and Policy
	1.2 Causality Through Attributions

	2 Methods
	2.1 Deep Learning for Legal Analysis
	2.2 NLP for Law
	2.3 Attribution Networks for Policy
	2.4 Measuring Similarity Using Nearest Neighbors

	3 Experimental Work
	4 Results and Policy Discussions
	5 Conclusion
	References

	A Comparative Study of AI Search Methods for Personalised Cancer Therapy Synthesis in COPASI
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Paper Outline

	2 State of the Art
	3 VPH Model of the Immune Response to Colorectal Cancer
	4 Modelling the Therapies
	5 Optimisation
	5.1 Optimisation Algorithms

	6 Results
	7 Conclusions
	References

	Effective Analysis of Industry-Relevant Cyber-Physical Systems via Statistical Model Checking
	1 Introduction
	2 Industrial Case Studies for Statistical Model Checking
	2.1 Peak Shaving in Smart Grids
	2.2 Virtual Patients for In-Silico Clinical Trials
	2.3 Autonomous Drone Navigation
	2.4 Bluetooth Protocol
	2.5 Leader Election Protocol in IEEE 1394

	3 Conclusions
	References

	An ASP-Based Approach to Scheduling Pre-operative Assessment Clinic
	1 Introduction
	2 Problem Description
	3 Formalization of the PAC Scheduling Problem
	4 ASP Encoding
	4.1 ASP Encoding for the First PAC Sub-problem
	4.2 ASP Encoding for the Second PAC Sub-problem

	5 Experimental Results
	6 Domain Specific Optimizations
	7 Related Work
	8 Conclusion
	References

	Solving the Dial-a-Ride Problem Using an Adapted Genetic Algorithm
	1 Introduction
	2 Dial-a-Ride Problem
	3 Genetic Algorithm for DARP
	4 Experimental Study
	4.1 Benchmark Setup
	4.2 Results

	5 Conclusion
	References

	Unstructured Data in Predictive Process Monitoring: Lexicographic and Semantic Mapping to ICD-9-CM Codes for the Home Hospitalization Service
	1 Introduction
	2 Background
	3 The Home Hospitalization Service Scenario
	4 Approach
	4.1 Data Preprocessing and Analysis
	4.2 Mapping the Diagnosis Field to the ICD-9-CM Dictionary
	4.3 Predicting The Home Hospitalization Outcome

	5 Evaluation
	5.1 ICD-9-CM Mapping Evaluation
	5.2 Home Hospitalization Outcome Prediction Evaluation

	6 Related Work
	7 Conclusions
	References

	Author Index

