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Abstract
We introduce a time-interaction point process where the occurrence of an event
can increase (self-excitement) or reduce (self-correction) the probability of future
events. Self-excitement and self-correction are allowed to be triggered by the
same event, at different timescales; other effects such as those of covariates,
unobserved heterogeneity, and temporal dependence are also allowed in the
model. We focus on capture-recapture data, as our work is motivated by an orig-
inal example about the estimation of the total number of drug dealers in Italy. To
do so, we derive a conditional likelihood formulation where only subjects with
at least one capture are involved in the inference process. The result is a novel
and flexible continuous-time population size estimator. A simulation study and
the analysis of our motivating example illustrate the validity of our approach in
several scenarios.
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1 INTRODUCTION

Models for capture–recapture data are commonly used
to estimate the size of a population that is difficult to
sample without bias. Such models find a wide range of
applications (Otis et al., 1978; Chao et al., 2001; Silver-
man, 2020). In this work, we focus on cases in which
sampling occurs in continuous time, the and occurrence
of sampling can trigger a complex behavioral response
that might affect the future sampling risk. Continuous-
time models for population size estimation are well
established (Chao and Lee, 1993; Yip et al., 1996; Lin
and Yip, 1999; Hwang and Chao, 2002; Xi et al., 2007;
Farcomeni and Scacciatelli, 2013; Matechou and Caron,
2017; Liu et al., 2018; Schofield et al., 2018) and often
involve modeling of the temporal point process (Illian
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et al., 2008; Moller et al., 1998) of capture/identification/
sighting.
Ourmotivating application involves assessing the extent

of illegal drug trafficking in Italy. In this work, we con-
sider an original dataset about drug dealers identified in
Italy between 2005 and 2006. This maps to a continuous-
time experiment, with dealers continuously at risk of being
observed by Italian police officers from time zero to the
end of the available records. Clearly, not all drug deal-
ers have been identified during the observation period.
More importantly, we can assume that the occurrence of an
interaction with the Italian police brings about a transient
and complex behavioral response. This will be numeri-
cally verified on the data at hand, and ignoring this effect
might lead to biased estimates. For other examples of inno-
vative population size estimation methods to assess the
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extent of drug abuse, see Overstall et al. (2014), Farcomeni
and Scacciatelli (2013), Huggins et al. (2016), Hay and
Richardson (2016), and references therein. Our final esti-
mate for the number of drug dealers can be of interest to
both law and public health authorities. The latter are often
mainly interested in the number of illicit drug users for
monitoring, planning, and policy; but indeed many offi-
cial estimates of the number of illicit drug users are based
on dealer/consumer ratios (e.g., Bouchard and Tremblay,
2005), which must rely on accurate estimates of the num-
ber of dealers.
In the temporal point process framework, behavioral

effects correspond to conditional dependence of event
rates on times of previous events. This can result in self-
exciting (self-correcting) processes, where the occurrence of
an event at a time point affects the probability of occur-
rence of a later event in an upwards (downwards) fash-
ion. Self-exciting processes are also known as Hawkes
processes (Hawkes, 1971). Applications of Hawkes pro-
cesses span environmental and seismological data (Ogata,
1999), health and genomic studies (Reynaud-Bouret and
Schbath, 2010), crime (Mohler et al., 2011), and other areas.
Self-correcting processes (Isham and Westcott, 1979; Vere-
Jones and Ogata, 1984) have been applied mostly to earth-
quake data (Rotondi and Varini, 2019; Schoenberg and
Bolt, 2000).
Our methodological contribution in this work is

twofold. First of all, we contribute to the literature on
temporal point processes by defining a combination of
self-exciting and self-correcting point processes, allowing
each event to increase and/or decrease the likelihood of
future ones. A similar proposal can be found in Bonnet
et al. (2021), but we believe our specification to be more
appropriate for the context of population size estimation.
Hawkes and self-correcting processes may be derived
as special cases. We believe our general model to be
of general interest. Second, we show how self-exciting
and self-correcting phenomena can be used to specify
flexible behavioral responses in continuous-time capture–
recapture models. To do so, we optimize the conditional
likelihood, as only subjects with at least one capture are
observed. The risk of capture of each individual can be
thought to depend on a combination of four components:
(i) observed heterogeneity (i.e., covariates, producing a
class of models known as𝑀𝑜 models), (ii) unobserved het-
erogeneity (i.e., unmeasured covariates, 𝑀ℎ models), (iii)
time effects that are independent of the subject (𝑀𝑡 mod-
els), and (iv) behavioral response to capture (𝑀𝑏 models),
where the occurrence of being observed can temporarily
or permanently change the risk of capture. A combination
of the above features is possible, and the most general
model is denoted as 𝑀ℎ𝑜𝑡𝑏 (Otis et al., 1978; Farcomeni
and Scacciatelli, 2013; Farcomeni, 2016). Therefore, our
contribution to the continuous-time capture–recapture

literature is that of a flexible and parsimonious behavioral
effect, which has direct interpretation and applicability
for both human and animal populations, embedded in
a unified framework that can also take into account all
other sources of heterogeneity.
The rest of the paper is as follows: in the next section, we

introduce our novel time-interaction process, define the
observed and the conditional likelihood. This corresponds
to model𝑀𝑏 in the population size estimation framework.
In Section 3, we specify a general model for the𝑀ℎ𝑜𝑡𝑏 case.
The performance of the newapproach is assessed via a sim-
ulation study and successfully compared to some existing
methods for population size estimation in Section 4. The
analysis of ourmotivating example is reported in Section 5.
Concluding remarks are presented in Section 6.
The methods presented in this work have been imple-

mented in R code, which may be found online in the Sup-
porting Information. The data used for the present work
must be organized in a list where each element identifies a
subject captured at least once; for each subject, a vector of
capture times is provided. Optional subject-specific covari-
ates may be included in a separate covariate matrix.

2 TIME-INTERACTION PROCESSES

A continuous-time point process is a stochastic process
modeling a temporal point pattern {𝑡1, … , 𝑡𝑆}; that is, a
sequence of times of occurrence for an event of inter-
est. The corresponding counting process 𝑁(𝑡) records the
number of events in the interval (0, 𝑡), taking values in
𝐍. The number of points over a time interval depends
on interval length but also on an intensity function that
may take a complex form. Under reasonable assumptions,
this leads to𝑁(𝑡) ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(Λ(𝑡)), whereΛ(𝑡) = ∫ 𝑡

0
𝜆(𝑠)𝑑𝑠

and the conditional intensity function 𝜆(𝑠) satisfies 𝜆(𝑡) =
limℎ→0

𝐸[𝑁(𝑡+ℎ)−𝑁(𝑡)|(𝑡)]
ℎ

, with (𝑡) being the history of
event times up to 𝑡. For capture–recapture data in contin-
uous time,𝑁(𝑡) represents the number of captures for one
generic subject in (0, 𝑡). Conditional intensitiesmay ormay
not be constant across individuals. In a self-exciting pro-
cess, the occurrence of an event at time 𝑡 causes the con-
ditional intensity function to increase in the short term.
In capture–recapture contexts, this generates the so-called
trap-happiness effect. The intensity ismodeled as (Hawkes,
1971)

𝜆𝑆𝐸(𝑡) = 𝜂 +
∑
𝑘∶𝑡𝑘<𝑡

𝑔(𝑡 − 𝑡𝑘), (1)

for some smooth self-exciting kernel 𝑔(⋅). A stan-
dard choice for 𝑔(⋅) is the exponential kernel
𝑔(𝑡) =

∑𝐽

𝑗=1
𝛼𝑗𝑒

−𝛽𝑗𝑡, for some 𝐽 ≥ 1. A stationarity
condition for the exponential kernel is that

∑
𝑗
𝛼𝑗∕𝛽𝑗 < 1,
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to avoid explosion of the intensity function. In practice,
the exponential kernel with 𝐽 = 1 is often flexible enough
to provide a good fit (Oakes, 1975). Model (1) is not
suitable for taking trap-shyness into account, that is, for
considering situations where the conditional intensity
function drops after an event. This can be described by
self-correcting kernels, where the intensity increases in
absence of events and is decreased by each event. The
conditional intensity of a self-correcting process may be
expressed as (Isham and Westcott, 1979)

𝜆𝑆𝐶(𝑡) = 𝜂 exp {−𝜃(𝑁(𝑡) − 𝜂𝑡)}, (2)

where 𝜃 is a parameter controlling the degree of trap-
shyness and 𝜂𝑡 is a target for the number of events at
time 𝑡.
We here propose a unified time-interaction process,

where

𝜆(𝑡) = 𝛼
∑
𝑘∶𝑡𝑘<𝑡

exp{−𝛽(𝑡 − 𝑡𝑘)} + 𝜂 exp {−𝜃(𝑁(𝑡) − 𝜂𝑡)}.

(3)

In (3), 𝛼, 𝛽, 𝜂, 𝜃 are positive; and 𝛼 < 𝛽. It is worth noticing
that we are specifying an additive hazard counting process
model (Aalen, 1989; Lin and Ying, 1995).

2.1 Inference

Suppose we have observed 𝐾𝑖 events for each sub-
ject 𝑖 = 1, … , 𝑛, with subject-specific capture times
{𝑡𝑖1, … , 𝑡𝑖𝑘, … , 𝑡𝑖𝐾𝑖 }, over an interval (0, 𝑇). The log-
likelihood for the 𝑖th subject is

𝑙𝑖(𝜆) =

𝐾𝑖∑
𝑘=1

log(𝜆(𝑡𝑖𝑘)) − ∫
𝑇

0

𝜆𝑖(𝑡) 𝑑𝑡, (4)

where 𝐾𝑖 = 𝑁𝑖(𝑇), with 𝑡𝑖0 = 0 and 𝑡𝑖(𝐾𝑖+1) = 𝑇. Under
independence, the observed log-likelihood corresponds to
the sum of (4) over 𝑛 subjects

𝑙(𝜆) =

𝑛∑
𝑖=1

{
𝐾𝑖∑
𝑘=1

log(𝜆(𝑡𝑖𝑘)) − ∫
𝑇

0

𝜆𝑖(𝑡) 𝑑𝑡

}
. (5)

For our time-interaction process, the subject-specific log-
likelihood becomes

𝑙𝑖(𝝍) =

𝐾𝑖∑
𝑘=1

log

[
𝛼

∑
𝑠∶𝑡𝑖𝑠<𝑡𝑖𝑘

exp{−𝛽(𝑡𝑖𝑘 − 𝑡𝑖𝑠)}

+ 𝜂 exp {−𝜃(𝑁𝑖(𝑡𝑖𝑘) − 𝜂𝑡𝑖𝑘)}

]

+
𝛼

𝛽

𝐾𝑖∑
𝑘=1

[exp{−𝛽(𝑇 − 𝑡𝑖𝑘)} − 1]

−
1

𝜃

𝐾𝑖∑
𝑘=0

exp(−𝜃𝑘){exp(𝜃𝜂𝑡𝑖𝑘+1) − exp(𝜃𝜂𝑡𝑖𝑘)}, (6)

where 𝝍 = (𝛼, 𝛽, 𝜂, 𝜃) is a short-hand notation for the
parameters involved. In order to maximize the conditional
log-likelihood, the gradient is needed. This can be derived
in closed form, as reported in the Web Appendix. The
Hessian can be obtained through a numerical first deriva-
tive of the gradient. A Newton–Raphson method pro-
ceeds after operating a change of variables so that positive
parameters in 𝝍 = (𝛼, 𝛽, 𝜂, 𝜃) are replaced by real-valued
parameters in 𝝍′ = (𝛼′, 𝛽′, 𝜂′, 𝜃′), where 𝛼 = exp(𝛼′), 𝛽 =
exp(𝛼′) + exp(𝛽′), 𝜂 = exp(𝜂′) and 𝜃 = exp(𝜃′). The value
of the Hessian at convergence can be used to obtain stan-
dard errors of the parameters as usual. Further details
on maximum likelihood estimation are given in the next
section.

2.2 Conditional likelihood
and population size estimation

In the capture–recapture framework, we can only observe
subjects with 𝐾𝑖 > 0. We shall resort to the conditional
likelihood (Sanathanan, 1972), which conditions on the
event that there is at least one capture. Since 𝑁𝑖(𝑡) is dis-
tributed like a Poisson, the probability of such an event is
Pr(𝐾𝑖 > 0) = Pr(𝐾 > 0) = 1 − exp{− ∫ 𝑇

0
𝜂 exp(𝜃𝜂𝑡)𝑑𝑡} =

1 − exp{−
exp(𝜃𝜂𝑇)−1

𝜃
}. Consequently, the conditional

log-likelihood is given by

𝑙∗(𝝍) = 𝑙(𝝍) − 𝑛 log

[
1 − exp

{
−
exp(𝜃𝜂𝑇) − 1

𝜃

}]
. (7)

This corresponds to an𝑀𝑏 specification, as commented in
the previous section. The closed-form expression for the
gradient of (7) is given in the Web Appendix and can be
used to set up optimization as described for the observed
likelihood (5).
The final goal in a capture–recapture context is to pro-

vide an estimate for the total number of subjects𝑁. In our
implementation, we compute the Horvitz–Thompson esti-
mator, whose expression is

�̂� =
𝑛

ˆ𝑃𝑟(𝐾 > 0)
=

𝑛

1 − exp

{
−
exp(𝜃𝜂𝑇)−1

𝜃

} . (8)

Details about the standard error of �̂� are given in
Section 3.2.
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3 INCLUDING TIME EFFECTS,
OBSERVEDHETEROGENEITY, AND
UNOBSERVEDHETEROGENEITY

The model outlined previously only takes into account
behavioral effects, which might lead to clustering (self-
excitement) or spreading (self-correction) of events over
time. A general model must consider three further sources
of variation in capture rates: time-dependent effects,
observed heterogeneity, and unobserved heterogeneity. To
this end, we propose the following formulation for the
intensity function:

𝜆𝑖(𝑡) = 𝛼𝑖
∑

𝑘∶𝑡𝑖𝑘<𝑡

exp{−𝛽𝑖(𝑡 − 𝑡𝑖𝑘)}

+ 𝜆0(𝑡) exp
{
𝐗′
𝑖
𝜸 + 𝜇𝑖 − 𝜃𝑖(𝑁𝑖(𝑡) − Λ0(𝑡))

}
, (9)

where 𝐗𝑖 is a 𝑃 × 1 vector of subject-specific, time con-
stant covariates, and 𝜸 is a vector of regression coeffi-
cients capturing observed heterogeneity (𝑀𝑜 part). Func-
tion 𝜆0(𝑡) is a parametric baseline hazard, with Λ0(𝑡) =

∫ 𝑡

0
𝜆0(𝑠) 𝑑𝑠. In the following, we set 𝜆0(𝑡) = 𝜂𝑡𝜂−1, which

is the baseline hazard for the Weibull distribution. Dif-
ferent baselines can in principle be specified and com-
pared through likelihood-ratio tests (e.g., Fine, 2002; see
also our simulation results). Exogenous time dynamics
are captured by the parameter 𝜂, which tunes the tar-
get number of events for the self-correcting part (𝑀𝑡).
Finally, unobserved heterogeneity (𝑀ℎ) involves the use
of random subject-specific effects. In the present specifi-
cation, we include a frailty term 𝜇𝑖 , representing unob-
served factors that might modify the individual risk of
captures andmake both behavioral effects subject specific,
allowing, for example, part of the population to be trap-shy
and part of it to be trap-happy in the short term. Several
constraints can be used to obtain any possible submodel
(e.g., by assuming 𝛾 = 0 and/or 𝜂 = 1). It is also possible
to exclude self-exciting (𝛼𝑖 = 0) or self-correcting (𝜃𝑖 = 0)
behaviors. The model is completed by the specification
of a distribution for subject-specific effects. In this work,
we use latent class models (see, e.g., Coull and Agresti,
1999). We assume the existence of a discrete latent vari-
able 𝑈𝑖 , with Pr(𝑈𝑖 = 𝑐) = 𝜋𝑐 for 𝑐 = 1,… , 𝐶. Parameters
𝛼𝑖 ,𝛽𝑖 , 𝜃𝑖 , and𝜇𝑖 take values in a discrete set of𝐶 elements as
indicized by 𝑈𝑖 . Therefore, 𝛼𝑖 ∈ 𝜶 = (�̃�1, … , �̃�𝐶), 𝛽𝑖 ∈ 𝜷 =

(𝛽1, … , 𝛽𝐶), 𝜃𝑖 ∈ 𝜽 = (𝜃1, … , 𝜃𝐶), and 𝜇𝑖 ∈ 𝝁 = (𝜇1, … , 𝜇𝐶).
We assume vector 𝝁 to be in increasing order. This con-
straint, in addition to 𝛼 < 𝛽 and 𝛼, 𝛽, 𝜂, 𝜃 > 0 specified
in Section 2, ensures the identifiability of the extended
model.

3.1 Estimation of model parameters

The time-interaction𝑀ℎ𝑜𝑡𝑏 model (9) has 5𝐶 + 𝑃 parame-
ters: 4𝐶 + 𝑃 + 1 elements in 𝝍 = (�̃�, 𝛽, 𝜂, 𝜃, 𝜇, 𝜸), plus 𝐶 −
1 latent class probabilities 𝜋𝑐. The log-likelihood for sub-
ject 𝑖 conditional on a generic class 𝑐 is

𝑙𝑖(𝝍|𝑐) = 𝐾𝑖∑
𝑘=1

log

[
�̃�𝑐

∑
𝑠∶𝑡𝑖𝑠<𝑡𝑖𝑘

exp{−𝛽𝑐(𝑡𝑖𝑘 − 𝑡𝑖𝑠)}

+ 𝜂𝑡
𝜂−1

𝑖𝑘
exp

{
𝑿′
𝑖
𝜸 + 𝜇𝑐 − 𝜃𝑐

(
𝑁𝑖(𝑡𝑖𝑘) − 𝑡

𝜂

𝑖𝑘

)}]

+
�̃�𝑐

𝛽𝑐

𝐾𝑖∑
𝑘=1

[exp{−𝛽𝑐(𝑇 − 𝑡𝑖𝑘)} − 1]

− 𝑒𝑿
′
𝑖
𝜸+𝜇𝑐

𝐾𝑖∑
𝑘=0

𝜂𝑒−𝜃𝑐𝑘 ∫
𝑡𝑘+1

𝑡𝑘

𝑡𝜂−1𝑒𝜃𝑐𝑡
𝜂
𝑑𝑡. (10)

The observed likelihood is therefore
∏

𝑖

∑
𝑐
𝜋𝑐 exp(𝑙𝑖(𝝍|𝑐)).

The latter is slightly cumbersome to compute and
might lead to numerical issues during optimization.
For this reason, we prefer setting up an expectation-
maximization algorithm, which is based on the com-
plete log-likelihood

∑
𝑖
𝑙𝑖(𝝍) =

∑
𝑖

∑𝐶

𝑐=1
{𝑙𝑖(𝝍|𝑐)𝐼(𝑈𝑖 = 𝑐) +

𝐼(𝑈𝑖 = 𝑐) log(𝜋𝑐)}, where 𝐼(⋅) is the indicator function. The
latter is the likelihood one would observe in case the dis-
crete latent variables 𝑈𝑖 were measured.
The complete conditional log-likelihood corresponds

to
∑𝑛

𝑖=1

∑𝐶

𝑐=1
𝑙∗
𝑖
(𝝍|𝑐) = ∑𝑛

𝑖=1

∑𝐶

𝑐=1
𝑙𝑖(𝝍|𝑐) − log(𝑃(𝐾𝑖 >

0|𝑐)) + 𝐼(𝑈𝑖 = 𝑐) log(𝜋𝑐), where, for the time-interaction
𝑀ℎ𝑜𝑡𝑏 model,

𝑃(𝐾𝑖 > 0) =
∑
𝑐

𝜋𝑐

(
1 − exp

(
−𝑒𝑿

′
𝑖
𝜸+𝜇𝑐𝜂 ∫

𝑇

0

𝑡𝜂−1𝑒𝜃𝑐𝑡
𝜂
𝑑𝑡

))

=
∑
𝑐

𝜋𝑐𝑃(𝐾𝑖 > 0|𝑐). (11)

The E step consists of computing the posterior expected
complete log-likelihood values, given observed time pat-
terns and the current parameter values. Since the complete
likelihoods are linear in 𝐼(𝑈𝑖 = 𝑐), the E step involves sim-
ply replacing the indicators with

𝑤𝑖𝑐 =
𝜋𝑐𝑒

𝑙𝑖(𝝍|𝑐)∑𝐶

𝑐′=1
𝜋𝑐′𝑒𝑙𝑖(𝝍|𝑐′) , (12)

and an analogous expression is obtained for the con-
ditional log-likelihood. At the M step, a closed-form
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expression is obtained for updating probability masses as

𝜋𝑐 =

∑𝑛

𝑖=1
𝑤𝑖𝑐∑𝐶

𝑐′=1

∑𝑛

𝑖=1
𝑤𝑖𝑐′

. (13)

For all other parameters, we use a numerical optimization
algorithm at each iteration.
A deterministic starting solution is obtained by per-

forming cluster analysis of the time patterns to assign ini-
tial latent classes, and then estimating our model with
𝐶 = 1 on each subgroup. Additional starting solutions are
obtained through random perturbations of the determinis-
tic solution.

3.2 Estimation of the population size

In order to estimate the population size with our general
𝑀ℎ𝑜𝑡𝑏 model (or submodels), we use a Horvitz–Thompson
type estimator. This would involve a plug-in estimate of
(11), but in our experience the resulting estimates are some-
times unstable (see also Farcomeni and Scacciatelli, 2013,
on this point). For this reason, we use the maximum-A-
posteriori strategy, which we will now describe.
First, we use posterior probabilities (12) at convergence

to assign each subject to itsmost likely latent class, denoted
as 𝑐∗

𝑖
. Then, we compute

�̂� =

𝑛∑
𝑖=1

1

1 − exp

(
−𝑒

𝑿′
𝑖
𝜸+ˆ̃𝜇𝑐∗

𝑖 𝜂 ∫ 𝑇

0
𝑡𝜂−1𝑒

ˆ̃𝜃𝑐∗
𝑖
𝑡𝜂
𝑑𝑡

) . (14)

In our experience (both on simulated and real data),
such a procedure leads to stable population size estimates
for sampling fractions as small as 5%. There are additional
methods that can be used, if necessary, to improve the sta-
bility of population size estimates, such as trimming or
truncating large weights. For a complete survey, refer to
Chen et al. (2017).
We now focus on the standard error of (14). As noted in

Van Der Heihden et al. (2003) and Böhning (2008),

Var[�̂�] = E[Var[�̂�|𝑛]] + Var[E[�̂�|𝑛]], (15)

acknowledging that extra variability is brought about by
the random sample size. It is straightforward to check
(Farcomeni and Scacciatelli, 2013) that in our case one
can express �̂� = 𝑔(𝝍) as a function of model parame-
ters and use the Delta method to estimate E[Var[�̂�|𝑛]]
as ∇𝑔(𝝍)′𝐽(𝝍)∇𝑔(𝝍), where ∇𝑔(𝝍) denotes the gradi-
ent of �̂� as a function of 𝝍, and 𝐽(𝝍) is the observed
Fisher information. The latter is a direct by-product of the

model estimation procedure, while the former has been
in part derived in closed form and is reported in the Web
Appendix. All other cases can be easily derived from the
expressions reported as the Supporting Information in the
Web Appendix. Finally, the second addend of (15) can be
approximated as

Var[E[�̂�|𝑛]] ≈ 𝑛∑
𝑖=1

1 − 𝑃(𝐾𝑖 > 0|𝑐∗
𝑖
)

𝑃(𝐾𝑖 > 0|𝑐∗
𝑖
)2

, (16)

(see also Section 2.1 of Böhning, 2008; Van Der Heihden
et al., 2003; Farcomeni and Scacciatelli, 2013). In our exper-
iments, Wald confidence intervals (CI) on the log-scale
had a satisfactory coverage, as reported in the next section.
Namely, we first obtain Wald CI for log(𝑁), where, using
the Delta method, Var[log(�̂�)] is approximately estimated
by Var[�̂�]∕�̂�2. Finally, we take the exponential of confi-
dence limits.

4 SIMULATION STUDY

In this section,we report a simulation studywhich assesses
the comparative performance of our time-interaction (TI)
approach over different scenarios.We compare our estima-
tor, in terms of rootmean square error (RMSE) for the pop-
ulation size, to a selection of literature proposals: the 𝑀𝑡

and𝑀𝑡ℎmodels available in the Rpackage ctime(Schofield
et al., 2018), Chao’s lower bound estimator (𝐶ℎ) (Chao,
1987), the Poisson model with unobserved heterogeneity
(𝑃𝑜𝑖) (Rivest and Baillargeon, 2007), the Generalized Chao
estimator (𝐺𝐶), which includes covariates and a behavioral
effect (Böhning et al., 2013; Farcomeni, 2018), and an addi-
tive version of the continuous-time model by Lin and Yip
(1999) (𝐿𝑌). The latter corresponds to an𝑀ℎ𝑡𝑏 model with
Weibull baseline hazard and a permanent behavioral effect
and is a variation of the model by Hwang and Chao (2002).
For our approach, we evaluate themost general time inter-
action process (𝑇𝐼ℎ𝑜𝑡𝑏) together with a model that does
not include behavioral effects (𝑇𝐼ℎ𝑜𝑡). A self-exciting-only
and a self-correcting-only version of the 𝑇𝐼 process have
also been tested and are not reported here, as they have a
similar performance to the other methods and are outper-
formed by the complete model in all cases.
We fix 𝐶 = 2 latent classes and 𝑇 = 1; 𝜇 = (−7.5, 0),

𝛼1 = 0.2, 𝛽1 = 0.5, 𝛽2 = 𝛼2 + 4, 𝜃1 = 1, and 𝛾1 = −3.
We then generate different scenarios through combi-
nations of 𝛼2 ∈ {1, 2}, 𝜃2 ∈ {0.5, 2}, 𝛾2 ∈ {0, 1}, and 𝜂 ∈

{1.2, 1.3, 1.4, 1.5}. Parameters are calibrated to lead to dif-
ferent sampling ratios and degrees of heterogeneity. The
sampling ratios range from 5% to nearly 90% of the pop-
ulation size, which also supports the stability of the esti-
mates in the application in Section 5. In addition, we
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generated data under three scenarios which are special
cases of a general 𝑀ℎ𝑜𝑡𝑏 process: no self-exciting effect
(𝛼1 = 𝛼2 = 0), no self-correcting effect (𝜃1 = 𝜃2 = 0), and
no time effect (𝜂 = 1), to show the performance of our
approach even when data are generated under a simpler
model. We let 𝑁 ∈ {500, 1000, 5000}, leading to a hundred
and five simulation settings. Additionally, we test the first
four parameter combinations for 𝑁 = 10, 000 for a com-
plete evaluation of the estimator CI. For each parameter
combination, we generate 1000 datasets, over which we
average results to estimate the RMSE for each population
size estimator.
Tables 1 and 2 report the simulation settings, the sam-

pling ratios, and the resulting RMSEs, with the best per-
forming estimator highlighted in bold for each scenario.
It can be seen that our 𝑇𝐼 proposal achieves the smallest
RMSE in almost all scenarios, with the remaining being a
close call between 𝑇𝐼ℎ𝑜𝑡𝑏 andmodel𝑀𝑡ℎ. The 𝑇𝐼ℎ𝑜𝑡𝑏 seems
to find a competitive alternative only when the contribu-
tion of the time effect is at its strongest, and the population
size is small. The 𝑇𝐼 submodel without behavioral effects
𝑇𝐼ℎ𝑜𝑡 has a worse performance, which is similar to the𝑀𝑡

and 𝐿𝑌models. For𝑁 = 5000, the 𝐿𝑌model performs bet-
ter but never becomes a close competitor of our proposal.
In general, as 𝑁 increases from 500 to 1000 and 5000, the
gap with other estimators increases. In Table 2, we also
check sensitivity to the specification of 𝜆0(𝑡) by generating
data with a baseline step function with five jumps equally
spaced between 0 and 𝑇, of sizes 0.067, 0.133, 0.200, 0.267,
and 0.333, respectively. Our model is still fitted using a
Weibull baseline. It can be seen that, at least with this set-
ting and over a variety of simulation scenarios, there is lit-
tle sensitivity to the misspecification of the baseline rate;
our approach still shows the best performance.
The good theoretical properties of our approach are also

testified by the fact that the RMSE decreases with the
sample size at the expected rate; the same was success-
fully checked for the model parameters. Additionally, for
the first scenarios we have evaluated the coverage of 95%
CI (CIs) after computing the standard error of �̂�𝑇𝐼ℎ𝑜𝑡𝑏 as
described in the previous section. We obtain an empirical
coverage of 0.999 for 𝑁 = 500, 0.989 for 𝑁 = 1000, 0.976
for𝑁 = 5000, 0.963 for𝑁 = 10, 000, and 0.979 for𝑁 = 500

and the misspecified baseline.

5 ESTIMATION OF THE NUMBER OF
DRUG DEALERS IN ITALY

We consider a dataset of drug dealers sanctioned under the
Italian law 309/90 (Bossi–Fini law). We have data about
all arrests by any of the Italian police forces, and we fix
time zero as the publishing of the law in “Gazzetta Uffi-

ciale,” which is the moment in which new laws enter into
force in Italy. Our main target for analysis is the estima-
tion of the number of drug dealers in Italy at the time.
A secondary aim is assessing the features of the observa-
tion process, which can give information about what mod-
ulates the risks of identification of drug dealers by police
forces. Our analysis is based on few rather strong assump-
tions. First of all, our target population is made of all deal-
ers that were not in jail at time zero. We assume that no
new dealer entered or exited the drug market during the
observation period, which clearly cannot be precisely true.
Additionally, we assume all drug dealers continued their
activity after being identified for the observation period
(even after they served a short time in jail, in case this hap-
pened). We restrict the dataset to 2 years to make these
assumptionsmore credible. Our choice for the time span is
comparable to that of previous studies (e.g., Chiang et al.,
2007; Bouchard and Tremblay, 2005). It shall be further
added that our estimates are fairly stable with respect to
this choice, due to the fact that many dealers were iden-
tified shortly after the onset of the new law. Clearly, the
standard error of our estimates is inversely associated with
the length of the observation period.
The original dataset is provided as a matrix, where each

row describes a single capture; for the considered capture,
some subject-specific information is reported (sex, age)
together with the capture date. We reorganize the dataset
in the format of an R list, where each element contains cap-
ture times for each subject. Sex and age are organized in a
separate covariate matrix with the number of rows is equal
to the number of elements of the list (one for each subject).
The number of observed subjects identified at least once
is 𝑛 = 4271; 3831 dealers were males, while only 440 were
females. Figure 1 summarizes some preliminary informa-
tion about some covariate age and capture times, in the
form of histograms. The median age was 32 (mean 33),
with minimum 14, first quartile 26, third 39 and maximum
82. The great majority of subjects, that is 4170, are cap-
tured only once, 99 dealers are captured twice, and two are
stopped three times.
The recapture pattern may be a consequence of a

combination of factors: the probability of meeting the
same dealer within 2 years is low, especially in big
cities.Moreover, sanctions and legal consequences become
more severe after the first capture; therefore, subjects are
expected to be trap-shy. The counting distribution shows
therefore one inflation (Farcomeni and Scacciatelli, 2013;
Godwin andBohning, 2017; Bohning andVanDerHeijden,
2019; Bohning and Friedl, 2021). This is not a particularly
problematic issue with our continuous-time approach,
which takes into account the time interval between time
zero and the event. The total number 𝑁 of drug deal-
ers in Italy for the considered time interval is estimated



ALTIERI et al. 7

TABLE 1 Simulation study, part 1: RMSE of estimators of models𝑀𝑡 (�̂�𝑀𝑡
) and𝑀𝑡ℎ (�̂�𝑀𝑡ℎ

) (in ctime library), Chao estimator (�̂�𝐶ℎ),
Poisson estimator (�̂�𝑃𝑜𝑖), generalized Chao estimator (�̂�𝐺𝐶), additive hazard Lin and Yip’s estimator (�̂�𝐿𝑌) compared to our proposal with the
complete model (�̂�𝑇𝐼ℎ𝑜𝑡𝑏

), and a submodel without behavioral effects (�̂�𝑇𝐼ℎ𝑜𝑡
)

Setting Coverage RMSE
𝜶𝟐 𝜼 𝜽𝟐 𝜸𝟐 𝒏∕𝑵 𝑵𝑴𝒕

𝑵𝑴𝒕𝒉
𝑵𝑪𝒉 𝑵𝑷𝒐𝒊 𝑵𝑮𝑪 𝑵𝑳𝒀 𝑵𝑻𝑰𝒉𝒐𝒕𝒃

𝑵𝑻𝑰𝒉𝒐𝒕

𝑵 = 𝟓𝟎𝟎

1 1.2 0.5 0 0.05 550.35 364.84 365.99 518.23 4820.97 547.06 291.87 495.32
1 1.3 0.5 0 0.16 300.67 274.31 284.35 266.44 272.72 295.47 213.15 255.92
1 1.4 0.5 0 0.36 190.29 142.00 162.25 163.19 153.23 193.47 105.09 142.98
1 1.5 0.5 0 0.69 66.38 40.72 47.89 57.44 47.91 64.09 32.58 51.7
1 1.2 2 0 0.05 492.06 621.95 351.33 516.50 5742.29 508.94 281.06 559.76
1 1.3 2 0 0.15 304.67 278.99 288.11 265.28 284.20 310.45 231.58 255.78
1 1.4 2 0 0.36 192.92 144.56 164.69 165.16 157.50 191.38 93.42 148.22
1 1.5 2 0 0.70 64.88 39.42 47.03 56.04 46.21 63.24 31.54 50.44
1 1.2 0.5 1 0.15 338.31 314.48 316.08 298.48 316.66 337.33 277.37 284.47
1 1.3 0.5 1 0.30 248.04 204.39 217.04 220.83 196.41 249.89 110.71 125.63
1 1.4 0.5 1 0.56 129.16 75.02 92.28 110.74 84.04 129.60 44.66 47.05
1 1.5 0.5 1 0.85 29.49 16.62 19.98 25.47 20.42 29.49 13.30 22.92
1 1.2 2 1 0.15 339.86 315.82 319.69 305.01 301.79 346.04 281.69 284.24
1 1.3 2 1 0.30 251.52 205.95 217.96 222.44 197.13 248.33 68.67 86.89
1 1.4 2 1 0.56 129.37 74.45 90.86 111.27 82.62 128.54 16.59 47.27
1 1.5 2 1 0.85 29.18 16.77 19.74 25.43 19.95 28.78 13.42 22.89
2 1.2 0.5 0 0.05 367.36 368.43 361.08 366.64 13917.45 377.58 248.30 283.88
2 1.3 0.5 0 0.15 304.36 277.73 284.98 274.20 275.39 292.96 219.36 256.48
2 1.4 0.5 0 0.36 188.94 141.33 161.31 162.11 153.57 193.51 12.32 33.72
2 1.5 0.5 0 0.69 65.76 38.70 46.41 56.29 46.17 66.09 30.96 48.77
2 1.2 2 0 0.05 1220.48 368.24 367.34 438.76 13288.37 1190.87 307.71 394.88
2 1.3 2 0 0.15 306.23 280.41 288.02 263.65 272.70 309.16 224.56 225.62
2 1.4 2 0 0.36 192.29 142.87 164.24 163.78 157.52 197.35 32.66 120.82
2 1.5 2 0 0.69 64.80 39.65 47.69 56.35 48.58 65.02 31.72 43.72
2 1.2 0.5 1 0.15 335.06 311.36 315.98 298.18 296.62 327.00 143.75 215.18
2 1.3 0.5 1 0.30 253.11 206.09 221.13 224.59 204.34 257.62 93.19 106.95
2 1.4 0.5 1 0.56 126.98 72.22 89.72 108.38 81.86 127.12 38.40 43.95
2 1.5 0.5 1 0.85 28.46 15.74 18.17 24.43 17.99 27.71 12.59 21.99
2 1.2 2 1 0.15 338.21 314.60 318.53 300.67 300.17 327.66 245.46 283.14
2 1.3 2 1 0.30 252.51 205.05 219.20 225.72 197.29 259.70 79.07 203.46
2 1.4 2 1 0.56 130.60 78.77 93.54 112.61 83.97 131.32 37.16 40.74
2 1.5 2 1 0.85 29.95 18.39 20.71 26.30 21.59 30.80 14.71 23.67
0 1.4 0.5 0 0.38 138.59 86.18 115.70 109.90 114.83 132.79 68.94 104.13
1 1.6 0 0 0.16 357.13 311.77 296.02 319.27 284.80 364.48 228.32 280.59
2 1 0.5 0 0.50 156.80 117.52 135.43 143.46 134.51 155.53 121.89 72.26
𝑵 = 𝟏𝟎𝟎𝟎

Setting Coverage RMSE
𝜶𝟐 𝜼 𝜽𝟐 𝜸𝟐 𝒏∕𝑵 𝑵𝑴𝒕

𝑵𝑴𝒕𝒉
𝑵𝑪𝒉 𝑵𝑷𝒐𝒊 𝑵𝑮𝑪 𝑵𝑳𝒀 𝑵𝑻𝑰𝒉𝒐𝒕𝒃

𝑵𝑻𝑰𝒉𝒐𝒕

1 1.2 0.5 0 0.05 741.58 715.64 714.16 639.91 687.64 724.91 511.93 644.08
1 1.3 0.5 0 0.17 560.31 481.93 515.39 472.97 508.42 568.15 331.41 457.58
1 1.4 0.5 0 0.40 315.20 213.49 270.10 271.61 267.38 317.50 132.23 203.05
1 1.5 0.5 0 0.73 98.55 72.37 80.71 92.27 80.34 98.16 57.90 83.04
1 1.2 2 0 0.05 754.05 729.77 730.93 684.14 747.80 753.82 303.52 669.24

(Continues)
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TABLE 1 (Continued)

Setting Coverage RMSE
𝜶𝟐 𝜼 𝜽𝟐 𝜸𝟐 𝒏∕𝑵 𝑵𝑴𝒕

𝑵𝑴𝒕𝒉
𝑵𝑪𝒉 𝑵𝑷𝒐𝒊 𝑵𝑮𝑪 𝑵𝑳𝒀 𝑵𝑻𝑰𝒉𝒐𝒕𝒃

𝑵𝑻𝑰𝒉𝒐𝒕

1 1.3 2 0 0.17 557.94 478.48 513.51 474.35 505.86 563.75 310.77 455.27
1 1.4 2 0 0.40 320.57 222.37 275.24 280.33 271.99 319.65 69.95 165.47
1 1.5 2 0 0.73 95.56 67.86 75.01 89.03 74.99 95.93 54.29 80.13
1 1.2 0.5 1 0.16 630.68 559.88 581.21 549.12 567.95 634.18 153.67 309.56
1 1.3 0.5 1 0.33 422.86 306.30 365.58 370.18 347.00 428.15 79.30 152.32
1 1.4 0.5 1 0.60 201.15 133.77 158.52 180.98 146.07 200.74 83.14 92.83
1 1.5 0.5 1 0.87 47.69 39.37 39.49 48.16 35.56 50.12 28.45 42.92
1 1.2 2 1 0.16 630.70 562.16 586.50 554.42 570.60 619.98 308.57 414.04
1 1.3 2 1 0.33 423.70 318.69 374.08 376.40 352.40 427.79 130.58 135.67
1 1.4 2 1 0.60 201.03 138.03 159.89 181.53 145.39 201.75 96.22 96.75
1 1.5 2 1 0.87 48.49 40.43 39.12 49.08 34.27 48.31 27.42 43.64
2 1.2 0.5 0 0.05 755.83 729.29 720.35 638.13 715.87 752.35 606.32 648.32
2 1.3 0.5 0 0.17 563.02 487.62 519.14 481.37 507.82 579.42 292.00 457.04
2 1.4 0.5 0 0.40 320.20 212.96 270.31 275.86 268.09 318.63 115.58 187.74
2 1.5 0.5 0 0.73 97.67 69.88 77.15 91.72 78.75 96.09 55.90 82.55
2 1.2 2 0 0.05 758.08 731.53 731.05 643.02 1205.09 757.85 560.02 658.38
2 1.3 2 0 0.17 557.34 477.07 510.20 460.32 500.02 583.20 361.35 450.02
2 1.4 2 0 0.40 318.01 215.82 272.03 272.25 268.55 317.78 172.66 245.02
2 1.5 2 0 0.73 97.78 70.39 79.25 91.04 80.54 98.67 56.31 81.94
2 1.2 0.5 1 0.16 627.98 562.89 581.60 555.38 567.58 633.52 444.30 523.44
2 1.3 0.5 1 0.33 415.01 306.45 359.26 363.50 337.42 414.75 245.16 327.15
2 1.4 0.5 1 0.60 197.37 135.84 154.05 178.11 142.99 201.01 108.67 160.3
2 1.5 0.5 1 0.87 47.97 40.22 40.28 48.48 36.71 47.02 29.37 43.17
2 1.2 2 1 0.16 629.16 562.18 587.63 560.57 573.46 636.66 448.46 528.87
2 1.3 2 1 0.33 420.14 312.63 369.10 369.76 349.02 404.43 250.10 332.78
2 1.4 2 1 0.60 202.11 139.81 162.51 183.36 148.68 202.41 111.85 165.02
2 1.5 2 1 0.87 49.48 41.65 41.71 49.83 37.78 48.68 30.22 44.53
0 1.4 0.5 0 0.38 278.10 197.22 246.73 244.26 242.35 276.08 157.78 222.06
1 1.6 0 0 0.16 761.65 571.67 630.76 739.75 623.37 757.91 457.34 665.78
2 1 0.5 0 0.48 322.82 245.57 282.79 301.20 279.57 316.02 271.08 196.46

Note: For each parameter setting, we report the sampling ratio (𝑛∕𝑁/coverage) and the root mean square error (RMSE) for each estimator averaged over 1000
replicates. In bold, the smallest RMSE for each scenario.

F IGURE 1 Drug dealers data: left, histogram of age; middle, day of the first capture; right, days between captures
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TABLE 2 Simulation study, part 2: RMSE of estimators of models𝑀𝑡 (�̂�𝑀𝑡
) and𝑀𝑡ℎ (�̂�𝑀𝑡ℎ

) (in ctime library), Chao estimator (�̂�𝐶ℎ),
Poisson estimator (�̂�𝑃𝑜𝑖), Generalized Chao estimator (�̂�𝐺𝐶), additive hazard Lin and Yip’s estimator (�̂�𝐿𝑌) compared to our proposal with the
complete model (�̂�𝑇𝐼ℎ𝑜𝑡𝑏

) and a submodel without behavioral effects (�̂�𝑇𝐼ℎ𝑜𝑡
)

Setting Coverage RMSE
𝜶𝟐 𝜼 𝜽𝟐 𝜸𝟐 𝒏∕𝑵 𝑵𝑴𝒕

𝑵𝑴𝒕𝒉
𝑵𝑪𝒉 𝑵𝑷𝒐𝒊 𝑵𝑮𝑪 𝑵𝑳𝒀 𝑵𝑻𝑰𝒉𝒐𝒕𝒃

𝑵𝑻𝑰𝒉𝒐𝒕

𝑵 = 𝟓𝟎𝟎𝟎

1 1.2 0.5 0 0.05 3864.41 3589.18 3667.37 3470.44 3073.08 3839.26 3062.67 3351.45
1 1.3 0.5 0 0.16 2942.32 2425.83 2786.90 2739.17 1462.42 2909.68 1169.94 1811.00
1 1.4 0.5 0 0.37 1776.07 1373.58 1605.85 1643.19 1444.11 1759.23 294.26 529.22
1 1.5 0.5 0 0.71 589.67 504.69 501.57 569.33 2693.14 573.38 401.26 530.70
1 1.2 2 0 0.05 3952.23 3687.87 3809.13 3713.66 3516.85 4037.68 2813.48 3342.29
1 1.3 2 0 0.16 2915.40 2316.41 2714.55 2616.65 1204.62 3017.15 963.70 2537.19
1 1.4 2 0 0.38 1691.87 1222.17 1515.75 1540.39 2626.65 1664.05 337.47 441.36
1 1.5 2 0 0.70 598.51 501.62 479.29 582.15 3077.60 609.80 383.43 523.93
1 1.2 0.5 1 0.15 3218.94 2576.93 2970.03 2951.13 2020.01 3296.69 1616.01 2611.98
1 1.3 0.5 1 0.31 2184.78 1503.56 1943.16 1989.22 497.30 2154.20 430.27 593.90
1 1.4 0.5 1 0.57 1125.58 826.53 933.66 1056.00 965.71 1151.79 354.59 365.18
1 1.5 0.5 1 0.85 298.89 269.98 222.84 301.83 777.62 300.02 178.27 271.65
1 1.2 2 1 0.15 3210.5 2710.43 2998.97 2887.14 2239.51 3314.29 1791.61 2598.43
1 1.3 2 1 0.31 2204.43 1560.39 1987.93 2044.32 678.27 2173.26 542.62 1839.89
1 1.4 2 1 0.58 1103.81 800.27 904.77 1027.83 1024.42 1068.10 640.22 925.05
1 1.5 2 1 0.85 298.51 265.23 224.41 297.62 782.64 296.02 179.53 268.66
2 1.2 0.5 0 0.05 3908.30 3650.38 3752.98 3595.59 3169.60 3944.76 2535.68 3377.68
2 1.3 0.5 0 0.16 2917.32 2364.81 2732.00 2628.16 1235.24 2937.47 988.19 2458.8
2 1.4 0.5 0 0.38 1704.82 1170.81 1499.44 1538.78 1752.17 1735.83 936.65 1534.34
2 1.5 0.5 0 0.71 582.27 466.79 463.29 557.28 2837.61 565.60 370.63 524.04
2 1.2 2 0 0.05 3948.44 3726.15 3833.17 3627.49 3248.95 3954.16 2599.16 3449.85
2 1.3 2 0 0.16 2891.45 2467.07 2746.01 2710.41 1539.96 3030.67 1231.97 2471.41
2 1.4 2 0 0.38 1709.95 1335.28 1566.91 1578.73 1683.84 1732.72 1068.22 1515.46
2 1.5 2 0 0.70 606.22 510.19 492.19 589.98 2702.18 601.55 393.75 545.60
2 1.2 0.5 1 0.15 3253.96 2625.55 2997.78 2947.97 2178.98 3241.91 1743.18 2698.00
2 1.3 0.5 1 0.31 2255.84 1669.49 2051.29 2091.57 538.91 2202.99 431.13 1882.41
2 1.4 0.5 1 0.57 1152.75 875.42 956.84 1089.82 1037.73 1194.69 700.34 980.84
2 1.5 0.5 1 0.85 309.60 285.97 244.26 313.52 646.62 309.17 195.41 282.17
2 1.2 2 1 0.14 3229.74 2641.70 3008.07 2950.52 2116.56 3314 1693.25 2707.26
2 1.3 2 1 0.31 2255.15 1532.63 2001.28 2059.99 474.16 2217.16 379.33 1853.99
2 1.4 2 1 0.57 1136.53 873.74 957.91 1065.17 984.55 1129.47 698.99 958.65
2 1.5 2 1 0.85 289.77 257.49 220.45 288.69 671.34 292.35 176.36 260.79
0 1.4 0.5 0 0.38 1273.58 802.91 1110.76 1120.43 10625.57 1264.21 642.33 1146.22
1 1.6 0 0 0.16 3882.53 906.03 3073.35 3834.27 1512.4 3899.04 724.82 3450.84
2 1 0.5 0 0.49 1631.22 1149.12 1384.37 1559.65 491.72 1623.02 1403.69 393.38
𝑵 = 𝟏𝟎, 𝟎𝟎𝟎

Setting Coverage RMSE
𝜶𝟐 𝜼 𝜽𝟐 𝜸𝟐 𝒏∕𝑵 𝑵𝑴𝒕

𝑵𝑴𝒕𝒉
𝑵𝑪𝒉 𝑵𝑷𝒐𝒊 𝑵𝑮𝑪 𝑵𝑳𝒀 𝑵𝑻𝑰𝒉𝒐𝒕𝒃

𝑵𝑻𝑰𝒉𝒐𝒕

1 1.2 0.5 0 0.05 7883.09 7164.23 7557.58 7344.50 6649.97 7828.35 5319.98 6610.05
1 1.3 0.5 0 0.16 5957.84 4369.74 5504.60 5483.58 2435.80 5819.48 1948.64 4517.28
1 1.4 0.5 0 0.38 3450.95 2217.47 2931.26 3149.13 4616.29 3539.94 537.89 830.10
1 1.5 0.5 0 0.71 1168.99 909.77 906.19 1119.19 5276.41 1160.68 724.95 1052.09
𝑵 = 𝟓𝟎𝟎 - alternative 𝜆0(𝑡)
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TABLE 2 (Continued)

Setting Coverage RMSE
𝜶𝟐 𝜼 𝜽𝟐 𝜸𝟐 𝒏∕𝑵 𝑵𝑴𝒕

𝑵𝑴𝒕𝒉
𝑵𝑪𝒉 𝑵𝑷𝒐𝒊 𝑵𝑮𝑪 𝑵𝑳𝒀 𝑵𝑻𝑰𝒉𝒐𝒕𝒃

𝑵𝑻𝑰𝒉𝒐𝒕

1 1.2 0.5 1 0.10 431.22 412.39 409.71 421.35 401.20 442.77 320.96 377.66
1 1.3 0.5 1 0.10 429.93 409.39 403.15 420.41 392.97 442.96 314.38 375.42
1 1.4 0.5 1 0.11 426.70 407.35 407.62 416.95 401.88 435.93 321.54 373.36
1 1.5 0.5 1 0.12 423.81 401.50 400.92 415.29 393.52 419.67 314.82 370.21
1 1.2 2 1 0.10 429.26 408.24 407.41 419.68 400.37 435.47 320.30 374.13
1 1.3 2 1 0.11 426.70 407.90 404.37 416.39 399.06 422.31 319.25 370.62
1 1.4 2 1 0.11 427.97 410.44 408.37 418.28 401.75 426.59 321.40 375.18
1 1.5 2 1 0.11 424.56 404.18 406.33 416.02 399.03 426.01 319.22 373.11
2 1.2 0.5 1 0.10 431.44 412.37 412.58 424.52 399.45 442.94 319.56 378.14
2 1.3 0.5 1 0.11 425.53 404.99 400.13 415.02 386.41 417.58 309.13 372.65
2 1.4 0.5 1 0.11 424.65 402.22 399.36 412.03 390.23 413.97 312.18 366.68
2 1.5 0.5 1 0.12 423.40 403.80 406.23 414.21 402.88 423.38 322.30 371.76
2 1.2 2 1 0.11 425.83 407.64 403.67 413.79 396.31 420.58 317.05 372.41
2 1.3 2 1 0.11 425.42 406.34 404.08 416.94 386.21 428.83 308.97 369.86
2 1.4 2 1 0.11 425.95 404.07 402.86 416.56 395.04 434.36 316.03 368.71
2 1.5 2 1 0.11 426.05 405.94 406.27 416.97 398.00 421.32 318.40 371.47

Note: For each parameter setting, we report the sampling ratio (𝑛∕𝑁/coverage) and the root mean square error (RMSE) for each estimator averaged over 1000
replicates. In bold, the smallest RMSE for each scenario.

with our approach; we compare our estimator with Chao,
generalized Chao, 𝑀𝑡, and 𝑀𝑡ℎ models. In Table 3, we
report the estimated population size �̂�, the correspond-
ing 95% CI and Akaike information criterion (AIC). We
only show the results for a selection of the models we have
estimated, omitting several other ones which had a clearly
worse performance in terms of AIC. For Chao’s estimator,
we report AIC computed through its likelihood-based rep-
resentation (Böhning et al., 2013; Farcomeni, 2018; Dotto
and Farcomeni, 2018). In Table 3 letters ℎ, 𝑜, 𝑡, and 𝑏 stand
for unobserved heterogeneity, covariates, time effects, and
behavioral effects, respectively. Numbers refer to the num-
ber of latent classes 𝐶 for models with unobserved het-
erogeneity (see Equation 10). The notation 𝑇𝐼𝑐𝑜𝑟𝑟

ℎ𝑡𝑏2
refers

to a constrained model, which includes unobserved het-
erogeneity based on 𝐶 = 2 latent classes, time, and self-
correcting behavioral effects; but with fixed 𝛼 = (0, 0), 𝛽 =
(1, 1), and 𝜃1 = 0.
Covariates do not seem to be important (it shall be

remarked that they are not also considering them sepa-
rately), which is a mild evidence that there is little age
and gender profiling. The gender effect might also be lack-
ing due to the very limited number of female drug deal-
ers, making it difficult to detect the effect. For the data
at hand 𝑇𝐼 models give fairly stable estimates of popula-
tion size regardless of the formulation. The best model in
terms of AIC is 𝑇𝐼𝑐𝑜𝑟𝑟

ℎ𝑡𝑏2
, which has no self-exciting effect

and shows a mild improvement over the unconstrained
𝑇𝐼ℎ𝑡𝑏2 model. The estimated population size �̂� = 91, 368

drug dealers in Italy for years 2005 and 2006, with a 95% CI
ranging from 81,032 to 101,704. Parameter estimates for the
chosen model can be found in Table 4. One of the latent
classes (about 𝜋1 = 39.5% of the dealers) shows no self-
correcting effect, and hence no behavioral effects overall.
This provides evidence that one subgroup of dealers does
not modify its behavior after the first capture. The other
latent class, regarding 𝜋2 = 60, 5% of the dealers, shows
a self-correcting effect, according to which dealers have a
decreased risk of being stopped after the first capture. This
trap-shyness effect is reasonable in the context of criminal
offenses, where many dealers become more cautious after
being caught by the police. In Table 4, one can see that the
behavioral parameter 𝜃2 is small but relevant, being linked
to the scale of the data. It can be concluded that the correct-
ing effect slowly decreases over time. The fitted intensity
is shown in Figure 2. For the first latent class (left panel),
with no behavioral effects, the intensity only depends on
𝜂 and 𝜇1 and smoothly decreases over time irrespective of
the captures. In the second latent class, we also have 𝜃2 and
the number of captures enters the computations. The right
panel of the figure shows three fitted intensities, partition-
ing subjects by the number of captures; for each group, the
mean capture times are taken to show the jumps in the
intensity function representing the trap-shyness effect.
Other models used for comparison, with the exception

of 𝑀𝑡ℎ which might be possibly overestimating the pop-
ulation size, give similar estimates. On the other hand,
Chao’s and 𝑀𝑡 estimators have larger CI and can be thus
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F IGURE 2 Drug dealers data: The fitted intensity function for latent class 1 (left) and latent class 2 (right). Dashed lines show the 95%
CI. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

TABLE 3 Drug dealers data: Population size �̂�, 95% CI, and
AIC values for a selection of approaches

𝑵 𝟗𝟓% CI AIC
Time interaction processes
𝑇𝐼𝑐𝑜𝑟𝑟

ℎ𝑡𝑏2
91,368 (81,032; 101,704) 720.03

𝑇𝐼𝑐𝑜𝑟𝑟
ℎ𝑜𝑡𝑏2

(sex, age) 92,113 (81,999; 102,227) 721.26
𝑇𝐼ℎ𝑡2 91,368 (75,357; 107,379) 728.03
𝑇𝐼ℎ𝑜𝑡2 (sex, age) 92,241 (71,199; 113,283) 729.26
𝑇𝐼𝑡𝑏 91,389 (74,969; 107,809) 732.03
𝑇𝐼𝑜𝑡𝑏 (sex, age) 92,186 (74,832; 109,540) 733.26
𝑇𝐼ℎ𝑡𝑏2 91,386 (75,515; 107,257) 740.03
𝑇𝐼ℎ𝑜𝑡𝑏2 (sex, age) 92,056 (82,025; 102,087) 744.03
𝑇𝐼ℎ𝑡𝑏3 91,650 (69,636; 113,664) 748.03
𝑇𝐼ℎ𝑜𝑡𝑏3 (sex, age) 92,183 (81,930; 102,436) 749.26
𝑇𝐼ℎ𝑜𝑏2 (sex, age) 93,737 (50,861; 136,613) 809.5
𝑇𝐼ℎ𝑏2 91,410 (51,284; 131,536) 849.72
Literature models

𝑵 𝟗𝟓% CI AIC
LY 91,369 (73,940; 108,798) 798.03
Chao 92,094 (73,982; 110,206) 839.62
Poisson 103,491 (24,040; 182,943) 839.62
𝑀𝑡 92,573 (72,910; 112,236) 856.67
𝑀𝑡ℎ 105,674 (74,083; 137,265) 861.26
GC (sex,age) 93,986 (91,189; 96,783) 945.08

Note: For time interaction processes, the number indicates the number of
latent classes in models with heterogeneity. The absence of a number indi-
cates a single latent class and the absence of unobserved heterogeneity com-
ponents. The 𝑐𝑜𝑟𝑟 constrained model only contains the self-correcting behav-
ioral effect. For the generalized Chao (GC) estimator, we indicate the covari-
ates used in parentheses.
Abbreviations:AIC,Akaike information criterion; CI, confidence interval; GC,
generalized Chao; LY, Lin and Yip model.

TABLE 4 Drug dealers data: parameter estimates, CI, p-values
for model 𝑇𝐼𝑐𝑜𝑟𝑟

ℎ𝑡𝑏2

Estimated value 𝟗𝟓% CI 𝒑-value
𝜃2 1.533e−05 (1.533e−05;1.533e−05) <0.001
𝜇1 −3.040 (−3.166; −2.915) <0.001
𝜇2 −3.039 (−3.130; −2.949) <0.001
𝜂 0.856 (0.854; 0.858) <0.001
𝜋1 0.395 (0.392; 0.398)
𝜋2 0.605 (0.602; 0.608)

Abbreviation: CI, confidence intervals.

deemed to be slightly less precise. The GC estimator gives
a very short CI, which might be suspected not to cover the
true population size, especially in the light of the evidence
against the importance of covariates. The fact that covari-
ates might increase the Mean Square Error (MSE) of pop-
ulation size estimates was also noted in Farcomeni (2018).
We finally assign, using posterior probabilities, each

subject to her/his most likely latent class. This allows us
to clarify the operating characteristics of our model. A
proportion of 39.5% (first latent class) of subjects do not
show behavioral response. These can be seen to have been
observed only once: all subjects with more than one obser-
vation time are assigned to the second latent class. Addi-
tionally, observation times for the second latent class are
generally smaller than those of the first one. This, under a
standardWeibull baseline hazard, is consistent with a self-
correcting behavior. The very few subjects with three cap-
tures lead to the slow loss of memory as estimated. Hence,
subjects are either captured late and only once (first latent
class) or earlier, maybe more than once (second latent
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class). The data can be expected not to be consistent with
other configurations: for instance, in order to claim trap-
happiness for the second latent class, one would have to
obtain a very low common hazard early on, which under
theWeibullmodelmight not be consistentwith a high later
hazard.

6 CONCLUSIONS

We have proposed a general framework for estimat-
ing the size of closed populations with continuous-time
capture–recapture experiments. Anumber of proposals are
present in the recent literature regarding behavioral mod-
els for capture–recapture data in discrete time (e.g., Yang
and Chao, 2005; Farcomeni, 2011; Alunni Fegatelli and
Tardella, 2016). The case of continuous-time remains as yet
relatively unexplored. The proposed time-interaction pro-
cesses are arguably useful for modeling complex behav-
ioral effects in continuous-time population size estima-
tion. Time-interaction processes embed both self-exciting
and self-correcting processes and are of independent inter-
est in our opinion. Our model for population size estima-
tion is based on a conditional likelihood formulation for
time-interaction processes, in which units with no events
are never observed. It allows for covariates, unobserved
sources of heterogeneity, and time effects; and it is particu-
larly useful in situations where a complex behavioral effect
may be expected, as in our motivating application. Our
model compares to Hwang and Chao (2002), which can
also take into account time effects, behavioral response,
and individual heterogeneity. There are two main differ-
ences: unlike Hwang and Chao (2002), and more in the
spirit of Lin and Yip (1999), we specify a parametric base-
line hazard. On the other hand, in Hwang and Chao (2002)
a classical constant and permanent effect are specified for
the behavioral response,which is a special case of our time-
interacting framework. For the data at hand regarding the
number of drug dealers in Italy over the years 2005 and
2006, our best population size estimate is equal to 91,368
dealers. Over a population of 58.14 million (Italy official
data 2006), this equals 1.5 dealers for each 1000 Italians.
We believe this estimate to be credible when we consider
the definition of a drug dealer according to the Italian law
at the time of the study. In addition, our conclusions com-
pare well with Bouchard and Tremblay (2005), whose esti-
mates range from 1 to 2.7 for each 1000 Quebec inhabitants
in 1998.
We find that about 60% of the dealers underwent a self-

correcting behavioral response according to which they
were slightly less likely to be stopped again by police,
shortly after the event, all else fixed. It could be argued
that the very limited number of recaptured individuals in

the real data example could make it difficult to estimate
behavioral effects. It shall be kept inmind, though, that the
model takes into account the time to first capture, the time
between captures (if any), and the time between the last
capture and the end of follow-up. Since subjects are contin-
uously at risk of being captured, a subject that is observed
only once but shortly after time zero is different froma sub-
ject that is observed only once but shortly before the end
of follow-up. The latter is unlikely to have the possibility
to show a behavioral response and will mostly contribute
to the baseline hazard. The former can be deemed to be
trap-shy, trap-happy, or not to have a behavioral response,
depending on what is consistent with the common base-
line hazard. There is no risk of confounding with the base-
line hazard, since it has a parametric form and it is com-
mon to all subjects (up to equal covariate profile).
A limitation of the currentwork, as common in this liter-

ature, is that wemust assume that the population is closed.
This has led us to restrict the observation period and dis-
card valuable information about dealers stopped under the
309/90 law after 2006. Moreover, due to obvious privacy
reasons we only have limited information on the captured
subjects and none about the officers. In addition, further
work might be devoted to the derivation of profile CI, joint
population size, and total estimation (Farcomeni, 2022), or
how to exploit information about the location of identifi-
cations (e.g., Borchers and Fewster, 2016; Stevenson et al.,
2021).

ACKNOWLEDGMENTS
This work has been developedwithin the framework of the
European Union (EU) project JUST/2010/DPIP/AG/1410:
“Newmethodological tools for policy and programme eval-
uation” with the financial support of the Prevention and
Information Programme of the European Commission.
The contents of this publication are the sole responsibil-
ity of the authors and can in no way be taken to reflect
the views of the European Commission. The authors are
grateful for constructive comments to the editor, an assis-
tant editor, and three referees.

DATA AVAILAB IL ITY STATEMENT
The data that support the findings of this paper are not
publicly available due to privacy restrictions.

ORCID
LindaAltieri https://orcid.org/0000-0001-5667-3157
Alessio Farcomeni https://orcid.org/0000-0002-7104-
5826

REFERENCES
Aalen, O.O. (1989) A linear regression model for the analysis of life
times. Statistics in Medicine, 8, 907–925.

https://orcid.org/0000-0001-5667-3157
https://orcid.org/0000-0001-5667-3157
https://orcid.org/0000-0002-7104-5826
https://orcid.org/0000-0002-7104-5826
https://orcid.org/0000-0002-7104-5826


ALTIERI et al. 13

Alunni Fegatelli, D. and Tardella, L. (2016) Flexible behavioral
capture-recapture modeling. Biometrics, 72, 125–135.

Böhning, D. (2008) A simple variance formula for population size
estimators by conditioning. Statical Methodology, 5, 410–423.

Bohning, D. and Friedl, H. (2021) Population size estimation based
upon zero-truncated, one-inflated and sparse count data. Statical
Methods and Applications, 30, 1197–1217.

Bohning, D. and Van Der Heijden, P.G.M. (2019) The identity of
the zero-truncated, one-inflated likelihood and the zero-one-
truncated likelihood for general count densities with an applica-
tion to drink-driving in Britain. Annals of Applied Statistics, 13,
1198–1211.

Böhning, D., Vidal-Diez, A., Lerdsuwansri, R., Viwatwongkasem, C.,
and Arnold, M. (2013) A generalization of Chao’s estimator for
covariate information. Biometrics, 69, 1033–1042.

Bonnet, A., Herrera, M.M., and Sangnier, M. (2021) Maximum likeli-
hood estimation for Hawkes processes with self-excitation or inhi-
bition. Preprint. arXiv 2103.05299.

Borchers, D. and Fewster, R.M. (2016) Spatial capture-recapturemod-
els. Statistical Science, 31, 219–232.

Bouchard, M. and Tremblay, P. (2005) Risks of arrests across drug
markets: A capture-recapture analysis of hidden dealer and user
populations. Journal of Drug Issues, 35, 733–754.

Chao, A. (1987) Estimating the population size for capture-recapture
data with unequal catchability. Biometrics, 43, 783–791.

Chao, A. and Lee, S.-M. (1993) Estimating population size for contin-
uous time capture-recapture models via sample coverage. Biomet-
rical Journal, 35, 29–45.

Chao, A., Tsay, P.K., Lin, S.-H., Shau, W.-Y. and Chao, D.-Y. (2001)
The applications of capture-recapture models to epidemiological
data. Statistics in Medicine, 20, 3123–3157.

Chen, Q., Elliott, M.R., Haziza, D., Yang, Y., Ghosh, M., Little, R.J.A.,
Sedransk, J. and Thompson, M. (2017) Approaches to improving
survey-weighted estimates. Statistical Science, 32, 227–248.

Chiang, S.-C., Chen, C.-Y., Chang, Y.-Y., Sun, H.-J. and Chen, W.
(2007) Prevalence of heroin and methamphetamine male users
in the northern Taiwan, 1999–2002: Capture-recapture estimates.
BMC Public Health, 7, 292.

Coull, B.A. and Agresti, A. (1999) The use of mixed logit models to
reflect heterogeneity in capture-recapture studies. Biometrics, 55,
294–301.

Dotto, F. andFarcomeni, A. (2018)A generalizedChao estimatorwith
measurement error and external information. Environmental and
Ecological Statistics, 25, 53–69.

Farcomeni, A. (2011) Recapturemodels under equality constraints for
the conditional capture probabilities. Biometrika, 98, 237–242.

Farcomeni, A. (2016) A general class of recapture models based on
the conditional capture probabilities. Biometrics, 72, 116–124.

Farcomeni, A. (2018) Fully general Chao and Zelterman estimators
with application to a whale shark population. Journal of the Royal
Statistical Society (Series C), 67, 217–229.

Farcomeni, A. (2022) Howmany refugees andmigrants died trying to
reach Europe? Joint population size and total estimation. Annals
of Applied Statistics, Available online.

Farcomeni, A. and Scacciatelli, D. (2013) Heterogeneity and behav-
ioral response in continuous time capture-recapture, with applica-
tion to street cannabis use in Italy.TheAnnals of Applied Statistics,
7, 2293–2314.

Fine, J.P. (2002) Comparing nonnested Cox models. Biometrika, 89,
635–647.

Godwin, R. and Bohning, D. (2017) Estimation of the population size
by using the one-inflated positive Poisson model. Journal of the
Royal Statistical Society (Series C), 66, 425–448.

Hawkes, A.G. (1971) Spectra of some self-exciting andmutually excit-
ing point processes. Biometrika, 58, 83–90.

Hay, G. and Richardson, C. (2016) Estimating the prevalence of drug
use usingmark-recapturemethods. Statistical Science, 31, 191–204.

Huggins, R.M., Yip, P.S.F., and Stoklosa, J. (2016) Nonparametric esti-
mation of the number of drug users in Hong Kong using repeated
multiple lists.Australian andNewZealand Journal of Statistics, 58,
1–13.

Hwang, W. and Chao, A. (2002) Continuous-time capture-recapture
models with covariates. Statistica Sinica, 12, 1115–1131.

Illian, J., Penttinen, A., Stoyan, H., and Stoyan, D. (2008) Statisti-
cal Analysis and Modelling of Spatial Point Patterns. Chichester:
Wiley.

Isham, V. and Westcott, M. (1979) A self-correcting point process.
Stochastic Processes and Their Applications, 8, 335–347.

Lin, D. and Ying, Z. (1995) Semiparametric analysis of general
additive-multiplicative hazard models for counting processes.
Annals of Statistics, 5, 1712–1734.

Lin, D. and Yip, P. (1999) Parametric regression models for continu-
ous time removal and recapture studies. Journal of the Royal Sta-
tistical Society (Series B), 61, 401–411.

Liu, Y., Liu, Y., Li, P. and Qin, J. (2018) Full likelihood inference for
abundance from continuous time capture-recapture data. Journal
of the Royal Statistical Society (Series B), 80, 995–1014.

Matechou, E. and Caron, F. (2017) Modelling individual migration
patterns using a Bayesian nonparametric approach for capture–
recapture data. Annals of Applied Statistics, 11, 21–40.

Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P. and
Tita, G.E. (2011) Self-exciting point process modeling of crime.
Journal of the America Statistical Association, 106, 100–108.

Moller, J., Syversveen, A.R. andWaagepetersen, R.P. (1998) LogGaus-
sian Cox processes. Scandinavian Journal of Statistics, 25, 451–
482.

Oakes, D. (1975) The Markovian self-exciting process. Journal of
Applied Probability, 12, 69–77.

Ogata, Y. (1999) Seismicity analysis through point-process modeling:
a review. Pure and Applied Geophysics, 155, 471–507.

Otis, D.L., Burnham, K.P., White, G.C. and Anderson, D.R. (1978)
Statistical Inference from Capture Data on Closed Animal Popula-
tions. Wildlife Monographs, Vol. 62. Louisville, KY: The Wildlife
Society.

Overstall, A.M., King, R., Bird, S.M., Huchinson, S.J. and Hay, G.
(2014) Incomplete contingency tables with censored cells with
application to estimating the number of people who inject drugs
in Scotland. Statistics in Medicine, 33, 1564–1579.

Reynaud-Bouret, P. and Schbath, S. (2010) Adaptive estimation for
Hawkes processes; application to genome analysis. Annals of
Statistics, 38, 2781–2822.

Rivest, L.P. and Baillargeon, S. (2007) Applications and extensions
of Chao’s moment estimator for the size of a closed population.
Biometrics, 63, 999–1006. https://doi.org/10.1111/j.1541-0420.2007.
00779.x

Rotondi, R. and Varini, E. (2019) Failure models driven by a self-
correcting point process in earthquake occurrence modeling.
Stochastic Environmental Research and Risk Assessment, 33, 709–
724.

https://doi.org/10.1111/j.1541-0420.2007.00779.x
https://doi.org/10.1111/j.1541-0420.2007.00779.x


14 ALTIERI et al.

Sanathanan, L. (1972) Estimating the size of a multinomial popula-
tion. The Annals of Mathematical Statistics, 43, 142–152.

Schoenberg, F. and Bolt, B. (2000) Short-term exciting, long-term cor-
recting models for earthquake catalogs. Bulletin of the Seismologi-
cal Society of America, 90, 849–858.

Schofield, M.R., Barker, R.J. and Gelling, N. (2018) Continuous-
time capture-recapture in closed populations. Biometrics, 74, 626–
635.

Silverman, B.W. (2020) Multiple systems analysis for the quantifica-
tion of modern slavery: classical and Bayesian approaches (with
discussion). Journal of theRoyal Statical Society (SeriesA), 183, 691–
736.

Stevenson, B.C., Fewster, R.M. and Sharma, K. (2021) Spatial corre-
lation structures for detections of individuals in spatial capture–
recapture models. Biometrics. Early view. https://doi.org/10.1111/
biom.13502

Van Der Heihden, P.G.M., Bustami, R., Cruyff, M.J.L.F., Engbersen,
G. and van Houwelingen, H.C. (2003) Point and interval estima-
tion of the population size using the truncated Poisson regression
model. Statistical Modeling, 3, 305–322.

Vere-Jones, D. and Ogata, Y. (1984) On the moments of a self-
correcting process. Journal of Applied Probability, 21, 335–342.

Xi, L., Yip, P. and Watson, R. (2007) A unified likelihood-based
approach for estimating population size in continuous-time
capture-recapture experiments with frailty. Biometrics, 63, 228–
236.

Yang, H.-C. and Chao, A. (2005) Modeling animals’ behavioral
response by Markov chain models for capture-recapture experi-
ments. Biometrics, 61, 1010–1017.

Yip, P., Huggins, R. and Lin, D. (1996) Inference for capture-recapture
experiments in continuous time with variable capture rates.
Biometrika, 83, 477–483.

SUPPORT ING INFORMATION
Web Appendices referenced in Sections 3.2 are available
with this paper at the Biometrics website on Wiley Online
Library. The R code for implementing the methods pre-
sented in this work can also be found as Supporting Infor-
mation with this paper at the Biometrics website on Wiley
Online Library. The code is also freely available at https:
//github.com/afarcome/captureTIP.

How to cite this article: Altieri L, Farcomeni A,
Fegatelli DA. Continuous time-interaction
processes for population size estimation, with an
application to drug dealing in Italy. Biometrics.
2022;1–14. https://doi.org/10.1111/biom.13662

https://doi.org/10.1111/biom.13502
https://doi.org/10.1111/biom.13502
https://github.com/afarcome/captureTIP
https://github.com/afarcome/captureTIP
https://doi.org/10.1111/biom.13662

	Continuous time-interaction processes for population size estimation, with an application to drug dealing in Italy
	Abstract
	1 | INTRODUCTION
	2 | TIME-INTERACTION PROCESSES
	2.1 | Inference
	2.2 | Conditional likelihood and population size estimation

	3 | INCLUDING TIME EFFECTS, OBSERVED HETEROGENEITY, AND UNOBSERVED HETEROGENEITY
	3.1 | Estimation of model parameters
	3.2 | Estimation of the population size

	4 | SIMULATION STUDY
	5 | ESTIMATION OF THE NUMBER OF DRUG DEALERS IN ITALY
	6 | CONCLUSIONS
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


