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ABSTRACT: Variational data assimilation requires implementing the tangent-linear and adjoint (TA/AD) version of any

operator. This intrinsically hampers the use of complicated observations.Here, we assess a newdata-driven approach to assimilate

acoustic underwater propagation measurements [transmission loss (TL)] into a regional ocean forecasting system. TL measure-

ments depend on the underlying sound speed fields, mostly temperature, and their inversion would require heavy coding of the

TA/AD of an acoustic underwater propagation model. In this study, the nonlinear version of the acoustic model is applied to an

ensemble of perturbed oceanic conditions. TL outputs are used to formulate both a statistical linear operator based on canonical

correlation analysis (CCA), and a neural network–based (NN) operator. For the latter, two linearization strategies are compared,

the best-performing one relying on reverse-mode automatic differentiation. The new observation operator is applied in data

assimilation experiments over the Ligurian Sea (Mediterranean Sea), using the observing system simulation experiments (OSSE)

methodology to assess the impact of TL observations onto oceanic fields. TL observations are extracted from a nature run with

perturbed surface boundary conditions and stochastic oceanphysics. Sensitivity analyses indicate that theNNreconstruction of TL

is significantly better thanCCA.BothCCAandNNare able to improve the upper-ocean skill scores in forecast experiments, with

NN outperforming CCA on the average. The use of the NN observation operator is computationally affordable, and its general

formulation appears promising for the adjoint-free assimilation of any remote sensing observing network.

SIGNIFICANCE STATEMENT: Deep learning algorithms are now widely spread in a diverse range of fields to

help with solving automatic classification and regression problems. Here, we present and assess a strategy aimed at

introducing an observation operator based on neural networks in data assimilation. Linearization of such an operator,

required by variational schemes, is also discussed and implemented. Themethodology is applied to the coupled oceanic–

acoustic data assimilation problem, and provides promising results. Our approach may be extended in the future to

assimilate any remotely sensed type of observations.
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1. Introduction

Assimilating remote sensing data into numerical weather

and ocean prediction models is known to be significantly

beneficial to the accuracy of the following forecasts (e.g., Eyre

et al. 2020; Storto et al. 2013). However, the optimal assimi-

lation of such observations requires advanced techniques to

filter out observations with large inaccuracies (quality control)

and correct possible systematic errors of the observations (bias

correction). Both procedures generally rely on identifying

predictors for the gross error occurrence and the bias, respec-

tively. Further to these preprocessing procedures, the assimi-

lation of remote sensing data relies on several simplifications of

the observation operator, which is the function projecting the

model state onto observation space, required by all assimila-

tion methods. For instance, satellite radiances are usually as-

similated into numerical weather prediction models after

calculating regression coefficients from full physics line-by-line

radiative transfer models (e.g., Saunders et al. 2018); satellite

altimetry data are commonly assimilated in oceanographic models

assuming local hydrostatic balance (e.g., Storto et al. 2011).

Additionally, variational assimilation techniques require the

tangent-linear and adjoint versions of the observation operator

to ensure quadraticity of the cost function and speed up the

minimization, respectively. Thus, all these three components of

the assimilation of remote sensing data—quality control, bias

correction, and observation operators—contain, to different

extent, some empirically formulated features.

With the recent popularity of data-driven procedures for

regression and classification problems in complex dynamical

systems (machine and deep learning), there is a growing

number of available algorithms that can be adapted to specific

tasks of the data assimilation problem. Preliminary examples

consist in the use of neural networks for bias correcting dust

observations in a real analysis system (Jin et al. 2019) or the use

of relevance vector machine in the bias correction of sea surface

temperature data (Storto and Oddo 2019). The data selection

(subsampling) and quality control of Earth observations were

also investigated through machine learning algorithms (Lary

et al. 2016, 2018). Finally, the coding of complex observation

operators may be substituted by data-driven algorithms (e.g.,

Xue and Forman 2017; Fang and Li 2019; Kwon et al. 2019) in

specific applications. All these ideas may help to optimize the

assimilation of high-resolution observing networks and greatly
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facilitate the assimilation of new observation types into regional

assimilation systems. In this work, we aim at demonstrating the

potential advantage of using artificial neural networks in the

construction of observation operators and their tangent-linear

and adjointmodels. Specifically, we test this idea in the framework

of coupled oceanic-acoustic data assimilation, where the remotely

sensed observations are, in particular, the underwater acoustic

propagation measurements.

Oceanic and acoustic measurements may provide comple-

mentary information to be exploited in the context of opera-

tional analyses and forecasts. The link between oceanic and

acoustic variables is provided by the sound propagation in the

ocean, which strongly depends on space–time sound speed

fields, and thus seawater temperature and, to a lesser extent,

salinity. The underwater acoustic propagation is sensitive to

oceanic scales that are much smaller than those resolved by

most regional models (Castor et al. 2004). Therefore, acoustic

observations appear promising in complementing oceanic

in situ observations for sampling the ocean meso- and sub-

mesoscales. In particular, for high-resolution regional and

coastal applications, the accuracy of the predictions is signifi-

cantly hampered by the scarceness of in situ profiles sampling

the subsurface oceans. Underwater acoustic measurements

may thus be inverted to provide small-scale corrections (see,

e.g., Howe et al. 2019 for an overall discussion).

The assimilation of acoustic data into ocean models can in-

troduce corrections into the temperature, salinity and current

fields in order to preserve the acoustic characteristic of the

waveguide. Although the estimation of the oceanic environ-

ment and the acoustic fields is considered as a coupled data

assimilation problem (Robinson et al. 2002; Culver and Camin

2008), there are only few works that attempt to build a truly

coupled ocean–acoustic analysis and forecast system.

Ocean acoustic tomography, which was introduced as an

approach to ocean observations in the 1980s (Munk and

Wunsch 1982; Munk 1986; Spiesberger and Metzger 1992;

Munk et al. 1995), is the field in whichmost of the experience in

assimilating acoustic observables to infer ocean parameters

(temperature or currents) has occurred. The essential information

provided by tomography is the average temperature, either a

profile average over range or an average over both range and

depth (Dushaw et al. 1993; Cornuelle and Worcester 1996;

Dushaw 1999; Sagen et al. 2016; Dushaw 2019). The acoustic

travel times, being an integral over space, are indeed considered a

robust measure of spatially averaged oceanographic variables

(Lewis et al. 2005). The determination of the averaged oceano-

graphic variables is derived from its inverse estimate, which can be

computed in different ways, from simple two-dimensional least

squares fit (Dushaw and Sagen 2016), to the use of numerical

models (e.g., Gaillard 1992; Lebedev et al. 2003; Lewis et al. 2005).

Little work exists that exploit the assimilation of acoustic

pressure or transmission loss (TLs), besides the acoustic travel

times employed in acoustic tomography. Li et al. (2014) used a

variational method to invert the sound speed via acoustic

pressure data assimilation. An internal wave model was used

for the specific shallow water environment, and the effect of

sediment on the acoustic propagation was included in the

inversion algorithm. An adjoint of a parabolic propagation

model (Hursky et al. 2014) was used to invert acoustic pressure

data for sound speed perturbation in shallow water environ-

ment and for short ranges (of the order of 2–3 km). Following

these works, Ngodock et al. (2017) describe the theoretical

framework for the variational assimilation of the acoustic

pressure measurements using an adjoint version of the acoustic

propagation model RAM (Collins 1989a,b, 1994). The assim-

ilation of TLs was also explored in a twin experiment by

Lermusiaux and Chiu (2002) and Lermusiaux (2006) using the

error subspace statistical estimation (ESSE).

The present work aims at further exploring the assimilation

of TLs to correct the ocean fields (temperature and salinity)

using a state of the art data assimilation scheme and an

observation operator based on canonical correlations or

neural networks. The assimilation of the TLs is here ex-

plored using multivariate data assimilation. Observing sys-

tem simulation experiments (OSSEs; e.g., Halliwell et al.

2017; Dushaw et al. 2016) are used to demonstrate the fea-

sibility of assimilating simulated low-frequency signal (i.e.,

75 Hz) TLs in the Ligurian Sea (Mediterranean Sea), ex-

tending the previous assessment of the impact of oceanic

analysis schemes on the accuracy of underwater sound

propagation prediction (Storto et al. 2020). The chosen

frequency (75 Hz) is representative of ship noise, and as

such the synthetic measurements are conceived as coming

from ships of opportunity.

The paper is structured as follows: after this introduction,

data and methods are presented in section 2, including the

analysis and forecast system, while section 3 presents methods

for assimilating transmission loss observations. Selected results

from the assimilation of underwater acoustic data are shown in

section 4, while section 5 discusses and concludes.

2. Data and methods

In this section, the integrated ocean–acoustic modeling system,

including the oceanographic data assimilation scheme and the

acoustic scenario, are introduced.

a. The oceanic and acoustic forecasting system

The analysis and forecast system used in this study is the

Ligurian Sea modeling suite developed at the Centre for

Maritime Research and Experimentation (Storto et al. 2019;

Storto and Oddo 2019). It includes the NEMO (v3.6) ocean

model (Madec et al. 2017) forced at the lateral boundaries

by the Copernicus Marine Environment Monitoring Service

(CMEMS)Mediterranean Sea forecasts (Clementi et al. 2017),

and at the sea surface by the European Centre for Medium-

Range Weather Forecasts (ECMWF) meteorological analyses

through the bulk formulas of Large and Yeager (2004). The

model has a horizontal resolution of about 1.8 km and 91 vertical

depth levels and partial steps. Figure 1 shows the extension of the

NEMOmodel domain, togetherwith the bathymetry interpolated

from the General Bathymetric Chart of the Oceans (GEBCO)

database (Weatherall et al. 2015). The NEMO configuration

includes sea surface relaxation to the SST analyses provided by

CMEMS (Buongiorno Nardelli et al. 2013). Analysis incre-

ments from the data assimilation system, described in the next
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section, are applied through the incremental analysis update

scheme (Bloom et al. 1996).

Acousticmodeling is performed through theRange-dependent

Acoustic Model (RAM) parabolic equation model (Collins

1989a,b), which uses the split-step Padé approximation for the

solution of the parabolic equation (Collins 1993). Geoacoustic

characteristics at the sea bottom have been setup according to

the NOAADeck41 database (Bershad andWeiss 1976) for the

Ligurian Sea, and corresponding to clayey silt parameters,

taken from Lurton (2010, p. 116). RAM takes as input the

sound speed fields interpolated onto the acoustic propagation

transect from the NEMO model outputs. More details about

the RAM configuration are available in Storto et al. (2020).

b. The variational data assimilation scheme

Data assimilation is based on a three-dimensional variational

scheme with first guess at appropriate time (3DVAR/FGAT)

scheme. Details of the analysis and forecast system are pro-

vided by Storto and Oddo (2019), and are briefly recalled here.

In its incremental formulation (Courtier 1997), the 3DVAR

cost function reads as follows:

J(v)5
1

2
vTv1

1

2
(HVv2 d)TR21(HVv2 d) , (1)

where v is the minimization control variable, such that dx5 Vv

is the model state increment [equal to the analysis increment

dxa at the minimum of J(v)], with x and xa as the state vector

(the three-dimensional grid of temperature, salinity and sea

surface height) and the analysis, respectively. In Eq. (1), B 5
VVT is the background-error covariance matrix, and d is the

vector of misfits, which is equal to d 5 y 2 H(xb), with y

the vector of observations and xb the background, taken at the

same time of the observations;H( ) is the observation operator

that maps the state of the ocean into observation space. Finally,

H is the tangent-linear approximation of the observation op-

erator, linearized around xb.

The left square root of the background-error covariance

matrix V includes several operators to account for vertical

covariances, horizontal correlations, and cross covariances

(Storto et al. 2018, 2020). Background-error covariances are

formulated as stationary vertical empirical orthogonal func-

tions (EOFs) and calculated from a dataset of anomalies with

respect to the seasonal mean. Horizontal correlations are mod-

eled through a first-order recursive filter. Finally, a dynamic height

operator is embedded inV to estimate the balanced component

of the sea level increment.

c. The underwater acoustic propagation scenario

The acoustic scenario used in this study is an individual

transect located in the Ligurian Sea, with sound source and

receivers at the extremes of the transect (see Fig. 1). The

source is located around the middle of the model domain

(43.68N, 9.18E), at 10m of depth. The receivers are displaced

60 km far from the source along the south–north direction.

There are 18 receivers located at 44.18N, 9.18E with a regular

vertical spacing of 10m of depth, up to 180m of depth. The

configuration aims to mimic a mooring equipped with hydro-

phones along its chain. The acoustic propagation frequency

chosen for this study is 75Hz. The acoustic propagation at

75-Hz frequency was found to be more sensitive than higher

frequencies to the oceanographic data assimilation schemes

in previous studies (Storto et al. 2020); namely, we are in the

range of the acoustic spectrum where we can expect the largest

impact of the acoustic observations in the ocean forecasting

system. A 10-m source at 75Hz represents a typical noise from

ships, i.e., conceptually representing ship-of-opportunity under-

water acoustic observations.

3. Assimilation of transmission loss data

Noting that modifications of underwater acoustic propaga-

tion characteristics have no impact on the physical ocean state,

the problem of assimilating acoustic observations in a physical

oceanographic systems reduces to the definition of the obser-

vation operator HAC( ) and its tangent-linear version HAC,

which are able to map the temperature onto transmission loss

values, with its adjoint (HAC)T operating the backward trans-

formation, which is required within the variational data as-

similation system. In general,

yTL 5HAC(x)1 eTL , (2)

where yTL is the vector of acoustic observations and eTL is the

associated error, and

HAC(x)2HAC(xb) ffi HAC(x2 xb)5HACdx , (3)

where the HAC is linearized around the background state xb.

In (2) we have explicitly referred to yTL to indicate transmis-

sion loss observations. In the remainder of the work, we will

FIG. 1. Acoustic propagation scenario used in this study: the

Ligurian Sea NEMO computational domain of the oceanographic

model is indicated by the thick box on top of the gray coastlines,

together with the associated bathymetry (black contours every

500m, from GEBCO) and locations of the acoustic source (S) and

receivers (R) in the Ligurian Sea.
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consider that x is the temperature field; namely, neglecting

the weak dependence of the sound speed on the salinity. This

also halves the size of the input matrix of the observation

operator. This is equivalent to assume that the derivative of

HAC with respect to salinity and sea surface height [the other

ocean state variables included in x, see Eq. (1)] is equal

to zero.

The fully nonlinear observation operator H( ) is in prac-

tice the underwater acoustic propagation model RAM that,

given a certain geometry, sound speed fields, frequency, and

boundary conditions (i.e., geo-acoustic characterization),

provides an estimate of the transmission loss recorded at the

receiver.

Regarding the formulation of the tangent-linear operator,

several approaches are in general available. One possible

choice would be to code the tangent-linear and adjoint ob-

servation operator by manually differentiating the RAM

model, as it was previously proposed by e.g., Ngodock et al.

(2017). Such choice is quite demanding in terms of devel-

oping, debugging and maintenance of the code, thus requir-

ing preliminary evidence of the positive impact of acoustic

observations in operational oceanographic forecasts. Furthermore,

the validity of the tangent-linear approximation of a parabolic

equation acoustic model has been shown to be limited to short

ranges (e.g., less than 5 km), due to the high nonlinearity of

the acoustic propagation and its interactions with surface

and bottom boundaries (Hursky et al. 2014). More accurate

tangent-linear versions of the parabolic equations might be

formulated (Lin 2013) but have never been tested in real-world

applications. For these reasons, the analytical formulation of

the tangent-linear operator may have several limitations, and

formulating a data-driven tangent-linear operator for our

acoustic problem is particularly attractive.

There exist already adjoint-free strategies where the tangent-

linear and adjoint are approximated by regression statistics or

explicit numerical differentiation of the full nonlinear model

(e.g., Bishop et al. 2017;Mattern andEdwards 2019). However,

these methods are best suited to quasi-linear problems and

may not satisfy the along-range nonlinear evolution of the

underwater acoustic propagation. Here, we will first formulate a

classical linear data-driven observation operator, based on

canonical correlation analysis, and then introduce the artificial

neural network operator. We will refer to these observation

operators as HAC
cca and HAC

nn , respectively, whose formulation is

detailed in the next two sections.

a. Observation operator through canonical correlation

analysis

Acoustic variables at the receiver location are in general

integrated quantities, which depend on all physical conditions

from the source along the propagation path, i.e., the two-

dimensional (transect) sound speed field. Among the many

possible techniques, we have considered as a simple linear

formulation the canonical correlation analysis (CCA), whose

aim is to find the modes of (co)variability that maximize the

cross correlation between different sets of variables. CCA is

suitable for problems of medium and high dimensions like ours

(e.g., Haddad et al. 2015) and was successfully applied by

Jansen et al. (2019) to the problem of skin SST data assimila-

tion. Canonical correlation analysis was first introduced by

FIG. 2. (left) Ensemble spread for temperature across the transect of Fig. 1 (with the black line indicating the sea bottom), and

(center) corresponding mean and ensemble spread for the one-way coupled transmission loss data at the receiver depths (from 2 to

172 m of depth, every 10 m), located 60 km north of the sound source, as computed by the RAM acoustic propagation model. Note

that the depth is logarithmic on the y-axis of the left panel. (right) Averaged sound speed profile along the cross section of Fig. 1

during the period from 14 Oct to 11 Nov 2017, from the ‘‘truth’’ experiment (see section 3d). The dashed line corresponds to the

depth with minimum sound speed.
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Hotelling (1936), and considers two matrices X and Y whose

columns represent the variables, after normalization by their

standard deviation, and the rows contain different realizations

of such variables.

The goal of CCA is to find some matrices A and B through

which X and Y are transformed into maximally correlated ca-

nonical variables, such that

F5X0A; G5Y0B , (4)

where X0 and Y0 contain the anomalies of X and Y; namely,

the mean over each column is subtracted to the raw data, and F

andG are the canonical variables. The matrices X0 and Y0 have
sizes of m 3 p and n 3 p, respectively, with m the number

of temperature grid points within the acoustic propagation

section, n the number of TL observations, and p the number

of cases to calculate CCA. Several pairs of canonical vari-

ables can be obtained through CCA, any following pair

maximizing the remaining correlation between X and Y,

with the maximum number of canonical variable pairs being

equal to the minimum dimension of the X and Y matrices.

The transformation matrices were calculated through the

procedure described by Björck and Golub (1973) by means

of QR and singular value (SVD) matrix decompositions,

which, applied to the dimensions of our problem, was

computationally inexpensive.

Once the transformation matrices A and B are known, it is

possible to calculate Y0 from X0 by means of transformations

through the canonical space. In particular, defining the

matrix S5 AB21, we have that Y0 ’ X0S. The tangent-linear

observation operator for acoustic TL is thus redefined as

the matrix HAC
cca 5

def
S, and the adjoint of such operator as ST.

Doing this, the problem of identifying an oceanic–acoustic

observation operator is equivalent to the problem of the

canonical correlation analysis given a dataset of oceanic and

acoustic training data.

b. Observation operator through neural networks

Unlike CCA, which formulates a linear relationship be-

tween the input and output data, the NN model nonlinearly

relates the temperature fields and the transmission loss data.

The NNs are excellent nonlinear function approximations,

already adopted and validated in several domains, such as

image processing (Krizhevsky et al. 2017), speech recogni-

tion (Graves et al. 2013), robotics (Inoue et al. 2017), etc. In

atmospheric and oceanic sciences, successful applications of

NN have been shown, among others, for the postprocessing of

ensemble forecasts (Scheuerer et al. 2020), for substituting

FIG. 3. (left),(center) Histograms of ensemble anomalies for selected acoustic and oceanic variables. (top right) Values of skewness as a

function of bearing angle (transect departing from the source in Fig. 1) for the selected acoustic and oceanic variables. (bottom right)

Results of the D’Agostino normality tests for the selected acoustic and oceanic variables, as a function of bearing angle. The numbers on

the right axis of the bottom right panel show howmany cases passed the normality test for the selected variables over the total 24 transects

[transmission loss (TL), mixed layer depth (MLD), sea surface height (SSH), sea surface temperature (SST), and thermocline

depth (THD)].
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complex and computationally expensive parameterization schemes

in numerical models (Krasnopolsky et al. 2005), or for re-

constructing ocean subsurface fields from surface data only

(Sammartino et al. 2018; Bao et al. 2019).

The input of the NN is the vector of the temperature fields

followed by two fully connected layers of several neurons

with a Rectified Linear Unit (ReLU) activation function. This

nonlinear activation function helps the network to learn com-

plex patterns in the data. The activation function decides

whether a neuron should be activated or not by calculating the

summed weighted input from the neuron, and further adding

bias to it. The output layer contains n neurons according to the

dimension of loss data followed by the linear activation func-

tion. The NN is trained using a root mean squared error as loss

function; to speed up the learning of the optimal parameters,

the input data are normalized in the range of 21 to 1.

A number of hyperparameters need to be setup, such as the

number of layers and neurons, the batch size and the number of

epochs, which together control the complexity of the NN, the

dimension and the number of simulation iterations, respec-

tively. The sensitivity of the TL reconstructed by NN to these

hyperparameters is discussed in section 4a.

As NN is a nonlinear model, it is not directly usable in var-

iational data assimilation, whose cost function requires linear

observation and model functions to preserve its quadraticity

and, thus, the uniqueness of the analysis solution. Therefore, a

tangent-linear approximation has to be formulated for the NN.

A simple way to derive the tangent-linear of the neural net-

work observation operator is through numerical differentia-

tion, provided that the size of our problem (input and output

variables) is much smaller than the data assimilation problem

itself, and the prediction step of the neural network algorithm

FIG. 4. (top) Correlation matrices calculated from the (left) temperature and (right) transmission loss training

data. (bottom) The temperature–transmission loss cross-correlation matrix. For temperature, the 2D cross

section is unrolled with depth as fast-varying dimension and range as slow-varying dimension, as explicated in the x

axis of the bottom panel.

1972 MONTHLY WEATHER REV IEW VOLUME 149

Unauthenticated | Downloaded 05/19/23 07:08 AM UTC



is relatively fast from a computational point of view. To this

end, we have tuned the Richardson’s extrapolation algorithm

(Richardson 1911) implemented for numerical differentiation

(Dubeau 2019). It is an iterative method where the step size, i.e.,

the temperature increment in the evaluation of the transmission

loss predicted by the neural network, is decreased sequentially

and the derivative of the neural network is extrapolated for the

increment tending toward zero. Another possibility is offered by

the Tensorflow package (Abadi et al. 2015), which embeds

automatic differentiation capability based on reverse-

mode automatic differentiation. The package supports

automatic differentiation for use e.g., in neural networks

backpropagation. Reverse-mode automatic differentia-

tion (or reverse accumulation mode) propagates deriva-

tives starting from a given output back to the input

(Bartholomew-Biggs et al. 2000; Baydin et al. 2017). In our

application, automatic differentiation is switched on dur-

ing the neural network model compilation and prediction

step, and the tangent-linear version of the observation

operator can be found through running the ‘‘gradients’’

function in Tensorflow,1 linearized around the flow-dependent

temperature background fields. Comparison between these

two strategies will be shown in section 4. Formally, the

tangent-linear observation operator is then given by

HAC
nn 5

def ›TLnn

›x

�
�
�
�
xb
. (5)

Namely, it is the derivative of the transmission loss data given

by the neural network model (TLnn) with respect to the input

field (x), in practice the temperature fields, and evaluated for

the background temperature (xb).

c. The training dataset

The methodologies described in sections 3a and 3b formu-

late a relationship between the input physical parameters and

the output acoustic TL values. However, in order for the ma-

chine learning algorithms to provide an observation operator

to be used within the variational data assimilation scheme, a

relatively large amount of training data is required. To this end,

we have exploited a 1-month 24-member ensemble system of

NEMO model simulations, each member of which has been

coupled to the RAM model through provision of input

sound speed fields. During the period from 14 October to

14 November 2017 (32 days) and extracting data from 6-hourly

outputs, a total of 3072 ensemble pairs of input physical and

output acoustic variables was used. The evolution of the en-

semble spread in an ensemble system with perturbed physics

and boundary conditions mimics to some extent the error

evolution of the deterministic counterpart system (Storto and

Randriamampianina 2010), provided that the perturbations

span the real-world uncertainties. Thus, using ensemble

anomalies appears an appealing strategy to form the training

dataset. For generating the ensemble, a stochastic physics

package was developed and implemented in the NEMO ocean

general circulation model (Storto and Andriopoulos 2021),

similar to the stochastically perturbed parameterization ten-

dencies (SPPT) of Palmer et al. (2009), leading to perturbation

fields that are correlated in time and space (Storto et al. 2020).

Figure 2 shows the temperature (left panel) and TL en-

semble mean and spread at the receivers’ location (center

panel). The plot highlights the uncertainty of temperature

fields in proximity of the thermocline, especially in the north-

ernmost part of the transect. TL data show large uncertainty

around 100–120mof depth, due to the vertical variability of the

sound speed minimum (see right panel of Fig. 2), although the

TL is highest toward the sea surface.

As a preliminary step to assess the feasibility of coupled

oceanic-acoustic data assimilation, we have investigated the

statistical characteristics of the physical and acoustic variables.

Ensemble-derived probability density functions of acoustic

and oceanic parameters revealed that using Gaussian assim-

ilation methods is feasible to a large extent; namely, misfits of

TL observations may be approximated to a Gaussian proba-

bility density function (pdf), subject to outlier rejection.

Figure 3 provides a summary of these diagnostics. In partic-

ular, we compared the pdf, skewness and Gaussianity through

the D’Agostino test (D’Agostino 1970) of several physical

variables and the acoustic transmission loss coming from the

ensemble dataset previously introduced, along several tran-

sects departing from the sound source and identified by the

bearing angle (every 158). The left panels of Fig. 3 show the

distribution of the ensemble anomalies, in order to visualize

which distribution shape each parameter has. The skewness

of the distributions is reported in the top-right panel of Fig. 3,

for each section (bearing angle), with zero corresponding to

the perfectly symmetric pdf case. Significant skewness of

transmission loss emerges only for 4 transects, while that of

e.g., SST occurs in more cases (7 transects). Based on the

D’Agostino normality test (bottom-right panel of Fig. 3),

transmission loss data are found Gaussian in 11 transects out

FIG. 5. Sketch of the assimilation experiment, as explained in the

text. TL is the transmission loss.

1 https://www.tensorflow.org/api_docs/python/tf/gradients.
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of 24, against sea surface height (only 3 transects out of 24)

and sea surface temperature (5 out of 24). These results in-

dicate that the occasional non-Gaussianity of TL data is not a

limiting factor, at least considering other physical variables

for which the Gaussian assumption is usually assumed to hold

within variational data assimilation systems.

Figure 4 shows the correlation and cross-correlation matri-

ces of and between the physical and acoustic parameters. For

temperature, the axes report for each range themodel levels, as

indicated in the bottom panel. The temperature correlation

matrix shows in general large positive correlations between

pairs of temperature either above or below the mixed layer.

Below the mixed layer, along-range correlations hold within

about 10 km of horizontal distance (in forward or backward

directions). Beyond these distances, the correlations gen-

erally drop. Transmission loss data show on the contrary

very high correlation among data within about 100 m of

receiver depth, while, below this depth, the data appear

generally uncorrelated between pairs located at more than

10 m of depth. The cross-correlation matrix shows signifi-

cant correlations especially within the first 10 km of range,

with transmission loss data from deep receivers significantly

positively correlated with upper-ocean temperature, and

negatively with temperature below the mixed layer. For

higher values of range, the correlation structure becomes

more complex. In general, there exist significant cross

FIG. 6. Variability (standard deviation), root-mean-square error (RMSE), normalized RMSE, and corre-

lation of the reconstructed transmission loss data vs transmission loss validating data, as a function of the

18 hydrophones (output variables). The normalized RMSE is defined as the RMSE divided by the standard

deviation (i.e., natural variability) of the validating data. The methods used are canonical correlation

analysis (CCA), neural network (NN), neural network linearized through numerical differentiation using

Richardson’s extrapolation (NN-NUMDER), and neural network linearized through the Tensorflow reverse-

mode automatic differentiation.
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correlations, whose shape depends on the position along the

propagation path. Note that these cross-correlation features

are involved directly in the formulation of the CCA trans-

formation matrix but not in the NN model.

d. Experimental configuration

The assimilation experiments assessed in the next section

cover the 29-day period from 14October to 11 November 2017.

The assimilation time-window is daily, and each day a 1-day

ocean forecast is performed to bring forward in time the ocean

state. The sketch of the assimilation scheme is reported in

Fig. 5. The methodology used to test the assimilation of

acoustic data is based on observing system simulation experi-

ments (OSSE, see e.g., Atlas 1997). A NEMO nature run—-

with perturbed boundary conditions and a stochastic physics

scheme on top of the nominal model configuration—was pre-

viously run. From the nature run’s temperature and salinity

fields, the RAMmodel is run to provide the ‘‘true transmission

loss’’ data from which the synthetic observations are extracted.

A Gaussian random error is added to such observations,

with vertically uniform standard deviation equal to 1.0 dB.

Within the experiments, the forecasted (background) tem-

perature and salinity fields (xb) provide the sound speed

conditions for RAM to obtain the background TL (TLb).

Observed minus background TL (misfits) are used within

the 3DVAR scheme together with the machine learning

algorithms and all other ancillary information (observation

and background error covariances, grid geometry) to eval-

uate the analyzed temperature and salinity (and analyzed

TL, TLa). From such corrected sound speed state, the second

RAM simulation is run (second outer loop) for the sake of

validation against the nature run, while from the analyzed

temperature and salinity state, the NEMO forecast is run to

reach the following day and provide the background state

for the subsequent analysis step, and so on for the entire

experimental period.

On top of the variational minimization, a simple background

quality check is performed, where TL misfits are rejected if

their square value exceeds 9 times the sum of the background

and error variances. This is done in order to exclude ob-

servations suspected of gross errors and avoid too large

misfits that will translate in unrealistically large increments

(see e.g., Storto 2016), provided that the tangent-linear

observation operators are designed to capture small co-

variations of physical and acoustic fields. Note that using 9

as variance threshold is equivalent to exclude non-Gaussian

observations at 99% confidence level. Further to the two

assimilation experiment (CCA and NN hereafter, with the

observation operator based on canonical correlations and

neural networks, respectively), we run also a control ex-

periment (Ctrl) with no data assimilation. An experiment

where the NN is linearized around the Ctrl fields (for sake

of assessing the impact of the linearization) will also be

introduced in section 4d, and named NN-C. In all data as-

similation experiments, the TL observational errors were

rescaled (50%) from the TL ensemble spread (Fig. 2, middle

panel), assuming that the variability of the TL simulations

provides a realistic representation of the acoustic observa-

tion uncertainty and characterizes the different uncer-

tainties between the depths where the hydrophones are

located.

4. Results

In this section, we first assess the offline transmission loss

reconstruction accuracy performed through the CCA and NN

methods, and then we evaluate the impact of the assimilation

of acoustic observations in physical ocean data assimilation

experiments, on both physical and acoustic variables.

a. Reconstruction of transmission loss data

The ability of data-driven algorithms to reconstruct the

transmission loss fields from input temperature has been

first assessed with the ensemble anomaly data (training data,

section 3c). We calculated a set of canonical correlations to

form the transformation matrix (CCA) or train the neural

network model (NN) from a fraction of this dataset. The

correlation values associated with the first 18 canonical

variables (CCA method) are all significant and range be-

tween 0.99 and 0.75 (not shown). The use of 18 canonical

variables is due to the minimum dimension between the

input and output variables, here being 18; namely, the

number of receivers that the acoustic mooring is equipped

with, which is in turn the maximum number of possible ca-

nonical correlations. On the contrary, the adoption of NN is

more complex, as it requires sensitivity tests to identify the

optimal choice of several hyperparameters (number of

layers/neurons, number of epochs, batch size, activation

function, etc.), which drive the ability of NN to reconstruct

TL data. Such tests are presented later at the end of this

section.

For the purpose of validating the data-driven algorithms,

we have followed the approach of randomly selecting 80%

of the 3072 ensemble anomalies for calculating CCAs or NN

TABLE 1. Depth-averaged normalized RMSE for different CCA

and NN experiments. For the CCA experiments, the number

identifies how many canonical correlations were used. For the NN,

different setups of neurons, layers and hyper-parameters were

used, and we report here selected configurations: the baseline is

NN1 (3 layers, 64 neurons, 5000 epochs, and batch size equal to

128), then NN2 (as NN1, but with 128 neurons), NN3 (as NN1, but

with 32 neurons), NN4 (as NN1, but with 4 layers), NN5 (as NN1,

but with 1028 layers), NN6 (as NN1, but with 2000 epochs), NN7

(as NN1, but with batch size equal to 256), NN8 (as NN1, but with

256 neurons), NN9 (as NN1, but with 128 neurons and 4 layers),

and NN10 (as NN1, but with 256 layers and 4 layers).

2 CCAs 6 CCAs 10 CCAs 14 CCAs 18 CCAs

RMSE 0.888 0.309 0.246 0.240 0.240

NN1 NN2 NN3 NN4 NN5

RMSE 0.072 0.067 0.088 0.070 0.070

NN6 NN7 NN8 NN9 NN10

RMSE 0.075 0.075 0.068 0.069 0.074
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(training data) and kept 20% of the ensemble anomalies

(test data) to validate the method. Results are summarized

in Fig. 6 in terms of output data variability (standard devi-

ation), root-mean-square error (RMSE), normalized RMSE

(i.e., RMSE divided by the verifying data standard devia-

tion) and correlation coefficients, all as function of the

acoustic receivers. All the methods show variability of the

output acoustic data close to that of the verifying test data

(black line). The accuracy of the CCA reconstruction is

below 1 dB for most receivers except between 120 and 160 m

of depth (receivers 11 to 16), which correspond to values

of normalized RMSE occasionally exceeding 30%. The

correlation is significant and high (greater than 0.9) for

all depths and greater than 0.96 for most depths except

those between 120 and 160 m. Note that, by construction,

CCA-based reconstructions maximize the correlation of

the reconstructed data rather than their absolute mean or

variability value.

The NN-based reconstruction accuracy (orange lines) is re-

markably higher than that of CCA at all receivers, with values

of normalized RMSE below 10% and correlation values all

greater than 0.99. Such skill scores suggest the superiority of

the NNmethod with respect to the CCA. For our application,

is also crucial to validate the linearization strategy that is used

within the variational data assimilation scheme. We compare

in particular the two methods for formulating the tangent-

linear approximation introduced in section 3; namely, the

numerical derivation based on the Richardson’s extrapola-

tion (NN-NUMDER) and that making use of the Tensorflow

reverse mode automatic differentiation (NN-TFAD). It turns

out that the automatic differentiation strategy leads to

transmission loss accuracy approximately as high as the fully

nonlinear NN, with slight degradation on normalized RMSE

not exceeding 1% and values of the correlation coefficient

unchanged. Conversely, numerical differentiation degrades

the skill scores, leading to normalized RMSE and correlation

coefficients for NN-NUMDER generally at intermediate

values between NN and CCA. Numerical differentiation is

then found to degrade the accuracy of the reconstruction. For

this reason, in the remainder of the paper, we only consider

the implementation of NN with tangent-linear model pro-

vided by the reverse mode automatic differentiation.

FIG. 7. Example of NN-based inversion of transmission loss data through single-profile data assimilation experiment. (top)

Analysis increments of temperature along the cross section corresponding to the propagation path in the top 500 m of depth for the

(left) NN and (right) CCA observation operators. (bottom left) Difference between the nature run (truth) and the background.

(bottom right) Transmission loss profiles and observation misfits (observation minus background) and residuals (observation minus

analysis). Black and red dots correspond to the transmission loss observations actually assimilated; namely, the observation at

around 175 m has been rejected by the assimilation system based on the background quality check. The single-profile assimilation

experiment refers to 28 Oct 2017.
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While the setup presented in Fig. 6 shows the best con-

figuration for each method (CCA and NN), we have also

performed sensitivity experiments, summarized in Table 1.

Shortly, using the largest number of CCA provides the best

accuracy among the CCA-based experiments, although no

significant difference is found for a number of CCA greater

than 14. Accuracy of NN within the tested configurations

ranges between 6.7% and 8.8%, depending on the number

of layers, neurons and hyper-parameters of the neural net-

work. The best-scoring reconstruction considers 3 layers,

128 neurons, 5000 epochs, and batch size equal to 128, and

therefore is the one used in the data assimilation experi-

ments. We found in particular that reducing the number of

neurons (e.g., to 32) or the number of epochs (e.g., to 2000),

deteriorated the skill scores, suggesting in turn that this

medium-sized problem requires for the NN a relatively large

number of degrees of freedom and iterations to converge

toward the optimal model configuration.

The different accuracy of the TL reconstructions using

either CCA or NN suggests that their use in real assimila-

tion experiments may require different specification of the

representation errors of the TL observations. Indeed, the

FIG. 8. Transmission loss (dB) along the transect, for the case shown in Fig. 7. (top) From the

nature run (truth). (middle) Difference between the truth and the background. (bottom)

Difference between the analysis (NN case) and the background. Note that the color bars are

different.
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representation error is known to include any possible

inaccuracy or approximation implicit in the observation

operator (see, e.g., Liu and Rabier 2002; Janjić et al. 2018).

Preliminary sensitivity studies with or without the inclu-

sion of the additional representation error (not reported

here) have shown, however, that this has negligible impact

or no impact on the CCA-based and NN-based assimilation

experiments, respectively. For sake of simplicity, the as-

similation experiments assessed in the next sections are

performed without the representation error; namely, with

the error definition as given in section 3d.

b. Inversion of transmission loss data

Inversion of temperature data from synthetic TL observa-

tions is exemplified in this section through a single-profile as-

similation experiment. To visualize the output of the physical

data assimilation, we report in Fig. 7 a cross section of tem-

perature analysis increments (top panels) coming from the

assimilation of a profile of TL data through the neural network

observation operator (top-left panel) or the CCA observation

operator (top-right panel). In particular, among the 18 TL

observations at different depths, 17 were retained by the as-

similation system, while 1 (relative to the receiver at around

175m of depth) was rejected based on the background quality

check. The bottom-left panel reports the difference between

the nature run (truth) and the background, while the bottom-

right panels show the profiles of TL (background, analysis and

truth) and the misfit and residual profiles, in the case of the

NN observation operator experiment (the CCA experiment

providing very similar profiles, not shown). It turns out that

the variational minimization with the observational errors

discussed earlier leads to very small values for the residuals

(observation minus analysis), compared to the values of

the misfits that range between 28 to 0 dB. In particular,

the profile of misfits exhibits negative values, i.e., the truth

showing smaller TL than the background, corresponding

to the consistently colder section in the truth, particu-

larly around 50 m of depth, that slows down the underwater

acoustic propagation. Nonnegligible colder state for the nature

run occurs also below 200m of depth, between approximately

FIG. 9. Assimilation diagnostics in observation space. (top left) Initial and final values of the 3DVAR cost

function as a function of time, in logarithmic scale. (top right) RMSE of observations minus background for

the three experiments indicated in the legend. (bottom left) Transmission loss RMSE decrease with respect to

the Ctrl run misfits; the percentage values represent the time-average RMSE decrease with respect to the Ctrl

(in black for CCA and in red for NN). (bottom right) Percentage of retained transmission loss observations as

a function of time.
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5 and 25 km of range. Note that for the nonassimilated re-

ceiver, vertical correlations implied by the assimilation system

lead to nonnegligible increments, although smaller than those

at the assimilated receivers.

The resulting temperature increments are mostly located in

the top 100m with generally negative patterns, which, how-

ever, differ between the CCA and the NN case. Both exhibit

negative increments around 50m of depth, but with peaks that

are located at different ranges. Nonnegligible increments are

also present below 100m of depth, with NN reproducing to

some extent the truth minus background patterns, and CCA

providing some positive increments at the beginning of the

cross section, and displacing the negative ones toward the

end of the transect. In the corresponding TL transect

(Fig. 8), the NN analysis increments resemble the difference

between the truth and the background, although with

smaller amplitude, within around the last 15 km of the sec-

tion, indicating that the assimilation provides qualitative

agreement with the innovations also in the space of the

transmission loss. The way the transmission loss misfits

translate onto temperature increments is shaped by both the

adjoint of the observation operator, and the temperature

background-error covariances that constrain the spatial

spread of the increments and have crucial impact on the

inversion results.

c. Assimilation diagnostics

Assessing the impact of the TL synthetic observations in the

coupled forecasts can be done through several diagnostics. We

start the evaluation exercise looking at assimilation output

diagnostics, which are summarized in Fig. 9. The cost function

and its decrease though the minimization appears rather stable

along time. On the average, the final 3DVAR cost function is

about 3000 (4500) times smaller than the initial cost function

for CCA (NN). The two experiments provide close diagnostics,

NN slightly providing a more pronounced cost function de-

creases. The root-mean-square error in the transmission loss

space (dB) is shown in the top-right panel as time-dependent

receiver-averaged values. The panel reports the RMSE

calculated for the Ctrl experiment (black, as RMSE after

the first outer loop of the data assimilation step) and after

rerunning the RAM model using the corrected temperature

and salinity (background plus analysis increments) as basis

for the sound speed fields (red and green for CCA and NN,

respectively). This latter diagnostics quantifies the impact of

correcting physical variables with acoustic observations on

the acoustic predictions themselves. There is indeed a pos-

itive impact, which is comparable between the two experi-

ments (6.7 dB of RMSE in the Ctrl against 4.8 and 5.0 in

CCA and NN, respectively). In particular, the bottom-left

panel shows that on the average the physical ocean analysis

reduces by 14% (CCA) and 12% (NN) the transmission loss

error with respect to the Ctrl experiment, after rerunning

the RAM underwater acoustic propagation model. Indeed,

we obtain a positive impact that increases with time. It is

likely that for longer experimental period, the system can

better adjust to the transmission loss observations and fur-

ther gain in accuracy. Finally, the bottom-right panel shows

the percentage of retained TL observations. After an initial

shock (large misfits leading to numerous rejections, also

visible in large RMSE values at the beginning of the ex-

perimental period, section 4d), the system adjusts to values

that are generally larger than 50% (except two individual

events). On average, the percentage of retention of TL ob-

servations is equal to about 70% in both experiments.

To further see the benefits of TL data assimilation on the

acoustic propagation predictions, Fig. 10 reproduces the time-

averagedRMSE skill scores as a function of the receiver depth.

We found a large improvement of the corrected transmis-

sion loss compared to the uncorrected data within the top

100m of depth and between 140 and 170 m of depth.

Between 100 and 130 m of depth, there is no impact, and this

is likely linked with the depth of the minimum sound speed

located at that depth (see the right panel of Fig. 2), meaning

that the middle depth of the sound channel is not shifted

during the assimilation procedure. The decrease of RMSE

between the Ctrl and either assimilation experiment indi-

cates that the forecasting system is able to retain the infor-

mation of the acoustic observations till the next assimilation

cycle (1-day forecasts), implying that the temperature cor-

rections coming from acoustic observations improve the

acoustic propagation predictability in short-range forecasts.

FIG. 10. Transmission loss RMSE as a function of receiver depth

for the period 1–11 Nov 2017, for the three experiments presented

in the text. Gray shades correspond to the number of observations

assimilated for each depth (top axis).
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Furthermore, while the control experiment exhibits a RMSE

profile increasing with depth and peaking at around 150 m

of depth, the RMSE from the assimilation experiments

shows a more homogeneous behavior along the vertical;

namely, the assimilation leads to a rather uniform verti-

cal accuracy, which is a desirable feature for real-world

deployments.

Mean and standard deviation of temperature analysis

increments during the entire experimental period are re-

ported in Fig. 11, for both experiments CCA and NN. Such

diagnostics sketch the expected impact of the assimilation of

TL observations on the mean state and variability of the

temperature fields, respectively. Averaged increments are

in general low (smaller than 0.18C in absolute values). While

CCA induces a notable average cooling concentrated in the

first 20 km and at depths between 50 and 100m, NN provides

extended cooling up to about 40 km of range. At the sea

surface there is a qualitatively similar impact, with warming

at the beginning and end of the transect, although location

and amplitude importantly differ between the two experi-

ments. Below 100m of depth, the mean corrections are also

in agreement (warming and then cooling along the cross

section), with NN having the transition shifted toward

north. More importantly, the analysis increment standard

deviations indicate that corrections are concentrated in the

layer 50–100 m, and are larger in NN than CCA, with CCA

exhibiting smaller impact than NN also in the top 50 m.

Below 100m of depth, corrections lead to reduced variability,

peaking to 0.068C only in CCA, while NN shows very limited

impact (less than 0.048C).

d. Impact of acoustic observation on temperature andmixed
layer depth

The way analysis increments impact the ocean state is

shown in Fig. 12. Difference of temperature for the two

experiments are shown with respect to the Ctrl experiment,

which provides a better visualization of the impact of the

two schemes compared to the differences with respect to

the nature run. In both experiments, the cooling between

50 and 100 m of depth in the analyses is dynamically shifted

northward. However, NN exhibits larger cooling (up to20.58C)
than CCA. Consequently, the mixed layer depth in that re-

gion (solid red line) rises more pronouncedly in NN than

CCA with respect to the mixed layer depth in the Ctrl ex-

periment (dashed red line), and becomes closer to the mixed

layer depth from the nature run (dashed black line). Indeed,

the use of NN is able to better thinning the mixed layer

compared to CCA.

The main validation exercise is performed for the physical

variables, validated against the nature run from which TL

synthetic observations were extracted, in order to assess the

effectiveness of the coupled assimilation scheme. Temperature

RMSE profiles (and their improvement with respect to Ctrl)

are shown in Fig. 13. Further to the CCA and NN experiments,

also the RMSE profile of the experiment NN-C, having the

neural network linearized around the Ctrl experiment fields, is

FIG. 11. Mean and standard deviation of temperature analysis increments during the experimental period

from 14 Oct to 11 Nov 2017, along the source–receiver propagation path of Fig. 1, for the two experiments

presented in the text.
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shown for comparison. All the experiments show improve-

ments between approximately 30 and 200m of depth. However,

NN improvements are the largest, peaking up to 0.38C RMSE

decrease (12% improvement) in the thermocline against around

0.158C for CCA (6% improvement). NN-C still provides a

positive impact but smaller than the other two experiments,

thus proving the importance of linearizing the observation

operator around the actual flow-dependent fields. The RMSE

decrease is statistically significant for all experiments between

around 50 and 150m of depth. Salinity RMSE profiles exhibit

a negligible impact, and are not shown, while sound speed

RMSE profiles closely resemble those of temperature (not

shown). The main mechanism for the RMSE reduction is the

attenuation of the warm bias (right panel of Fig. 13) around the

thermocline, performed at most by NN and consistent with

the large cold analysis increments therein (Fig. 12).

Figure 14 shows the time series of RMSE for temperature at

50m of depth and mixed layer depth. For the former, the im-

pact of TL assimilation is visible after about one week from the

experiment initialization, due to slow adjustment of the system

to the new observations, and amplifies with time afterward.

MLD skill scores are even slower than temperature ones to

start exhibiting impact (after about two weeks). On the aver-

age, the RMSE of MLD is reduced from about 16.8 (Ctrl) to

16.0m (CCA, 5% reduction) or 15.5m (NN, 8% reduction),

while NN-C shows the smallest reduction of RMSE (16.1m,

4% reduction). Note that the error growth with time, particu-

larly visible in theMLD skill scores, is driven by the thickening

of the mixed layer, which is largely overestimated by the ocean

model especially during autumn, causing an increase of the

RMSE as shown also by Storto and Oddo (2019). Without the

assimilation of other physical observing network, this feature

emerges clearly during the experimental period, suggesting in

turn the importance of the synergistic assimilation of physical

and acoustic observations.

Although on the average NN outperforms CCA in both the

temperature andMLD skill scores, occasionally CCA provides

comparable or better results than NN, for instance during the

last days of the simulations. Indeed, CCA proves also a robust

adjoint-free method to perform the assimilation of acoustic

observations into regional oceanic numerical models.

5. Conclusions

In this work, we have investigated the feasibility of assimi-

lating underwater acoustic observations into regional oceano-

graphic prediction systems, with focus on the use of data-driven

observation operators. We have considered the case of assim-

ilating TL data from a ‘‘source of opportunity’’ such as a 75-Hz

noise-producing ship. The scenario we have set up includes a

source and a vertical array of receivers that a mooring may be

equipped with. The problem of assimilating acoustic param-

eters for correcting temperature fields is in general equivalent

to the optimal construction of an observation operator (and

its adjoint, in the context of variational assimilation schemes)

that maps physical fields onto acoustic quantities. While there

exist several approaches to do that, we have investigated

the feasibility of using neural networks (NN) to build the

observation operator, and compared to simpler and more

classical linear approaches such as canonical correlation

analysis (CCA). We have then assessed the ability of such

scheme to correct temperature fields along the source-

receiver transmission path by assimilating synthetic obser-

vations extracted from a nature (‘‘truth’’) run, following the

approach commonly known as observing system simulation

experiments (OSSE).

Training data for estimating both the CCA and the NN

models were extracted from an ensemble of oceanic simula-

tions with stochastic physics, to each member of which corre-

sponds an underwater acoustic propagation simulation. This

specific application requires input variables (‘‘features’’) cov-

ering two-dimensional transects and, thus, training data are

conveniently defined in the model space; however, other ap-

plications may rely on observed measurements also for the

training dataset.

The validation of the two methods on test data indicated the

superiority of NN compared to CCA within our specific ap-

plication. In the assimilation experiments, results suggest that

the assimilation of TL data with either observation operator

helps improve the top-200-m temperature variability and, to

FIG. 12. Mean temperature difference with respect to the Ctrl

experiment for the two experiments CCA and NN during the ex-

perimental period from 14 Oct to 11 Nov 2017, along the source-

receiver propagation path of Fig. 1. Solid red lines correspond to

the time-averaged mixed layer depth of the two experiments, while

the red dashed line corresponds to theMLDof the Ctrl experiment

and the black dashed line corresponds to the MLD of the na-

ture run.
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some extent, the mean state and variability of the mixed layer

depth, thus contributing to an enhanced representation of the

upper-ocean vertical structure. Temperature around the ther-

mocline is impacted at most, showing a significant reduction of

forecast errors.

Acoustic data may therefore complement other observing

networks such as remotely sensed sea surface temperature

observations, which are able, in general, to correct only the

upper ocean; namely, the mixed layer. Note also that for

the geometry chosen here, the sea bottom is quite deep and

acoustic rays may not be absorbed by it. Therefore, our

configuration represents an acoustic scenario where we can

expect maximum impact, and the specific impacts of the

acoustic data assimilation cannot be readily generalized as

they depend on the chosen geometry. Additionally, the as-

similation improves the acoustic propagation prediction

performed with the assimilation-corrected temperature fields,

implying that the assimilation is self-consistent and provides

benefits to the acoustic prediction itself.

From the methodological perspective, we have shown for

the first time that neural networks can be embedded in varia-

tional data assimilation scheme to form observation operators,

and that the performances of such observation operator is on

the average superior than a purely linear CCA-based operator.

This proof-of-concept paves the way to the substitution of

several operators used in data assimilation schemes with

machine learning ones, and we argue that for many opera-

tors that are built empirically or that contain several ap-

proximations, the nonlinearity implied by neural network

models can provide significant improvements. Another con-

clusion is about the importance of the linearization strategy.

First, using numerical derivation instead of automatic differ-

entiation limits the accuracy of the neural network model, with

automatic differentiation providing almost the same accuracy

as the original (fully nonlinear) neural networkmodel. Second,

linearizing the observation operator around a field different

from the actual background—in our case the control experi-

ment, but also climatological fields or other options may be

used—jeopardizes to a large extent the benefits of the neural

network observation operator. Practically, this finding calls

for a closer interconnection between the data assimilation and

the machine learning software, in order to interoperate se-

quentially in real-time.

Another implicit advantage of our approach is that neural

networks capture the temporal changes of the covariations

between input (temperature) and output (transmission loss)

data. Amethod like CCA could be in principle reformulated

to be flow-dependent, but this would imply forming at each

assimilation cycle a large training dataset; namely, a very

large ensemble that is impractical in real-world applica-

tions. It is worth noting that also the use of CCA as a linear

data-driven observation operator is able to capture most of

the benefits of the TL data assimilation; for some periods

and diagnostics (for instance the RMSE in TL space, Fig. 10),

CCA provides slightly better results than NN, although on the

average the verification of physical variables indicates that NN

outperforms CCA.

The use of data-driven formulations for constructing ob-

servation operators appears promising for a large variety of

observations—remote sensing data, integrated physical quan-

tities, etc.—namely for all observations for which operators are

anyway empirically described or approximated or require too

complicated tangent-linear and adjoint counterparts. Our ap-

proach can also be adapted to other data assimilation compo-

nents, for instance balance (or cross-covariance) operators

in cases of poor performance of analytical formulations, as

for instance the assimilation of altimetry data in shallow or

coastal waters.

FIG. 13. (left) Temperature RMSE profiles vs the nature run along the cross section of Fig. 1, (center) temperature RMSE difference

profiles with respect to the Ctrl experiment, and (right) temperature bias profiles. Bias is computed as model minus observations. The

experiments are Ctrl (black), CCA (red), NN (green), and NN-C (blue). All the statistics are calculated over the entire experimental

period from 14 Oct to 11 Nov 2017.
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